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V» 

PREFACE 

The essence of the seismic method is given by propagation and reflection. 
The source wave field propagates down into the subsurface, reflects at the 
layer boundaries, and the reflected wave field propagates back to the 
surface. Hence, the seismic response we measure at the surface represents 
a mixture of propagation and reflection information. The major part of 
seismic processing is dedicated to the elimination of propagation effects 
from the seismic response, aiming to correctly position the true amplitude 
reflectivity. Propagation is determined by the trend of the subsurface 
(macro layering) and reflection is determined by the detail of the 
subsurface (fine layering). Consequently, for the elimination of propagation 
effects a macro model of the subsurface should be available. 

Seismic redatuming is a popular concept, indicating the wave field 
extrapolation process that transforms seismic measurements from the actual 
data acquisition surface (old datum) to a simulated data acquisition surface 
(new datum) down in the subsurface. Often the new datum will present the 
top of a target zone. After redatuming the propagation effects (down and 
up) of the target overburden have been removed from the target reflections 
and, particularly for a structurally complicated overburden, the target 
response will be simplified significantly. 

It may be stated that wave field extrapolation has become one of the most 
important tools in modern seismic processing. In principle, stratigraphie and 
lithologie inversion in a target zone should be preceded by multi-offset 
redatuming. And, last but not least, redatuming is the 'heart' of any 
migration technique. 

In this book wave field extrapolation is extensively discussed from a 
theoretical point of view. The acoustic case and the elastic case are 
treated separately. The reader who is just interested in the acoustic case 
may study the odd numbered chapters only. However, for each subject an 
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VIII 

instructive comparison between the acoustic and elastic case is obtained by 
reading an odd numbered chapter together with the next even numbered 
chapter. 

We have prepared the material in this book for geophysicists who are 
professionally involved with advanced wave theory concepts. In particular 
this book will be useful for research geophysicists who are designing or 
using wave theory based processing techniques for single- or 
multi-component seismic data from structurally complicated areas. 

This book would never have been finished without the help of many of the 
members of the professional staff of the "Delft Laboratory of Seismics and 
Acoustics". We are very grateful to Mr. G.C. Haimé who generated all the 
elastic data examples with his finite difference modeling software. Also he 
produced the examples on elastic inverse wave field extrapolation in chapter 
VIII. The elastic decomposition (chapter XII) was carried out by Mr. P. 
Herrmann; Mr. D.J. Verschuur generated all the examples on acoustic and 
elastic multiple elimination. The examples on inverse wave field 
extrapolation in high contrast media (chapters IX and X) were generated by 
Mr. C.G.M. de Bruin. Dr. N.A. Kinneging produced the examples on 2-D and 
3-D acoustic redatuming. After he graduated, Mr. H.L.H. Cox adopted his 
software and carried out the elastic redatuming (chapter XII). The examples 
on true amplitude acoustic inverse wave field extrapolation (chapter VII) 
were prepared by Dr. G.L. Peels and Mr. V. Budejicky; Mrs. W.E.A. 
Rietveld and R. Arts generated the examples in chapters I and II. Several 
of the people mentioned above, as well as Mr. G. Blacquière and Mr. A.D. 
Lemaire critically carried out the proofreading. The support of all these 
people is greatly appreciated. 
Many thanks are also due to Mr. A.S.G. de Knegt of the drawing office 
who prepared the illustrations. Finally, we are very grateful to Hanneke 
who designed the lay-out and patiently typed the manuscript. 

Dr. C.P.A. Wapenaar 
Dr. A.J. Berkhout 
Delft, August 1989 
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1 

INTRODUCTION 

Looking at the current approaches to multi-dimensional seismic inversion, we 
may distinguish the following two classes (Figure 1): 

Methods based on iterative forward modeling, 
Methods based on downward wave field extrapolation. 

y r 

iterative 
forward 
modeling 

(two-way) 

1 r 

seismic 
inversion 1 

T 

downward 1 
wave field 1 

extrapolation! 
(one-way) J 

^ r 
elastic 

parameters 
reflectivity 

Figure 1: Two approaches to seismic inversion. 

Inversion by iterative forward modeling 

In this approach seismic data are simulated, given a description of the 
seismic source and an initial subsurface model. The simulated data are 
subtracted from the real data. Based on the data residue, the subsurface 
model is adjusted and the procedure is repeated iteratively. When the 
residue has reached a minimum value, the final subsurface model is assumed 
to give an accurate description of the real subsurface. 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



2 

The most elegant aspect of this approach is that in principle any degree of 

accuracy can be reached by choosing the proper two-way wave equation 

(acoustic, elastic, Biot theory,  2-D, 3-D, etc.) in the forward modeling 

scheme (Figure 2). 

two-way 
wave equation 

seismic 
source(s)> 

T 
subsurface 

model 

Figure 2: Two-way forward model of seismic data. 

The most important drawback  is that it is computationally very expensive. 

In practice many iterations (typically 50) are required before the minimum 

residue, if at all, is reached. For this reason, inversion  by iterative forward 

modeling has not yet outgrown the research phase. 

Inversion by downward wave field extrapolation 

This is the approach that is currently used by the seismic industry 

(migration). After pre-processing the seismic waves are downward 

extrapolated into the subsurface and at each depth point the "reflectivity" 

is abstracted. This yields a reflectivity image of the subsurface, which is 

subsequently interpreted by geologists in the search for oil and gas. 

In comparison with the previously described approach, migration  is a very 

efficient solution to the seismic inversion problem. However,  the theoretical 

foundation of the currently used schemes is questionable. The accuracy 

depends largely on the manner the wave fields are downward extrapolated 

from the earth's surface into the subsurface. 

This book aims at giving a theoretically sound recipe  for acoustic and 

elastic downward wave field extrapolation  of, respectively, single- and 

The two-way wave equation describes simultaneous downward  and upward 
propagation. 
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3 

multi-component seismic data from the earth's surface to a particular depth 

level in the subsurface (redatuming). A discussion of the post-processing of 

the redatumed data (imaging, amplitude versus angle analysis, lithologie 

inversion etc.) is beyond the scope of this book. 

One-way forward model of seismic data 

Downward wave field extrapolation is generally based on the one-way wave 

equations . However, in seismic data acquisition two-way wave fields 

(including multiple reflections) are recorded. Hence, algorithms for downward 

wave field extrapolation can only be derived when we have a forward 

model available that properly combines the one-way aspects of wave 

propagation with the two-way aspects of seismic data acquisition. 

In the one-way forward model depicted in Figure 3 we may distinguish 

three different model "layers". 

Figure 3: One-way forward model of seismic data. 

(For simplicity only the response of a target zone is shown). 

A one-way wave equation describes either downward or upward wave 
propagation. 
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4 

The first layer contains decomposition and composition operators that relate 
the two-way seismic data to the downward and upward propagating one-way 
wave fields. Also it contains a surface reflection operator that describes 
how the upgoing waves, arriving at the surface, are reflected back into the 
subsurface, thus giving rise to multiple reflections. The second layer 
contains operators that describe downward and upward wave propagation. 
Finally, the third model layer contains an operator that describes how the 
downgoing waves in the subsurface (for instance in a target zone) are 
transformed into upgoing waves. 

Compare this one-way forward model with the two-way forward model of 
Figure 2. The two-way forward model is a "black box" that requires the 
seismic source and a subsurface model as input and that gives simulated 
seismic data as output. The one-way forward model, on the other hand, is 
composed of several "boxes", each of which has its own specific character. 
The boxes in the upper layer are fully determined by the near surface 
properties. The boxes in the second layer are fully determined by the 
macro properties (average velocities, main geologic boundaries, etc.) of the 
"overburden" (area between the surface and the target zone of interest). 
The box in the third layer is mainly determined by the detailed reflection 
properties of the target zone. Therefore the one-way forward model is an 
excellent starting point for "seismic inversion in steps". 

Finally, it is interesting to note that the one-way forward model may be 
based either on the acoustic or on the full elastic wave equation. In the 
acoustic approximation, the earth's subsurface is assumed to be an ideal 
fluid which may support compressional waves only; the data acquisition is 
assumed to be carried out with single-component sources and receivers. 
Since the earth consists of solid rocks which may support both 
compressional (P) and shear (S) waves, the acoustic approximation is only 
partly valid. Particularly when the data are acquired with multi-component 
sources and receivers at large distances apart (large offsets), the acoustic 
approximation breaks down. In the elastic version of the one-way forward 
model, the decomposition and composition operators describe the relation 
between multi-component two-way seismic data and downward and upward 
propagating P- and S-waves. The propagation and reflection operators 
account for one-way P- and S-waves as well as for P-S and S-P 
conversions. 
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Outline 

In chapters I and II a brief review of acoustic and elastic wave theory is 
presented. In chapters III and IV we discuss the relationship between 
two-way and one-way wave equations. Here we derive the important 
decomposition and composition operators as well as the reflection operators, 
both for the acoustic and for the elastic approach. In chapters V and VI 
we derive acoustic and elastic forward extrapolation operators for downgoing 
and upgoing waves. Note that chapters I to VI provide the basic tools for 
the one-way forward model of Figure 3. 

Redatuming of single- and multi-component seismic data is essentially based 
on inverting the one-way forward model. Inverting the decomposition and 
composition operators is trivial: decomposition is inverse composition and 
vice versa. Inverting the extrapolation operators is certainly not trivial. 
Chapters VII and VIII deal with acoustic and elastic inverse wave field 
extrapolation in inhomogeneous (anisotropic) media with low contrasts. In 
chapters IX and X the theory is extended for media with high contrasts. 
Finally, in chapters XI and ΧΠ acoustic and elastic redatuming schemes are 
discussed. An interesting conclusion is that elastic redatuming of 
multi-component data, decomposed into P- and S-waves, is essentially 
equivalent to repeatedly acoustic redatuming of single-component data. 
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6 

Summation convention 

Throughout this book we make use of Einstein's summation convention for 
repeated indices. 
Repeated Latin indices imply a summation from 1 to 3. E.g., 

ijk£ I k,m j ι 

(equation (VI-23a)), stands for 

3 3 3 3 dGk 3V. 

Mj5iêi£i A c yw—β^ττ -

where i (or j , k, £, m) = 1, 2, 3 stands for x, y, z, respectively. Of course 
the summation convention does not apply to repeated indices x, y or z. 
Exceptions throughout are the indices s (=scattered), t (=target) and c 
(=constrained). Other exceptions are mentioned when appropriate. 
Repeated Greek indices imply a summation from 1 to 2. E.g., 

jk 7* 

(equation (IV-3a)), stands for 

2 
*-. J a a ' a=l 

where a=l, 2 stands for x, y, respectively. Exceptions throughout are the 
indices φ and φ (denoting P- and S-waves, respectively). 
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7 

I 
ACOUSTIC WAVES 

1.1. INTRODUCTION 

Any mechanical disturbance in a solid, liquid or gaseous medium is 

accompanied with a force which tries to restore the equilibrium situation. 

This fundamental property of matter underlies wave propagation (i.e., 

propagation of the disturbance through the medium). The nature of the 

restoring forces depends largely on the state of the medium. Ideal fluids 

(i.e., ideal liquids or gasses) can only support forces of compressional 

nature, whereas solids can support compressional as well as shearing 

forces. Waves associated with compressional forces are called compressional 

waves (or P-waves); waves associated with shearing forces are called shear 

waves (or S-waves). In this book we will reserve the name acoustic waves 

for waves in fluids (P-waves only), whereas we will use the name elastic 

waves for waves in solids (P-waves and S-waves). 

In this chapter we derive the acoustic wave equation for an inhomogeneous 

ideal fluid. Furthermore, we present spherical and plane wave solutions for 

the special case of a homogeneous fluid. 

1.2. ACOUSTIC WAVE EQUATION 

In this section we derive the basic equations which describe non-linear 

wave motion in an inhomogeneous ideal fluid. Next, we linearize these 

equations and derive the "acoustic two-way wave equation". 

1.2.1. Conservation of mass 

We consider a fluid in motion in which the particles move with a space 

(r*) and time (t) dependent velocity v*(F\t) \ The space and time 

dependent volume density of mass we denote by p(r ,t). In this fluid we 

consider a volume V enclosed by a surface S with outward pointing normal 

vector n , see Figure 1-1. 

Here r is a short-hand notation for the Cartesian coordinates (x,y,z). 
Hence, v (r ,t) stands for v (x,y,z,t). In this book we make use of both 
notations. 
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- ► X 

Figure 1-1: Volume V, containing a fluid in motion. 

The law of conservation of mass (Welty et al., 1976) states that the time 

rate of change of mass in V is equal to the incoming mass flux through 

S, increased with the time rate of mass injection, hence 

J- f p dV = - & pV.ndS + — f i m dV, (1-1) 

V S v 

where i (r ,t) represents a source distribution in terms of a volume 

density of mass injection. Applying the theorem of Gauss, 

(6 ä*MdS = J V.ä*dK, (1-2) 
S V 

and taking volume V time-invariant, yields 

(I-3a) 

or, 

f lR J ôt 
V 

since 

dt + 

dV 

this 

= -i 
V 

V.(pv"*)dK 

equation holds 

V.(pv") = 
ai 

m 
dt · 

V 

for 

di m 
at 

any 

- dV, 

volume V, 

d-3b) 

This equation is known as the non-linear equation of continuity. 

1.2.2. Conservation of momentum 

Consider again the volume K, depicted in Figure 1-1. The law of 

conservation of momentum (Welty et al., 1976) states that the rate of change 

of momentum of the particles in V is equal to the incoming momentum 

flux through 5, increased with the resultant force acting on the particles 

in V (generalized Newton's law), hence 
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-Ü_ ί p? dV = - (j> (pv )̂v .̂iTd5 + F V ) , (I-4a) 
V S 

where 

?(F) = - (fi prTd^ + ί TdV. (I-4b) 
5 V 

Here p(r ,t) denotes the pressure and f (F*,t) is the volume density of 
external force. Note that shearing forces (due to viscosity) are not 
considered (we assumed an ideal fluid). 

Applying the theorem of Gauss (1-2) to the three components of the 
vectorial integral equation (1-4) and combining the results, yields 

Γ d(PV) dy = _ f [Vv.(pv^) + (PV.V)V]dV + FV), (I-5a) 

V V 

where 

F V ) = - Ϊ Vp dV + J TdK, (I-5b) 
V V 

or, since this equation holds for any volume V, 

a^*' + ^V.(pv*) + (pv*.V)v* + Vp = Γ.
 (I-5c) 

This equation is known as the non-linear equation of motion. 

1.2.3. Constitutive relation 

The pressure p, the volume density of mass p and the temperature T of a 
fluid are mutually dependent. This is expressed by the equation of state, in 
its most general form given by 

χ(ρ,ρ,Τ) = o, (I-6a) 

where x is a non-linear function of p, p and T. 
Assuming that compression and expansion occur adiabatically (i.e., assuming 
that heat exchanges can be neglected), the equation of state becomes 
(Zemansky, 1968) 
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pp = constant, (I-6b) 

with 

K = C /C , (I-6c) 
p' v' v 

where C represents the specific heat at constant pressure and where C 

represents the specific heat at constant volume. Define 

p(r ,t) = po(r ) + Ap(r ,t), 

where p represents the static pressure and Δρ represents the pressure 

changes, caused by the acoustic wave field. Similarly, define 

p(r ,t) = po(r ) + Ap(r ,t), 

where p represents the static mass density and Δρ represents the mass 

density changes, caused by the acoustic wave field. Thus the equation of 

state (I-6b) can be written as 

P ( l + ^ ) p " K ( l + ^ ) - K = p p " ' , (I-7a) o v p J o v P oo ' Ko yo 

^o p o 

ΔΕ _ ^ Aß 7(7-1) (ΔρΊ 2 7(7-0(7-2) ΓΔβΊ 3 
Ό Po 2 l p o J 6 L p o J ( } 

1.2.4. Linearization of the basic equations 

In general, the particle velocity v (r ,t) may represent an acoustic wave 

field, superposed on the steady flow of the fluid. In the following we 

assume that the flow velocity is zero, so that v (r ,t) only represents the 

particle velocity associated to the acoustic wave field. For a wide range 
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of applications it is justified to assume 

Ap(r ,t) 
Ρ0(Γ) 

« 1 

and 

M ^ Ü I « i. 
P 0 ( D 

With these assumptions we obtain from (I-3b) the linearized equation of 

continuity 

di di J _ d(Ap) + v ^ 1 " m A " v 
p at — v - — - * - - -5Γ · σ-8») 

where we introduced the acoustically more realistic source distribution 

i (r ,t), which represents a volume density of volume injection (for example 

an airgun). Similarly, from (I-5c) we obtain the linearized equation of 

motion 

Po g - + V(Ap) = T. (I-8b) 

Note that we assumed that the spatial variations of the static pressure 

are negligible in comparison with the spatial variations of the acoustic 

pressure, 

| V p o ( r ) | « |V(Ap(r ,t)) | . 

Finally, from (I-7c) we obtain the linearized equation of state 

*0 * 0 

where we introduced the adiabatic compression modulus K(r ). 

' For sound waves in air at normal atmospheric conditions, | Δρ/ρ | 
-10 -5 ° 

ranges from 2*10 to 6*10 For seismic waves in water, | Δρ/ρ | 
-2 ° is at most 10 (except in the vicinity of the source)

. 
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From these equations Δρ can easily be eliminated by substituting (I-8c) 
into (I-8a). Now the linear acoustic wave field is fully represented by 
Ap(F*,t) and v*(F\t), whereas the fluid is fully represented by p (r ) and 
K(r ). For notational convenience, in the remainder of this chapter we use 
the following substitutions: 

Ap(F\t) - p(F\t), (I-9a) 
and 

PQ(?) - P(r"). d-9b) 

Thus the linearized equation of continuity becomes 

_ ^ Μ Ζ Λ ϋ + v - ( r 5 t ) = fj^_ (I10a) 
κ(Γ) dt dt 

and the linearized equation of motion becomes 

P ( F + ) a v (r »o + vP(r,t) = nr.t) . 
at 

(I-10b) 

Note that (I-10b) implies 

V x (pv*) = Ö*, (I-10c) 

in any region where f =o . Equation (I-10c) states that the mass flow 
vector pv in a linear acoustic wave field is curl-free. This is a 
fundamental property of acoustic wave motion. In a homogeneous medium 
equation (I-10c) simplifies to 

V x v̂  = o~\ (I-10d) 

1.2.5. Acoustic two-way wave equation 

By eliminating the particle velocity v from the set of equations (I-10a) 
and (I-10b), we obtain the wave equation for the acoustic pressure p: 

/>V.(}vp) - | ^ f = -s,  (I-11 a) I 
at 

where 
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ah 
S = f> V PV. [ | r ] , ( I - l ib) 

a t 2 ' · ι > 

hence, s(r ,t) represents a source distribution in terms of the volume 

density of volume injection i (r ,t) and the volume density of force f*(F\t). 

Wave equation ( I - l l ) describes the propagation of linear acoustic waves in 

inhomogeneous fluids. In the following we call this equation the "acoustic 

two-way wave equation". This is opposed to the "acoustic one-way wave 

equations" which are derived in chapter ΙΠ. One-way wave equations 

describe either "downgoing" or "upgoing" wave propagation and are in 

general not exact . The two-way wave equation ( I - l l ) , on the other hand, 

describes wave propagation in all directions and is exact (assuming 

linearity). 

1.3. SPHERICAL WAVE SOLUTIONS OF THE ACOUSTIC TWO-WAY WAVE 

EQUATION 

In this section we present the spherical wave solutions of the acoustic 

two-way wave equation for a point source of volume injection and for a 

point source of force in an unbounded homogeneous fluid. We discuss both 

causal and anti-causal solutions. 

1.3.1. Monopole and dipole sources 

We consider an unbounded homogeneous fluid and we define a monopole 

point source of volume injection, such that 

d2i (7\ t ) 
P —? = *(?*)s(t), (I-12a) 

dC 

where s(t) is the source signature and where 8(r ) = 5(x)5(y)5(z) represents 

a 3-D spatial delta function, which satisfies 

5( f ) = o for FV (Γ (I-12b) 

and 

/ 8(r*)dV = 1 for any V containing r = o . (I-12c) 
V 

According to ( I - l l ) , the acoustic pressure p . ( r ,t) re la ted to this source 

should satisfy 
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o 52Ρί 
1 κ dt2 

We also define a point source of vertical force, such that 

f ( F \ t ) = o . (I-13a) -,,.Γ: 1 
\8(r )s(t)J 

According to (I—11), the acoustic pressure p~(r ,t) related to this source 

should satisfy 

V 2 P 2 - | % = - f ^ s ( t ) . (I-13b) 
Öl 

Note that the right-hand side of this equation could be written as 

lim -^-8(x)8(y) Γδ ( ζ + ^ ) - 5 ( z - - ^ ) 1 s(t), 
^Z->0 L J 

hence, it represents a dipole source at r =o with signature s(t). 
Differentiating both sides of equation (I-12d) with respect to z yields 

d r O . Λ Γ . Ö Pi 

or, since p and K are constant 

apl 1 _ W**) 2 Γ^ΡΊ „ A ^ L r ^ i l = - MîLi-s(t). (1-130 
at 

Hence, assuming that -dp./dz and p^ satisfy the same initial conditions, 
we obtain 

Ρ2(Λθ = - - ^ - P l ( F \ t ) . (i-i3d) 

In the next sections we solve equation (I-12d) for the monopole wave field 

p.(r ,t). The expressions for the dipole wave field p~(r ,t) are then derived 

from p.(r ,t) using (I-13d). Bear in mind that this procedure for deriving a 

dipole wave field cannot be followed in inhomogeneous media. 
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1.3.2. The wave equation in spherical coordinates 

For r Φ o wave equation (I-12d) reads 

? d2p 
V P j - £ γ- = o. (I-14a) 

Around r =o we consider a small volume V enclosed by a surface S with 
outward pointing normal vector n . In analogy with sections 1.2.1 and 1.2.2 
we rewrite wave equation (I-12d) around r =o as 

ί V.VpjdF - ί £ γάν = - f *(f )s(t)dF, (I-14b) 

or, applying the theorem of Gauss (1-2) and using the definition of the 
delta function (I-12c), 

(j> (Vp^rTdS - £ | } dV = -s(t). (I-14c) 
5 V dt 

We seek for a solution with spherical symmetry, i.e., 

Pj(r ,t) = Pj(r,t), 

where 

= \fe -2·-2 
r = | r | = V x +y +z 

Thus equation (I-14a) may be transformed to 

d2Pj 2 dp{ d2p{ 

=Γ + -T"^7 - ^ 5" = ° f o r Γ^ °- (I-15a) 
or2 r dr K at2 

For the surface S in equation (I-14c) we choose a sphere around r =o 
with radius r=r . Hence, equation (I-14c) may be transformed to 

«P. i . o f d p 
4„2 _ J _ | - 4π | f - / d r = -s(t). (I-15b) 

o dr | r = r K- J a t
2 
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1.3.3. Causal and anti-causal solutions 

The solution of (I-15a) reads 

p ± ( r t ) = u(± t-r/c) f o r f _ ^ (M 6a) 

with 

c = VK/p , (I-16b) 

where u may be any twice differentiable function. We will see below that 

c represents the propagation velocity. Substitution of (I-16a) into (1-15b) 

and taking the limit for r —>o, yields 

-4mi(±t) = -s(t), (I-16c) 

hence, the solution of (I-15a) and (I-15b) together, reads 

— / *\ 1 S ( t+ r / c ) /τ π \ 
P j ( = ~ 4 7 r · ( I " 1 7 a ) 

A wave front is defined as a surface on which 

t+r/c = constant, (I-17b) 

hence, a wave front may be any sphere with midpoint r =o and radius r, 

see Figure 1-2. In Figure I-3a the solution p,(r,t) is shown as a function 

of r and t for a causal source function s(t), which means that s(t)=o for 

t<o. Note that the wave fronts propagate away from the source (at r=o) 

when time progresses, with propagation velocity c. Also note that the 

amplitude decreases with increasing distance r. We call p,(r,t) the causal 

or forward propagating solution of wave equation (1-15). In Figure I-3b the 

solution p"(r,t) is shown. Here the wave fronts propagate towards the 

source (at r=o) when time progresses. This solution is called the 

anti-causal or backward propagating solution of wave equation (1-15). 
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Figure I-2a: Two-dimensional cross section (y=o) of a spherical causal wave front , defined 

by t-r/c=constant, at two times t=t and t=t +At, respectively. By 

definition, the propagation velocity of this wave front is given by Ar/At. 

Since t -r /c=t +At-(r +Ar)/c, we obtain Ar/At=c, hence, c is the o of o K o 
propagation velocity. 

Figure I-2b: Two-dimensional cross section of a spherical anti-causal wave front, 

defined by t+r/c=const ant, at two times t=t and t=t +At, respectively. 

t 

ΔΓ 

AX 

Ax_ 
= AX 

I 

►t 

(a) (b) 

u. 
Figure 1-3: One-dimensional cross sections of spherical waves as a function of the 

distance r to the source, at subsequent travel times t. 

a. Causal wave fronts pJr,t), propagating away from the source. 

b. Anti-causal wave fronts p~Jr,t), propagating towards the source. 
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In general , causal solutions of the acoustic wave equation describe the 

physical process of forward wave propagation, whereas anti-causal solutions 

provide an important tool for developing inverse wave field extrapolation 

operators. In chapters V and VI (forward wave field extrapolation) ample 

use will be made of causal solutions of the acoustic and elastic wave 

equations. In chapters VII to X (inverse wave field extrapolation) ample 

use will be made of anti-causal solutions of the acoustic and elastic wave 

equations. 

13.4. Monopole and dipole wave fields 

Consider expression (I-17a) for a causal monopole wave field in a homo

geneous fluid, 

Pt(r.t) = -J-ii î l îZçl . ( M 8 a ) 

Using equation (1-13d) we obtain the following expression for a dipole wave 

field in a homogeneous fluid, in spherical coordinates: 

+/ *\ 1 r s ( t - r / c ) 1 d s ( t - r / c H /T l o u x 
P 2 ( r ' a ' t } = ^ " C 0 S a L 2 ^ + ^ 7 at J ' (I"18b) 

r 
with 

z cosa = — . r 

Note that the dipole wave field consists of a "near field term" and a "far 

field term". Fur thermore , note that on a wave front the amplitude varies 

with cosa, where a represents the angle between r and the z-axis. 

1.4 PLANE WAVE SOLUTIONS OF THE ACOUSTIC TWO-WAY WAVE 

EQUATION 

In this section we present plane wave solutions of the acoustic two-way 

wave equation for a source-free, homogeneous fluid. We discuss both homo

geneous ("propagating") and inhomogeneous ("evanescent") plane waves. 

Finally we introduce the concept "acoustic one-way wave equations". 
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1.4.1 Homogeneous plane waves 

Consider a 3-D plane wave of the following form 

p(r ,t) = po(t-s .r ), 

p(x,y,z,t) = p (t-s x-s y-s z). J ' o x y z ' 

(I-19a) 

(I-19b) 

The tilt angle (dip) of s~* with the z-axis is a, with ο<α<ττ; the azimuth 

angle is β, with ο</9<2π, (see Figure 1-4), hence 

s = Is | 

' sina cos/9 
sina sin/3 (I-19c) 

Figure 1-4: A homogeneous plane wave front, perpendicular to slowness vector s , at 

time t=t . Note that t -s .r =t -Is \.\r\ cos^=t -\s \i=constant o o o ' ' ' ' o ' ' 
for any coordinate vector r =(x,y,z) of the wave front at t . The same wave 

front at t +At satisfies t +At- \s \(t+Al)=t -\ s \l Hence, the propagation 

velocity c is given by c=Al/At=l/\ s \. 

The situation is shown for s >o, s >o and s >o. 
x y z 

A wave front is defined as a surface on which 

t-s .r constant, (1-20) 

Vector s should not be confused with the source signature s in section 1.3. 
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hence, a wave front may be any plane surface perpendicular to vector s , 

see also Figure 1-4. The wave fronts propagate in the direction of s with 

a propagation velocity c given by 

1 

Is I 
(1-21) 

Therefore, s is called the slowness vector. Its components s , s and s 

represent the phase slownesses along the x-, y- and z-axes, respectively, 

hence, 

f . -
is 

X 

s 
y 

s 
L z -

Λ 

r -h c 
X 
-1 

c 
y -1 c z 

= 

r c " sina cosß 

-1 · c sina sinß 

-1 
c cosa 

(1-22) 

where c , c and c represent the phase velocities along the x-, y- and 

z- axes, respectively, see also Figure 1-5. Note that, according to (1-21), 

(a) (b) 

Figure 1-5: One dimensional cross-section along the z-axis (x=y=o) of the 

homogeneous plane wave p (t-s x-s y-s z). 

The situation is shown for a positive phase slowness s . 

a. Plane wave as a function of depth z at subsequent times t. Each trace 

represents a "snap-shot" of the wave field at fixed time. 

b. Plane wave as a function of time t at subsequent depth levels z. 

Each trace represents a "registration" of the wave field at fixed depth. 
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\ , (I-23a) 

hence 

2 2 2 1 
Sx + sy + sz » A ' ^23") 

- T + A+ - T ■ A ■ fl-23^ c c c c x y z 

Assuming that c ,c and c are real constants (positive or negative), we x y z j . 

observe from (I-23c) that for homogeneous plane waves , as defined by 

(1-19), any of the absolute phase velocities |c | , |c | or |c 1 is higher than 

or equal to the (real positive) propagation velocity c. 

Upon substitution of the plane wave (1-19) 

p(x,y,z,t) = po(t-sxx-s y-s zz) (I-24a) 

into the acoustic two-way wave equation (I-11) for a source-free, homo

geneous fluid, 

V2p - | 4 r = 0, d-24b) 
K at2 

we obtain 

2 2 2 p /T -»* \ s + s + s = £ , (I-25a) x y z K ' 

hence, considering (I-23b) the propagation velocity c is given by 

c = V K/p . (I-25b) 

This result was already found in section 1.3 for spherical wave solutions. 

A plane wave is called homogeneous when its amplitude is constant on 
a wave front. 
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The particle velocity associated to the plane wave (I-24a) follows from the 

equation of motion (I-10b) for a source-free, homogeneous fluid, 

f f = - i - V p , CI-26.) 

hence 

v (x,y,z,t) = — s p (t-s x-s y-s z). (I-26b) 
v , J ' ' ' p *o v x yJ z ' v 7 

Note that the wave motion occurs parallel to the propagation direction, 

hence, the plane wave is longitudinal. (Bear in mind that an acoustic wave 

is purely longitudinal only when the amplitudes are constant on the wave 

fronts). 

Finally, we give the expression for monochromatic plane waves: 

p(r ,t) = Pocos[<Kr , t ) ] , (I-27a) 

where 

φ(τ ,t) = W()(t-s .r ) + φο, (I-27b) 

or 

(^(x,y,z,t) = ω (t-s x-s y-s z) + φ . (I-27c) 
r v , J ' ' ' o x yJ z ' Yo v 

Here p denotes a constant amplitude factor and 0(x,y,z,t) denotes the 

space and time dependent phase. Furthermore, ω denotes the circular 

frequency and φ denotes the phase of the wave at the origin of the 

coordinate system at t=o. The t ime-periodicity T follows from 

<£(x,y,z,t+T ) - 0(x,y,z,t) = 2ττ, (I-28a) 

hence 

T = — . (I-28b) 
o ω v 7 

o 
The wavelength λ along the propagation direction follows from 
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φ(τ -A,t) - Φ(τ ,t) = 2π, 
Is 

(I-29a) 

hence 

ω . —► 
ο | s 

2π (I-29b) 

The apparent wavelength λ along the x-axis follows from 

^ (x -À x , y , z , t ) - <£(x,y,z,t) = 2π, (I-30a) 

hence 

x ω s 
O X 

l£ c A 
ω x sina cos/9 

o 

(I-30b) 

Similarly, the apparent wavelengths λ and A along the y- and z-axes, 
y z 

respectively, read 

λ = — l 
y ω s ^7 ο y 

2ττ 
sina sin/3 

(I-30c) 

and 

2π 1 2π = Λ 
z ~ ω s ~ ω z cosa 

o z o 

(I-30d) 

(a) (b) 

Figure 1-6: A 2-D monochromatic homogeneous plane wave. 

The situation is shown for s >o, s =o and sz>o. 

a. Plane wave as a function of space (x,z) at time t (one "snap-shot"). 

Note that A =\/sina>\ and A =X/cosa>\. 
x z 

b.
 1-D cross-section along the z-axis of the plane wave as

 a
 function of 

time t at subsequent depth levels z. 
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Note that the apparent wavelengths λ , λ and λ are larger than or 

equal to the wavelength λ along the propagation direction. In Figure 1-6 a 

two-dimensional monochromatic homogeneous plane wave (β=ο —► s =o) is 

visualized. 

1.4.2. Inhomogeneous plane waves 

Although plane waves do not often occur in reali ty, they play an 

important role in many seismic techniques, where arbi trary wave fields are 

decomposed into monochromatic plane waves. This decomposition is 

accomplished by applying multi-dimensional Fourier transformations (see 

section III.2.1). 

In general, this decomposition yields a range of homogeneous as well as 

inhomogeneous plane waves . Homogeneous plane waves were introduced in 

the previous section, where we assumed that c , c and c are real x y z 
(positive or negative) parameters . In this section we introduce inhomo

geneous plane waves. Therefore we consider real phase velocities c and 

c ,
 fo

r
 which 

y 
1 1 -^γ- + -γ~ > - γ - , (1-3la) 

c c c 
x y 

or, equivalently, 

2 2 1 s + s > —V . (1-3 lb) x y 2 v ' 3 c 

Then, according to (I-23b), 

2 1 2 2 / τ . , . s = —r- - s - s < o, (1-3le) z 2 x y v ' c 3 

hence, for this situation the phase slowness s appears to be imaginary. 

To avoid complex functions, let us define a new parameter σ according to 

2 2 2 1 /T , ,_ 
σζ * Sx + Sy - — > ° ' ( I " 3 2 ) 

J c 
where σ is real (positive or negative). 

A plane wave is called inhomogeneous when its amplitude is not 
constant on a wave front. 
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Consider the real monochromatic wave function 

p(r ,t) = pQCOS[^(r , t ) ]e d-33a) 

where 

φ(τ ,t) = ω (t-s .r ) + φ , Y\ , / ov o ' *V (I-33b) 

with 

s = 
0 

ReaKs*) = 

s 
X 

s 
y 
0 

= 1 s*| 
1 0 ' 

cos/9 

sinß 

0 

(I-33c) 

hence 

#(x,y,z,t) = ω (t-s x-s y) + φ . r v , J ' ' ' ov x yj; o (I-33d) 

Note that the phase is independent of depth. 

It can be verified that wave function (1-33) is a solution of the two-way 
2 

wave equation (I-24b), with p/K = 1/c . A wave front is defined as a 

surface on which the phase 

0(x,y,z,t) = constant, (1-34) 

hence, a wave front may be any plane surface perpendicular to vector s , 

see also Figure 1-7. The wave fronts propagate in the direction of s with 

a propagation velocity c given by 

(I-35a) 
1 o1 v s + s 

Note that the propagation velocity of the inhomogeneous plane wave (1-33) 

is smaller than the homogeneous plane wave velocity: 

c < c 
0 

vT (I-35b) 
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Figure 1-7 : An inhomogeneous plane wave front, perpendicular to slowness vector s , at 

time t=t . The velocity c in the direction of s is given by 

c =l/\s |. The variable grey-level shows that the amplitude along the 

wave front decreases with depth. 

The situation is shown for positive s , s and σ , with s + s = 1/c >l/c . 
x y z x y ' o 

According to (I-33), the amplitude along a wave front decreases or 

increases exponentially with depth for positive or negative σ , respectively. 

Opposed to the homogeneous plane wave functions (1-19) and (1-27), which 

have constant amplitudes on the wave fronts, plane wave function (1-33) is 

called an inhomogeneous plane wave (Brekhovskikh, 1980). 

In analogy with (1-29), the wavelength A along the propagation direction is 

related to the propagation velocity c according to 

1 A - 2 1 Γ . 

° "o I i l l 
2ττ λ = — c < A. ω ο o 

(1-36) 

In analogy with (1-30), the apparent wavelengths A , A and A are related 

to the phase slownesses s , s and s , respectively, according to 

λ - ^ 
x ω 

0 
A - 2 1 Γ 

y ωο 

A . * L 

1 
s 

X 

1 
s 
y 
1 

_ 2π 
ω χ ' 

0 

2π = — c , ω y o J 

— οο 
ζ ω Real(s ) o v r 

(I-37a) 

(I-37b) 

(I-37c) 
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Note that 

(I-37d) 

In Figure 1-8 a two-dimensional monochromatic inhomogeneous plane wave 
(ß=o —► s =o) is visualized. 

λχ=λ( 

(a) (b) 

Figure 1-8: A 2-D monochromatic inhomogeneous plane wave. 

The situation is shown for s =l/c >l/c, s =o and σ >ο; ω and c have the x o y z o 
same values as in Figure 1-6. 

a. Inhomogeneous plane wave as a function of space (x,z) at time t (one 

"snap-shot"). Note that X is smaller than X in Figure I-6a. 

b. 1-D cross-section along the z-axis of the inhomogeneous plane wave 

as a function of time t at subsequent depth levels z. Note that T has 

the same value as in Figure I-6b. 

The particle velocity associated to the monochromatic inhomogeneous plane 
wave (1-33) follows from 

§1 
dt ■^r = - - Vp, (I-38a) 

hence 
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v (r ,t) = 

s x cos[<Kr~\t)] 

s y cos [ t f ( r \ t ) ] 

U sin[<Kr\t)] 

-ω σ z o z e (I-38b) 

Note that the wave motion does not occur parallel to the propagation 

direction s , hence, the inhomogeneous plane wave is not longitudinal. 

The horizontal and vertical components of v have a 90 degrees phase 

difference, hence, the wave motion is elliptical. Of course, inhomogeneous 

plane waves do satisfy the fundamental property of acoustic wave motion 

V x (pv ) = o . 

Finally, note that inhomogeneous plane waves cannot exist in an unbounded 

source-free homogeneous medium because of the exponential increasing 

character . They may exist, however, near boundaries or near sources, both 

in fluids and in solids. For example, the well known Rayleigh-wave, which 

may propagate along the surface of a solid medium, is a superposition of 

inhomogeneous compressional and shear waves, see section II.4.2. 

1.4.3. Acoustic one-way wave equations for plane waves 

Consider the monochromatic homogeneous plane wave function (1-27) 

p(x,y,z,t) = p cos Γω (t-s x-s y-s z) + φ Ί , (I-39a) 

with 

2 2 2 1 s + s + s = - V , (I-39b) χ y z 2 ' v ' J c 

where c is the propagation velocity in the homogeneous fluid, according to 

c = VK/p . (I-39c) 

The phase slownesses s , s and s are given by 
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c sina cos/9, 

c sina sin/?, (I-39d) 

where a and ß determine the tilt and azimuth angle, respectively, of the 

homogeneous plane wave, see Figure 1-4. Note that s , s and s are real 

positive or negative constants. The sign of these constants is determined 

by the propagation direction. In seismics it is common practice to 

distinguish between downgoing waves which propagate in the positive 

z-direction (the z-axis is pointing downward) and upgoing waves which 

propagate in the negative z-direction. Therefore we slightly modify (1-39): 

± ± r -i 
p (x,y,z,t) = p cos \_ω (t-s x-s y+s z) + φ \, (I-40a) 

with 

s = + z (I-40b) 

Note that we defined s to be a positive constant. Now p (x,y,z,t) defines 
Z 1) 

a downgoing plane wave and p (x,y,z,t) defines an upgoing plane wave \ 
see Figure 1-9. 

o — t 

i l 
(a) (b) 

Figure 1-9: 1-D cross-sections along the z-axis of homogeneous (or propagating) 

plane waves. 

a. Downgoing homogeneous plane wave p (x=0,y=0,z,t). 

b. Upgoing homogeneous plane wave p (x=0,y=0,z,t). 

1) Actually plane waves are only purely downgoing or purely upgoing when 

s =s =0. We will, however, use our definition for downgoing and upgoing x y 
plane waves also when s ^0 and/or s ^Ο. 
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In a similar way we slightly modify the monochromatic inhomogeneous 

plane wave function (1-33): 

p - ( x , y , z , t ) = p~ cos [ w Q ( t - s x x - s y y ) + <j>o~] e , (1-4 la) 

with 

2 2 s + s x y 
(1-4 lb) 

Note that we defined σ to be a positive constant. 

Now p+(x,y,z,t) defines an inhomogeneous plane wave with exponentially 

decreasing amplitude in the positive z-direction and p (x,y,z,t) defines an 

inhomogeneous plane wave with exponentially decreasing amplitude in the 

negative z-direction, see Figure 1-10. 

Figure I-10: 1-D cross-sections along the z-axis of inhomogeneous (or evanescent) 

plane waves. 

a. Inhomogeneous plane wave p (x=o,y=o,z,t): exponentially decreasing 

amplitude in the positive z-direction. 

b. Inhomogeneous plane wave p (x=o,y=o,z,t); exponentially decreasing 

amplitude in the negative z-direction. 

The downgoing and upgoing homogeneous plane waves, defined by (1-40), 

are often referred to as propagating waves. On the other hand, the 

exponentially decreasing inhomogeneous plane waves, defined by (1-41), are 

often referred to as evanescent waves, (Berkhout, 1985). 

1) Here the term "evanescent" only refers to the behaviour of the wave 
along the z-axis; along the x-axis and/or y-axis "evanescent" waves do 
propagate. 
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In both cases the tilt angle a and the azimuth angle ß are re la ted to the 

real phase slownesses s and s , according to 

ΓΪ 2 sina = c v s + s x y 

and 

tan/9 = s /s , 

respectively. Note that evanescent waves have a complex tilt angle a. 

Monochromatic propagating and evanescent plane waves can be summarized 

by one expression when we introduce the complex notation 

p~(x,y,z, t) = p~ exp [jw Q(t-sxx-s y+s zz)] , (I-42a) 

with 

■ ■ - ♦ N / V - * -

s = -j \ / 2 2 z J \ / s + s -
V x y 

p = p exp( j0 ) 
O O ^ V J ^o 

and 

j = + v / T ~ . 

2 s 
y 

1 
2 c 

for s 2 + s 2 < —kr , (I-42b) x y 2 3 c 

2 2 1 
for s + s > —5—, (I-42c) x y 2 

(I-42d) 

(I-42e) 

It can be easily verified that both the propagating waves (1-40) and the 

evanescent waves (1-41) are given by the real part of the complex wave 

function (I-42a): 

p ± (x ,y ,z , t ) = Real [ p ^ x . y . z . t ) ] . (I-42f) 

Note that 

* Ρ + ( Χ £ Ζ ' { ) = - j« 0 s z ô + (x,y,z , t ) (I-43a) 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



32 

and 

*g>.y,M) . +j„ s 0-(x,y,z,t). (I-43b) 
dz J o z v J ' 

We call these the acoustic one-way wave equations for plane waves. Opposed 

to the acoustic two-way wave equation (I-11), which describes wave 

propagation in all directions, one-way wave equation (I-43a) describes only 

downgoing plane waves, whereas one-way wave equation (I-43b) describes 

only upgoing plane waves. 

Note that the formal solution of (1-43) reads 

p (x,y,z,t) = w (z)p (x,y,o,t) (I-44a) 

where 

w (z) = expC+jw s z). (I-44b) 

Equation (1-44) describes "one-way wave field extrapolation" in its most 

simple form. The "boundary value 

upgoing plane wave field at z=o, 

simple form. The "boundary value" p (x,y,o,t) represents the downgoing or 

p~(x,y,o,t) = P^ exp Qjo;o(t-sxx-syy)] ; (I-44c) 

p (x,y,z,t) represents the extrapolated downgoing or upgoing wave field at 

depth level z. Finally, w— (z) represents the one-way plane wave field extra

polation operator. Note that 

| $T(z)\ = 1 for s 2 + s 2 < 1/c2, (I-44d) 
x y 

hence, for propagating plane waves, operator w (z) describes a phase-shift 

only (the amplitude of a propagating plane wave is independent of depth, 

see also Figure 1-9). 

Also note that 

Arg[w (z)] = o for s + s > 1/c , (I-44e) 
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hence, for evanescent plane waves, operator w — (z) describes an exponential 

amplitude effect only (the phase of an evanescent plane wave is 

independent of depth, see also Figure 1-10). 

In chapter III we generalize the one-way wave equations for arbi t rary 

wave fields in horizontally layered and arbitrarily inhomogeneous acoustic 

media. 

One-way wave equations provide an important tool for transforming 

two-way Kirchhoff-Helmholtz integrals into one-way Rayleigh integrals. 

In chapters V to X ample use will be made of acoustic and elastic 

one-way wave equations. 
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ELASTIC WAVES 
II 

II.l INTRODUCTION 

Opposed to ideal fluids, which can only support compressional forces, solid 

media can support compressional as well as shearing forces. As a 

consequence, elastic waves in solids are in general more complicated than 

acoustic waves in ideal fluids. Elastic waves in arbitrarily inhomogeneous 

anisotropic solids consist of quasi-compressional waves (or qP-waves) and 

quasi-shear waves (or qS-waves), which are in general interrelated. Only in 1) . 2 ) 
homogeneous isotropic solids, pure P-waves propagate completely 

independent from pure S-waves. The wave motion of pure P-waves is 

curl-free (Vxv =o ). This property also holds for acoustic waves in 

homogeneous fluids (equation (I-10d)). The wave motion of pure S-waves, on 

the other hand
,
 is divergence-free (V.v =o)

. 

In this chapter we derive the elastic wave equation for an inhomogeneous 

anisotropic solid. Furthermore, we present spherical P- and S-wave 

solutions for the special case of a homogeneous isotropic solid. Finally, we 

present plane wave solutions for homogeneous isotropic and anisotropic 

solids. 

Ii.2. ELASTIC WAVE EQUATION 

In this section we present a brief derivation of the basic equations which 

describe non-linear and linear wave motion in an inhomogeneous anisotropic 

solid. Next, we derive the "elastic two-way wave equation". Finally, we 

introduce potentials for P- and S-waves in homogeneous isotropic solids. 

For a more extensive derivation the reader is referred to Achenbach 

(1973), Pilant (1979) and Aki and Richards (1980). 

' A material is said to be homogeneous when its physical properties are 
independent of the position where they are measured. 
A material is said to be isotropic when its physical properties are 
independent of the direction in which they are measured. 

2) 
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11.2.1. Stress and strain 

a. Stress 

Opposed to ideal fluids, solid media can support compressional as well as 

shearing forces. Consider an infinitesimal parallelepiped in a solid 

medium, as shown in Figure II-1. 

Figure II-1: Tractions acting on an infinitesimal parallelepiped in a solid medium 

We assume that the parallelepiped is exposed to surface forces. The force 

per unit area, acting across the plane normal to the x-axis, is called the 

traction vector τ . Its components are the normal or tensile stress τ and x xx 
the tangential or shearing stresses τ and r : 

t ract ion r'T:\ :i 
tensile stress (tension) 

shearing stresses (shear) (II-la) 

Similarly, the forces per unit area, acting across the planes normal to the 

y- and z-axes, are called the t ract ion vectors τ and τ , respectively, 

where 

T = 
y [ rxy ] ^ [rxz ] 

T I and r = I r I 

yyj . [ y z J 
zy J u zz J 

(II-lb) 

The three t ract ion vectors r , r and r can be placed in the columns of 
x y z 
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a matrix, which is called the stress tensor r. 

T 
XX 

T 
yx 

T 
zx 

r xy 

T 
yy 

r zy 

r xz 

r yz 

T 
zz 

(Π-2) 

Note that the diagonal elements of this tensor represent the tensile 

stresses; the off-diagonal elements represent the shearing stresses. 

In the limiting case of ideal fluids (where shearing stresses cannot exist) 

the stress tensor simplifies to 

[ -P o o "I 

o -p o 

o o -p J 
(n-3a) 

where p (the pressure) is the negative tensile stress: 

P = - r -T = -T 
yy zz 

(Pascal's law). (II-3b) 

b. Strain 

We describe the deformation of an infinitesimal parallelepiped in terms of 

tensile strains and shearing strains. With reference to Figure II-2, we 

define the tensile strain e by 
xx J 

A 8X 
ΔΧ ' (II-4) 

Γ [ i 

| ' 

Γ^^^^^^^^^^^^^^^^^ Ι̂ 

(x.y.z) 
ΔΖ 

' | 

~l 

δχ 
2 

ΔΧ 
2 

Figure 11-2: Deformation of an infinitesimal parallelepiped: tensile strain. 
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If we define a displacement vector u , with components u , u and u , 

then we may rewrite equation (II-4) as 

f Δ Χ ϊ f Δ Χ ϊ . 
U Y U + ^ - J - u Ix—y-J du e = lim 

XX Δ Χ ^ ο ΔΧ 
x 

ax · (H-5a) 

In a similar way we define tensile strains e and e , according to 
3 yy zz ' ö 

du du 
e = —τ^- and e = -z— yy d zz σζ 

y 
(II-5b) 

With reference to Figure II-3, we define the shearing strain e by 

Λ J_ r5Z S X ï 
e z x " e x z " 2 1 Δ Χ + ΔZj ' (II-6) 

Figure 11-3: Deformation of an infinitesimal parallelepiped: shearing strain. 

Using again the components of the displacement vector u , we may rewrite 

equation (II-6) as 

. du du ^ _ J_ r ẑ  XA 
e z x " e xz " 2 l dx + dzj (H-7a) 

In a similar way we define shearing strains e =e and e =e 
yx xy zy yz 

according to 
. du du x 
1 r y x ï 

yx xy 2 v dx dy J 
(II-7b) 

and 
_ J_ r ẑ  y ï 

ezy " eyz " 2 l dy + dz J (II-7c) 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



39 

The tensile strains and shearing strains can be placed in a matrix, which 

is called the strain tensor e: 

yx 

xy 
5yy 

zy 

yz 
(II-8) 

Note that the diagonal elements of this tensor represent the tensile 

strains; the off-diagonal elements represent the shearing strains. 

Equations (Π-5) and (II-7), which describe the elements of the strain tensor 

e, can be summarized by 

e.. = e.. = 
1 [d.u. + d.u.) 

"ij Ji 2 - j l \ y 

where i (or j) = 1, 2, 3 stands for x, y, z, respectively. 

(Π-9) 

II.2.2. Conservation of momentum 

Consider a solid medium with a space-dependent volume density of mass 

p (r ). In this medium we consider an elastic wave field, described by the 

space and time dependent particle velocity v (r ,t). The mass density 

variations, associated to this wave field, we denote by Ap(r ,t), so that we 

may write for the total mass density 

p(r ,t) = pQ(r ) + Ap(r ,t). 

In the solid medium we consider a volume V enclosed by a surface S with 

outward pointing normal vector n , see Figure II-4. 

n 
-►x 

Figure II-4: Volume V in a solid medium. 
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The law of conservation of momentum states that the rate of change of 

momentum of the particles in V is equal to the incoming momentum flux 

through S, increased with the resultant force acting  on the particles in V 

(generalized Newton's law), hence 

-£-j P^dV = - § (jyfyf.lidS + P(V), (II-10a) 
V S 

where 

?(V) = §7*dS + J taV. (Π-lOb) 
s n v 

Here τ (r ,t) denotes the traction on S and f (r ,t) is the volume density 

of external force. Note that equation (11-10)  is almost identical to equation 

(1-4); the only difference is that we replaced -pn (i.e., the traction 

normal to S) by τ , which may have any orientation (the sub-script n 

refers to the orientation of surface S). In the previous section we have 

defined traction vectors r , r and r , acting across planes normal to the 

x,y and z-axes, respectively. These vectors represent  the first, second and 

third column, respectively, of the stress-tensor r. They may therefore be 

denoted by 

T = τ\ , T = r i and τ = r i , (II-11 a) 
x x y y z z v ' 

where i , i and i denote unit vectors in the x, y and z-direction, x y z
 J 

respectively. The generalization of (II-lia) for a traction acting across  an 

arbitrarily oriented surface with normal  n is given by Cauchy's formula 

(Achenbach
,
 1973) 

rn = T n . (II-lib) 

Note that the i'th component of τ is given by 

r. = r. n + r. n + r. n , 
i,« ix x îy y ιζ ζ 
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τ. = r..n. V ( I I - l lc) 
i," ij J 

Applying the theorem of Gauss (1-2) to the three components of the 

vectorial integral equation (11-10) and combining the results, yields 

ί d{p~v)aV = - J [Vv.(pv^) + (pv^.V)v^]dK + F*(K), (II-12a) 
V V 

where 

t{V) = Jd.ftdK + j T d F , (II-12b) 
V J J V 

or, since this equation holds for any volume V 

dt(pv*) + vV(pv*) + (pv\v)v* - a .ft = F \ (II-12c) 

This is the non-linear equation of motion for the elastic wave field in 

terms of v , r , r , r and Δρ (bear in mind that ρ=ρ +Δρ). 
» χ ' y ' Z ^ v * rO 

The linearized version reads 

Po(r )d tv (r ,t) - d.r.(r ,t) = f (r ,t), (II-13) 

or in scalar notation 

p (r )d v.(r ,t) - a.r..(r ,t) = f.(r ,t). (11-14) 
^ov 7 t l j lj r 

In the following we replace p by p for notational convenience. Equation 

(11-13) is the elastic equivalent of the acoustic linearized equation of 

motion (I-10b) 

p(r )d tv (r ,t) + Vp(r ,t) = f (r ,t). (H-15a) 

From here onwards we use the summation convention for repeated 
indices, see also the introduction. 
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The la t te r equation could be derived as a special case of the elastic 

equation of motion (11-13) by choosing 

T..(r , t) = -p(r , t )5 . . , 
IJ v lj 

(II-15b) 

see also equation (II-3). In equation (II-15b) 6.. is the Kronecker symbol: 

$.. = 1 for i=j, 

δ.. = o 
1J 

(II-15c) 

for # j . 

Remark: 

The linearized law of conservation of angular momentum sta tes that the 

ra te of change of angular momentum of the particles in V (Figure II-4) is 

equal to the resultant moment of forces acting on the particles in V. 

Achenbach (1973) and Aki and Richards (1980) show that this leads to the 

important symmetry property of the stress tensor: 

T.. = T... 

see Figure II-5. 

Γ 

Figure II-5: Shearing stresses in the χ,ζ-plane, acting on an infinitesimal 

parallelepiped: τ =τ . 

II.2.3 Constitutive relation 

The stress tensor r(r , t ) and the strain tensor e(r ,t) in a solid medium are 

mutually dependent, which is expressed by 
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X(r,e) = o, (II-16a) 

where χ is in general a non-linear function of the components of r and e. 

The stresses and strains associated to seismic waves are generally in the 

range where (II-16a) may be linearized. In its most general form this 

linear stress-strain relationship is described by 

which is a generalization of Hooke's law. Here c... ir ) represents the 81 

components of the stiffness tensor c(r ). The components of this tensor 

satisfy the following symmetry properties 

cijk£ = c j i k r < I M 7 a > 

which follows from T.. - T.. and 
ij Ji 

Cijk£ = Cij£k' < n ' 1 7 b > 

which follows from e, .=e«, . Assuming that the deformations occur 

adiabatically (i.e., assuming that heat exchanges can be neglected), it can 

also be shown that 

Cijk£ - C k « j ' (U-1 7 C> 

(Aki and Richards, 1980). These symmetry properties reduce the number of 

independent stiffness coefficients to 21. In the presence of a source strain 

distribution h(F\ t ) , equation (H-16b) should be modified, according to 

ψ 'l) - cijk/r >\/ r ' l) = -V r 'l)· (II"18a) 

with 

where h. IT ,t) represents the components of tensor h(r ,t). Note that 
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σ..(τ ,t) represents the stress distribution associated to the source. 

Upon substitution of (II-9) into (II-18a) we obtain the linearized s t ress-

displacement relation 

V r , t ) - î cijk/r^a£Vr·')+ \*f>») ■ -Vr'l)' (IM9a) 

or, using the symmetry property  c..k£(r~*) = c . -^F*) , 

V r ' l > - cijk/r)Vk(r·1) - -σϋ<Γ·°· ( I M 9 b ) 

Finally, if we use the particle velocity vector v , with 

v ( r ,t) = 3 u ( r ,t), (11-20) 

we obtain the linearized stress-velocity relation 

d r..(r ,t) - c... i r )3,v.(r ,t) = -5 cr..(r ,t), (11-21) 
t lj i jkr ' i kv y t IJ ' 

where v,(r ,t) for k=l,2,3 represents the components of vector v (r ,t). 

Equation (11-21) is the elastic equivalent of the acoustic linearized equation 

of continuity (I-10a) 

-atp(r ,t) - K(F>kvk(F\t) = -K(r)ativ(r,t). (ii-22a) 

Note that the la t ter equation can be derived as a special case of the 

elastic stress-velocity relation (11-21), by choosing 

lyir ,t) = -p(r ,t)5.., (II-22b) 

and 
a..(r ,t) = K(r )iy(r ,1)6.., (II-22d) 
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with 

i (r ,t) = h, , (r ,t). (II-22e) 

It is often advantageous to write equation (11-21) in vector notation. 

Following Woodhouse (1974) we introduce stiffness-subtensors C i r ) for 
J^ 

j=l,2,3 and £=1,2,3, which contain the stiffness coefficients c... i r ) 
l j k r ' 

according to 

( C j A k " Cijk£' (II-23a) 

hence 

s = 
C l j l £ 
C2jl£ 

_°3 jU 

Clj2£ 
C2j2£ 
C3j2£ 

Clj3£ 
C2j3£ 
C3j3£ J 

(II-23b) 

With this notation, (11-21) can be rewritten as 

dt^(F\t) - cj£(r)d£vV,t) = -at^r,t). (11-24) 

II.2A Elastic two-way wave equation 

By eliminating the stress tensor components T.. from the set of equations 

(11-14) and (11-21), we obtain the two-way wave equation for the particle 

velocity components v.: 

*j(cijkAvk> - ' V i -d(f.-d.o..). 
t i J ij 

(II-25a) 

Alternatively, by eliminating the traction r. from the set of equations 

(11-13) and (11-24), we obtain the two-way wave equation for the particle 

velocity vector v : 

a.(c j A r) - pdf = -a t ( r-3£). (II-25b) 
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Two-way wave equation (11-25) describes the propagation of linear elastic 

waves in inhomogeneous anisotropic solids. For inhomogeneous isotropic 

solids the stiffness coefficients can be writ ten as (Jeffreys and Jeffreys, 

1972) 

c i j k / r ) - X(?)8..6ki + M r ) [ 5 i k 6 j £ + V j k ] , (n-26a) 

which reduces the number of independent coefficients to two. In (II-26a) 

A(F*) and μ(7*) represent the space-dependent Lamé coefficients. They are 

related to the compression modulus according to 

Κ(Γ) = λ(Γ) + } μ(Γ). (II-26b) 

The Lamé coefficient μ(τ ) is also known as the shear modulus. Upon 

substitution of (II-26a) into (II-25a) we obtain 

d.(Xd.v.) + <9.{/i(d.v.+<9.v.)} - pd\. = -<9 (f.-d.(7..), (II-27a) 
1 J J J J 1 1 J t 1 t 1 J 1J 

where 

σ.. = \6..htt + //(h..+h..), (II-27b) 
lj lj kk ^v lj ji v 

see also equation (II-l8b). 

For the same situation, equation (II-25b) can be rewri t ten as 

V [ K c V . ? ] - Vx(/iVx^) - pd2^ 

+ 2 [(V/i.V)V* - (V^)V.v > + (V/z)x(Vxv*)] = -3{(Γ-3.σ*.), (II-27c) 

where we introduced the constrained compression modulus 

Kc(r ) = A(r ) + 2μ{ν ). (II-27d) 
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Note that equation (II-27c) simplifies significantly when we consider a 

homogeneous isotropic solid 

K V(V.v*) - /iVxVxv* - pd^V = -d t ( f -d .ö t ) . (II-27e) 

11.2.5 P- and S-wave potentials 

In chapter I we have seen that acoustic wave motion in a homogeneous 

fluid is curl-free, which is denoted by 

V x v = o , 

see equation (I-10d). This property does not apply in general for elastic 

waves in solids. For the special situation of elastic wave motion in a 

homogeneous isotropic solid we write 

v*(F\t) = v*( r \ t ) + v*(r\ t) , (II-28a) 
P s 

where 

v*(r*,t) = V0(F\ t ) (II-28b) 

and 

v ( r ,t) = V x φ(τ , t), (II-28c) 

where φ and ψ are the Lamé potentials. 

Note that , in analogy with acoustic wave motion, the particle velocity v 

is curl-free: 

V x v = o . (II-29a) 
P 

v is associated to compressional waves (or P-waves) and φ is the P-wave 

potential. The particle velocity v is divergence-free: 

V . V = o. (II-29b) 
s 
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v is associated to shear waves (or S-waves) and φ is the S-wave potential. 
We shall now derive independent wave equations for the P- and S-wave 
potentials φ and φ . For the moment we consider the source-free situation. 
Subsitution of (11-28) into two-way wave equation (II-27e) yields 

KCV [ν2φ - j ^ - φ ] + MV x [-v x v χ ψ - £ afr] 

The decomposition of this equation into independent equations for P- and 
S-waves is not unique. A convenient choice is 

ν2φ - -=^-d2è= o (II-30a) 
lv t 

c 

and 
-V x V x ψ - 2- d2^ = ö \ (II-30b) 

Note that this choice implies 

V . φ = o . (II-30c) 

This property plays an important role in chapter VI, where we derive 
extrapolation operators for P- and S-wave potentials. Note that if we use 
the fundamental property 

-V x V x ψ + V(V.VT) = v V , (II-30d) 

equation (II-30b) may be replaced by 

v V - £- d2fî = ö*; V.VT = o. (II-30e) 

In the remainder of this book we will use a slightly modified definition 
for P- and S-wave potentials, according to 

Applying the divergence operator to both sides of equation (II-30b) 
yields 3~ν.ψ=ο. For non-static wave fields equation (II-30c) follows 
immediately. 
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3 t v V , t ) = - | [ V « F \ t ) + ν χ ? ( Γ , 1 ) ] , (II-31a) 

with (for the source-free situation) 

V . ^ ( F \ t ) = o. (II-31b) 

Note that for the limiting case of an ideal fluid the P-wave potential 

φ(τ ,t), as defined in (11-31 a), is identical to the acoustic pressure p(F\t), 

(compare (11-31 a), for φ - o , with (I-10b), for f = o ). 

Finally, note that according to (11-30) and (11-31 a) 

1 ^ 2 , 1 „2, 
' f P v.a^v = - — v Φ = - —$- <9j0, 

Jv t c 

dt<f>(r , t ) = -K c V.v(r ,t). (II-31c) 

Similarly, 

V x 3 v* = - - V x V x ^ = - djf, t p μ V 

8χφ{τ ,t) = μ ν χ ν ( Γ ,t). (II-31d) 

In chapter VI, equations (11-31 c) and (II-3Id) will be used as alternative 

definitions of the P- and S-wave potentials φ and φ , respectively. 

113 SPHERICAL WAVE SOLUTIONS OF THE ELASTIC TWO-WAY WAVE 

EQUATION 

In this section we present the spherical wave solutions of the elastic 

two-way wave equation for a point source in an unbounded homogeneous 

isotropic solid. We discuss both P- and S-wave solutions. 
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77.3.7 P- and S- wave sources 

We consider an unbounded homogeneous isotropic solid in which the elastic 

wave field satisfies equation (II-27e). In analogy with (11-31 a), we also 

express the source distribution in the right-hand side of equation (II-27e) in 

terms of potentials. We define 

- ( f -d .ô î ) = KVi + V x m. 
J J v 

(11-32) 

If we choose f = o , this definition implies that the components σ.. of 

the source tensor satisfy (see also equation (II-27b)) 

σ = a = (λ + -zu)h. , = Ki , yy zz v 3 kk v 

σ = -σ = m , yz zy x 

-σ = σ = m 
χ ζ ζ χ y 

(II-33a) 

(II-33b) 

(II-33c) 

and 
a = -σ = m , xy yx z (II-33d) 

where m , m and m are the components of vector m. x y z 

Note that i (r ,t) represents a source distribution in terms of a volume 

density of volume injection. We will see later on that this source function 

generates P-waves only. From equations (II-33b), (II-33c) and (II-33d), as 

well as from Figure II-6, we observe that, unlike in Figure II-5, the 

resultant moments on an infinitesimal parallelepiped do not vanish. There

fore m(r ,t) may be interpreted as a source distribution in terms of a 

volume density of moment. We will see later on that this source function 

generates S-waves only. 

r Ο χ ζ 

σ2χ} 1* 
Figure II-6: Source shearing stresses in the x,z-plane, acting on an infinitesimal 

parallelepiped. 

The situation is shown for a volume density of moment m =σ =-σ . 
J J J y zx xz 
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Upon substitution of (11-31 a) and (11-32) into (II-27e), we obtain 

K c v [ v V ^ ^ + P^aJiv] 
C C (11-34) 

+ uVx Γ-V x V x ψ - 2- dÏÏ + 2- d~m] = ö*. L μ tr μ t J 

Again, the decomposition of this equation into independent equations for P-
and S-waves is not unique. A convenient choice is 

ν2φ - ^-d2d> = - p ~η£—ή\ (H-35a) 
c c 

and 

-V x V x ψ - 2- d2tf = - 2- d2m. (II-35b) 
μ t Ύ μ t v ' 

Note that this choice implies 

ν.ψ = V.m. (II-35c) 

Many authors choose V.m=o, thus imposing a dependency between the 
source components m , m and m . In section VI.3.3, however, we need x y z 
independent sources for the different types of Green's S-waves and 
therefore we cannot make this restriction. Hence, using property (II-30d), 
equation (II-35b) may be replaced by 

v V - £-d2
x$ = - A d2m + V(V.iîî); V.^=V.m. (II-35d) 

In conclusion, for a source distribution in a homogeneous isotropic solid we 
have obtained two independent wave equations for P- and S-waves. 
Equation (II-35a) governs the P-wave potential φ(τ ,t), given a source 
distribution in terms of a volume density of volume injection i (r ,t). 
Equation (II-35d) governs the S-wave potential φ (r ,t), given a source 
distribution in terms of a volume density of moment m(r ,t). 

11.3.2 Spherical P- and S-wave fields 

Consider wave equation (II-35a) for the P-wave potential #(r ,t) in a 
homogeneous isotropic solid: 
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C C 

Note the resemblance with the acoustic two-way wave equation (I- l l ) for 

f W : 

V2p - | d2p = - p φ ν . (ΙΙ-37) 

Hence, for a point source of volume injection, defined by 

i v ( r , t ) = 5(F*)s(t), (II-38a) 

the causal solution of (11-36) reads, in analogy with (I-17a), 

K *t S(*-r/c p) 
ΨΚ^Λ) 

re 

r = 

1 = p 

1 "l 

K 4?rr c 

. / 2 2 2 
= V x + y + z 

(II-38b) 

(II-38c) 

and 

c = V K/p = ν(λ+2μ)/ρ . (II-38d) 
p c 

Here c represents the P-wave propagation velocity. 

The particle velocity associated to this P-wave potential reads, according 

to equation (11-31 a), 

v (r ,t) = - - ^ V ( 4 π Γ P J . (II-38e) 
c 

Consider wave equation (II-35d) for the S-wave potential ^(r ,t) in a 

homogeneous isotropic solid. The scalar formulation of this equation reads 

V2V>. - A d2é. = - 2- d2m. + dAdjaX (11-39) 

For a point source of moment in the h-direction, defined by 
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mk(r ,t) = 6kh8(r )s(t), (II-40a) 

the causal solution of (11-39) reads, in analogy with (I-17a), 

-> n ? s(t-r/c ) 
V>Jr ,t) = [ß.u *- dZ - d.d.'] —A — , 
rkv ' L kh u t k hJ 47rr 

(II-40b) 

where 

cg = v7 μ/ρ (II-40c) 

Here c represents the S-wave propagation velocity. Note that for h=l, the 

source moment reads 

[ «F*)s(t)l 

: J (II-40d) 

the S-wave potential reads 

' (r ,0 = 

r ^ a 2 . 2 , 
μ t x 

-3 d 
y x 

-d d „ 
Z X J 

s(t-r/cs) 
47ΓΓ 

(II-40e) 

and, according to equation (11-31 a), the particle velocity associated to this 

S-wave potential reads 

v (r ,t) = 7-
o 

-d 

y J 

ats(t-r/c s) 
4ΤΓΓ 

(II-40O 

Hence, for a source moment in the x-direction, the particle velocity is 

polarized in the plane perpendicular to the x-axis and therefore we speak 

of S -waves. Similarly, for a source moment in the y- or z-direction, the 

particle velocity is polarized in the plane perpendicular to the y- or z-axis 

and therefore we speak of S - or S -waves, respectively. 

For a further discussion of spherical wave solutions we refer to section 1.3. 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



54 

IIA PLANE WAVE SOLUTIONS OF THE ELASTIC TWO-WAY WAVE EQUATION 

In this section we present plane wave solutions of the elastic two-way 

wave equation for a source-free homogeneous anisotropic solid. Next, for 

the isotropic situation we discuss both homogeneous ("propagating") and 

inhomogeneous ("evanescent") plane waves. Finally we introduce the concept 

"elastic one-way wave equations". 

II.4.1 Homogeneous plane waves 

In analogy with section 1.4.1., consider a 3-D plane wave of the following 

form 

v(r ,t) = v A(t-s .r ), (11-41 a) 

or 

v*(x,y,z,t) = v*A(t-s x-s y-s z). (II-41 b) 

Throughout this section we assume that the phase slownesses s , s and s 1) x y z 
are real . A wave front may be any plane surface perpendicular to the 

slowness vector s , see also Figure 1-4. The wave front velocity c in the 

direction of s is given by 

c = - . (Π-42) 
I ^ 1 

Upon substitution of the plane wave (11-41) into the elastic two-way wave 

equation (II-25b) for a source-free homogeneous anisotropic solid, 

CitdfF - P ^ = ? ' (II"43) 

we obtain 

K V Q = o , (II-44a) 

Vector s~* should not be confused with the source signature s in section 
II. 3. 
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with 

Κ = s.s£Cj£ - pi, 

where I is the 3x3 identity matrix. This equation has 

only when 

(II-44b) 

non-trivial solutions 

det(K) = o. (11-45) 

In the following we will only consider a special form of anisotropy, 

namely transverse isotropy (see also Daley and Hron, 1977, and Van der 

Hijden, 1987, App. D). In the earth there are two main causes for 

transverse isotropy. Schoenberg (1983) shows that periodically stratified 

sedimentary rock may be replaced (in the long wavelength limit) by 

homogeneous rock with transverse isotropy. In this case the stiffness tensor 

exhibits rotational invariance in the horizontal x,y-plane, hence, the axis of 

symmetry is the vertical z-axis, see Figure II-7a. 

Crampin (1984) shows that a solid medium with parallel fractures (e.g. a 

reservoir) may also be replaced by a homogeneous solid medium with 

transverse isotropy. E.g., for vertical fractures in the y,z-plane, the axis 

of symmetry is the horizontal x-axis, see Figure II-7b. 

(a) (b) 

Figure 11-7: Two typical situations of transverse isotropy 

a. Periodically stratified sedimentary rock. The axis of symmetry is the 

z-axis. 

b. Reservoir with vertical fractures in the y,z-plane. The axis of symmetry 

is the x-axis. 

Any transverse isotropic medium can be described by five independent 

stiffness coefficients. Moreover, when the axis of symmetry coincides with 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



56 

one of the axes of the coordinate system (as in the two situations 

described above), then many of the stiffness coefficients are zero. Table 

II-l gives an overview of the non-zero stiffness coefficients for isotropic 

and transverse isotropic solid media with symmetry axes in the x-, y- and 

z-direction, respectively. 

Stiffness 
coefficients 

Convention
al notation 

C1111 

C2222 

C3333 

Cl 122 

C1133 

C2233 

C2323 

C1313 

C1212 

Voigt1) 
notation 

C l l 

c 22 

c 33 

c 12 

C13 

C23 

c 44 

C55 

C66 

Lamé 
coefficients 

Pure 
isotropy 

λ + 2μ 

λ + 2μ 

λ + 2μ 

λ 

λ 

λ 

μ 

ß 

Modified Lamé coefficients 1 

Transverse isotropy; symmetry axis: | 

x-axis 

V + 2μιι 
Ax + 2 "x 
Αχ + 2μ± 

V 

υ 

\ 

μιι 
μ// 

y-axis 

V 2"ι 
λ / / + 2β// 

λ χ + 2μ± 

υ 

V 

μ// 

μ// 

z-axis | 

λ χ + 2 " χ 

λ χ + 2 "χ 

V2"// 
λ χ 

V 1 

υ 1 

"// 

"// 

Table II-l: Overview of non-zero stiffness coefficients for isotropic and transverse 
isotropic solid media. 

In this table, the stiffness coefficients are expressed in terms of the 

Lamé coefficients λ and μ (for pure isotropy) and in terms of the 

modified Lamé coefficients λ . , , μ.,, λ , μ and υ (for transverse 

Double sub-scripts in the conventional tensor notation are replaced by 
single sub-scripts in the Voigt notation, according to:  11->1, 22->2, 
3 3 - 3 , 2 3 - 4 , 1 3 - 5 , 1 2 - 6 (Nye, 1957). 
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isotropy). Note that for each of the three symmetry axes the same 

stiffness coefficients are non-zero. Let us now solve equation (11-45) for 

the isotropic situation and for the situation of transverse isotropy. Bearing 

in mind that the components of C. are given by (C.J.. = c... ., we may 

write for K, as defined by (II-44b), 

K = 

is c,,+s c,.+s ccc-pj s s ic.^+c,,] s s (c1-+cccJ v x 11 y 66 z 55 ; x y^ 12 66^ x zK 13 55^ 
s s fc.^+c,,) (s c^+s c0~+s cAA-p) s s (c^+c.J x y v 12 66J v x 66 y 22 z 44 rj y z v 23 44^ 

I s s [c1-+cccJ s s (c^+c,, J is ccc+s C..+S c,,,-pj L x z v 13 55y y z ̂  23 447 v x 55 y 44 z 33 \ 

,(11-46) 

where we used the Voigt notation for the stiffness coefficients (see Table 

II-l). For the pure isotropic situation we find 

det(K) = 

{ ( s x + S y + s J (λ+2/ζ) - P } { ( s
x

+ S
y

+ S z ) / * - P } { t s x + S y + S z ^ " / > } > ( Π - 4 7 ) 

where we replaced the stiffness coefficients by the Lamé parameters (see 

Table II-l). Hence, for this situation the solution of det(K)=o is given by 

three concentric spheres in the 3-D slowness domain 

2 2 2 
S x + S y + S z = ρ/(λ+2μ) (see Figure II-8a), (II-48a) 

2 2 2 s +s +s = ρ/μ x y z y'^ (see Figure II-8b), (II-48b) 

2 2 2 s +s +s = ρ/μ x y z r / ^ (see Figure II-8c). (II-48c) 

Note that the latter two solutions are identical. The surfaces in the 3-D 

slowness domain are generally known as slowness surfaces. Any point on a 

slowness surface corresponds to a slowness vector s with components s , 
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s, a: P-waves 

I b: SV-waves 
5 Z 

c: SH-waves 

Figure II-8: Slowness surfaces for an isotropic medium. Note that Figures b and c are 

identical. 
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s and s . The reciprocal of the modulus of vector s represents the wave 
front velocity in the direction of s . Hence, in this special situation of 
spherical slowness surfaces, the velocity is independent of the propagation 
direction. This is exactly what one would expect in an isotropic medium. 
Note that from (II-48a) we obtain a velocity c according to 

cp = \/\Js\s\s\ = \ / (\+2μ)/ρ , (II-49a) 

whereas from (II-48b) and (II-48c) we obtain a velocity c according to 

cs = l / / s W = ^7P~ · (H-49b) 

By substituting (II-49a) into (II-44a) for the isotropic situation, we find 

v = /cs , (II-50a) 
o 

where κ is an undefined parameter. This equation states that the particle 
motion in the plane wave occurs parallel to the propagation direction. 
Hence, c , as defined by (II-49a), represents the propagation velocity of 
longitudinal or compressional waves. The P-wave property Vxv =o is easily 
verified from (II-41 b) and (II-50a). 

By substituting (II-49b) into (II-44a) for the isotropic situation, we find 

v . s = o. (II-50b) 

This equation states that the particle motion in the plane wave occurs 
perpendicular to the propagation direction. Hence, c , as defined by 
(II-49b), represents the propagation velocity of transversal or shear waves. 
The S-wave property V.v =o is easily verified from (II-41 b) and (II-50b). 

Let us now consider the situation of transverse isotropy with a vertical 
symmetry axis (Figure II-7a). If we assume for the moment that s is 
equal to zero, then we find from equation (11-46) and Table II-1, 
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a: qP-waves 

b: qSV-waves 

c: SH-waves 

Figure 11-9: Slowness surfaces for a transverse isotropic medium with a vertical 

symmetry axis (as in Figure 11-7 a). 
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κ = 

[ δ ^ ( λ ± + 2 μ ± ) + 5 ^ / / - ρ ] S S (ν+μ.,) χ ζν ^IΓ 

EWV//-^ 
s s (υ+μ,.) ^χ μ / / + δ ζ ( λ / / + 2 ν _ Ρ ^ 

(ΙΙ-51 a) 

hence, 

9 9 f 9 9 
det(K) = [sxM±+szM / /-p] | [8 χ( λ

±
+ 2Μ±) + S

ZM// - P] x 

[s2M//+s2(A//+2M//) - p] - s V ^ ^ ) 2 } . 
(II-51b) 

If s is not equal to zero, then, on basis of the symmetry properties, we 
y 2 2 2 

may conclude that in equation (II-51b) s need be replaced by s +s , hence x y 

9 9 C 9 9 
det(K) = [srM±+szM / /-p] | [>Γ(λ±+2/χ±) + %^μ - p] x 

[sJ*//+s^//+2M//) - p] - s V ^ ^ ) 2 } , 
(II-52a) 

where 

2 2 2 s = s + s . r x y (II-52b) 

For this situation the solution of det(K)=o is given by the following 

surfaces in the 3-D slowness domain 

s = P7, z 1 μ 

(see Figure II-9a), 

Mj- / i \ 2 x/^2 2 i - ( l + e , ) s - V P 7Λ + P^S + 1 μ.. v l 7 r v r '2 r 2 r e3Sr 

s z = pi 
''χ 2 / 2 2 2 ~ 

1 - ^ ( 1 + £ l ) S r + V ^ 2 + P £ 2 s r + £: 3 r 

(see Figure II-9b) and 

2 p **± 2 s = —̂ — - — s z μ "// "// Γ 

(II-53a) 

(II-53b) 

(II-53c) 
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(see Figure II-9c), where 

λ + 3μ 
7, = — a U , (n-53d) Ί 2(Χ//+2μ//)μ// 

12 = 2 ( ^ / 2 , ^ · <*-"«> 

(Χ.Χ,,-υ2) + 2μ (λ -v) 
*, = i \ ,λ ^ Τ ^ . ( n"5 3 f ) 

1 2 μ ±* λ / / / / 

(λ +2μ +μ )μ.. - (λ +3μ,,)μ (1+e.) 
— ± Π ί/ U- LL^ — (H-53g) 

VW 
and 

From equation (11-53) and from Figure II-9 we observe that the slowness 

surfaces for the transverse isotropic situation are not spherical, hence, the 

velocity of the 3-D plane wave (11-41) depends on the tilt angle a of the 

slowness vector s . Equation (II-53a) and Figure II-9a represent the slowness 

surface for quasi-longitudinal waves (v «/cs ). For vertical wave propagation 
2 ° (s =0) we find s =ρ/(λ / /+2μ / / ) . Hence, the velocity for qP-waves propagating r z / / / / 

parallel to the symmetry axis reads 
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2 
For horizontal wave propagation (s =o) we find s =ρ/(λ +2μ ). Hence, the 

velocity for qP-waves propagating normal to the symmetry axis reads 

». ■ \P? cpfJ = \ / _V?ÎL_ · (H-54b) 

Equation (II-53b) and Figure (II-9b) represent the slowness surface for quasi-

transversal waves (v .s « o). The polarization (i.e., the direction of vector 

v ) is in the vertical plane through s and the z-axis, therefore we speak 
0 2 of qSV-waves. For vertical wave propagation (s =o) we find s -ρ/μ.Γ r z / / 

Hence, the velocity for qSV-waves propagating parallel to the symmetry 

axis reads 

csVj// = \JYJL . (H-55a) 
2 

For horizontal wave propagation (s =o) we find s -ρ/μ... Hence, the 

velocity for qSV-waves propagating normal to the symmetry axis also reads 

- ■ \ / ¥ cSVii -\/"-f- m-M» 
Equation (II-53c) and Figure (II-9c) represent the slowness surface for pure 

transversal waves (v . s = o). The polarization is in the horizontal 

x,y-plane, therefore we speak of SH-waves. For vertical wave propagation 
2 

(s =o) we find s =ρ/μ... Hence, the velocity for SH-waves propagating 
r z / / 

parallel to the symmetry axis reads 

°SH,// - \p^ · (n"56a) 
2 

For horizontal wave propagation (s =o) we find s =ρ/μ . Hence, the velocity 

for SH-waves propagating normal to the symmetry axis reads 

vT· CSH,X » V / - · ( H " 5 6 b ) 

V p 

Note the interesting property 

c 4 c 
SV,X T SH,± 

(Π-57) 
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a: qP-waves 

b: SV-waves 

c: qSH-waves 

Figure 11-10: Slowness surfaces for a transverse isotropic medium with a horizontal 
symmetry axis (as in Figure 11-7b). 
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This equation implies that an arbitrarily polarized S-wave, which propagates 

normal to the symmetry axis of a transverse isotropic medium, splits up 

in vertically and horizontally polarized S-waves, propagating with different 

velocities (with c >c , ). This effect, which is not restricted to 
v SH,_L sv,_r 

horizontal propagation, is commonly known as shear wave birefringence. 

Finally, let us consider the situation of transverse isotropy with a 

horizontal symmetry axis (Figure II-7b). The expressions for the slowness 

surfaces can be obtained directly from equation (11-53) by making some 

simple substitutions (bear in mind that the modified Lamé parameters λ . . , 

μ,. , λ μ and v are defined on basis of the orientation of the symmetry 

axis, see Table II-l). When the symmetry axis is in the x-direction, then 

the expressions for the slowness surfaces read 

2 μ± f. ϊ 2 , / 2 2 2 4 /TT c o λ 
Sx = ΡΊ\ - / ^ / 1 + € l J s r - V P 12 + fx2

Sr + V r ( I I " 5 8 a ) 

(see Figure II-10a), 

2 o μ± 2 
sZ = - * - - — sZ (II-58b) 
x μ;/ μ„ r 

(see Figure II-10b) and 

2 μ± r, ï 2 . / 2 2 2 4 /TT c o . 
Sx = n \ " ~jT l 1 + € i J s

r
 + V P 12

 + 1*2*r + e3Sr (H-58c) 

(see Figure II-10c), where 

s 2 = s 2 + s 2 (II-58d) 
r y z 

and where 7 p 7^, e e~ and e~ are defined as in equation (11-53). Figure 

11-10 clearly shows that the slowness depends on the azimuth angle β 

(where tan^=s /s , see Figure 1-4). Therefore in this case we may also 

speak of azimuthal anisotropy. 
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II.4.2 Inhomogeneous plane waves 

In this section we consider inhomogeneous plane waves in homogeneous 

isotropic media. First we discuss inhomogeneous plane P-waves. We 

consider real phase slownesses s and s for which 
x y 

2 2 1 
s + s > — = - , x y 2 

(II-59a) 

where c is the P-wave velocity, as defined by equation (II-49a). Note that 

2 1 2 2 
s = — = - - s - s < o, ζ,ρ 2 x y 

P 

(II-59b) 

hence, for this situation the phase-slowness s appears to be imaginary. 

To avoid complex functions, we define a new parameter σ according to 
z,p 

1) 

2 2 2 1 
σ = s + s — z — > o, ζ,ρ x y 2 (II-59c) 

where σ is real (positive or negative). In analogy with section 1.4.2, z,p 
consider the monochromatic wave function 

v (r , t ) = v 
P P,o 

[" s x cos |>(F\ t ) ] 

s y cos [<Kr~\t)] 

σ sin [Φ(ΓΛ)~] 

-ω σ ζ o ζ,ρ 

where 

(II-60a) 

φ{τ , t ) = ω ( t -s .r ) + φ , 
rv » / 0 0 O 

(II-60b) 

with 

s = Real (s ) o [?] (II-60c) 

1) σ should not be confused with the source stress σ.. in section II.2. z,P ij 
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Hence, 

#(x,y,z,t) = w o(t-sxx-syy) + </>Q. (II-60d) 

Note that the phase is independent of depth. Since 

V x v = o , (II-60e) 

it can be easily verified that wave function (11-60) is a solution of the 
2 

elastic two-way wave equation (II-27e), with p/K = l / c . A wave front is c p 

defined as a surface on which the phase #(x,y,z,t) is constant. Hence, a 

wave front may be any plane surface perpendicular to vector s , see also 

Figure 1-7. The wave fronts propagate in the direction of s with a 

propagation velocity c given by 

c Λ zi = l · (D-61a) P,o I s* | x / ~ 2 2 
1 o ' V s + s 

Note that 
c < c . (II-61b) 

p,o p 

For a further discussion of this inhomogeneous plane P-wave we refer to 

section 1.4.2. 

Next we discuss inhomogeneous plane S-waves. We consider real phase 

slownesses s and s for which x y 

2 2 
s + s > x y 

1 
——— 2 c 

s 

(II-62a) 

where c is the S-wave velocity, as defined by equation (II-49b). Note that 

s 2 = - 4 - - s 2 - s 2 < o. (II-62b) z,s 2 x y c J 
s 

We define a real parameter σ according to 

σ = s + s —z— > o. (II-62c) z,s x y 2 J c s 
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Consider the monochromatic wave function 

v (r ,t) = v 
sv ' s,o 

V z ,s S x C 0 S W ^ ) ] 

a z ,s S y C 0 S t ^ O ] 

( s x + s y ) s i n [ ^ ( r , t ) ] ( 

-ω a z 
0 Z,S (II-63a) 

with φ(τ*Λ) defined as in (11-60). Since 

V . vs(r ,t) o, (II-63b) 

it can be easily verified that wave function (11-63) is a solution of the 
2 

elastic two-way wave equation (II-27e), with ρ/μ=\/ο . Again, the wave 

fronts propagate in the direction of s with a propagation velocity c 

given by 

' S o ' V s + s 

(II-64a) 

Note that 

c < c . s,o s (II-64b) 

Also note the interesting property that for fixed s and s (with 
2 2 2 2 x Y 

s +s > 1/c > 1/c ) we may write x y ' s p 

c = c . p,o s,o (III-65) 

Hence, inhomogeneous plane P-waves and inhomogeneous plane S-waves may 

propagate with the same velocity. 

Inhomogeneous plane waves cannot exist in an unbounded source-free 

homogeneous medium because of the exponential increasing character. They 

may exist, however, near boundaries or near sources. As an example, we 

consider the special situation of a homogeneous isotropic half-space z>o, 
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bounded by a free surface z=o, on which the traction r vanishes. We 
z 

search for a linear combination of inhomogeneous plane P- and S-waves 

v (r ,t) = vp(r ,t) + vs(r ,t), (II-66a) 

with v (r ,t) and v (r ,t) defined by (11-60) and (11-63), respectively, such 

that the boundary condition 

rz(r ,t) = o at z=o (II-66b) 

is satisfied for all x, y and t. 

Substitution of (II-26a) into the stress-velocity relation (11-21) (for the 

source-free situation) yields for the components of the traction τ 

dr (dv dv Ί xz _ x_ ẑ  
at " μ[ dz + ax J' (11-67 a) 

dr (dv dv Ϊ 
yz y z 

at' μ[-οΤ+-^] 
(II-67b) 

and 

dr 

at 

dv 
77 —► 7 

= AV.v + 2μ dz (II-67c) 

Substitution of (II-66a) into (11-67) and solving for the boundary condition 

(II-66b), yields 

-2σ 
ζ ,ρ 

^■"l 

y - ^ ί ΐ 
S 

2 
2s σ 

r z,s _ 

V 
p,o 

V 
s,o 

= 
o ] 

0 

(II-68a) 

where 

2 2 2 s = s + s . r x y (II-68b) 
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This equation has non-trivial solutions only when the matrix has a zero 
determinant: 

„ 2 . 7 1 , , 2 . 7 1 .. 2 f . 2 w 2 ï 2 
4sr Vs r - l /c p Vs r - l /c s - L2sr - l/csJ = o. (11-68 c) 

Hence, in a homogeneous isotropic half-space bounded by a free surface, a 
combination of inhomogeneous plane P- and S-waves may exist when the nogeneo 

vvHT <- 2 
phase slowness s = Vs + s satisfies equation (II-68c). The wave 
associated to the solution of (11-68) is called the Rayleigh-wave. Because its 
amplitude decays exponentially with depth [see equations (II-60a) and 
(II-63a)], the Rayleigh-wave belongs to the class of surface-waves. The Rayleigh-wave velocity cD is the reciprocal of the slownes

s s which xv

 Γ 
satisfie

s
 (II-68c)

,
 hence

, cR

 i
s a

 solutio
n o

f 

4c3 V c 2 - c2 Vc - c2 - c (2c2 - c 2 ) 2 = 0. (11-69) 
s v p R v s R p ^ s R ^ v ' 

The Rayleigh-wave velocity cR is generally a few percent lower than the 
S-wave velocity c . For example, when c = 1745 m/s and c = 800 m/s, 

J s K p ' s ' ' 
then equation (11-69) yields cR = 750 m/s. 

11.4.3 Elastic one-way wave equations for plane waves 

In analogy with section 1.4.3, it can be shown that (monochromatic) 
homogeneous and inhomogeneous plane P-waves in a homogeneous isotropic 
solid can be summarized by one expression when we introduce the complex 
notation 

Λ + 

v^(x,y,z,t) = Real [V-(x,y,z,t)] , (II-70a) 

where 

Λ Λ 
v—(x,y,z,t) = v— exp Πω (t-s x-s y+s z)1 . (II-70b) 

p p,o ^ o x yJ z,p / J v ' 

Here the vertical phase slowness s is given by 
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ζ , ρ 
yr\ 2 2~~ , 2 2 1 

+ V—^ - s„ -s.. for S..+S.. < 2 - a - o LUI o -ro ^ Λ 
x y x y 2 c J J c 

P P 
and 

(II-70c) 

z,p 
. K/~2 2 "~T „ 2 2 1 

= -j V s + s_. - — — for s„+s_. > x y 2 x y 2 
J c J c 

P P 

(II-70d) 

The complex amplitude factor v is given by 

Λ +_ 
v 

P,o 

+s - z,p 

(II-70e) 

where κ is an arbitrary complex parameter. 
2 2 2 For homogeneous or propagating plane waves (s +s < l /c ) the super-scripts 
x y P 

+ and - refer to downgoing and upgoing waves, respectively (see also 
2 2 2 Figure 1-9). For inhomogeneous or evanescent plane waves (s +s > l / c ) the 
x y P 

super-scripts + and - refer to the exponentially decreasing behaviour of 

the wave in the positive and negative z-direction, respectively (see also 

Figure I-10). 

Similarly, (monochromatic) homogeneous and inhomogeneous plane S-waves 

in a homogeneous isotropic solid can be summarized by one expression 

v*—(x,y,z,t) = Real [ V (x,y,z,t)] , (11-71 a) 

where 

\ ( x , y , M ) = v ; o e x p D ^ 0 ( t - s x x - s y y Î s z s z ) ] . (H-71b) 

Here the vertical phase slowness s is given by 

z,s */r 2 2 
s - s 
x y 

2 2 for s +s < 
x y 

(II-71c) 
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and 

. % / l 2 Γ r 2 2 
-j V s + s - — z - for s +s > -x -y 2 

s 
x y 2 J c s 

(II-71d) 

The complex amplitude factor v satisfies 
s,o 

z,s J 

(II-71e) 

Note that the complex wave functions v and v satisfy the following 
P s 

elastic one-way wave equations for plane waves 

dvp-(x,y,z,t) 
dz = +\ω s v (x,y,z,t ) o z,p p (II-72a) 

and 

dvg (x,y,z,t) _ Λ^± 
- = +ja; s v (x,y,z,t). 

J o z,s s v '"" ' dz (II-72b) 

In chapter IV we generalize the one-way wave equations for arbitrary 

wave fields in horizontally layered and arbitrarily inhomogeneous elastic 

media. One-way wave equations provide an important tool for transforming 

two-way Kirchhoff-Helmholtz integrals into one-way Rayleigh integrals. In 

chapters V to X ample use will be made of acoustic and elastic one-way 

wave equations. 
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III 
ACOUSTIC TWO-WAY AND ONE-WAY WAVE EQUATIONS 

111.1 INTRODUCTION 

It was mentioned already in section 1.2.5 that we may distinguish between 

"two-way wave equations" and "one-way wave equations". The two-way 

wave equation is exact (under the linear assumption). Therefore it is valid 

for any angle of propagation of primary as well as multiply reflected 

waves. One-way wave equations, on the other hand, are generally not 

exact (for inhomogeneous media). They describe either "downgoing" or 

"upgoing" primary waves with moderate propagation angles. Despite of 

these shortcomings, the one-way wave equations play an important role in 

the practice of seismic processing. This is not surprising, because a 

seismic experiment can be described essentially in terms of downward 

propagation of the source wave and upward propagation of the reflected 

wave fields. 

In this chapter we derive the acoustic two-way and one-way wave 

equations both in the wavenumber-frequency domain (for horizontally 

layered fluids) and in the space-frequency domain (for arbitrarily 

inhomogeneous fluids). We present formal solutions (in terms of Taylor 

series), but it is not our intention to elaborate the numerical aspects of 

these solutions. The main purpose of this chapter is to derive the 

mathematical relationship between two-way and one-way acoustic wave 

fields. The results will be used in chapters V and VII for transforming 

acoustic two-way Kirchhoff-Helmholtz integrals into acoustic one-way 

Rayleigh integrals and in chapter XI, where we discuss an acoustic 

processing scheme for single-component seismic data. 

111.2 ACOUSTIC WAVE EQUATIONS FOR HORIZONTALLY LAYERED MEDIA 

In this section we consider the special situation of wave propagation in 

horizontally layered acoustic media in which the medium parameters K and 

p are a function of depth only, hence 

K = K(z) 
and 

P =P(z). 
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After a short introduction on temporal and spatial Fourier transformations, 

we derive the acoustic two-way wave equation in the wavenumber-

frequency domain and present its exact solution. Next, we decompose the 

two-way wave equation into acoustic one-way wave equations for 

downgoing and upgoing waves and we present exact and approximate 

solutions. Finally, we derive reflection and transmission operators for 

one-way wave fields at interfaces. 

III.2.1. Temporal and spatial Fourier transformations 

The temporal Fourier transformation of a function h(x,y,z,t) from the 

space-time domain to the space-frequency domain we define as 

oo 

Η(χ,ν,ζ,ω) = S h(x,y,z,t)e" jwtdt (III-la) 
-oo 

and its inverse as 
oo 

h(x,y,z,t) = - ^ J H(x,y,z,o;)eja;tda;, (ΙΠ-lb) 
-oo 

see Papoulis (1962) or Bracewell (1965). 

In the following we will assume that h(x,y,z,t) is a real function, so that 

H(x,y,z,-«;) = H*(x,y,z,u;), (III-2a) 

where the asterisk (*) denotes complex conjugation. Apparently, negative 

frequency components do not provide information independent of the 

positive frequency components. Therefore throughout this book we will only 

consider positive frequencies, that is, we choose 

ω> 0 (III-2b) 

and we reformulate the inverse temporal Fourier transformation as 

oo 

h(x,y,z,t) = .-£■ Real Γ J Htx.y.z.wje^d&fl . (III-3) 
o 

The double spatial Fourier transformation of the complex function 

H(x,y,z,w) from the space-frequency domain to the wavenumber-frequency 
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domain we define as 
oo 

j(k x + k y) 
H ( k , k ,ζ,ω) = J jH(x,y,z,W)e X y dxdy (III-4a) 

and its inverse as 
oo 

i c r - j (k x+k y) 
Η(χ,Υ,ζ,ω) = - y J | H(k k ζ,ω)β X y dk dk (III-4b) 

4* -oo X y X y 

see Goodman (1968), Dudgeon and Mersereau (1984) and Berkhout (1985). 

Unless otherwise stated, we will use the following notation convention. Any 

function in the space-time domain (x,y,z,t) will be denoted by a lower 

case symbol. The corresponding function in the space-frequency domain 

(x,y,z,o;) will be denoted by the corresponding upper case symbol. The 

corresponding function in the wavenumber-frequency domain (k ,k ,ζ,ω) will 
x y 

be denoted by the same upper case symbol with a tilde (~). 

Equations (ΙΠ-la) and (III-4a) can be combined, yielding the triple Fourier 

transformation from the space-time domain to the wavenumber-frequency 

domain, according to 

-j(o;t-k x-k y) 
H(kx,k ζ,ω) = J J J h(x,y,z,t)e X y dtdxdy. (in-5a) 

y -oo 

Similarly, equations (III-3) and (III-4b) can be combined, yielding the inverse 

triple Fourier transformation from the wavenumber-frequency domain to the 

space-time domain, according to 

h(x,y,z,t) = 
oo oo 

1 Γ j(wt-k x-k y) T 
Real y{}} H(kx,ky,z,a;)e X y dk xdk y}doJ .(III-5b) 

A 3 . V 
4π *- o -oo 

Compare the latter equation with the expression for monochromatic plane 

waves in a homogeneous medium 

p(x,y,z,t) = Real 
Γ \(ω t-ω s χ-ω s y)T I Λ , , x

 JV o o x o y ; /
 /TTT , x LpQ(z)e y J , (III-6a) 

+jo; s z 
with p^(z) = pQe ° z , (IH-6b) 
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(see equation (1-42)). Apparently, for fixed z equation (III-5b) describes  the 

synthesis of a wave field h(x,y,z,t) from monochromatic plane waves,  the 

complex amplitudes being given by H(k ,k ,ζ,ω) and the phase slownesses 
x y 

being given by 

and 

s = k /ω (III-7a) 

s = k /ω. (III-7b) 
y y 

Consequently, for fixed z equation (III-5a) describes the decomposition of an 

arbitrary wave field h(x,y,z,t) into monochromatic plane waves  H(k ,k ,ζ,ω). 
~ x y Note that H(k ,k ,ζ,ω) represents propagating plane waves when x y 

9 ? 2 

k + kZ < -AT- , (III-8a) x y 2 3 c 

(see equation (I-42b)), whereas  it represents evanescent plane waves when 

o ? 2 

^ + kZ > - ^ - , (in-8b) 
y c 

(see equation (I-42c)). The tilt angle a and the azimuth angle β of the 

plane waves are related to k , k and ω according to 

sina = c V s 2 + s 2 = - V k2 + k2 (III-8c) 
x y ω v x y v ' 

and 

tan/3 = s /s = k /k , (III-8d) 
y x y x 

see also equation (1-22). 

III.2.2 Acoustic two-way wave equation in the wavenumber-frequency domain 

In the space-time domain,  the linearized equation of continuity (I-10a) 

reads (for horizontally layered media) 

i * / tx d\ (x,y,z,t) 
V.-(x,y,z,t) + - ^ W™*) - - ^ ^ , (III-9a) 

whereas the linearized equation  of motion (I-10b) reads 
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Vp(x,y,z,t) + p(z) dv(x^y,z,t) = Γ(χ,ν,ζ,Ι) . (III-9b) 

Differentiating both sides of equation (III-3) with respects to time yields 

d ^ y ^ = 1 Real [ j ja ,H(x ,y ,z^)e j w t da , ] . (III-10) 
0 

Hence, differentiation with respect to time in the space-time domain 

corresponds to a multiplication by jo; in the space-frequency domain. 

Since the medium parameters K and p are time-invariant, equations (III-9a) 

and (III-9b) read in the space-frequency domain 

ν/ν*(χ,ν,ζ,ω) + κ(ζ) ρ ( χ ^ ' ζ ' ω > = Jwlv(x,y,z,(tf) (III-lla) 

and 

VP(x,y,z,w) + }ωρ(ζ)Ϋ(χ,γ,ζ,ω) = F*(x,y,z,ü>), (III- l ib) 

respectively. 

Differentiating both sides of equation (III-4b) with respect to x yields 

3 Η ( Χ £ Ζ - ω ) = - V J7 -jkx H(kx,k z,W)e"j(kxX+kyy)dkxdk (III-12a) 
4π -oo 

Similarly, differentiating both sides of equation (III-4b) with respect to y 

yields 

3H(x,γ,ζ,ω) = 1 JJ H(k ,k . z ^ e ' ^ ^ ^ d k dk . (HI-12b) 
dy . 2 JJ J y v x' y' ' ' x y v ' 

J 4π -oo J J 

Hence, a differentiation with respect to x or y in the space-frequency 

domain corresponds to a multi 

wavenumber-frequency domain. 

domain corresponds to a multiplication by -jk or -jk , respectively, in the 
x y 

Since the medium parameters K and p are laterally invariant, equations 

(ΙΠ-lla) and (ΙΠ-llb) read in the wavenumber-frequency domain 
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-jk V (k ,k ,ζ,ω) - jk V (k ,k ,ζ,ω) + J x x x y J y yv x y 

dV (k ,k ,ζ,ω) zv x y ' 
dz 

+ ^ V ? ( k ,k ,ζ,ω) = jwf (k ,k ,ζ,ω) K(z) v x' y' ' ' J vv x' y* ' (III-13 a) 

and 

-jk P(k ,k ,ζ,ω) x x y 

-jkyP(kx,ky,z,a;) 

3P(k ,k ,ζ,ω) 

dz 

+ jup(z) 

V (k ,k ,ζ,ω) 

V (k ,k ,ζ,ω) 
y\ χ> y» 

„ V (k ,k ,ζ,ω) L zv x y 

F (k ,k ,ζ,ω) xv x y 

F (k ,k ,ζ,ω) yv x y 

F (k ,k ,ζ,ω) . zv x y 

, (III-13b) 

respectively. 

Elimination of the particle velocity components V , V and V from 

equations (III-13a) and (III-13b) yields 

d (\ dPï n 2 .2 . 2 X ~ sr 
P-^-^^7) + <k - kv - k v ) p = "S> dz > dzJ 

x y 
(III-14a) 

where the source term S(k ,k ,ζ,ω) reads v x y 

S = -ω2ρΐ + jk F + jk F - ρητ~[- F ) r v J x x y y dz vp zJ (III-14b) 

and where 

2 2 2 
k (z) = ω /c (z) , (III-14c) 

with 

c(z) = v/K(z)/p(z) (III- 14d) 

Equation (III-14) is the wavenumber-frequency domain equivalence of the 

acoustic two-way wave equation (I- l l ) in the space-time domain. Equation 

(III-14) is exact (under the linear assumption), but it has no straight

forward solutions when the medium parameters c and p are arbitrary 

functions of depth (z). As an alternative, we derive a first order two-way 

wave equation for P and V by eliminating only V and V from equations 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



81 

(III-13a) and (III-13b), yielding 

d 
dz 

* ί '■ l 
H — Γ-ω2ρΓ + jk F + jk F M 

(ΙΠ-15) 

Many authors have used this matrix representation of the two-way wave 

equation (albeit most frequently for the source-free situation). For an 

overview the reader is referred to Ursin (1983). 

In the following we use the more compact notation 

where the wave vector Q is defined as 

Q(k ,k ,ζ,ω) 
Γ P(kx.ky.zf«)] 

= [vz(kx,k z,.)J 

(ΙΠ-16a) 

(III-16b) 

the first order differential operator A. is defined as 

A. (k ,k ,ζ,ω) 
Γ x y ' 

-jwp(z) 

k (k ,k ,ζ,ω) 
z x y — - o 

jwp(z) 

(III-16c) 

the source vector S is defined as 

S (k ,k ,ζ,ω) = v x y ' [ F (k ,k ,ζ,ω) 1 

-—7-τ- Γ-ω ρ(ζ)Ι (k ,k ,z,a;)+jk F (k ,k ,z,w)+jk F (k ,k ,ζ,ω) I jwp(z) L rv ' vv x y J x x x y J y y x y J 
(ni-16d) 
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and, finally, 

(111-1 6e) 2 2 2 k (k ,k ,z ,w) = k (z) - kx - k2 . 
Z X Y  Y 

We solve equation (111-16), assuming for the moment that  the medium is 
source-free, hence, we solve 

- 
2az l  a z  = Z l ( 2 ) & Z ) .  (111- 1 I )  

For notational convenience we omitted the variables k k and w.  The z- 
dependency, however, is essential in the following derivation. 

x' Y 

We write the solution as a Taylor series expansion, according to  

I zo 

Define the m' th  order differential operator xm by 

then 

or, substituting two-way wave equation (111-17), 

.., - --t 

Am+,(z)Q(z), 

with 

and - 
Ao(z) = I. 

(111- 1 8 a) 

(111-1 8b) 

(111- 1 8 ~ )  

(111- 1 8d) 

(III-I 8e) 

(111- 1 8f) 

Hence, solution (111-18a) may be rewrit ten as 
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Q(z) = U(z,z o)Q(z o), (III-19a) 

where 

, Nm oo (z-z ) 
^ ' V = Σ - s f — Am(z ), (ffl-19b) 

m=o 

with A (z ) defined recursively by (III-l8e) and (III-l8f) for z=z . 

For each k , k and ω, equation (III-19a) describes acoustic two-way wave 

field extrapolation of the wave vector Q(k ,k ,ζ ,ω) from depth level z , 

through a laterally invariant medium, to depth level z. 

The two-way extrapolation operator U satisfies the property 

U(z 2 ,z o ) = U ( z 2 , Z l ) U ( z r z o ) . (ffl-20a) 

Taking z~ equal to z yields the property 

U(z o ,z o ) = I = Ü(z o ,z 1 )Ü(z 1 ,z o ) (ffl-20b) 

\V(zvzo)Yl = U(z o , Z l ) . (III-20C) 

In deriving (III-l9) it was assumed that the medium parameters c and p 

are continuously differentiable on the interval (z,z ), see (III-16c) and 

(III-l8e). Consider a piecewise continuously differentiable medium, as shown 

in Figure III-l, with "interfaces" at z , , z . z. . , z etc. 
° 1 2 ι -Γ l The boundary conditions state that the pressure and the vertical component 

of the particle velocity are continuous at the interfaces. Hence, for this 

situation we may apply (III-19a) recursively, according to 

1) In the literature this operator is often named the "propagator" 
(Gilbert and Backus, 1966). We prefer the name "two-way 
extrapolation operator", opposed to the "one-way extrapolation 
operators" of Berkhout (1985). 
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$(z{) = U ( z r z o ) Q ( z o ) , 

$ ( z 2 ) = U ( z 2 , z 1 ) $ ( z 1 ) , 

(III-21a) 

(III-21 b) 

$ (z . ) = U ( z . f z M ) 3 ( z M ) , (in-21c) 

Q(z.) = U(z. ,zo)Q(zo) , (III-22a) 

with 

U(z. ,zo) = U ( z . , z M ) U(z 2 , z 1 )U(z 1 , z o ) . 

—►c(z) or p(z) 

* i - 1 

(ffl-22b) 

Figure III-]: The acoustic medium parameters c(z) and p(z) generally show 

discontinuities at layer interfaces (z . ,z - etc.). 

For the special situation of a homogeneous medium equation (ΙΠ-18β) 

simplifies to 

A . = A A . , m+1 m 1 

A = A, m 1 

(ffl-23a) 

(III-23b) 

Note that with this definition of A we may represent the Taylor series 

expansion (III-19b) symbolically by 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



85 

U(z,z ) = βχρ(Α.Δζ), (III-23c) 

with 

Δζ = z-z . o (III-23d) 

According to (III-16c) and (III-23b), A is given by 

|> o ] I *ζ ° 
A m " (-1)m | I km ■ for even m (IH-24a) 

and 

A = (-1)' ,(m-l)/2 [ 0 -javk™-1
 f Q 

^ - k m + 1 0 
)ωρ z J 

r odd m. (III-24b) 

Upon substitution into (III-19b) we obtain for propagating plane waves 
2 2 2 

(k +k <k ) 

U(z,z o) = 

cos(k Δζ) - JrtL-sin(k Δζ) 
z 

k 
. —: sin(k Δζ) cos(k Δζ) 
L )ωρ z v z ' , 

(III-25a) 

with 

. . / , 2 , 2 , 2 
k = + V k -k -k x y 

(m-25b) 

2 2 2 whereas we obtain for evanescent plane waves (k +k >k ) v x y ' 

U(z,zo) = 

cosh(£ Δζ) -J^P . sinh(£ Δζ) 
z 

sinh(£ Δζ) cosh(£ Δζ) 
)ωρ v z ' v z 7 

(III-26a) 
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with 

v/!~2 , 2 , 2 t = jk = + Vk + 1c - k . (III-26b) 

Let us now return to the situation where the medium is not homogeneous 

and not source-free. Hence, we solve equation (III-16a) 

^ ^ - = A j i z ^ z ) + r ( z ) , (III-27a) 

given a solution U(z,z ) of equation (III-17) for the source-free situation, 

hence 

aÜ(z,z ) 
dz ° = Α ^ ζ ^ ζ , ζ ^ . (in-27b) 

We use the method of variation of parameters (Boyce and DiPrima, 1969) 

to find the solution of (III-27a). We seek a solution of the form 

$ ( z ) = U ( z , z o ) [ ^ ( z o ) + $ s ( z ) ] , (III-28a) 

with 

Q s (z o ) = o . (III-28b) 

Substitution of (III-28a) into two-way wave equation (III-27a), using property 

(in-27b), yields 

Ä 1 ( z ) U ( z , z o ) ß ( z o ) + 5 s ( z ) ] + U ( z , z o ) - ^ — = 

A j i z M z , ^ ) [ $ ( z o ) + $ s ( z ) ] + f ( z ) , (III-29a
) 

or, using property (III-20c), 

93ς(ζ) _ ^ 
= U(z .z)S(z). (III-29b) 

dz ~v o' 

The solution of (III-29b), with boundary condition (III-28b), reads 
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& (z) = J Ü(z .z ' ) f (z ' )dz (III-29c) 

Substitution of this result into solution (III-28a), using property (III-20a), 

yields 

z 

^(z) = U(z,z )(J(z ) + Ι ϋ ΐ ζ , ζ ' ^ ζ Ί α ζ ' . (ΙΠ-30) 
z o 

This is the general solution of two-way wave equation (III-27a). It states 

that the two-way wave field Q at depth level z is found by extrapolating 

the two-way wave field Q from depth level z to z and by adding the 

wave field at z related to all sources between z and z. 
o 

111.23 Acoustic one-way wave equations in the wavenumber-frequency domain 

Consider the acoustic two-way wave equation (III-16a) in the wavenumber-

frequency domain, 

^ g ^ - = Ajtolftz) + §Τ(ζ), (III-31a) 

with 

A Γ?(ζ) 1 Q(z) = k(zJ ■ (IH-31b) 

Al<z> = | k2(z) 

, jwp(z) 
[ 0 -jwp(z)-| 

\ωρ(ζ) J 

S(z ) 
Γ h™ ] 
L jaiT ^ 2 ^»>> + *χ?χ« + V y ^ J 

(in-31c) 

(m-31d) 

and 

2 2 2 2 kz(z) = k (z) - k - k . zv ' v ' x y (III-31 e) 
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The eigenvalue decomposition of matrix A.(z) reads 

Aj(z) = L(z)A(z)L '(z), (III-32a) 

with 

L(z) = kz(z) -kz(z) 
ωρ(ζ) ωρ(ζ) 

(III-32b) 

[ -jk (z) 0 1 

0 jkz(z)J 

(III-32c) 

L (z) = -j 

, ω/?(ζ) 
kz(z) 

-ωρ(ζ) 
kz^). 

(III-32d) 

and 

A + ^ 2 , . , ,.2 ,.2 _ ,.2 . , 2 . , .2, k (z) = + V M z ) - K - k" for k + k" < k"(z), zv ' v v / χ y x y v " (III-32e) 

k (z) = -j V k 2 + k2 - k2(z) for k2 + k2 > k2(z). z v / J v x y v / x y v / (III-320 

Define a vector D(z) according to 

Q(z) = L(z)D(z), (III-33a) 

or, equivalently, 

&(z) = L'Vz^Cz), (III-33b) 

with 
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* Γ?+<ζ>1 D(z) = L 
LP-(Z)J 

(III-33c) 

It will be shown later on in this section that P (z) and P (z) represent 

downgoing and upgoing waves, respectively. 

Upon substitution of (III-33a) into (III-3la) we obtain 

3D(z) 
dz = L \z) [ ( Ä j t o L i z ) - - ^ - ) S ( z ) + r ( z ) J , (III-34a) 

or, with eigenvalue decomposition (III-32a), 

- ^ ^ - = BjCz^Cz) + f ' ( z ) , (III-34b) 

where 

Bj(z) = A(z) - L _1(z) - ^ - (III-34C) 

and 

S*'(z) = L_1(z)S*(z). (III-34d) 

Many authors have used this equation for downgoing and upgoing waves. 

For an overview the reader is referred to Ursin (1983). 

The general solution of (III-34b) reads, in analogy with (III-30), 

z 

S (z ) = W(z,z )S(z ) + J Wiz.z'JS^'lz'Jdz', (III-35a) 
z o 

where, in analogy with (III-l9b), 

oo (z-z ) 
W(z,z ) = Σ 7 B (z ). (III-35b) 

v ' o7 *- m! mv o 
m=o 

with B (z ) defined recursively by 
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B .(z ) = m+Γ o 
dB (z) m I + B (z )B,(z ) mv o' V o' dz 

(in-35c) 

and 

B (z ) = I. ov o' (III-35d) 

For the special situation of a homogeneous medium equation (III-35c) 

simplifies to 

B , = B B , , 
m+1 m 1 

B = Sf = ïm. m l 

(in-36a) 

(m-36b) 

Note that with this definition of B we may represent the Taylor series 

expansion (III-35b) symbolically by 

W(z,z ) = βχρ(ΑΔζ), (m-37a) 

with 

Δζ = z-z (III-37b) 

According to (III-32c) and (III-36b), B is given by 

L o ( Jkz)mj (ΠΙ-38) 

Upon substitution into (III-35b) we obtain 

W(z,z ) = 
W (z,z ) 0 

0 W (z,z ) 
(m-39a) 

with 
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W+(z,z ) = exp(-jk Δζ) (III-39b) 

and 

W"(z,z ) = exp(jk Δζ), (III-39c) 

or, substituting this result in (III-35a) for the source-free situation 

P+(z) = W+(z,zo)P+(zo) (III-39d) 

and 

P (z) = W (z,z )P (z ). (II-39e) 

Note the similarity with the downgoing and upgoing plane waves described 
by (1-44) in section 1.4.3. Therefore, we may conclude that for each k , 
k and ω, P (z) represents a downgoing plane wave, whereas P (z) 
represents an upgoing plane wave. 

We will now discuss the physical interpretation of equations (III-33) and 
(III-34). 

In equation (III-33a), the wave vector D(z) contains downgoing and upgoing 
waves P (z) and P (z), respectively, whereas wave vector Q(z) contains the 
two-way wave field in terms of the total pressure P(z) and the total 
particle velocity V (z). Hence, in equation (IH-33a) matrix L(z) is a 
composition operator which composes the total wave field from its down-
going and upgoing constituents, according to 

P(z) = P+(z) + P'(z) (III-40a) 

and 

k (z) 

^z( z ) = Ί^ϊζΓ [ ? + ( z ) " ? " ( z ) ] ' ( m~4 0 b ) 
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Similarly, in equation (IH-33b) matrix L (z) is a decomposition operator 
which decomposes the total wave field into downgoing and upgoing waves, 
according to 

P+(z) = \ [P(z) + f& Vz(z)] , (III-41a) 

and 
p-(z) = \ [P(z) - f& V (z)]. (m-41b) 

Note that this decomposition breaks down for k (z)=o, that is, for waves 
which propagate in the horizontal direction (a=7r/2, see also equations 
(III-32e), (Ill-He) and (III-8c)). 

Equation (III-34) represents a coupled system of one-way wave equations for 
downgoing and upgoing waves, according to 

^ψ- - -*ζ(ζ)Γ(ζ) - i ^ [ t ££-) (?+(Z)-P-(Z))]+S+(Z) (m-42a) 

and 

- £ & - = +jkz(z)p-(z) - \ffi[fz £ £ - ) (P-(Z)-P+(Z))]-S-(2), (IH-42b) 

where 

S^z) = 2 j k
]

( z ) [-ω2ρ(ζ)Γν(ζ) + JkxFx(z) + jkyFy(z) + jkz(z)Fz(z)] . (ffl-42c) 

Note that these equations  are a generalization of the one-way wave 
equations for plane waves (I-43a) and (I-43b) that were derived in section 
1.4.3. S (z) and S (z) are the one-way representations  of the source 
distribution. Apparently the downgoing and upgoing waves are coupled due 
to the vertical variations of the medium parameters, which is expressed by 
the term d[k (z)/p(z)]/dz. 

It is common use to neglect P~(z) with respect to P (z) in (III-42a) for 
downward propagation and to neglect P (z) with respect to P (z) in 
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equation (III-42b) for upward propagation. This means that in both 

equations multiple reflections are neglected. Hence, primary waves fulfill the 

decoupled one-way wave equations 

d? 
d ̂  [-W -iffir-w Φ] ?+<z>+ ~s+<z> < i n -4 3 a> 

and 

"ψ « Kw -1 -φ -k ΦΥ^ - *-<*>· «™» 
The general solutions of these equations read, in analogy with (III-30), 

P+(z) « W+(z,z )P+(z ) +$ W+(z,z')S+(z')dz' (III-44a) 
O' 0 z 0 

and 

P"(z) « W"(z,z )P (z ) -J" W~(z,z')S~(z')dz\ (III-44b) 
z o 

respectively, where W (z,z ) and W (z,z ) are solutions of (III-43a) and 

(III-43b), respectively, for the source-free situation. Hence, 

r w f rkz(z)i"* r 
z o 

and 

rk (z η* rk (z) r* z 

^ ( ζ 'ζο } - ["ÄiJJ [ - f e r j exp{ +*ζ
(ζ , )αζ '· (m-44d) 

Expressions (III-44c) and (III-44d) are commonly known as the WKB-
solutions, after Wentzel (1926), Kramers (1926) and Brillouin (1926). Note 
that these decoupled expressions for primary waves are not exact. In 
particular they break down for waves which propagate nearly horizontally, 
which occurs for k (z)—>o. Only in areas where the vertical variations 
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of the medium parameters vanish, we obtain exact one-way wave equations 

directly from (III-42a) and (III-42b), according to 

a P
9 z

( z ) - -JkzP+(z) + S+(z) (III-45a) 

and 

^ ^ = +jkzP"(z) - S"(z). (ffl-45b) 

The general solutions are again given by (III-44a) and (III-44b), respectively 

(with « replaced by =), with W (z,z ) and W(z,z ) given by (III-39b) and 

(III-39c), respectively. 

ΙΠ.2.4 Acoustic one-way wave fields at interfaces in the wavenumber-frequency domain 

Both the exact solution (III-35) for the wave vector D(z), as well as the 

approximate WKB solution (III-44) for the decoupled waves P (z) and P (z) 

break down whenever the medium contains "interfaces" in the interval 

(z,z ), see Figure III-1. o 

We derive the boundary conditions for an interface at z=z . Just above 

this interface the wave vector D(z) is related to the wave vector Q(z) 

according to 

lim ^(Zj-e) = lim [L{z χ-€)Ι)(ζ χ-€)] . (III-46a) 
ejo ejo 

Similarly, just below the interface, 

lim Çftzj+e) = lim [L(z {+e)ï)(z {+e)~] . (HI-46b) 
ejo ejo 

Since the wave vector Q(z) is continuous at z . , we obtain the following 

boundary condition for the wave vector ϊϊ(ζ) at z . : 

lim [LCZj-e^Zj-e)] = lim [L(z {+e)ï)(z {+e)~] . (III-46c) 
e|o e|o 
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Let us now assume that z. represents an interface between two 

homogeneous half-spaces and derive the boundary conditions for the 

downgoing and upgoing plane waves P (z) and P (z), respectively. In the 

upper half-space z<z 1 the medium parameters read c and p ; in the 

lower half-space z>z. the medium parameters read c. and p.. First 

consider the situation depicted in Figure III-2a. A plane wave P (z) is 

incident to the interface from above, a plane wave P (z) is reflected into 

the upper half-space and a plane wave P i z ) is transmitted into the lower 

half-space. Applying boundary condition (III-46c) to this situation yields 

'•B:H,;:'l· (III-47a) 

where 

k -k 
z,u z,u 

. ωρ ωρ 
L· *U *U 

(III-47b) 

and 

k
 0 "k o τ,Ι z,£ 

tup* upç J 

(III-47C) 

with 

(k 2
 + k2 ) 

^ x yJ 
(III-47d) 

and 

z9i 
(k 2

 + k 2 ) . v x yJ (III-47e) 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



96 

P+ 

(a) 

PU" 

^ Χ Ϊ Η - « u / ^ 

a e \ 

CU ,PU 

Cg,Pf 
z=Zi 

P+ 

7 
(b) 

Figure II1-2: Reflection and transmission of plane waves at an interface between two 

homogeneous acoustic half-spaces (the situation is shown for azimuth angles β =β=ο). 

a. Situation for an incident downgoing wave P . 

b. Situation for an incident upgoing wave P'. 

Now define reflection and transmission operators R ( z j and T (z . ) , 

respectively, according to 

P"(z . ) = R + ( Z l )P + ( z , ) i r Γ v V u 1 (III-48a) 

and 

P ; ( Z l ) = T + i z p P ^ Z j ) . (III-48b) 

Substitution into (III-47a) and dividing by P ( z A yields 

[ u [ 6+(Zl)J= h[ o ' J (III-49a) 

or, writing all unknowns at the left-hand side 

Γ (n*,))- 1 1 
[R + ( Z I ) (T + ( Z I ) ) J 

= L-1 _ 1 L f ' 1 (III-49b) 

or, using (III-47b) and (III-47c), 
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6 + ( =
 P ^,uA kz,£ ( m 5 0 a ) 

T z,u u z,£ 

and 

2p,k 
T + (z . ) - — - r - ^ = 1 + R +(z.) . (HI-50b) Γ 'Λ,υ+Ά,£ 

For the incident wave P (z) and the reflected wave P~(z) we may 

associate a tilt angle a and an azimuth angle ß to each k , k and ω 

value, according to 

c . ^ - 2 - 2 

sine* = — V k + k (m-51a) 
u ω x y 

and 

tan£ = k /k , (III-51b) 
^u y x 

see also equations (III-8c) and (III-8d). Hence, expressions (III-48a) and 

(III-48b) describe angle-dependent reflection and transmission, respectively. It 

can be easily seen from (III-47d) and (III-47e) that the reflection and 

transmission operators (III-50a) and (III-50b) depend on the tilt angle a 

only. For the transmitted wave P i z ) we may associate a tilt angle a and 

an azimuth angle βρ to each k , k and ω value, according to 

sina, = — \ / k 2 + k2 (III-52a) 
i ω v x y 

and 

y 

tan/?£ = k y/k x . (in-52b) 

Note that 

sina. = — sina (III-53a) t c u u 

(SnelFs law) and 
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t a n ^ = tan£u. (III-53b) 

If we define reflection and transmission operators R and T for the 

situation depicted in Figure III-2b, according to 

W - R"Wzi> (III-54a) 

and 

V z l> = T-(z,)P/z,), (III-54b) 

then we obtain in a similar way as above 

R'iz^ifizj))"1 

■ ( ϊ - ί ζ , ) ) - 1 
hX (?) (III-55) 

1 Ά / 'Λ ,η ' 
and 

2p k , 
T ( z . ) = . U Z?, = 1 - R ( z , ) . 

u z,£ t z,u 

(III-56a) 

(III-56b) 

/ / / J ACOUSTIC WAVE EQUATIONS FOR ARBITRARILY INHOMOGENEOUS 

MEDIA 

In this section we consider the situation of wave propagation in 
inhomogeneous acoustic media in which the medium parameters K and p 
are arbitrary functions of x,y and z, hence 
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K = K(x,y,z) 

and 

p = p(x,y,z). 

First we derive the acoustic two-way wave equation in the space-frequency 

domain and present its solution in a formal operator notation. Next, we 

decompose the two-way wave equation into acoustic one-way wave 

equations for downgoing and upgoing waves and we present solutions in a 

formal operator notation as well as in a convenient matrix notation. 

Finally, we derive reflection and transmission operators for one-way wave 

fields at interfaces. 

III.3.1 Acoustic two-way wave equation in the s pace-frequency domain 

Consider the linearized equations of continuity and motion (I-10a) and 

(I-10b), in the space-frequency domain given by 

V.v7x,y,z,o;) + -rj-p^-—r P(x,y,z,w) = \ω\ (x,y,z,o;) (III-57a) 
v J ' K(x,y,z) v , J ' ' ' J vv '"" ' v ' 

and 

VP(x,y,z,w) + ju;p(x,y,z)V*(x,y,z,a;) = F"(x,y,z,w), (III-57b) 

respectively. 

We eliminate V* from these equations, yielding, in analogy with (III-14), the 

following two-way wave equation 

"£" (j f ) + H2r * A r + "V· ί r Î ' (ln"58a) 

where operator / / - is defined as 

2 2 
//2(x,y,z,a;) = k (x,y,z,a;) + z~+ γ 

dx dy 

dlnp(x,y,z) d _ dlnp(x,y,z) d 
dx dx dy dy ' (III-58b) 
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with 

2 2 2 
k (x,y,z,a;) = ω /c (x,y,z) (III-58C) 

and 

c(x,y,z) = V K(x,y,z)/p(x,y,z). (in-58d) 

Equation (ΙΠ-58) is exact (under the linear assumption), but it has no 

straightforward solutions when the medium parameters c and p are 

arbitrary functions of x, y and z. As an alternative, we derive a first 

order two-way wave equation for P and V by eliminating only V and V 

from equations (III-57a) and (III-57b), yielding, in analogy with (III-16), 

a g ( X az ? Z ? ^ = ^(χ,ν,ζ,ωΧ^χ^,ζ,ω) + ? (x,y,z,o;), (III-59a) 

where the wave vector Q is defined as 

<2(x,y,z,w) = [Ρ ( χ , ν , ζ , ω ) - | 

Vz(x,y,z,u,)J 
(III-59b) 

the first order differential operator A is defined as 

0 
^j(x,y,z,ü;)= 1 

-jwp(x,y,z) 

/ / - ( χ ^ , ζ , ω ) 0 jup(x,y,z) 2V 

and where the source vector S is defined as 

] (III-59c) 

F (x,y,z,a;) 
zv J ' 5 ( χ ^ , ζ , ω ) = 

jwl (x,y,z,w)- dx 
[ F x ( x - y - Z ^ 1 _ _d_ fFy('»y»z»") 1 . (in_59d) 
I jwp(x,y,z) J " dy [ jwp(x,y,z) JJ 

The general solution of (III-59) reads, in analogy with (III-30), 
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C?(z) = tf(z,z )£(z ) + J £ / ( z , z ' ) ; sV)dz \ (III-60a) 
z 

0 

where the two-way wave field extrapolation operator (7(z,z ) is formally 

defined by 

oo (z-z ) 
U(z,z) = Σ —£r- V z o > ' ( I I I - 6 0 b ) 

m=o 

with A (z ) defined recursively by m o 

3Λ ( z ) | 
A ( z ) =

 m + ii (z M (z ) (in-60c) 
m+lv o' 9z | z m o 1 o z o 

and 

A (z ) = I. (III-60d) 

For notational convenience we omitted the variables x, y and ω. Relation 

(III-60) is the basis for numerical two-way wave field extrapolation 

algorithms which are valid for primary and multiply reflected waves in 

arbitrarily inhomogeneous acoustic media and which are accurate upto high 

tilt angles of propagation. A further discussion on the numerical aspects of 

acoustic two-way wave field extrapolation is beyond the scope of this 

book. The reader is referred to Kosloff and Baysal (1983) and Wapenaar 

and Berkhout (1986). 

777.3.2 Acoustic one-way wave equations in the s pace-frequency domain 

The derivation of the one-way wave equations for arbitrarily inhomogeneous 

media (including sources) is rather complicated, unless we make use of the 

matrix notation which is discussed in Appendix A. This matrix notation is 

a convenient alternative notation for generalized spatial convolution 

integrals. To show the principle first, we consider two-way wave equation 

(III-58a) for the source-free situation: 

3 ( 1 a r t W , " ) ) . .„ (x,y,z,«)P(x,y,z.«) , (III-61) 
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with //2(x,y,z,w) defined by (III-58b). 

We rewrite (IH-61) as a generalized spatial convolution integral. Therefore 

we first write the lateral differentiations with respect to x and y as 

conventional spatial convolution integrals, according to 

ex» 
8 Ρ(χ^>ζ>ω) = J d (x-x')P(x\y,z,a;)dx' (III-62a) 

3x 

and 
oo 

9 Ρ ( χ >^ ζ > ω ) = J dm(y-y')P(x,y\z,ü;)dy\ (III-62b) 
dy -oo 

Here d (x) and d (y) are band-limited lateral differentiation operators. 

They are defined as the inverse Fourier transform of operators d (k ) and 

d (k ), which represent properly chosen band-limited versions of (-jk ) 

and (-jk ) , respectively (Berkhout, 1985, Appendix H). Hence 

1 r ~Jk x 

d (x) = -r*- d (k )e x dk (III-62c) mv 2π J mv x' x v ' -oo 

and 
oo ., 

A 1 Γ ~ " J k v y 

d (y) = —— d (k )e y dk . (III-62d) m w / 2π J nr y' y ' 
-oo J J 

Equation (III-62) is exact when P(x,y,z,w) is a spatially band-limited 

function. With the definitions in (III-62), two-way wave equation (ΙΠ-61) is 

rewritten as a generalized spatial convolution integral, according to 

oo 

4r ß- a P ( * ; y > z ^ ) = - J J H9(x,y,z;x\y',z'=z;a;)P(x',y',z'=z;a;)dx'dy',(m-63a ) dz V dz J J J 2V 

where 

H2(x,y,z;x\y\z'=z;o;) = (m-63b) 

2 
-^- 5(x-x')6(y-y') + d 2(x-x')5(y-y') + S(x-x')d 2(y-y') 
c (x,y,z) 

- ain«W) dl(»-»')g(y-V) -  9to«W) K-Wfl-y'). 
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For the special situation of a homogeneous medium, H~ is a function of 

x - x \ y-y' and ω only, hence, for this situation (ΙΠ-63) may be written as 

a conventional spatial convolution integral, according to 

2 °° 
d Ρ ( χ ^> ζ > ω )= - J 7 H 2 ( x - x \ y - y » P ( x \ y \ z ' = z , u ; ) d x ' d y \ (III-64a) 

dz -oo 

or, symbolically, 

2 
d Ρ(χ^> ζ>ω) = -H (x,y,w) * P(x,y,z,w), (in-64b) 

where 

2 
Η2(χ,Υ,ω) £ ^ - δΜδΜ + d

2 ( x ^ y ) + δΜά2{γ)· (m-64c) 
c 

We return to the inhomogeneous situation. For notational convenience we 

define the coordinate vectors 

r = (x,y,z) (III-65a) 

and 

r*' = ( x \ y \ z ' ) , (III-65b) 

so that the generalized spatial convolution integral (III-63) may be written 
as 

oo 

P^yj^ i—ZT" dPfz
?ω) ) = " / / [ Η 2 ( Λ ? * , , ω ) Ρ ( Γ · , « ) ] ζ , β ζ α χ · α γ · . (ΙΠ-66) 

p(r ) -oo 

Let us now implicitly define an operator FL according to 

oo 

Η2(Γ,ΓΗ ,ω) = J"J H1(F>,Γ ,,ω)H1(F>^Γ",ω)dx ,dy^ (III-67a) 
-oo 

with 

r*" = ( x \ y \ z " ) . (III-67b) 

In the seismic literature H. is referred to as the square-root operator. 
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For the situation that the medium parameters do not depend on the depth 
coordinate z, according to 

c(x,y,z) = c(x,y,o) (III-68a) 
and 

p(x,y,z) = p(x,y,o), (III-68b) 

we obtain the following first order differential equation: 
oo 

3Ρ( /Ζ
?ω) = ±j ! ! [Η{(?,ϊ*\ω)?(ϊ*\ω)] z , = z dx'dy\ (III-69) 

-oo 

This result can be verified by differentiating both sides with respect to z, 
yielding 

2 -+ 
^ V ^ = ± j / / [ H 1 ( ^ r \ « ) ä ? ^ ] dx'dy'. (HI-70a) 

dz -oo 

or, substituting (III-69), 
OO— OO 

a2 
fÇ^=J/L Hl( F +'F +''w )J'-''t Hl ( F +'' r"'u ; ) P ( F +"'W^z"=z' d x"d y'j dx'dy'' 
dz -°° -°° Z'=Z (III-70b) 

or, changing the order of the integrations and substituting (III-67a), 

2 -
9 Ρ(Γ

2
,ω) = -JJ[H2(r,r",a;)P(r",a;)] zlf=zdx"dy", (ΙΠ-TOc) 

dz -oo 

which is again two-way wave equation (ΙΠ-66) for the situation described 
by (III-68). Note the similarity of (III-69) with the one-way wave equations 
(III-45a) and (III-45b) in the wavenumber-frequency domain, which read for 
the source free situation 

- ^ ^ - = -jkzP+(z) (III-71a) 

and 

dz z +jk P (z). (III-71b) 
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Therefore we may conclude that (III-69) represents the one-way wave 

equations in the space-frequency domain for downgoing waves 

oo 
9 I V z = -j J 7 [ H j ( r , r > ) P V > ) ] j . ^ d x ' d y ' (III-72a) 

-OO 

and for upgoing waves 

oo 
a Pg(

z
r , ω ) = +j J 7 [ Η ] ( Γ , 7 + ' , ω ) Ρ ν , ω ) ] 2 , = 2 α χ · α γ · , (III-72b) 

-OO 

respectively. 

With the matrix notation, discussed in Appendix A, we may also represent 

the two-way wave equation (III-70c) by 

2—► 
d P (

2
Z ) = -Η 2 (ζ)?(ζ) (in-73a) 

dz 

and the one-way wave equations (III-72a) and (III-72b) by 

a ? 3 z
( z ) = - j H ^ z ) ? ^ ) (III-73b) 

and 

aP
a"z

(z) = +jH1(z)P>"(z), (III-73C) 

where, in analogy with (III-67a), 

H2(z) = Η ^ Η ^ ζ ) . (III-73d) 

Here vectors P*(z), P* (z) and P "(z) contain the discretized versions of the 

wave fields P(r ,ω), P (r ,ω) and P~(r ,ω), respectively, at depth level z (see 

Appendix A, section A.2). Furthermore, matrices H.(z) and H^(z) contain 

the discretized versions of the operators H.(r ,r \ω) and  Η^(Γ ,r ',ω), 

respectively, at depth level z'=z (see Appendix A, section A.3). Note that 

H2(z)=H2(o) and H ^ z ^ H ^ o ) , see also (ΙΠ-68). 

Next, we use this convenient matrix notation to derive the one-way wave 

equations for the situation where c(x,y,z) and p(x,y,z) are arbitrary 
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functions and where the medium contains sources. 

Consider two-way wave equation (III-59a), 

dQ(r ,ω) 
dz Αχ(τ ,ω)β(Γ ,ω) + S{v ,ω), (ΙΠ-74) 

with Ô, Αχ and S defined in (III-59b), (III-59c) and (III-59d), respectively. 

With the matrix notation, discussed in Appendix A, we may rewrite this 

equation as 

aQ(
z

Z ) = Aj(z)5(z) + S*(z), (III-75a) 

where 

Q(z) = vA (III-75b) 

Aj(z) = [ O -]ωΜ(ζ)Ί 

(III-75c) 

and 

S(z) 
Fz(z) 

Mv(z) 
(III-75d) 

where we assumed for simplicity that F =F =o. 

Note that M(z) is a diagonal matrix, containing the discretized version of 
the mass density p(r ) at depth level z (see Appendix A, section A.3); O 
is a matrix, containing zeroes only. 

We can now follow the same approach as in section ΙΠ.2.3. We decompose 
matrix A.(z) according to 

Aj(z) = L(z)A(z)L *(z), (in-76a) 
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with 

L(z) = 
^ Μ Λ Ζ ^ Ζ ) ^-ΜΛΖΪΗ^Ζ)! 

(in-76b) 

A(z) = 

-JH^z) O 

O jHjiz) 

and 

L (z) = y 

I wHj (z)M(z) 

I -wHj1 (z)M(z) 

(III-76c) 

(III-76d) 

We define a vector D(z) according to 

Q(z) = L(z)D(z), (in-77a) 

or, equivalently, 

Ëf(z) = L _ 1(z)^(z), (III-77b) 

where D(z) represents the decomposed wave field in terms of the 

downgoing and upgoing wave vectors P (z) and P (z), according to 

_ [>+(z)1 
D(z) = 

L P " ( Z ) J 
(m-77c) 

The decomposition (III-77b) breaks down for waves which propagate in the 
horizontal direction (see also section ΙΠ.2.3). 

Upon substitution of (III-77a) into (III-75a), using property (Iü-76a), we obtain 

3D(z) 
dz Β ^ ζ ^ ζ ) + S '(z), (III-78a) 
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where 

Ij(z) = l (z) - L_1(z) ^ î (III-78b) 

and 

S*'(z) = L ' ^ z ^ z ) . (in-78c) 

This equation represents a coupled system of one-way wave equations for down-

going and upgoing waves, according to 

- \- H j W « ) D^f" (M-^zJHjiz)) ( ? + ( Z ) - ? - ( Z ) ) ] +S*+(z) (IH-79a) 

and 

^ - +JHl(z)?-(z) 

- y Η^(ζ)Μ(ζ) [-^- (M'VzJHjiz))  ( Ρ " ( Ζ ) - ? + ( Ζ ) ) ] -Γ~(ζ), (ffl-79b) 

where 

^ ( z ) = i- βω 2Η^(ζ)Μ(ζ)Γ(ζ) + F(z ) ] . (III-79c) 

Here S (z) and S (z) are the one-way representations of the source 

distribution. 

When we neglect P*~(z) with respect to P* (z) in (III-79a) and P (z) with 

respect to P (z) in (III-79b), then we obtain decoupled one-way wave 

equations for primary downgoing and upgoing waves in arbitrarily 

inhomogeneous acoustic media, according to 

d P
a z

( z ) « - jH| (z)r + (z) + r + ( z ) , (III-80a) 
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and 

a P
a z

( z ) « +jH~(z)?~(z) - S*'(z), (III-80b) 

where 

jH±<z) = jHj(z) + | H ] 1 (z)M(z>^|- ( M ' ^ z J H j i z ) ) . (ΠΙ-SOc) 

The general solution of these equations reads, in analogy with (III-44), 

z 

P ^ i z ) « W ± (z,z ^ ( z ) +_ J w ^ z . z ' J S ^ i z ' J d z · , (III-81 a) 
z 

0 

where the one-way wave field extrapolation matr ices W—(z,z ) are defined 

by 

oo (z -z ) 
Ψ ^ ζ , ζ ) = Σ 7 i + j ^ H ^ i z ), (III-81b) v ' o ^ m! v J / mv o m=o 

with H—(z ) defined recursively by mv o 

d H ^ z ) I 
H 1 ,(z ) = +j !r t H ^ i z )Ηγ<ζ ) (III-81C) 

m+l v o ' —' dz I z mv oy V o' v 7 

o 

and 

H^(z o) = I. (III-81d) 

Finally, we rewrite the matrix products in (III-81 a) and (III-79c) as 

generalized spatial convolution integrals, according to 

oo 

Ρ ^ Γ , ω ) « ÏS [ \ ν ± ( Γ , Γ ί , ω ) Ρ ± ( Γ ' , ω ) ] ζ , = ζ dx 'dy ' 
-oo O 

±! [ J / w ± ( r , r * , , « ) S ± ( r , , ü ; ) d x , d y , ] d z ' , (III-82a) 
z -oo 

o 

where 
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sV,«) = y )ω2!! [Hj1 (7*,Γ',«)/<Γ·)Ιν(Γ',»)] z,=zdx'dy' + yF (F*.«). 
-οο 

(m-82b) 

Equation (III-82a) states that the one-way wave field at F* is obtained 
from a surface integral over the one-way wave field at z and a volume 
integral over the one-way sources between z and z. These one-way sources 
are obtained, according to (III-82b), by spatially convolving the source 
function I (r ,ω) with the inverse square-root operator and by adding the 

v i _ ► 

source function ±-=- F (r ,ω), (Wapenaar, 1989). 

III.3.3. Acoustic one-way wave fields at interfaces in the s pace-frequency domain 

Solution (III-81) breaks down whenever the medium contains "interfaces" in 
the interval (z,z ). 

We consider a horizontal interface at z=z. between two acoustic half-
spaces in which the medium parameters vary laterally only. We use the 
sub-scripts u and i to distinguish between the upper and lower half-space, 
respectively. In the upper half-space z<z. the medium parameters read 
c (x,y) and p (x,y); in the lower half-space z>z« the medium parameters 
read c.(x,y) and ρΛχ,ν). First consider the situation depicted in Figure 
III-3a. A wave P (x,y,z,o;) is incident to the interface from above, u 

Pu H L P U PU 

^ X ~ ^ \ cu(x,y) ^ = j ^ cu(x,y) 
Pu(x.y) , , ' f>ul*,y) 

Ρ ί Pi P(+ 

(a) (b) 

Figure III-3: Reflection and transmission at a horizontal interface. 
a. Situation for an incident downgoing wave P (χ,γ,ζ,ω) 
b. Situation for an incident upgoing wave P.(x,y,z,(*)). 
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a wave P~(x,y,z,o;) is reflected into the upper half-space and a wave 

P-(x,y,z,w) is transmitted into the lower half-space. In the following, the 

discretized versions of these wave fields are represented by vectors P (z), 

P (z) and P. (z) , respectively, (see Appendix A, section A.2). 

In analogy with (III-48a) and (III-48b), we define reflection and transmission 

matrices R and T for the interface at z „ according to 

^ " ( z . ) = R ^ z . J P ^ z . ) u 1 v 1 u 1 

and 

respectively. 

In a similar way as described in section ΙΠ.2.4, we may derive 

= L -Λ[;Ι 
^ ( Z j j f T ^ Z j ) ) - 1 ] 

or, using (m-76b) and (III-76d), 

R+(Zj) = [I - H - | u M u M ^ H 1 ) £ ] [I + H-;uMuM-; H ^ ] " 1 

and 

T + ( Z l ) = 2 [I + H ^ M M ^ H y 1 . 

(III-83a) 

(III-83b) 

(ΙΠ-84) 

(III-85a) 

(III-85b) 

A special situation occurs when both half-spaces are homogeneous and have 

a density contrast only. Then 

R + ( Z j ) = (M£-Mu)(M^Mu)_1 (III-86a) 

and 

T + ( Z l ) = 2M£(M£+Mu)~ (III-86b) 
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Note that for this special situation R (z . ) and T (z . ) are diagonal matrices. 

For the situation depicted in Figure III-3b we define reflection and 

transmission matrices R" and T~ for the interface at z according to 

P £
+ ( Z l ) = R- izpP^Zj) (m-87a) 

and 

P ' i z j ) = T"( Z l )P£(Z l ) , (III-87b) 

respectively. In analogy with (III-84) we obtain 

MzptT^Zj)] - 1 

= L - ' L ·[:] (ΙΠ-88) 

or, using (III-76b) and (III-76d), 

R-(Zl) = [I - H - J ^ ^ H j ^ ] [I + H - J ^ i ^ H j ^ ] - 1 (III-89a) 

and 

T-(Zl) - 2[I + H-^^H^J"1. (IIl-89b) 

Again, for the situation of two homogeneous half-spaces having a density 

contrast only, we obtain diagonal matrices: 

R(Zj ) = (Mu-Mp(Mu+M£) 1 (III-90a) 

and 

T (z . ) = 2M (M +MJ v r u u I (III-90b) 
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The expressions for reflection and transmission, derived in this section, are 

strictly valid only for the situation of a horizontal interface between two 

acoustic half-spaces in which the medium parameters vary laterally only 

(Figure III-3). Because the expressions are formulated in the space-

frequency domain they are in principle suited to handle more complex 

configurations. Of course the accuracy decreases with increasing complexity 

of the configuration. 
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IV 
ELASTIC TWO-WAY AND ONE-WAY WAVE EQUATIONS 

TVA. INTRODUCTION 

In this chapter we derive the elastic two-way and one-way wave equations 

both in the wavenumber-frequency domain (for horizontally layered solids) 

and in the space-frequency domain (for arbitrarily inhomogeneous solids). 

We present formal solutions (in terms of Taylor series), but it is not our 

intention to elaborate the numerical aspects of these solutions. The main 

purpose of this chapter is to derive the mathematical relationship between 

two-way and one-way elastic wave fields. The results will be used in 

chapters VI and VIII for transforming elastic two-way Kirchhoff-Helmholtz 

integrals into elastic one-way Rayleigh integrals and in chapter XII, where 

we discuss an elastic processing scheme for multi-component seismic data. 

IV.2 ELASTIC WAVE EQUATIONS FOR HORIZONTALLY LAYERED MEDIA 

In this section we consider the special situation of wave propagation in 

horizontally layered elastic media in which the medium parameters c...  p 

and p are a function of depth only, hence 

Cijk£ ■ C ijk/ Z ) 

and 

P = P(z). 

We derive the elastic two-way wave equation in the wavenumber-frequency 

domain and present its exact solution. Next, we decompose the two-way 

wave equation into elastic one-way wave equations for downgoing and 

upgoing P- and S-waves and we present exact and approximate solutions. 

Finally, we derive reflection and transmission operators for one-way P- and 

S-wave fields at interfaces. 
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IV.2J. Elastic two-way wave equation in the wavenumber-frequency domain 

In the space-time domain, the linearized equation of motion (11-13) reads 

(for horizontally layered media) 

p(z)dtv (x,y,z,t) - d.r.(x,y,z,t) = f (x,y,z,t), (IV-la) 

whereas the linearized stress-velocity relation (11-24) reads 

3t7î(x,y,z,t) - C.£(z)d£v^(x,y,z,t) = - ^ ( x . y . z . t ) . (IV-lb) 

A differentiation with respect to time in the space-time domain 

corresponds to a multiplication by jo; in the space-frequency domain. Since 

the medium parameters C.p and p are time invariant, equation (IV-la) and 

(IV-lb) read in the space-frequency domain 

jwp(z)V*(x,y,z,u>) - a.r!(x,y,z,a;) = ^(χ^,ζ ,ω) ' (IV-2a) 

and 

jo;7\(x,y,z,a;) - C.p(z)d V*(x,y,z,u;) = -jwä?(x,y,z,a;), (IV-2b) 

respectively. A differentiation with respect to x or y in the space-

frequency domain corresponds to a multiplication by -jk or -jk , x y 
respectively, in the wavenumber-frequency domain. Since the medium 

parameters C. and p are laterally invariant, equations (IV-2a) and (IV-2b) 

read in the wavenumber-frequency domain 

~ ~ dr (k ,k ,ζ,ω) ^ ^. 
jWp(z)V (̂k ,k ,ζ,ω) + jk F*(k ,k ,ζ,ω) - —Z * y = F*(k ,k ,ζ,ω)2) 

J rv ' v x' y' ' ' J a or x' y' ' ' dz v x' y' ' ' 

(IV-3a) 
and 

1) Here and in the following equations the symbol j has two different 
meanings. When used as a factor, it denotes the imaginary unit V -1 . 
Otherwise it is an index which may take the values 1, 2 or 3. 

2) Greek indices may only take the values 1 or 2, see also the introduction. 
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dY(k ,k ,ζ,ω) 
jwf!(k ,k ,ζ,ω) + )kaC.Jz)Y(k ,k ,ζ,ω) - C.,(z) 1—*-

= -jWj(kx,ky,z,W), (IV-3b) 

respectively. In analogy with section ΙΠ.2.2, we derive a first-order two-
way wave equation for V and 7* by eliminating r* and 7* from equations 
(IV-3a) and (IV-3b). 

We express dY/dz and dr*Jdz in terms of operators acting on  V* and 7*. 
From (IV-3b) we obtain 

ΤΓ m c~33 ü k / j c
3 / + j w r + y%\, (iv-4.) 

whereas from (IV-3a) we obtain 

- ^ - - jupVV j k a r - F\ (IV-4b) 

or, upon substitution of (IV-3b), 

dK ~ Γ-ΐ i F& ~ 1 
- ^ - = jWpV*+ jk — k„C „vV - ^ - C . ψ - - 7 \ - F \ (IV-4C) 
dz J r J a L ω ß aß jii) a3 3z a J v y 

or, upon substitution of (IV-4a), 

dr 
dz - W ? + - t V ^ V C a 3 C ~ 3 3 C 3 ^ 

+ J k J C a 3 C ~ 3 3 ^ z + ? z > - V> ' ^ 

(lV-4d) 

Equations (IV-4a) and (IV-4d) can be combined in one equation, according to 

J S - = Ä , $ + r , (IV-5a) 
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where the wave vector Q is defined as 

■[*']· (IV-5b) 

the first order differential operator A. is defined as 

a l l a 12 

a21 a 22 

(IV-5c) 

with 

a l l " j k /3C33C3/? (IV-5d) 

a n = jo;C33, 

L . = ]ωρ\ + —i-k kJC a-C „ C ^ C L J 21 J ^ jw a j9v ûj9 a3 33 3/9 

(IV-5e) 

(IV-5f) 

and 

a 22 " j k a C a 3 C 3 3 (IV-5g) 

and, finally, the source vector S is defined as 

S = [!;] (IV-5h) 

with 

S l - ^ 3 3 σ ζ (IV-5Î) 

and 
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*2 = J k « ( C « 3 C 3 & -%) - ϊ · ^™ 

The general solution of equation (IV-5a) reads, in analogy with equation 

(ΙΠ-30), 

z 

§ ( z ) = U ( z , z o ) $ ( z o ) + J U ( z , z ' ) f ( z ' ) d z \ (IV-6a) 
z o 

where the two-way extrapolation operator U is defined as 

( \m 

0 < ζ · ζ ο> ■ Σ ~^— Â m (z 0 ) , (IV-6b) 
m=o 

with 

dA (z) 
Ä m + l ( z o ) = - i z ^ - | + V z o > V z o > ( I V - 6 C ) 

z 
0 and 

Ao(zo) = I. (IV-6d) 

Equation (IV-6a) states that the full elastic two-way wave field Q at 

depth level z is found by extrapolating the two-way wave field Q from 

depth level z to z and by adding the wave field at z related to all 

sources between z and z. For a further discussion we refer to section o 
III.2.2. 

TV.,2.2 Elastic one-way wave equations in the wavenumber-frequency domain 

Consider the elastic two-way wave equation (IV-5a) in the wavenumber-

frequency domain, 

*Q(z) 
dz 1 A.(z)Q(z)+S(z). (IV-7) 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



120 

Define the eigenvalue decomposition of matrix A.(z) as 

AjCz) = L(z)A(z)L_1(z). (IV-8a) 

Define a vector D(z) according to 

(J(z) = L(z)S(z), (IV-8b) 

or, equivalently, 

E>(z) = L_1(z)^(z), (IV-8c) 

with 
r&+(z) I 

S(z) = 
LS(z) J 

(IV-8d) 

It will be shown later on in this section that the eigenvector matrix L 
can be organized in such a way that vector D (z) contains downgoing P-
and S-waves whereas vector D"(z) contains upgoing P- and S-waves. Hence, 
equation (IV-8b) describes composition of the elastic two-way wave field 
Q(z) from its downgoing and upgoing constituents D (z) and D (z). 
Similarly, equation (IV-8c) describes decomposition of the elastic two-way 
wave field into downgoing and upgoing P- and S-waves. 
Upon substitution of (IV-8) into (IV-7) we obtain, in analogy with (III-34), 

-^3- = 5,(2)0(2) + if'(z), (IV-9a) 

where 

B^z) = A(z) - L_1(z) - ^ J - (IV-9b) 

and 

S*'(z) = L"1(z)S*(z). (IV-9c) 
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This equation represents a coupled system of elastic one-way wave equations 

for downgoing and upgoing P- and S-waves. The general solution of (IV-9) 

reads, in analogy with (III-35), 

0 ( z ) = W(z,z )3(z ) + J W(z,z')S*'(z')dz\ (IV-10a) 

where 

, .III 
OO (Z-Z ) W(z,z ) = Y ? B (z ), v ' o' ^ m! nr o" m=o 

(IV-10b) 

with B (z ) defined recursively by 
nr o7 J J 

dB (z) 
g ,(z ) = — ^ — I + B (z )B.(z ) m+lv o dz I nr o 1 o7 (IV-10c) 

and 

B (z ) = ov o' (IV-10d) 

We shall now analyse equations (IV-8), (IV-9) and (IV-10) in more detail. 

Equation (IV-8a) represents an eigenvalue decomposition of the 6x6 matrix 

A.(z). For the general anisotropic situation it is very difficult to perform 

this eigenvalue decomposition analytically. In the following we consider 

transverse isotropic media with symmetry axes in the x-, y- or z-direction 

(see also section II.4.1). Using equation (11-23) and Table II-1, we may now 

write for matrix A. , as defined in (IV-5), 

A l = 

l l l a 1 2 

a 21 a 2 2 

(IV-11 a) 

where 
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11 

0 

0 

:13 
:33 

jk 

0 

0 

2̂3_ 
C33 

jk J x 
jk 

jk. 

(IV-lib) 

l12 

"55 

0 
C44 

0 

0 

C33 

(IV-lie) 

l21 

Γ\ωρ+—-.— (n.k +cr/ :k 11 
^ r ιω υ 1 x 66 yJJ 

—.— ηΛ k jcj '3 x y 

1 
jw 3 x y 

0 

Πωρ+—:—(c^k  +ηΛ J ] ^ jo; V 66 x 2 yJ J 

0 

0 

jwpj 

(IV-lid) 

and 

a 2 2 " a l l 

L K Jk 

C!3 . . j k 
C33 X 

^ i k 
C33 y 

0 J 

(IV-lie) 

with 

η\ " C l l ' C13 / C33 » 

2 
^2 " C22 " C23/C33 

(IV-11 f ) 

(IV-llg) 
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and 

"3 - C 1 2 + C66 C13 C23 / C33' 

We define a permutation of matrix A. according to 

A? = 
L q{ o J 

(IV-llh) 

(IV-12a) 

where 

a~'2 = 

•1.-

j " 
C33 

c 33 x 

c 23 .. jk 
. C33 y 

Tm 

1 J x 

jk 
L J y 

[>/>+ 

* x 

j w / c 5 5 

0 

jk 
C33 X 

"irt"l kx+c66ky^ 

—:—ηΛ k D^p+ jw '3 x y ^ 

jk 1 
y 

0 

J W / C 44 -

^ j k 1 
C33 y 

—— ηΛ k 
JÜ; 3 x y 

—:— f c ^ k +r?-k J jo; V 66 x 2 yJ\ 

(IV-12b) 

(IV-12c) 

and 

[ 0 0 0 "I 
0 0 0 
0 0 o j 

(IV-12d) 

Note that A , is related to A , according to 

I P 1 -1 
A i - p i V i · 

(IV-13 a) 

where 
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and 

Pi = 

-1 

0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
10 0 0 0 0 
0 1 0 0 0 0 

p i = p r 

(IV-13b) 

(IV-13 c) 

We define a permutation of matrix L according to 

P j L p 2 , (IV-13d) 

where 

100000 
010000 
001000 
0 0 0-100 
000010 

LOO 00 01, 

(IV-13e) 

With these definitions we may replace the eigenvalue decomposition (IV-8a) 

by1) 

AP = L P A ( L V . (IV-14) 

Due to the simple structure of matrix A p this eigenvalue problem is very 

well manageable. Define 

LE; -KJ 
(IV-15 a) 

and 

■■[:.;] (IV-15b) 

Then 

O x u , This could also be accomplished when p . in (IV-13d) were_ omitted. 
However, this would lead to a less elegant definition of D in (IV-30c). 
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11 21 (t?)·1 (φ-'j (IV-15c) 

and 

Äf =1 _„ " 1 = 1 ., ' " * I . dV-15d) 1 ~U. ° J " L^.c^r* ° J 

ï P j ï f j = LPÄf(LP)-1 (IV-16a) 

and 

"21 "?2 - ψ ΐ 2 ^ " 1 · (IV'16b) 

Hence, for transverse isotropic media we have reduced the eigenvalue 
problem (IV-8a) for the 6 x 6 matrix A. into two eigenvalue problems 
(IV-16a) and (IV-16b) for 3 x 3 matrices. The same procedure was followed 
by Ursin (1983) for pure isotropic media. 

The eigenvalues ζ (i.e., the elements of diagonal matrix A. ) can be found 
by solving 

d e t p ^ a P j - r 2 l ] - 0. (IV-17a) 

Subsequently, the eigenvectors I. and L· (i.e., the columns of the 
matrices L!J and H ) can be found by solving 

( ^ 2 » 2 1 ^ = f 2 r i ( I V"1 7 b ) 

and 
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(Äffjr = ^ : , "21 β 1 2 ^ 2 (IV-17c) 

respectively. First we consider the situation of pure isotropy. According to 

(IV-12b), (IV-12c) and Table II-l, we may write 

%2 

_JU_ 
λ+2μ ( Τ ^ ~ ) * ν λ+2μ λ+2μ J j k y 

[-r—=—Jjk [\ωρ-^-.— (n.k +/jk ] Ί —:—ηΛ k 

r Λ -| . 1 
Λλ+2μ J J y }(û ^3kxky tJ^+"ir ^kx+r?2k^J 

,(IV-18a) 

21 J x 

L J y 

jk Jk 
x y 

}ω/μ 0 

0 jw/μ 

(IV-18b) 

with 

71 = 2̂ = 4 " £ ^ (IV-18c) 

and 

*>3 = μΠΰ5^ (IV-18d) 

Substituting these expressions into (IV-17a) yields for the eigenvalues 

2 

* 1 \\+2μ x yJ (IV-19a) 

and 

52 *3 v μ x y J (IV-19b) 
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Hence, we may write for the diagonal matrix A, in analogy with (III-32c), 

A = [:■ ;]· (IV-20a) 

where 

-jk 
z,p 
0 -jk 

0 

z,s 

0 -jk 
z,s 

(IV-20b) 

with 

k 2. Λ Σ .2. .2 .2 
= - < \ = k - k - k 

z,P 1 p x y 
(IV-20c) 

. 2 Λ 2 .2 .2 t2 k = -r = k - k - k z,s 52 s x y (IV-20d) 

kp = ω / c p = ρω /(λ+2/ζ) (IV-20e) 

and 

. 2 Λ 2 . 2 2, 
ks = ω / C s = ρω / μ ' (IV-20f) 

where c and c are the propagation velocities for P- and S-waves, P s 
respectively. 

Next, we solve (IV-17b) and (IV-17c) for the eigenvectors t and L·. Note 

that arbitrary scaling factors can be applied to these vectors. In the 

literature the scaling is generally chosen such that (I/jj P j (ψι. 
However, we choose a different scaling for reasons which will be explained 

later on. Our eigenvector matrices read 
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f P . 
Ί ~ 2 

u ρ 

uk 
_z*P_ 

-2k k x z,p 

-2k k y ζ,ρ 

-uk 

2k k x y 

uk x 

2 ( k 2 - 2 k 2 ) 

[k2-2k2l -2k k . v s yJ x y J 

(IV-21a) 

and 

L P -L 2 2 ω ρ 

- lk"-2k"-2k"J v s x yJ 

uk x̂  

uk 
y_ 

-2k k 
y z,s 

-wk k 
χ_γ_ 

" k z ,s 

c ( k 2 - k 2 ) v s yJ 

-2k k 
X Z,S 

-4k2-k2) 
v S XJ 

ßk 
* Z,S 

uk k 
x y 

μk 
Z,S 

μk 
Z,S 

(IV-21b) 

The inverse versions of these matrices read 

wrl 

2/zk 

/x(k 2 -2k 2 -2k 2 ) -k -k 
r v s x yJ x_ y 

uk k k 
z,p z,p z,p 

-2Mk 

0 J 

(IV-22a) 

and 

K)-1 
z,s 

-k x 
. k 
L z,s 

2/ik 

-μk k x y 
uk 

2/zk 

4k2-k2-2k2) 
uk 

z,s 

- / i ( k 2 - 2 k 2 - k 2 ) /zk k 
^ v s x _yĵ  * x y 

uk uk 
z,s J 

(IV-22b) 
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Now that we have solved the eigenvalue problem (IV-14) for the matrix 

Aj , we return to the original eigenvalue problem (IV-8) for the matrix A . . 

According to (IV-13d) we may write 

L = p " 1 ^ " 1 (IV-23a) 

and, consequently, 

(IV-23b) 

Substituting (IV-13b), (IV-13e), (IV-15a), (IV-15c), (IV-21) and (IV-22) yields 

L-1 = P 2 ( L P ) - 1 P , . 

L = 

,£I h 
V2 L-

(IV-24a) 

and 

S+l * 2 

N l N 2 

(IV-24b) 

where 

L, = 1 
ωρ 

k 
X 

k 
y 

+k L— z ,P 

k k 

z,s 

2 2 (k - k z ) + v s y' 
k z,s 

-k 
y 

( k 2 - * 2 ) 
- V S X7 
+ —k— 

z,s 

k k + x y 
k z,s 

k 
X 

(IV-25a) 
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L 2 » 2 ω ρ 

+2k k x ζ,ρ 

+2k k 
y ζ,ρ 

2k k x y 

- ( k 2 - 2 k 2 ) 
*- s yJ 

( k 2 - 2 k 2 ) 

-2k k x y 

ik 2 -2k 2 -2k 2 ] +2k k +2k k 
v s x yJ — y z,s x z,s 

(IV-25b) 

N7--J*-2ω 

2k 

k k 

2k (k 2 -2k 2 -2k 2 ) v s x yJ 

'- k 
z,p 

x y 
' k z,s 

(k 2 -2k 2 -k 2 ) 
■v s x yJ 

h k 
z,s 

(k 2 -k 2 -2k 2 ) 
v s x y 7 

z,s 

k k 

- k 
* y 

z,s 

-2k 

2k 

(IV-26a) 

and 

«ς-i 
ζ,ρ 

0 

ζ ,ρ 
- 1 

k 

z,s 

k 

Z,S -J 

(IV-26b) 

We shall now justify our unconventional scaling of the eigenvector 

matrices. Consider equation (11-31) 

3tvV,t) = - j [V«f,0 + Vx^(F\t)] , (IV-27a) 

with 

V.0(r ,t) = 0, (IV-27b) 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



131 

where φ and φ are the potentials for P- and S-waves in homogeneous 
isotropic source-free solids. In the wavenumber-frequency domain these 
equations read 

Λ -1 Ϋ Ä - ; 
jwp 

-jk Φ-jk Φ -d Φ J x J y z z y 

-jk Φ+jk Φ +d Φ J y J x z z x 

ö Φ-jk Φ +jk Φ z J x y J y x 

(IV-28a) 

with 

-jk Φ - jk Φ + d Φ = o, xx y y z z (lV-28b) 

where Φ , Φ and Φ are the components of vector Φ. x y z 

Define 

Φ = Φ + Φ (IV-29a) 

and 

Φ = Φ + Φ , (IV-29b) 

where, in analogy with (11-72) or (III-45), 

3Φ - .. — —-— = + jk Φ dz J z,p (IV-29C) 

and 

ΟΦ 
dz + jk Φ . J z,s (IV-29d) 

Substituting (IV-29) into (IV-28) and eliminating Φ yields 
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L | ÎJ+ + Lj S" (IV-30a) 

where 

Γ Φ + 1 

X 

* + 

L y J 

D = 

y j 

(IV-30b,c) 

and where L. and L~ are defined by (IV-25a). Hence, our eigenvector 

matrices have been scaled in such a way that vectors D and D" contain 

the potentials for downgoing and upgoing P- and S-waves, which were 

defined in section II.2.5. For this analysis we considered the homogeneous 

isotropic source-free situation. However, it can be shown that also for the 

situation with P- and S-wave sources, as defined in section II.3.1, vectors 

S and D " contain the potentials for downgoing and upgoing P- and 

S-waves. A further discussion is beyond the scope of this book. 

We summarize our results for the isotropic situation. Composition of the 

elastic two-way wave field from downgoing and upgoing P- and S-wave 

potentials reads, according to (IV-8b), 

Q = LD, (IV-31a) 

or, upon substitution of (IV-5b), (IV-8d) and (IV-24a), 

Ϋ = L ! 0 + + L,S" (IV-31b) 

and 

T = L .D + L-D , 
z 2 2 

(IV-31c) 

with L. and L- defined by (IV-25a) and (IV-25b), respectively. 

Decomposition of the elastic two-way wave field into downgoing and upgoing 

P- and S-wave potentials reads, according to (IV-8c), 
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Ö = L_1çf, (IV-32a) 

or, upon substitution of (IV-5b), (IV-8d) and (IV-24b), 

Ö + = Ν+Ϋ + Ν ^ Γ (IV-32b) 

and 

0 " = N j ^ + Ν ~ Γ , (IV-32c) 

with N . and N - defined by (IV-26a) and (lY-26b), respectively. 

Note that the decomposition operators are related to the composition 
operators, according to 

- + (r±. Γ + , Γ + Χ - Ι Γ ^ Ί - Ι NJ = [L- - L+(Lp ' L - J (IV-32d) 

and 
~t f~1- ~+ ~ + _ 1 ~ + Λ _ 1 
Ν -̂ = ( L - - L+(L+)  lL-) \ (IV-32e) 

The decomposed wave fields satisfy, according to (IV-9a), 

- | ^ - = B j B + §f' , (IV-33a) 

or, upon substitution of (IV-5h), (IV-8d), (IV-9b), (IV-9c), (IV-20a), (IV-24a) 
and (IV-24b), 

^ - = Α,ΕΤ-Ν+ΗΤ S+
 + - ^ - r + r+ (IV-33b) 

dz 1 Q L dz dz J 

and 

^P- = -Ï.S-- N" -^ S+
 + ^ - Ë T J - r-, (IV-33C) 

dz 1 Q L dz dz J 

where 

§Τ± = ± N r r a (iv-33d) 

and with A defined by (IV-20b). 
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Equation (IV-33) represents a coupled system of one-way wave equations for 

downgoing and upgoing elastic waves D and D , respectively. Note that 

these equations are a generalization of the elastic one-way wave equations 

for plane waves (11-72) that were derived in section II.4.3. S and S are 

the one-way representations of the source distribution. Apparently the 

downgoing and upgoing waves are coupled due to the vertical variations of 

the medium parameters, which is expressed by the terms 3L /dz in 

(IV-33b) and dVjdz in (IV-33c). 

It is common use to neglect D with respect to D in (IV-33b) for 

downward propagation and to neglect D with respect to D in (IV-33c) 

for upward propagation. This means that in both equations multiple 

reflections are neglected. Hence, primary elastic waves fulfill the decoupled 

one-way wave equations 

and 

3D 
dz 

dD 
dz 

[ dV 1 _ 
1 a dz J 

[ dV 1 ~ 
-A. - N" -r^- Ö" - S*" 

1 a. dz J 

(IV-34a) 

(IV-34b) 

Note that the terms N - dL /dz account for all amplitude effects 

(including conversion) during propagation of the primary waves. 

For a source-free homogeneous region these equations simplify to 

dz 1 (IV-35a) 

and 

3D 
dz 

d 
dz 

- $ + -

X 

φ + 

Α ι υ 

= 

' 

ζ , ρ 

0 

0 

0 

-jk J z,s 

0 

0 

0 

- J * k . y J 

- - $ + -

X 

y J 

(IV-35b) 

(IV-35c) 
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and 

d 
dz 

Γ *~ 
φ" 

X 

φ" 
L y J 

= 

+jk 0 0 
z,p 

0 +jk 0 
J z,s 

0 0 +jk 

Φ 

Φ" x 

. . Φ" . z,s J L y J 

(IV-35d) 

where Φ and Φ represent the potentials for downgoing and upgoing 

P-waves and where Φ , Φ and Φ~, Φ~ represent the potentials for x y x y 
downgoing and upgoing S-waves. The solutions of these equations read 1) 

$+(z)" 

Φ+ (ζ) 
xv ' 

Φ+(ζ) 
y 

= 

"w* .(ζ,ζ ) 0 0 I Φ*Φ ο' 1 

0 W* . (ζ ,ζ ) 0 Φ ,Φ ο' 1 
χ χ 1 

0 0 W* . (ζ ,ζ ) Φ ,Φ oll 
"■ ν ν "* 

Γ Φ + ( Ζ 0 ) 1 

^<ζο> 

[ψο>\ 

(IV-36a) 

and 

Φ'(ζ ) 

Φ"(ζ) 
χν ' 

Φ"(ζ) 
y _ 

= 

ν* (ζ 

0 

0 

,ζο) 0 0 1 

X X I 

o w : , ( ζ ,ζ ) 
φ ,φ ο\ 

y y 

Γ Φ " ( Ζ ) 
1 ν ο' 

Φ"(ζ ) 1 χν ο' 

Φ"(ζ ) 
L y ° 

(IV-36b) 

where 

W, ,(z,z ) = exp(-jk Δζ), φ,φτ ' ο ' KV J ζ,ρ " 

W* . (ζ,ζ ) = W* , (ζ,ζ ) = exp(-jk Δζ), φ ,φ ο φ ,V> o z,s 
χ χ y y 

W"l ,(z,z ) = exp(jk Δζ), φ,φκ o7 HVJ z,p " 

W , . (z,z ) = W" , (z,z ) = exp(jk Δζ) ψ ,ψ o φ ,φ o z,s x x y y 

(IV-36c) 

(IV-36d) 

(IV-36e) 

(IV-36f) 

and 

O The sub-scripts φ, φ and φ refer to the potentials Φ, Φ and Φ , 
i x y X y respectively. 
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Δ ζ = ζ - ζ . ο (IV-36g) 

We finalize this section by deriving the eigenvalues Ç for the situation of 

transverse isotropy with a ver t ical axis of symmetry. According to 

(IV-12b), (IV-12c) and Table II-1, we may write 

*Pn 

_JW_ 
χ//+2μιι (À lia )jkx 

A//+2"// X 

(— r Jjk [\ωρ+—:—(n.k +μ, k )Ί 

( 

Ί/+2μ// 

*//+WJky L "II 'II 
1 

W^ 
—— rç-k k jo; '3 x y 

η-k k Πωρ+——(^k +rç~k )Ί 
'3 x y ^ jw ± x 2 y/J

e 

, (IV-37a) 

l 21 

j^p 

J x 

JRv 

* * 

ΐ«/μ;/ 

0 

y 

0 

j ^ / μ ■ // 

(IV-37b) 

with 

ηγ = η2 = λ± + 2μ±- v / ( λ / / +2μ / / ) 

and 

^3 = λ ι + "L " ν /<V2V' 

(IV-37C) 

(IV-37d) 

Substituting these expressions into (IV-17a) yields for the eigenvalues 

ζ\ = - [ ω 2
Ρ 7 ι - -^{Uex)k2

r - \Ζ(ω2ρη2)2 + c ^ k 2 + €3k* J , (IV-38a) 

Γ2 = " P P 7 1 " Î r ( 1 + € l ) k r + ^ ω 2 ρ 7 2 ) 2 + ̂ *Ά + £3kr J (IV-38b) 

and 
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^3 - L/V/ μιι rJ (IV-38c) 

where 

. 2 . 2 . 2 k = k + k r x y (IV-38d) 

and where 7-, 7~, e . , 6 . and e~ are defined as in equation (11-53). Note 

that the expressions for ξ\» Γ? and ζ- exhibit a high degree of similarity 

with the expressions for the 3-D slowness surfaces (II-53a), (II-53b) and 

(II-53c) for qP-waves, qSV-waves and SH-waves, respectively. 

Finally, note that in a source-free homogeneous transverse isotropic 

medium (with a vertical axis of symmetry), the one-way wave equations 

read, in analogy with (IV-35), 

d 
dz 

ΓΒί 

r k 
= 

-Jkz,P 

0 

0 

0 

- j k z , sv 

0 

0 

0 

•JkZ,SHj 

pi 
h k 

(IV-39a) 

and 

d 
dz 0 

0 

z,p 
0 0 

* z , s v ° 

0 jk 

0 

) 

Z,SH| 

M 
Ί 

[\| 
(IV-39b) 

where 

k2 ^ - C2 
ζ,Ρ ζΓ 

(IV-39c) 
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k z , sv · - A ( I V - 3 9 d ) 

and 

kZ,SH — A' ( I V-3 9 e> 

with ζ ζ2 and ξ*3 defined in (IV-38). In (IV-39a) the wave functions 5 | , 

D~ and D- represent downgoing qP-waves, qSV-waves and SH-waves, 

respectively. Similarly, in (IV-39b) the wave functions D~, D~ and D~ 

represent upgoing qP-waves, qSV-waves and SH-waves, respectively. 

IV.2.3 Elastic one-way wave fields at interfaces in the wavenwnber-frequency domain 

The general solution (IV-10) of the elastic one-way wave equations breaks 

down whenever the medium contains "interfaces" in the interval (z,z ), se( 

Figure ΙΠ-l. We derive the boundary conditions for an interface at z=z 

Just above this interface the wave vector D(z) is related to the wave 

vector Q(z) according to 

lim Çftzj-6) = lim [LÎZJ-ÉJSÎZJ-C)] . (IV-40a) 
4o 4o 

Similarly, just below the interface, 

lim (J(Zj+e) = lim [L(Zj+6)15^+6)] . (IV-40b) 
ejo ejo 

The wave vector (^(z) contains the particle velocity vector V*(z) and the 
traction vector r (z) which are continuous at z , . The wave vector D(z) zv ' ^1 x ' 
contains the downgoing P- and S-wave vector D (z) and the upgoing P-

and S-wave vector D (z), which may be discontinuous at z . . We obtain the 

following boundary condition for the wave vector D(z) at z * 

lim [ L t Z j - e ^ Z j - c ) ] = lim \Z(z{+e)ï)(z{+e\\ . (IV-40c) 
e|o ejo 

Let us now assume that z. represents an interface between two 

homogeneous isotropic half-spaces. In the following the sub-scripts u and £ 
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refer to the upper and lower half-space, respectively. We derive the 

boundary conditions for the downgoing and upgoing P- and S-waves. First 

consider the situation depicted in Figure IV-la. 

z = z . 

(a) (b) 

Figure IV-1 : Reflection and transmission of plane waves at an interface between two 

homogeneous isotropic elastic half-spaces. 

a. Situation for incident downgoing P- and S-waves 

ê+= (·*,** .r )T. 
u v u XM y,u 

b. Situation for incident upgoing P- and S-waves 
t l i xX y,iJ ' 

Downgoing P- and S-waves D (z) are incident to the interface from above, 

upgoing P- and S-waves D"(z) are reflected into the upper half-space and 

downgoing P- and S-waves D. (z) are transmitted into the lower half-space. 

Applying boundary condition (IV-40c) to this situation yields 

Γ β + ( ζ . ) u Γ 

L D (z , ) , u V 

^>i> 

L o J 

1 D 

(IV-41) 

with L u and L£ defined by (IV-24a), (IV-25a) and (IV-25b). L u is related to 

the medium parameters of the upper half-space, L. is related to the 

medium parameters of the lower half-space. Now define reflection and 

' Of course, the summation convention does not apply here to the 

sub-scripts u (= upper) and i (= lower). 
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transmission operators R (z . ) and T (z . ) , respectively, according to 

ΕΓ(ζ , ) = R + ( Z l ) S + ( z , ) u 1 1 u 1 (IV-42a) 

and 

S ^ Z j ) = T + ( Z l ) ^ ( Z l ) . 

Substitution into (IV-41) yields 

(IV-42b) 

D>+(z,) u Γ 

*+<ζΛζ1>. 

τ+(Ζι)^(Ζι)' 
(IV-43a) 

or, since these equations should hold for any downgoing wave vector 

3 + ( z A uv Γ 

R + (z . ) . a (IV-43b) 

or, writing all unknowns at the left-hand side, 

[ (ÎV)" l-r'J'l 
L R V ^ M " 1 ] U L oj 

(IY-43c) 

or, using (IV-24a) and (IV-24b), 

R+(ZI) = (fir L + J ( N + L\)-{ 

v V v a,u ct,iJ v a,u atiJ 
(IV-44a) 

and 
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T+(z.) = ( Ν + L + J ~ \ (IV-44b) 
ν Γ ν a,u α,£7 ν ' 
~ + ~+ 

with L Λ and N" for α=1, 2 defined by (IV-26). α,£ a,u j v / 

If we define reflection and transmission operators R" and T~ for the 
situation depicted in Figure IV-lb, according to 

ë+( Z l ) = R"(Zl)&"(Zl) (IV-45a) 

and 

&~(Zl) = T"(Zl)S^(Zl), (IV-45b) 

then we obtain in a similar way as above 

R"(z.) = ( N + X " ) (N" X" ) _ 1 (IV-46a) 

and 

T-(z,) = ( N ; / ; > U ) - \ (IV-46b) 

~+ 
with L and N". for a=l, 2 defined by (IV-26). a,u a,£ j \ / 

Finally, we consider the special situation of reflection at the free surface 
z of a homogeneous isotropic half-space. The situation is depicted in 
Figure IV-2. Upgoing P- and S-waves D (Z) are incident to the free 
surface from below, downgoing P- and S-waves D (z) are reflected into 
the half-space. 

FREE SURFACE 

D- D+ 
Figure IV-2: Reflection of plane waves at the free surface of a homogeneous isotropic 

elastic half-space. 
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For the wave fields at the free surface we write 

Q(zo) = L D ( z o ) , (IV-47a) 

(IV-47b) 

Define a free surface reflection operator R f (z ), according to 

Ö+(z ) = R i (z )0 ' (z ). (IV-48) 
v o' frv o' o7 

Substitution into (IV-47b) yields 

o" = (L+Srfr(zo) + L~)ET(z o), (IV-49a) 

or, since this equation should hold for any upgoing wave vector D (z ), o 

R"fr(zo) = - ( Ε * ) " 1 ^ . (IV-49b) 

It is interesting to note that R f (z ) is singular when 

det ( £ * ) = o, (IV-50a) 

or 

-4k2k k - [ k 2 - 2 k 2 ] 2 = o, (IV-50b) 
r z,p z,s v s TJ ' 

with 

k2 = k2+k2. (IV-50c) 
r x y ' 
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Hence, for wavenumbers k satisfying (IV-50b), "reflected" waves D may 

exist even in the absence of "incident" waves D . Equation (IV-50b) has 

solutions only in the evanescent wavenumber area 

k2 > k2 > k2. (IV-50d) 
r s p v ' 

Hence, the "reflected" waves D for this situation are actually evanescent 

waves which propagate along the surface z and which decay exponentially 

with depth. This suggests that, for k satisfying (IV-50b), D represents 

the Rayleigh-wave which was introduced in section II.4.2. Indeed, if we 

associate a phase-velocity c D to the wavenumber k , according to 
K r 

c R = «/kr, (IV-51a) 

then (IV-50b) yields 

4c 3 \JQ2 - c 2 \ / c 2 - c 2 - c ( 2 c 2 - c 2 ) 2 = o, (IV-51b) 
s v p R v s R p v s R ^ 

which is identical to equation (11-69) for the Rayleigh-wave velocity c R . 

IV.3 ELASTIC WAVE EQUATIONS FOR ARBITRARILY INHOMOGENEOUS MEDIA 

In this section we consider the situation of wave propagation in 

inhomogeneous anisotropic elastic media in which the medium parameters 

c . . , - and p are arbitrary functions of x, y and z, respectively, hence 

e::,.. = c ! ! k / x ,y , z ) 

and 

"ijk£ ijk£ 

p= p(x,y,z). 

First we derive the elastic two-way wave equation in the space-frequency 

domain and present its solution in a formal operator notation. Next, we 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



144 

derive elastic one-way wave equations for downgoing and upgoing P- and 

S-waves and we present solutions in a convenient matrix notation. Finally, 

we derive reflection and transmission operators for one-way P- and S-wave 

fields at interfaces. 

IV.3.1 Elastic two-way wave equation in the s pace-frequency domain 

Consider the linearized equation of motion (11-13) and the linearized stress-

velocity relation (11-24), in the space-frequency domain given by 

jo;p(x,y,z)v (x,y,z,o;) - d.7\(x,y,z,o;) = F*(x,y,z,ü;) (IV-52a) 

and 

jo;7\(x,y,z,a;) - C.ix,y,z)d V*(x,y,z,a;) = -j(jö!(x,y,z^), (IV-52b) 
J jt t j 

respectively. We derive a first order two-way wave equation for V* and Ϋ 

by eliminating r and τ from equations (IV-52a) and (IV-52b). In analogy x y 
with (IV-4a) and (IV-4d) we obtain 

If- C33t-V/+ K + K] (IV"53a) 

and 

a f ! 1 n r,„ „ . -1. = ^ - -s7»„C(cftÄ - c ,c:' c- ja.r i dz ' r jw aLV αβ α3 33 30' /? 

-a 

Equations (IV-53a) and (IV-53b) can be combined in one equation, according 
to 

*β( χ ^ ' ζ ' ω > = ^(χ ,ν ,ζ ,ωΧ^χ^,ζ ,ω) + S*(x,y,z,o;), (IV-54a) 

where the wave vector Ç? is defined as 

v ( χ , ν , ζ , ω ) ' 

<?(x,y,z,w) =1 I , (IV-54b) [ V(x,y,z,o;)- | 

f^(x,y,z,w)J 
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the first order differential operator  A. is defined as 

[^ ( χ , γ , ζ , ω ) β 1 2 ( χ , γ , ζ , ω ) Ί 

û21(x,y,z,w) û22(x,y,z,a;)J 
^(χ ,ν ,ζ ,ω) = I, (IV-54c) 

where 

"11 = " C 3 3 C 3 A ( IV-54d) 

a]2 = jwCjj , (IV-54e) 

"21 = ^ I - l Î r ^ ( c ^ - C a 3 C - 3 1
3 C 3 P y ( c ^ - C t t 3 C - 1

3 C 3 P V p , 0V-540 

«22 = -t eeiCe3C33Î + C*3 C33 aJ (IV"54*> 

and, finally, the source vector S is defined as 

?(x 

where 

*1 

,ν,ζ,ω) = 1 

= J ^ C " ^ 

Λ( 

(χ ,γ ,ζ ,ω) 

(χ,Υ,ζ,ω) J f 
(IV-54h) 

(IV-54Î) 

and 

sl = -a [c .c^ä* - 7 ] - F\ (iv-54j) 
2 a L a3 33 z a J 

The general solution of equation (IV-54) reads,  in analogy with (III-30), 

z 

£(z ) = l / (z ,z o )^(z o ) + / f 7 ( z , z ' ) 3 V ) d z \ (IV-55a) 
z o 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



146 

where the two-way wave field extrapolation operator C/(z,z ) is formally 

defined by 

oo (z-z ) 
C/(z,z ) = V V - A ( z )» (IV-55b) v ' o' ^ m! mv o" v ' m=o 

with A (z ) defined recursively by 

dA (z) I 
Λ ,(z ) = — i r — + A (z M,(z ) (IV-55c) m+lv o' dz I mv o' lv o7 v y 

z o 
and 

AQ(ZO) = I. (IV-55d) 

For notational convenience we omitted the variables x,y and ω. Relation 

(IV-55) is the basis for numerical two-way wave field extrapolation 

algorithms which are valid for primary and multiply reflected and 

converted waves in arbitrarily inhomogeneous anisotropic elastic media and 

which are accurate upto high tilt angles of propagation. A further 

discussion of the numerical aspects of elastic two-way wave field 

extrapolation is beyond the scope of this book. The reader is referred to 

Wapenaar et al. (1987). 

TV.3.2 Elastic one-way wave equations in the s pace-frequency domain 

In this section we derive the elastic one-way wave equations in the 

space-frequency domain. In principle we could follow the same approach as 

in section III.3.2, i.e., we could use the elastic two-way wave equation 

(IV-54) as a starting point and perform all our derivations entirely in the 

space-frequency domain. However, these derivations are rather involved and 

therefore we follow an alternative approach. We use equations (IV-31), 

(IV-32) and (IV-35) in the wavenumber-frequency domain as a starting point 

and transform these equations back to the space-frequency domain. This 

approach is fully justified as long as the medium parameters do not vary 
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laterally. We also indicate how to modify the results such that lateral 

variations of the medium parameters are taken into account. This 

modification involves some approximations. In particular, it is assumed that 

the lateral derivatives of the medium parameters are negligible in 

comparison with the lateral derivatives of the elastic wave field. 

Consider arbitrary functions Η.(χ^,ζ,ω) and ΗΛχ^,ζ,ω) in the space-

frequency domain. The corresponding functions in the wavenumber-frequency 

domain read H.(k ,k ,ζ,ω) and ÎÎ(k k ,ζ,ω). Equations (III-4a) and (III-4b), 

which describe the forward and inverse spatial Fourier transformations, 

imply that the product 

H3(kx,ky,z,o;) = H1(kx,ky,z^)H 2(kx,ky,z,a;) (IV-56a) 

in the wavenumber-frequency domain corresponds to the convolution integral 

oo 

H (x,y,z,o;) = J J H (x-x\y-y\z,o;)H ( x ' ^ z ^ d x ' d y ' (IV-56b) 
-oo 

in the space-frequency domain. In the following we make extensively use 

of this important property. 

Consider equations (IV-31b) and (IV-31c), 

Ϋ = LJË> + + L~ïT (IV-57a) 

and 

T* = L * S + + LIS", (IV-57b) 
z 2 2 ~± ~± 

with L. and L~ defined by (IV-25a) and (IV-25b), respectively. These 

equations describe, for the isotropic situation, composition of the elastic 

two-way wave field (V\ 7 ) from its downgoing and upgoing constituents 

(D , D ) . For the moment we only consider equation (IV-57a), which can be 

rewritten as 
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V.(k ,k ,ζ,ω) = Li ..(k ,k ,z,u)5T(k ,k ,ζ,ω) + ET ..(k ,k ,z,o;)D7(k ,k ,ζ,ω). r x' y' ' l,ijv x y ' j v x y 1 ,ij x y j x y 
(IV-58) 

Here V. for i=l, 2, 3 represents the particle velocity components V , V 
~ * ~+ x y 

and V , respectively. DT for j=l, 2, 3 represents the P- and S-waves 
z ~± ~± ^+ potentials Φ , Φ and Ψ~, respectively, see also equation (IV-30). Finally, 

~±_ x y ~± 
L. .. for i=l, 2, 3 and j=l, 2, 3 represents the elements of matrix L as 

defined by (IV-25a). 

According to property (IV-56), we may replace the multiplications in 

(IV-58) by convolution integrals in the space-frequency domain, according to 

ν.(χ,ν,ζ,ω) = J j L | . . (χ-χ\γ-γ\ζ ,ω)ϋ!(χ ,ν ,ζ ,ω)αχ'αγ' 
-oo ' J J 

oo 

+ J J L" . . ( χ -χ \ ν -γ \ ζ ,ω)ο7(χ ,γ , ζ ,ω^χ^γ \ (IV-59) 

where L ..(χ,γ,ζ,ω) is obtained by applying a spatially band-limited version 

of the inverse Fourier transform (III-4b) to the matrix element ~± + 

L. ..(k ,k ,ζ,ω). Equation (IV-59) is exact when the wave field DT(x,y,z,a;) is 
spatially bandlimited. Rewrite 

+ 
Lj ..(x-x\y-y\z,u>) (IV-60a) 

in the more general notation 

+ 
Lj Γ (χ ,γ ,ζ;χ' ,γ \ζ '=ζ;ω). (IV-60b) 

Now, with the matrix notation discussed in Appendix A, we may rewrite 

(IV-59) as 

ΫΊ(Ζ) = L | . . ( Z ) Ö + ( Z ) + L: . . (Z)ST(Z). (IV-61a) 

Here the vector V(z) for i=l, 2, 3 contains the discretized wave field 

V.(x,y,z,w) at depth level z. Similarly, vector D . (z) for j=l, 2, 3 contains 
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the discretized wave field D. (χ,ν,ζ,ω) at depth level z. Finally, matrix 
L, ..(z) for i=l, 2, 3 and j=l, 2, 3 contains the discretized operator 
L- ..(x,y,z;x',y',z*=z;üj) at depth level z'=z. 

In a similar way we may derive from (IV-57b), 

ft (z) = il ..(ζ)ΕΓ(ζ) + Li ..(Z)ST(Z). IZV ' 2 , i j v j 2 , i j v J (IV-61b) 

Here the vector r. (z) for i=l, 2, 3 contains the discretized wave field 1Z +. 

T. (x,y,z,w) at depth level z and matrix L~ ..(z) for i=l, 2, 3 and j=l , 2, 3 

contains the discretized operator L~ ..(χ,γ,ζ\χ\γ\ζ'=ζ\ω) at depth level z'=z. 

Equations (IV-61a) and (IV-61b) for i=l, 2, 3 can be combined according to 1) 

Γ :?<*>" 

L ·Γζ(ζ). 

L{(Z) 

L*(z) 

Lj(z) 

L"2(z)_ 

" lT(z)l 

. ?"(Z)J 
(IV-62a) 

_,,+_ where the three-component data vectors V*(z), 2*(z) and 5 (z) are defined 
according to 

Ϋ (z) 

Y(z) 
xv ' 

L Ϋ>) 

(IV-62b) 

Iz(z> 

7- (Z ) 
xzy ' 
r* (z) yzv ' 

r* (z) zzv '■ 

(IV-62c) 

The tilde (~) underneath the data vectors and the operator matrices 
denotes that the "elements" are again data vectors and operator 
matrices 
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Γ —►— Ί Γ —»i Ί 

^ ( ζ ) = 

ϋγ(ζ) 

2 

L6f(z). 

= 

Φ - ( Ζ ) 1 

Φ*~(ζ) 
χ ν ' 

L y v 'Λ 

(IV-62d) 

and where matrix L (z) for α=1, 2 is defined according to 
~CÜ 

"Lin(z) 

*ΐ,21<ζ> 

. L Î ,31 ( Z ) 

L;,i2<z> 

La>22(z) 

Lî,32<z> 

L ; , I 3 ( Z > 

L 1 2 3 ( Z > 
La,33<z> 

(IV-62e) 

Consider equations (IV-32b) and (IV-32c), 

N Î Ϋ + N ! 2 z (IV-63a) 

and 

S " = NT V + N i f* 1 2 z (IV-63b) 

with NT and NT defined by (IV-26a) and (IV-26b), respectively. These 

equations describe, for the isotropic situation, decomposition of the elastic 

two-way wave field into downgoing and upgoing P- and S-waves. In a 

similar way as above, we can derive the space-frequency domain 

representation of this decomposition algorithm, yielding 

0+(z) 

0"(z) 

N+(z) N+(z)" | Γ y>(z ) l 

N-(z) N" 2 (z)J [ r z ( z ) J 

(IV-64a) 

where matrix N (z) for a=l , 2 is defined according to 
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!£(*) = 
^ , ι ι ^ 

< 2 i < z > 

A.31™ 

^n™ 
< 2 2 < z ) 

< 3 2 < z ) 

N^,13(Z) 1 

*ζ,23(Ζ) 

<33<ZU 

(IV-64b) 

where sub-matrix N ^ . . for a=l , 2 and i=l, 2, 3 and j=l , 2, 3 contains the a,ij 
discretized operator N~~ . . (χ^,ζ ,χ '^' ,ζ '^ζ ,ω) at depth level z'=z. 

Note that the decomposition operators are related to the composition 

operators, according to 

+ = ( L * - ^ ( ^ ) " 1 ^ ) (IV-64c) 

and 

+ = (ιΛ - L^LVLT)-1 
2 ν ~ Γ (IV-64d) 

Consider the elastic one-way wave equations (IV-35c) and (IV-35d) for the 

source-free homogeneous isotropic situation. In a similar way as above, we 

can derive the space-frequency domain representation of these one-way 

wave equations, yielding 

d 
dz 

Γ Φ*+(ζΓ 

Ψ+(ζ) 
xv ' 

*"+(z) 
L yv ' J 

= 
' " j H i ,P 

0 

0 

0 

l,s 

0 

0 "I 

0 

- jH , 
J l,s J 

Γ ?+(z)' 

Ψ*+(ζ) 
xv ' 

L yv ' . 

(IV-65) 

and 
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d 
dz 

Φ"(ζ) 

Φ (ζ ) 
χν ' 

+ J H1,P ° 
0 

0 +JRl,s ° 

Φ (ζ ) 

Φ (ζ) 
χν ' 

(IV-66) 

Φ"(ζ) I I 0 0 +jH, J I Φ " ( ζ ) | 
yv ' J L J l,sJ u yv / J 

respectively. 

+_ + 
In analogy with matrices L .. and N~~... matrices H, and H, are 

a,ij a,ij' l,p ' e 

obtained as follows: 

l,s 

Apply a band-limited version of the inverse spatial Fourier 

transformation (III-4b) to k and k , yielding H, (χ,γ,ω) and v ' ζ,ρ z,s' J 6 l,pv , J ' ' 
H. (x,y,w), respectively. 

. Rewrite H. (χ-χ',ν-γ',ω) and H. (x-x\y-y\u) in the more general 

notation H. (χ ,γ ,ζίχ' ,γ ' ,ζ^ζίω) and H. (χ ,γ ,ζίχ' ,γ ' ,ζ^ζίω), respective 
1 ,P 1 ,S 

Store the discretized versions of these operators to the matrices H 
and H. , respectively, as explained in Appendix A. 

The solutions of equations (IV-65) and (IV-66) read 

rr+(zf 
^ + (z ) xv ' 

Ψ*+(ζ) 
L y -

= 

" W* ,(z,z ) 0 0 I 

0 W* , (ζ ,ζ ) 0 Φ ,Φ ο' 
χ χ 1 

0 0 W* , (ζ,ζ ) 

rr+(zo)j 

*> 0 > 

L^J 
(IV-67a) 

and 

r~(z)" 

ΑΓ(ζ) 
xv ' 

Ψ~(ζ) 
y 1 

= 

" W ^ z ' z o } ° ° 1 
0 W*^(z'zo> ° 

X X 1 

0 0 WT , (z,z ) Φ ,Φ o j 
y y "■ 

Γ r <V 
*>0> 

[ ^ V 
(IV-67b) 

where, in analogy with (III-81b), 
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and 

( I V - 6 7 ~ )  

(IV-6 7 d)  

The composi t ion algori thm (IV-62), t h e  decomposi t ion algori thm (IV-64), t h e  
one-way wave equat ions (IV-65) and (IV-66) and t h e  one-way wave  f ie ld  
ex t rapola t ion  algori thms (IV-67) have al l  been  der ived f o r  t h e  s i tua t ion  of 
la te ra l ly  invariant ,  i sotropic  media .  L a t e r a l  var ia t ions of the  medium 
p a r a m e t e r s  c a n  be  accounted  f o r  by designing t h e  opera tors  
L- . .(x,y,z;x’ ,y’,z’=z;w), N- . .(x,y,z;x’,y’,z’=z;w), H (x,y,z;x’,y’,z’=z;w) and 
H (x,y,z;x’,y’,z’=z;w) in accordance  wi th  t h e  local medium p a r a m e t e r s  a t  
(x,y,z) and by s tor ing these  opera tors  to  t h e  m a t r i c e s  Li , i j ,  T , i j ,  
and H l , s ,  respect ively,  a s  explained in Appendix A. With this modif icat ion,  
the  composi t ion algori thm (IV-62), t h e  decomposi t ion algori thm (N-64) ,  t h e  
one-way wave equat ions (IV-65) and (IV-66) and t h e  one-way wave  f ie ld  
ex t rapola t ion  algori thms (IV-67) m a y  be applied in smoothly la te ra l ly  
varying,  isotropic  media .  

+ + 
%lJ %‘J 1 ,P 

1,s + + 

I t  is in te res t ing  to  no te  t h a t  we would have obtained e x a c t l y  t h e  s a m e  
resul ts  if we would have used the  e las t ic  two-way wave  equat ion  (IV-54) 
in  the  space-frequency dom_ain as  our  s t a r t i n g  point and if we would have  
neglec ted  t h e  l a t e r a l  der iva t ives  of t h e  medium p a r a m e t e r s  in comparison 
with t h e  l a t e r a l  der iva t ives  of  the  e las t ic  wave f ie ld .  

N.3.3 Elasfic one-way wave fields at interfaces in the space-frequency domain 

Solution (IV-67) breaks  down whenever  t h e  medium contains  “ i n t e r f a c e s “  in 
t h e  in te rva l  (z,z ). 

0 

We consider  a horizontal  i n t e r f a c e  a t  z=z l  be tween  two homogeneous 
isotropic  e las t ic  half-spaces .  We use t h e  sub-scripts u and l to  dis t inguish 
be tween t h e  upper  and lower half-space, respect ively.  F i r s t  consider  t h e  
s i tua t ion  depic ted  in Figure IV-3a. Downgoing P- and S-waves a r e  incident  
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D+ 
r u 

Ζ = Ζ ι 

9* 97 9* 
(a) (b) 

Figure IV-3: Reflection and transmission at an interface between two homogeneous 

isotropic elastic half-spaces. 

a. Situation for incident downgoing P- and S-waves 

~u u x,u y,u 
b. Situation for incident upgoing P- and S-waves 

~t {ψεψxf ψy,iJ ' 

to the interface from above, upgoing P- and S-waves are reflected into 

the upper half-space and downgoing P- and S-waves are transmitted into 

the lower half-space. In the following, the discretized versions of these 
— ►+ — ► - — ►+ wave fields are represented by vectors D (z), D (z) and D . ( z ) , 

respectively, see also equation (IV-62d). In analogy with (IV-42a) and 

(IV-42b), we define reflection and transmission matrices R and T for the 

interface at z according to 

îTiZj) = R + ( Z l ) ^ ( Z l ) (IV-68a) 

and 

S^(Zj) = Τ + ( Ζ ι ) ^ ( Ζ ι ) , (IV-68b) 

respectively. In a similar way as described in section IV.2.3, we may derive 
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(TV,))"1 

(IV-69) Γ 1----.Π 

R+(z.) = ÎN L+ J ( N + L+ J" 1 (IV-70a) 

and 

T+(zJ = ( N + L+ J" 1 , (IV-70b) 

+ + 
with L a and NT for a=l, 2 defined by (IV-62e) and (IV-64b), respectively. 

For the situation depicted in Figure IV-3b we define reflection and 
transmission matrices R~ and T~ for the interface at z according to 

ÖjiZj) = R'izpÖ'iZj) (IV-71a) 

and 

CTiZj) = T' iZj^Zj) , (IV-71b) 

respectively. In a similar way as above we obtain 

R"(z.) = ( N + JL" ) ( N ' L· Yl (IV-72a) 

and 

T"(z.) = (N" JL" ) ~ \ (IV-72b) 

+ with L and N~ . for a=l, 2 defined by (IV-62e) and (IV-64b), respectively. ~a,u ~ a,£ 
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FREE SURFACE 
Z = Z 0 

P" D+ 

Figure IV-4: Reflection at the free surface of a homogeneous isotropic elastic half-space. 

Finally, we consider reflection at the free surface of a homogeneous 

isotropic elastic half-space. For the situation depicted in Figure IV-4, we 

define the free surface reflection operator RT. (Z ), according to 

T^+y DT(zo) = Rf r (zQ)D (zo) . (IV-73a) 

In analogy with (IV-49b) we find 

R"r(zo) = - ( L + f 1 ^ (IV-73D) 

with L~ defined by (IV-62e). 

The expressions for reflection and transmission, derived in this section, are 

strictly valid only for the situation of a horizontal interface at z=z. 

between two homogeous isotropic elastic half-spaces (Figure IV-3) or for a 

free surface at z=z (Figure IV-4). Because the expressions are formulated 

in the space-frequency domain they are in principle suited to handle more 

complex configurations. Of course the accuracy decreases with increasing 

complexity of the configuration. 
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ACOUSTIC FORWARD WAVE FIELD EXTRAPOLATION 

V.I INTRODUCTION 

In this chapter we start with reviewing Rayleigh's reciprocity theorem. This 

theorem gives the mathematical relationship between two independent 

acoustic wave fields. A special form of the reciprocity theorem is 

obtained if one of the acoustic wave fields represents the "impulse 

response" of a reference medium (the Green's function) whereas the other 

wave field represents the physical wave field in the true medium. This 

special form is commonly referred to as a representation theorem: it 

expresses the acoustic pressure of the physical wave field at any point in 

the true medium in terms of a closed surface- and a volume-integral over 

the same physical wave field. It is also known as the Kirchhoff-Helmholtz 

integral formula. We use this formula as the starting point for deriving 

Rayleigh integrals that express the acoustic pressure at any point in the 

medium in terms of the acoustic pressure at a plane surface. We discuss 

both two-way and one-way versions of the Rayleigh integral. The one-way 

Rayleigh integral is the basis for deriving wave field extrapolation 

operators. We derive matrix operators for numerical forward extrapolation 

of downgoing and upgoing waves through arbitrarily inhomogeneous acoustic 

media. These matrices play an important role in chapter XI, where we 

discuss an acoustic processing scheme for single-component seismic data. 

V.2 ACOUSTIC RECIPROCITY THEOREMS 

Consider a volume V enclosed by a surface S with outward pointing 

normal vector n , see Figure V-l . 

n s 
— ► x 

Figure V-1 : Volume V enclosed by surface S. 
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In this volume we define two non-identical acoustic wave fields ("state A" 

and "state B") and we derive reciprocity relations for these wave fields. 

State A: 

Define in V 

K V ) 
P V ) 
P V , 0 

^ A ^ f (r ,t) 

: adiabatic compression modulus, 

: volume density of mass, 

: acoustic pressure, 

: volume density of volume injection, 

: volume density of external force. 

According to equation (I- l l ) , the acoustic pressure in state A satisfies in 

V the following two-way wave equation 

J_ ^A-, _ _ 1 _ £SLL 
KA at2 v. ( A VPA) - = "S , (V-la) 

A —► where the source distribution s (r ,t) is given by 

A s = -

.2.A 

dt 
v.(-VrA). (V-lb) 

State B: 

Define in V 

KB(f) 
PB(") 

pV.t) 
i V , t ) 
rV.t) 

: adiabatic compression modulus, 

: volume density of mass, 

: acoustic pressure, 

: volume density of volume injection, 

: volume density of external force. 
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According to equation (I-11), the acoustic pressure in state B satisfies in 

V the following two-way wave equation 

V· (-V VPB) - - V ^ V = -sB, (V-2.) 
p K ö dtZ 

where the source distribution s (r ,t) is given by 

2 B 

at p 

For the moment we do not specify the initial conditions nor the boundary 
A —► B —► 

conditions for the wave fields p (r ,t) and p (r ,t). We apply the temporal 

Fourier transformation (III-la) to equations (V-l) and (V-2). The resulting 

two-way wave equations in the space-frequency domain read 

State A: 

2 
V. (—ί- V P A ) + -^-r- P A = - S A , (V-3a) 

p A K A 

A —♦· A —> 

where P (r ,ω) and S (r ,ω) are the space-frequency domain representations 

of the acoustic pressure and the source distribution, respectively, in state 

A. 

State B: 

V.(-^VP B) + - 4 " P B = -SB, (V-3b) 
p K 

where P (r ,ω) and S (r ,ω) are the space-frequency domain representations 

of the acoustic pressure and the source distribution, respectively, in state 

B. 
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We apply the theorem of Gauss to a vector function Q(r ,ω), which we 

define as 

( ? = P A ( - ^ - V P B ) - p B ( - J _ v p A ) . (V-4) 
P P 

The divergence of this vector function reads 

v4= (VPA).(-^VPB)+PAV.(-L-VPB) B ' ' ^ B 
P P 

■ ( V P B ) . ( - V V P A ) - P B V . ( - L V P A ) , (V-5a) 
P P 

or, upon substitution of (V-3a) and (V-3b), 

V.n = PBSA-PASB
 + ω 2 ^ - Λ " ) Ρ Α Ρ Β 

K A K b 

P P 

Hence, applying the theorem of Gauss, 

f^.rTdS = JV.̂ dK (V-6) 
S V 

yields 

f [pA(-^-VPB) - pB(-^VpA ) ] . ird5 = 
S p p 

/ [ P V - PASB
 + »2(i-.^jPAPB 

V K A K b 

+ ( - ^ - - ^ - H v P ^ . Î V P ^ l d K . 1 ) (V-7) 
P P 

Bear in mind that S and S denote source distributions, whereas S 
denotes a closed surface. 
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This equation is generally known as Rayleigh's reciprocity theorem (Rayleigh, 
1965). It is the basis for the acoustic representation theorem, which is 
derived in section V.3. Note that in the theorem of Gauss (V-6) it is 
assumed that Q is differentiable and that the partial derivatives are 
continuous. Suppose that the acoustic medium in state A and state B 
consists of piecewise continuous regious V., separated by "interfaces", 
where the medium parameters are discontinuous, see Figure V-2. 

Figure V-2: Volume V, consisting of piecewise continuous regions V.. 

Then the reciprocity theorem may be applied to any of the regions V., 
hence 

§ Çl.M.dS. = J V.^.dvV (V-8a) 
S. 1 l 1 V. * l 

and, consequently, 

Σ § 3r5j<w. = Σ Ϊ v.^.dK., (v-8b) 
i S. i V. 

with Q. and V.Q. defined by (V-4) and (V-5b), respectively. Any of the 
interfaces contributes to two surface integrals. Consider the interface 
between surface 
interface imply 
between surfaces S. and S. .. The boundary conditions on this specific 

Here the summation convention does not apply to the region index i. 
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Q..n. = -Q. ,.η . ,. (V-8c) 
^ ι î ^ i + l î+l v ' 

Hence, the surface integrals cancel at any interface, so the left-hand side 
in equation (V-8b) may be replaced by one surface integral over the outer 
surface S. The right-hand side in equation (V-8b) may be replaced by one 
volume integral over the total volume V. So we obtain again equation 
(V-7), which has now been shown to be valid for any inhomogeneous 
acoustic medium, containing arbitrary interfaces. 

Let us consider a special situation. We choose identical medium parameters 
for state A and state B throughout volume V, according to 

ΚΑ(Γ) = ΚΒ(Γ) = Κ(Γ) (V-9a) 

and 

ρΑ(Γ) = p V ) £ p(T). (V-9b) 

Furthermore, we choose monopole sources in V at r and rR, respectively, 
according to 

SA(F\u;) = 8(?-?A)So(u>) (V-lOa) 

and 

SB(F\") = 6(r-r^)So(a;), (V-lOb) 

where S (ω) is the source signature. Thus the reciprocity theorem (V-7) 
simplifies to 

f [PA (i-VPB) -PB ( |VP A ) ] .ndS = [ΡΒ(^,ω)-Ρ Α(?;,ω)] SQ(«). (V-l 1) 
S 

This reciprocity theorem can be further simplified in the following three 
situations: 
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1. S is a rigid boundary in state A and state B 

In this case the normal component of the particle velocity on S 

vanishes in both states, or, using the equation of motion (Ill- l ib), 

VPA.rT = 0 on S (V-12a) 

and 

VPB.iT = 0 o n 5 . (V-12b) 

Hence, the surface integral in the left-hand side of (V-11) vanishes. 

2. S is a free boundary in state A and state B 

In this case the acoustic pressure on S vanishes in both states, 

P A = 0 on S (V-13a) 

and 

P B = 0 on S. (V-13b) 

Hence, again the surface integral in the left-hand side of (V-11) vanishes. 

3. V is unbounded in state A and state B 

Assume that the medium is homogeneous outside a sphere with a finite 

radius and let S be a sphere with infinite radius. Then at any point 

on S the wave fronts are locally plane and propagate parallel to n . 

Hence 

VPA.iT = + jkP A on S^ (V-14a) 

and 

VPB.ïT = + jkP B on S , (V-14b) 
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where 

k = ω ^ ( v _ 1 4 c ) 

° SW~P 

In (V-14a) and (V-14b) the -sign corresponds to waves propagating outward 

through S whereas the +sign corresponds to waves propagating inward 

through S . When state A and state B represent both a physical 

situation, then in (V-14a) as well as in (V-14b) the -sign must be chosen 

and the surface integral in (V-l l ) vanishes . This is known as 

Sommerfeld's radiation condition. For a more detailed discussion the reader 

is referred to Bleistein (1984). 

In the three situations described above the reciprocity theorem (V-l l ) 

simplifies to 

ΡΒ(Γ^,ω) = ΡΑ(Γ^,ω). (V-15) 

This is probably the best known formulation of the reciprocity principle. It 
t j . 

states that the acoustic pressure P at r related to a monopole source 
- ► A - > with signature S (ω) at r D is identical to the acoustic pressure P at r D 

O t > JD 

related to a monopole source with the same signature S (ω) at r. . Note 

that this principle holds for arbitrarily inhomogeneous acoustic media. 

V. 3 ACOUSTIC REPRESENTATION THEOREMS 

V.3.1. Acoustic Green's functions 

An acoustic Green's function defines the impulse response of a fluid 

medium. For an impulse at r. , the Green's function satisfies the 

following two-way wave equation in the space-time domain 

r i - - Ϊ l d g ( r 'rA ' t } 

V. H — Vg(r ,r ,t)J V- f± = -5(r -r )S(t), (V-16a) 
p(r ) A K(r ) dtZ 

1) In chapter VII, where we discuss inverse wave field extrapolation, one 
of the states represents the physical situation whereas the other 
state represents the non-physical situation of back-propagation. As a 
consequence, the surface integral does not vanish. 
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(Morse and Feshbach, 1953) with initial conditions 

g(r ,r t) = 0 for t < 0 (V-16b) 

and 

ag(F",Fl ,t) 
-= 0 for t < 0. (V-16c) dt 

For the moment we do not specify the boundary conditions for g(r ,r~t ,t). 

In equation (V-16), g(r ,r ,t) denotes the impulse response at observation 

point r as a function of time t, related to an impulse at source point r 

at t=0. In this notation, the reciprocity principle (V-15) can be 

reformulated as 

g ( F A ,?B ' t } = 8 ( ? B îFA 't}- ( V _ 1 7 ) 

The initial conditions (V-16b) and (V-16c) ensure that g(r ,r ,t) is a causal 

wave field which propagates away from the source at r. . Therefore we 

will also refer to g(r ,r . ,t) as the forward propagating acoustic Green's 

wave field. Opposed to this, we also define an anti-causal or backward 

propagating acoustic Green's wave field g(r ,r . ,t) which satisfies the same 

two-way wave equation 

V. ( - L - V g ( r , r . ,t)J - * ^ = -i(r -r )«(t), (V-18a) 
K^) K(r ) 3t Z 

with final conditions 

g(r"\F^ ,t) = 0 for t > 0 (V-18b) 

and 
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3g(F\r^ ,t) 
Ft = 0 for t > 0. (V-18c) 

In the following we assume that g(r ,r ,-t) and g(r ,r ,t) satisfy the same 
boundary conditions. Then the backward propagating Green's wave field is 
simply related to the forward propagating Green's wave field, according to 

&r,rA ,0 = g(?v;,-t), (v.19) 

for all r , r. and t. 
A 

We define the forward and backward propagating Green's wave fields in 
the space-frequency domain according to 

G(F\F^u) = ! 8 ( Λ ^ ,t)e"jCJtdt (V-20a) 
-oo 

and 
oo 

G (?,?A ,ω) è J" §(?ΐΑ .De'^dt. (V-20b) 
-OO 

respectively. Note that, in analogy with (V-17), the reciprocity principle 
reads 

G(rA,rB ,ω) = G(rß ,rA ,ω). (V-21) 

Furthermore, in analogy with (V-19), 

G ( Γ , Γ ^ ,ω) = G*(?,?A ,ω). (V-22) 

We define the forward and backward propagating Green's wave fields in 
the wavenumber-frequency domain according to 
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G(k x > k y ,z;x A > y A ,z A ; W ) Ä 

j(k x+k y) 
}} G(x,y,z;xA,yA,zA;a;)e X y dxdy (V-23a) 

and 

Λ 
G (k ,k , z ;x A , y A , ζ Α ;ω) v x y' ' A' JA' A' ' 

i(k x+k v) 
J 7 G(x,y,z;xA,yA,zA;a;)e X y d x d y , (V-23b) 
-oo 

respectively. Note that, in analogy with (V-22), 

G(k x ,k y ,z ;x A ) y A ) z A ; W ) = G V k x . - k y . z ; x A , y A . V « > · (V-24) 

As an example, we consider the free space Green's wave fields in an 

unbounded homogeneous fluid. In analogy with (1-17), we may write for the 

forward and backward propagating Green's wave fields in the space-time 

domain 

g(FV A ,t) = -£- ^ ' - f / C ) (V-25a) 
&v A ' 4π ΔΓ 

and 

respectively, with the propagation velocity c being given by 

c = \ΓΚ/Ϊ~ (V-25c) 

and ΔΓ being the distance between the source point r and the 

observation point r , according to 

(V-25b)Co
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Δ Γ = I r -r I . (V-25d) 

Applying (V-20a) and (V-20b) to the Green ' s wave fields (V-25a) and 

(V-25b), respectively, yields 

-jkAr 
G ( r - r A ^ = ^ T ±-ΣΓ (v"26a) 

and 

Λ +jkAr 
G(F\r" ,ω) = -£- —. , (V-26b) 

v A ' 4π Δ Γ 

with 

k = ω/c. (V-26c) 

Applying (V-23a) and (V-23b) to the Green 's wave fields (V-26a) and 

(V-26b), respectively, yields 

j(k x +k y ) " ^ Ζ | Ζ " Ζ Α ' 
G ( k x , k y , z ; x A , y A , z A ; c ) = pe x A y A e

 2 j k (V-27a) 

and 
* 

~ v i i \ +Jk | Z - Z . | A j ( k x X A + k v y A } e Z A 
G(k x , k y , z ;x A , y A , z A ; a ; ) = pe A y A -* - ^ , (V-27b) 

" 2 j k z 

where 

k = + V k 2 - k 2 - k 2 for k 2+k 2 < k 2 (V-27c) 
z v x y x y 

and 

k = - J V k 2 + k 2 - k 2 for k 2+k 2 > k 2 , 
z J v x y x y 

(V-27d) 

see Berkhout (1985, Appendix F). 
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V.3.2 Acoustic Kirchhoff-Helmholtz integral 

We return to the inhomogeneous situation. Our starting point is Rayleigh's 
reciprocity theorem (V-7) 

f [PA(4-vpB)-pB(-VvPA)].iTd5 = 
S p p 

J[PBSA - PASB
 + ω 2 ( - ν - -V)P A P B 

+ Hg" - ~χ) ( vP A ) . (vP B ) ]dF . (V-28) 
P P 

In the following, state A will represent a forward or backward propagating 
Green's wave field in a reference medium whereas state B will represent the 
physical wave field in the true medium. Hence, we make the following 
substitutions: 

State A: 

and 

State B: 

κΑ(Γ) 

P V ) 

SA(F*,UI) 

PV,<O) 

- Κ(Γ), 

- ΑΓ), 

-» S(r*-r*. ), with Ft in K, 

—♦ —► * —» —» -> G(r , r A ,ω) or G (r , r A ,ω). 

(V-29a) 

Κ Β (Γ) — K(F*) = K(r*) + ΔΚ(Γ*) , 

and 

P (r ) 

SB(F\o;) 

PV,") 

— p(f ) = ρ(Γ) + Δρ(Γ ), 

-> S(r\«) 

- Ρ(Λω). 

(V-29b) 
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With these substitutions, we obtain the following two representation theorems 

Ptfl.") = f [ G ( | V P ] - P ( i VG)].ïTd5 A S p P 

+ J[GS - ( A ^ G P + -4^-(VG).(VP)]dK, 
y KK pp 

or, equivalently, 

P(ïl .«) = f [G* (7 VP) - P (4: VG*)] .ïï*dS 
A S p P 

+ J [G*S - ω2 4 ^ G * P + ^(VG*).(VP)]dF. 
V KK PP 

(V-30a) 

(V-30b) 

These expressions are also known as the acoustic Kirchhoff-Helmholtz integral 
formulas. They are the basis for multi-dimensional acoustic forward and 
inverse scattering techniques (see, for instance, Clayton and Stolt, 1981). 

Here we follow a different approach. By choosing the reference medium 
(K,p) equal or close to the actual medium (K,p) in V and on S it is 
justified to ignore the deviation parameters (ΔΚ, Δρ) in (V-30a) and 
(V-30b). When we also assume that volume V is source-free then 
expressions (V-30a) and (V-30b) simplify to 

P(rt ,ω) « § 1 [ G V P - PVG].n*dS, (V-31a) 
A S P 

or, equivalently, 

Ρ(Γ. ,ω) * f -r [ ° * V P - PVG*].n"d5. (V-31b) 
A S ~P 

These expressions describe the acoustic wave field at r. in V in terms of 
the wave field and its gradient on 5, enclosing V (see Figures V-3a and 
V-3b). The scattering effects related to the deviation parameters Δ Κ ( Γ ) and 
Δρ(Γ ) are zero or neglected. However, the propagation effects related to 
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the reference parameters K(r ) and p(r ) are properly included and 
therefore expressions (V-31a) and (V-31b) are the basis for 
multi-dimensional forward and inverse wave field extrapolation techniques. 

Figure V-3: Assuming sources outside S, the acoustic wave field at any point A inside S 
can be calculated when the wave field and its normal derivative are known on 
S. For this purpose we may use either Kirchhofj-Heimholtz integral (V-3la) 
with the forward propagating Green's wave field (Figure a), or Kirchhoff-
Helmholtz integral (V-3lb) with the backward propagating Green's wave 
field (Figure b). 

Forward wave field extrapolation is often used to simulate wave 
propagation in a known medium. Therefore, for forward extrapolation we 
may often choose the reference medium equal to the actual medium. In 
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the following sections of this chapter we discuss acoustic forward wave 

field extrapolation, based on Kirchhoff-Helmholtz integral (V-31a) with the 

forward propagating Green's wave fields, which is exact when K(r )=K(r ) 

and p(r )=p(r ) throughout V. For notational convenience, in the following 

we will omit the bars above K and p and we replace « by =. 

Inverse wave field extrapolation is generally used to eliminate wave 

propagation from seismic data acquired over an unknown medium. 

Therefore, for inverse extrapolation at best we may choose a reference 

medium that is close to the actual medium. ' 

In chapters Vu and IX we discuss acoustic inverse wave field extrapolation 

based on Kirchhoff-Helmholtz integral (V-31b) with the backward 

propagating Green's wave fields. 

As an example, we consider the Kirchhoff-Helmholtz integrals for a 

homogeneous medium. Substitution of the free space Green's wave fields 

(V-26a) and (V-26b) into (V-31a) and (V-31b), respectively, yields 

** -· - ̂  i [ ^ * £ * - p<r-»ir (4? 1) ] «· <v-«.> 
s 

or, equivalently, 

r +jkAr a n / -> v ~ , +jkAr ^ n 

*1 ·"> - -ir 1 [ V ^ - p(->ir i^Ä^)] ^ or-32b) 

where d/dn stands for n .V. 

VA ACOUSTIC TWO-WAY AND ONE-WAY RAYLEIGH INTEGRALS 

In this section we review the derivations of the two-way and one-way 

Rayleigh integrals (Berkhout and Wapenaar, 1989). 

1) Choosing K(r ) and p(r ) close to K(r ) and p(r ) means that the 
reference medium must be designed in a geologically oriented way. 
Berkhout (1986) refers to such a reference medium as the macro 
subsurface model. 
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V.4.1 Boundary conditions for the acoustic Green's functions 

We return to the inhomogeneous situation. Consider the Kirchhoff-

Helmholtz integral (V-31a) with the forward propagating Green's functions, 

H?AM = f - i - [ G ( r , r A , - ) ^ ^ 1 - — ë ^ n r M\as. (V-33) 
A

 s P(r ) L J 

As we showed in the previous section, this expression is exact when the 

medium parameters for the Green's wave field are identical to the actual 

medium parameters throughout volume V. Outside V we may choose any 

convenient medium for the Green's wave field and on (parts of) S we 

may impose any convenient boundary condition for the Green's wave field. 

If we choose 

dG(r ,r ,ω) 
g^ = 0 on S, (V-34a) 

(Neumann boundary condition) then Kirchhoff-Helmholtz integral (V-33) 

simplifies to 

Ρ(ΓΑ ^ - * [ ^ °^ ·ω) ^ ] dS- <V"34b> 

However, a practical disadvantage is that the Green's wave field G, may 

become very complicated because boundary condition (V-34a) means that 5" 

is a perfectly reflecting rigid surface (with reflection coefficient R=+l). 

Similarly, if we choose 

G(r ,r A ,ω) = 0 on 5, (V-35a) 

(Dirichlet boundary condition) then Kirchhoff-Helmholtz integral (V-33) 

simplifies to 

i- dGTT(F\ï\. ,ω) -i 
Ρ<ΓΑ ·"> » - * L ^ 7 *n Ρ(Γ ω) J 6S' (V"35b) 
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In a manner similar to Gy, dG,Jdn may become very complicated because 

boundary condition (V-35a) means that 5 is a perfectly reflecting free 

surface (with R=-l). It is important to bear in mind that the 

Kirchhoff-Helmholtz integral (V-33) as well as its simplified versions 

(V-34b) and (V-35b) are in principle two-way expressions. In the next 

section we consider (V-34b) and (V-35b) for a special configuration and we 

illustrate the two-way properties with an example. Next we divert from 

what is generally done in the literature and, instead of fully reflecting 

boundary conditions, we choose fully absorbing boundary conditions for the 

Green's wave fields on S. Following this alternative route, we show how 

to derive one-way versions of (V-34b) and (V-35b). 

V.4.2 Acoustic two-way Rayleigh integrals 

Consider the half-space geometry of Figure V-4. Closed surface S consists 

of a horizontal flat surface S at z=z and a hemi-sphere S. in the 
o o 1 

lower half-space z>z , with midpoint A and radius r.. Assuming that the 
sources of the acoustic wave field P are situated in the upper half-space 

z<z , then the contribution of the Kirchhoff-Helmholtz integral over S. to o 1 
the acoustic pressure at A vanishes if r. goes to infinity (Sommerfeld 

radiation conditions, see also section V-2). Hence, for this situation 

equation (V-33) may be replaced by 

-oo p(r ) L J ZQ 

(V-36) 

Figure V-4: Configuration for which the closed surface integral (V-33) may be replaced 

by the open surface integral (V-36). The lower half-space is assumed to be 

source-free. This configuration is the basis for the derivation of several 

types of Rayleigh integrals. 
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We consider again the Neumann and Dirichlet boundary conditions for G, 

c?G(r ,r ,ω) 
Ττ = 0 at z=z o (V-37a) 

G(r , r A ,ω) = 0 at Z=ZQ , (V-37b) 

respectively. Conditions (V-37) are fulfilled if we assume for G either a 

rigid surface or a free surface at z . In both cases the surface acts as a 

perfect reflector, so we may alternatively interpret the Green's function 

as if it was caused by two monopoles situated symmetrically with respect 

to z=z in a reference medium which is also symmetric with respect to 

z=z (classical representation). If these monopoles have the same polarity 

(Figure V-5a), then Neumann's condition (V-37a) is satisfied and Kirchhoff-

Helmholtz integral (V-36) may be replaced by the following integral 

P(?>) = Si [-j- Οι(Γ,ΓΑ,ω) ^ ) ] dxdy. (V-38a) 
-oo up(r ) J o 

For the special situation of a homogeneous lower half-space, Gy(r ,r . ,ω) at 

z equals twi 

(V-38a) reads 

z equals twice the free space solution (V-26a), hence, for this situation 

_L fT e"jkAr mlM.] 
2 i J J L i r dz J -oo 0 

If the monopoles for the Green's function have opposite polarity (Figure 

V-5b), then Dirichlet's condition (V-37b) is satisfied and Kirchhoff-

Helmholtz integral (V-36) may be replaced by the following integral 

/;[- 1 a G I I ( r 'rA ·ω ) -
P(ÎA .«) - J J l~z; -^äi-^— p(f.«) J z

 dxdv- (v"39a) 
-oo p(r ) o 

(V-38b)
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azG=0 at z=z 0 =>R=+1 G=0 at z = z n = > R = -1 

Figure V-5: a. Neumann boundary condition: 

surface z=z is a perfect reflector with R=+l. 

b. Dirichlet boundary condition: 

surface z=z is a perfect reflector with R=-l. 

For the special situation of a homogeneous lower half-space, 

a GII ( F + , F A 'ω ) / < 9 ζ a t Zo 
situation (V-39a) reads 

3GTT(r ,r . ,ω)/θζ at z equals twice the free space solution, hence, for this 

P(r A >«) 
1 

2TT ■«[fet^ ΔΓ 
P(F\u)J dxdy. (V-39b) 

Lord Rayleigh derived expressions (V-38b) and (V-39b) to describe the 

radiated field of a planar vibration source in an infinite baffle (Rayleigh, 

1965). Therefore, following Berkhout and Van Wulfften Palthe (1979), we 

refer to equations (V-38) and (V-39) as the acoustic Rayleigh I and Rayleigh 

II integrals, respectively. 

For practical use expressions (V-38a) and (V-39a) are rather inconvenient, 

because in the general inhomogeneous case the two-way Green's functions 

GT or dG,Jdz may contain strong surface-related multiple reflections. This 

means that these Green's functions must be designed very accurately, 

which is best illustrated with a simple example. Referring to Figure V-6a, 

we consider a 2-D medium which consists of two homogeneous half-spaces 

z>z- (with propagation velocity c . ) and z<z. (with propagation velocity 

c ). The surface S lies in the homogeneous upper half-space at z=z , 
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«Ά-j—Ι_Λ 2i2; c-c'// / / v \ \ \ \ *' 
' A « A 

(a) (b) 

(e) (f) 

Figure V-6: Application of the two-way Rayleigh II integral 
a. Ray paths in the actual medium for the wave field P(r ,ω). 
b. Ray paths in the reference medium for the two-way Green's function. 
c. Wave field at z=z . 
d. Two-way Green's function (band-limited) at z=z . 
e. Exact extrapolation result at z=z .. 
f. Extrapolation result at z=z , when using a reference medium that is 

slightly in error. 
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with z <z. . The wave field P(r ,ω) propagating in this medium, is radiated 

by a source above z . Figure V-6a shows the raypaths for P(r ,ω). In 

Figure V-6b the raypaths for the two-way Green's function 5G n(r ,r ,ω)/<9ζ 

are shown, including the surface-related multiples. Figure V-6c is a 

space-time domain representation of the 2-D wave field p(r ,t), registered 

at z . Note that the direct and the scattered wave field can be clearly 

distinguished. Figure V-6d is a space-time domain representation of the 

2-D two-way Green's function dg TT(r ,r . ,t)/3z, registered at z . Note that 

the multiples between the reflector at z=z. and the free surface are 

clearly visible. Figure V-6e is a space-time domain representation of the 

2-D wave field p(r ,t), obtained by applying the 2-D version of two-way 

Rayleigh II integral (V-39a) for all x . at z=z. and by applying an inverse 

Fourier transform from the frequency domain to the time domain. Note 

that this exact result represents the transmitted downgoing wave at z=z 

(see also Figure V-6a). In practice we do not always have available an 

exact description of the 'medium response' dg TT(r ,r ,t)/dz. Figure V-6f is 

a space-time domain representation of the 2-D wave field p(r. ,t) which 

was obtained by applying the two-way Rayleigh II integral with a Green's 

function that was only slightly in error (the reflector depth z=z in Figure 

V-6b was one half of a wavelength in error for the central frequency). 

Note that this result contains many spurious reflections. From this example 

we may conclude that two-way Rayleigh integrals (V-38a) and (V-39a) in 

general require a very accurate generation of the multiple reflections. This 

can only be accomplished if the actual medium, where the extrapolation 

occurs, is very accurately known. When this knowledge is not available, 

the two-way Rayleigh integrals (V-38a) and (V-39a) have practical use only 

in the situation where the subsurface does not contain reflectors but 

smooth transition zones only. In that case, the two-way Green's functions 

do not include significant multiple reflections. 

V.4.3 Acoustic one-way Rayleigh integrals 

An important property of the Kirchhoff-Helmholtz integral is that the 

choice of the medium for the Green's function is not unique: 
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Inside volume V the medium for the Green's function G(r ,r ,ω) is 

equal or close to the medium for the acoustic wave field Ρ(Γ\ω). 

Outside volume V the medium for the Green's function G(r ,r ,ω) 

may be chosen in any convenient way. 

We made use of this property already in the previous section, where we 

chose a reference medium for G that is different from the actual medium 

for P (compare Figure V-6b with V-6a). By choosing a reference medium 

with a fully reflecting boundary, we got a Green's function containing 

many significant multiple reflections. Let us therefore choose instead a 

reference medium for G which is fully non-reflecting outside V. For the 

half-space geometry of Figure V-4 this means that we now choose for G 

a non-reflecting upper half-space z<z . Hence 

K(x,y,z<z ) = K(x,y,z ) for all z<z (V-40a) 

and 

p(x,y,z<z ) = p(x,y,z ) for all z<z , (V-40b) 

(see also section III.3.2, where it was shown that downgoing and upgoing 

waves fully decouple in a medium described by (V-40)). With this choice 

no downgoing waves return from the upper half-space, so G is purely 

upgoing at z=z : 

G(r~\r^ ,ω) = G~(r\r^ ,ω) at Z=ZQ. (V-4la) 

In terms of boundary conditions we may say that surface z=z is an 

absorbing boundary for G. 

The sources for the acoustic wave field P(r ,ω) are situated in the upper 

half-space, so at z this wave field consists of the downgoing incident 

wave field (including higher order terms) P (r ,ω) and the upgoing scattered 

wave field (including higher order terms) P (r ,ω), according to 
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Ρ(Γ,ω) = Ρ+(Γ\ω) + Ρ (Γ,ω) at ζ=ζ . (V-41b) 

Substitution of (V-41a) and (V-41b) into Kirchhoff-Helmholtz integral (V-36) 

yields 

p(rA >ω) - SS } [ f r <p++p~> - G" ( S 1 + f 1 ) ] zd x d*· <v-42a> 
-oo r 0 

00 Γ Ί °° Γ Ί 

-00
 r

 o -00
 r

 0 

(V-42b) 

In Appendix B, section B.2 we show that the only contribution to 

P(r. ,ω) comes from the first integral in the right-hand side of equation 

(V-42b). In other words, only the integral with the wave fields P and G~ 

propagating in opposite directions through z contribute to the wave field 

P(r. ,ω), see also Figure V-7. 

^ T e . 

^ a . ^ # * 

(a) (b) 

Figure V-7 : Choosing a reflection-free upper half-space for G, the Kirchhoff-Helmholtz 

integral (V-42) consists of a term containing P and G at z=z (Figure a) 

and a term containing P and G at z=z (Figure b). Only the term with the 

opposite propagating wave fields at z=z (Figure a) contributes to the result 

Ρ(?Α,ω). 

Hence 
00 Γ Ί 

p<rA ·ω> - S S j[^p+ - G" I H z d**y> <v-43a> 
-00

 r
 o 
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><-Λ-">-/ÏÏ} J f d "* ♦" [>-£] dxdy. (V-43b) 
o 

From Appendix B it also follows that the two integrals in the right-hand 
side of equation (V-43b) are identical. Hence, equation (V-43b) may finally 
be rewritten as 

00 Γ Ί 
P(F^ ,ω) = -2J7 ί - Ζ Γ ° ~ ( ^ '") d?aTjz d x d y' (v"44a) 

-00 p(r ) o 

or, equivalently, 

Γ 7 Γ ôG~(r\rt ,ω) "I 
P(?A ,ω) = 2}} [ - ^ ^ P+(F\w)J Z dxdy. (V-44b) 

-00 p(r ) 0 

In analogy with equations (V-38a) and (V-39a), we call equations (V-44a) 
and (V-44b) the one-way versions of the Rayleigh I and Rayleigh II integrals, 
respectively. Equations (V-44a) and (V-44b) are valid for an arbitrarily 
inhomogeneous acoustic medium. The only assumption is that at z=z the 
downgoing and upgoing waves are decoupled. This assumption is validated 
when the vertical derivatives of the medium parameters vanish at z=z , 
which is expressed by equation (B-4). For the special situation of a 
homogeneous medium, we may substitute for G the free space solution 
(V-26a), yielding 

0 0 

o 

or, equivalently, 

(V-45a)
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Γ 
_ W _ ρ± __P-J_ 

"ν"Γ\Γ 
4-V 

(a) 

A 

-2=Z 0 

flfltlllflilllllllll!^^ 

illliiiiljlii 

1 mm iii|i i 
Mi||i!lli|li|iiiilllltl!!i«lpi|«l|p 

»|i Iiilllli||il|ii9|!l|l|li||llllli 
|lillilli|llli:l!llJllllllljillill!lllllililliil!lll||i '"": 

' ,I|,,H ™ E X T R A P O L A T E D " 
* ! I WAVEFIELD AT zA 

VM 

(d) 

Figure V-8: Application of the one-way Ray lei gh II integral 
a. Ray paths in the actual medium for the wave field P(r ,ω). 
b. Ray paths in the reference medium (= actual medium) for the one-way 

Green's function. 
c. Downgoing wave field at z=z . 
d. One-way Green's function (band-limited) at z=z 
e. Exact extrapolation result at z=z . 
f. Extrapolation result at z=z , when using a reference medium that is 

slightly in error. 
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p(rA 'ω> = ~h / / L i r C - ^ r - î  ρ+(Γ 'ω)J z d x d y · (v"45b) 
-oo O 

Hence, for this situation the two-way Rayleigh integrals (V-38b) and 

(V-39b) are identical to the one-way Rayleigh integrals (V-45a) and (V-45b), 

respectively (bear in mind that for this situation P=P for z>z ). 

For arbitrary inhomogeneous media, however, one-way Rayleigh integrals 

(V-44a) and (V-44b) are. very different from two-way Rayleigh integrals 

(V-38a) and (V-39a). Because the one-way Green's functions do not contain 

surface-related multiples, one-way Rayleigh integrals (V-44a) and (V-44b) are 

rather insensitive to small errors in the reference model. This is 

illustrated in Figure V-8, where the experiment of Figure V-6 was 

repeated for the downgoing wave field P , using the 2-D version of the 

one-way Rayleigh II integral for downgoing wave fields, as given by 

(V-44b). Note that a small error in the reference medium has only a 

minor effect on the extrapolation result (Figure V-8f). This is typical for 

one-way techniques. 

V.5 ACOUSTIC FORWARD WAVE FIELD EXTRAPOLATION OPERATORS 

V.5.I Integral formulation of acoustic forward wave field extrapolation 

We consider again the inhomogeneous situation. Our starting point for 

deriving acoustic forward wave field extrapolation operators is the one-way 

version of the acoustic Rayleigh II integral (V-44b), 

P(rA ,«) = 2 J 7 [ - Î - ^ - P+(r ,«)J z dxdy. 
O O . 

, Λΐ ir ,r A ,ω; ^ _ | 
(V-46) 

oo p(r ) 0 

Here P (r ,ω) for z=z represents the downgoing part of the total acoustic 

pressure at z , related to sources in the upper half-space, see Figure 

V-9a. G (r ,r . ,ω) for z=z represents the upgoing Green's wave field at 

z , related to a monopole source at r A in the lower half-space, see 

Figure V-9b. P(Ft ,ω) represents the total acoustic pressure at r in the 
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lower half-space. Hence, equation (V-46) describes wave field extrapolation 

of the downgoing (i.e., one-way) wave field P (r ,ω) at z , yielding the 

total (i.e., two-way) wave field at r A . 

•A 

(a) 

G (r,fA,co) 

Figure V-9: The Rayleigh II integral (V-46) expresses the total (i.e., two-way) wave 

field at r in terms of the downgoing (i.e., one-way) wave field P (7*,ω) at 

z (Figure a) and the upgoing (i.e., one-way) Green's wave field G~(7*,7* ,ω) 

at z (Figure b). 

For the Green's wave field the upper half-space was chosen reflection-
free, so 

G"(r ,r A ,ω) = G(r ,r A ,ω) at z=z . o (V-47a) 

Based on this property and the reciprocity relation (V-21), 

G(r A ,r B ,u;) = G(r ß , r A ,ω), (V-47b) 

we may reformulate equation (V-46) as 
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Ρ(ϊ^ ,ω) = 2 / / 
-oo 

oo r3G(r. ,r ,ω) 

dz P+( 
P(r) 

F\u)J dxdy. (V-48) 

Here G(r. ,r ,ω) for z=z represents the Green's wave field at r in the 

lower half-space related to a monopole source at r at the surface z . 

Accordingly, dG(r. J ,ω)/5ζ for z=z represents the Green's wave field at 

rA in the lower half-space, related to a dipole source at r at the surface 

z (see also section 1.3.1). Hence, equation (V-48) actually states that the 

total wave field at r A in the lower half-space is obtained as an integral 

over dipole source responses, the dipole sources being distributed over the 

surface z , and the strength of the dipole sources being given by the 

(scaled) downgoing wave field at z (Huygen's principle, see Figure V-10). 

Figure V-10: Huygen's principle: 

The downgoing wave field at z is represented by a continuous distribution 

of dipole sources. 

The wave field at r is obtained as a superposition of the responses of 

these dipole sources. This is quantified by Rayleigh II integral (V-48). 

We split the total wave field at r into a downgoing and an upgoing 

part, according to 

P(rA ,ω) = PT(rA ,ω) + Ρ > Α ,ω). (V-49a) 

Similarly, we split the total Green's wave field at r into a downgoing 

and an upgoing part, according to 

G(rA ,r ,ω) = G (rA ,r ,ω) + G (rA ,r ,ω). (V-49b) 
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It can now be understood that the downgoing wave field P (r. ,ω) is given 

by 

oor._^+/—► -* 
r7P G ( ΪΑ ·Γ·ω) i + - 1 (V-50a) 

P(r ) 

see Figure V - l l a , whereas the upgoing wave field P ( r ,ω) is given by 

V A ,«) = 2/J L fz j - P+(F\«) J z dxdy, 
P(r ) 

(V-50b) 

see Figure V- l lb . 

(b) 
Figure V-l 1: Huygen's principle (revisited) 

a. The downgoing wave field at r . is obtained as a superposition of down-
going dipole source responses at r . (Rayleigh II integral (V-50a)). 

b. The upgoing wave field at r . is obtained as a superposition of upgoing 
dipole source responses at r . (Rayleigh II integral (V-50b)). 
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From (V-50a) and Figure V - l l a we may conclude that Ρ+(ΐ\. ,ω) is mainly 

determined by the propagation properties of the medium between z and o 
z A . From (V-50b) and Figure V - l l b we may conclude that P (F*. ,ω) is 
mainly determined by the reflection properties of the medium below z A . 

In the following we only consider equation (V-50a), which  we rewrite in a 

slightly more general notation, according  to 

ex? 

pVy.ZpU,) = 2 / / Γ 
^ - d G ^ x . y . Z j î x ' . y ' . z ' - z ^ w )  { + 

T~I—;—r P (x'»y'»z ;ω) I dx'dy'. . . Q » p(x ,y ,z ) v tJ ' o ■ oo *· dz KV 'J ' o 
(V-51a) 

)] d* 

^ p * 

Z1 

Figure V-12: Acoustic forward wave field extrapolation 

a. Downward extrapolation of downgoing waves (one way Rayleigh II 
integral (V-51a)). 

b. Upward extrapolation of upgoing waves (one-way Rayleigh II integral 
(V-51b)). 
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This one-way Rayleigh II integral is the basis for acoustic forward 

extrapolation of downgoing waves from depth level z to depth level z 

(with z->z , Figure V-12a). A similar expression can be derived for acoustic 

forward extrapolation of upgoing waves from depth level z. to depth level 

z (Figure V-12b), yielding 

J^rdG~(x,y,z ;x',y',z'=z ;ω) 1 _ 1 
P"(x,y,z ;ω) = -2J J - r - r - L i r Ρ~(χ \γ \ζ . ;ω) dx'dy'. 

0 _ooL dz' p(x\y\z{) V JJ 
(V-51b) 

Note that both Rayleigh II integrals (V-51a) and (V-51b) are valid for 

arbitrarily inhomogeneous acoustic media. The assumption is that the wave 

fields may be split into downgoing and upgoing waves at depth levels z 

and z , , respectively. This implies that we assume 

at z=z and at z=z, o 1 

at z=z and at z=z, . o 1 

In practice depth level z is often a free surface, so the above 

assumptions are far from satisfied at z=z . However, in the seismic 

processing scheme, as described in chapter XI, the reflecting surface z is 

transformed into a non-reflecting surface by decomposition and surface-

related multiple elimination. After these pre-processing steps the above 

assumptions are fully valid at z=z . 

In the derivation of (V-51a) the upper half-space (z<z ) was chosen 

reflection free for the Green's wave field. Accordingly, in the derivation 

of (V-51b) the lower half-space (z>z.) was chosen reflection free for the 

Green's wave field. In the following we will choose for both Green's 

wave fields one and the same reference medium which is reflection free 

in the upper half-space (z<z ) as well as in the lower half-space (z>z.) . 

With this choice, the reciprocity principle for the Green's wave fields in 

3K(x,y,z) = 
dz 

and 

fy(x,y>z) _ 0 
dz 
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(V-51a) and (V-51b) reads 

G~(x ,y ,ζ ι χ , , ν . , ζ - ω ) = G ( χ . , ν . , ζ ' χ ,y ,ζ ;ω). (V-52) 
ν ο Jo ο' Γ Μ ' Γ ' ν 1 ; Γ Γ ο J o ο 

For the special situation that the medium between z and z . is laterally 

invariant, the Green's wave fields are a function of the distances x-x' and 

y-y' only, hence, for this situation (V-51a) and (V-51b) may be written as 

spatial convolution integrals (Berkhout, 1985), according to 

9 r r r d G (χ -χ ' , ν -γ ' , ζ 'θ ,ο , ζ 'βζ ;ω) -ι 
r V y , Z l ; a ; ) = - ^ f r J J I W 1 ~ P + ( x \ y \ z o ; a , ) J dx'dy' 

(V-53a) 

and 
oo dG (χ -χ ' ,γ -γ ' , ζ^ο ,ο ,ζ^Ζρω) 

x ' d y \ 
1' -oo ■ ■ 

(V-53b) 

-y r r l~ d C j ^ x " x . y -y .z ;o ,o ,z =z ;ω) «ι 

respectively, or, symbolically, 

P + (x,y,z p ^) = \ν + (χ ,ν;ζ ρ ζ ο ;ω) * P+(x,y,zQ;a;) (V-54a) 

and 

P~(x,y,z ;ω) = W"(x,y;z ,ζ ;ω) * P"(x,y,Zj;u), (V-54b) 

respectively, where the one-way wave field extrapolation operators W and 

W are given by 

5G+(x,y,z ;o,o,z=z ;ω) 

wW. VV> = "sb 5 — (y"55a) 

and 
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9 dG (x,y,z ;o,o,z=z ;ω) 
W~(x,y;z ,ζ,;ω) = - ^ r ~ — . (V-55b) 

When the medium parameters between z and z . are vertically invariant 

as well, then we may substi tute the free space solution (V-26a), yielding 

W+(x,y;z rzo ;u,) = - £ - - £ - ( 5 - ^ (V-56a) 

and 

1 a rp"JkAr^ 
W-(x,y;z .2.;«) = - £ - - £ - I ^ - T H . (V-56b) o' 1' 2ττ θζ . *■ Δ Γ 

with 

Δ Γ = V x 2 + y 2 + (Zj-Zo)2 (V-56c) 

and 

k = ω/c. (V-56d) 

Note that for this situation of a homogeneous medium the one-way 

operators for downward and upward extrapolation are identical: 

W+(x,y;z rzo ;a;) = W"(x,y;z , ζ^ω) . (V-56e) 

According to (IV-56), a convolution integral in the space-frequency domain 

corresponds to a multiplication in the wavenumber-frequency domain. 

Hence, transforming expressions (V-54a) and (V-54b) for laterally invariant 

media to the wavenumber-frequency domain yields 

P+(k ,k , ζ · ω ) = W+(k ,k ;z , , z ;w)P +(k ,k ,z ;ω) (V-57a) 
v x' y' Γ ' v x' y' Γ o' ' v x y' o' ' v ' 

and 
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P (k ,k ,ζ ;ω) = W (k ,k ;z ,z.;w)P"(k ,k ,ζ,;ω), (V-57b) 
v x' y' o' ' x y o P ' v x y 1 v ' 

respectively, where 

9 dG (k ,k ,z *o,o,z=z ;ω) 
W+(k ,k ;z , , z ;ω) = / , X y

a
 ! (V-58a) 

v x' y' P ο' ' p(z ) dz v ' 

and 

9 dG~(k ,k ,ζ ;ο,ο,ζ=ζ ;ω) 
W"(k ,k ;z ,ζ,;ω) = "/ Λ

 x y
a ° * . (V-58b) 

v x' y' ο' Γ ' p(z.) dz v y 

Note that this is an alternative formulation for the WKB-operators (III-44c) 

and (III-44d), respectively. Again, when the medium parameters between z 

and z. are vertically invariant as well, we may substitute the free space 

solution (V-27a), yielding 

Γ "JkzAz -. _jk Δ ζ 

W+(k ,k ;z , , z ;ω) = 2-£-l-^-^ï = e Z (V-59a) 
x» y' P o' ' 3z oL 2jkz J 

and 

Λ rJ k z A Z 1 - J k A z 

W"(k ,k ;z ,ζ.;ω) = -2r£- l^-^r = e Z , (V-59b) 
v x' y' o P dz L 2jk J 

with 

Δζ = | z r z o | = z r z o (V-59c) 

and k defined by (V-27c) and (V-27d). 

Note that these operators are identical to the phase-shift operators 

(III-39b) and (III-39c), respectively. 
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V.5.2 Matrix formulation of acoustic forward wave field extrapolation 

Consider the acoustic one-way Rayleigh II integrals (V-51a) and (V-51b), 

Ρ ^ χ , γ , ζ ^ ω ) = 

rdG ( χ , γ , ζ ' χ ' , γ ' , ζ ' β ζ ;ω) . -ι 
2 J j -τ-, r-r—; v P + ( x \ y \ z ;«) dx'dy' (V-60a) 

J£ L dz p(x\y\zQ) o' 'J 

and 

P"(x,y,zo;o;) = 

/?rdG~(x ,y , z ;x ' , y \ z '=z ;ω) η 

" 2 i i L ^ ρ(χ'ν.ζ,) 'V.y'.*,;«) >'<*' · <v-60b> 

which describe forward extrapolation of downgoing and upgoing acoustic 

waves, respectively, through arbitrarily inhomogeneous fluid media (Figure 

V-12). 

In practical situations the wave fields are discretized along the x- and 

y-axes. It is shown in Appendix A that integral expressions of the form 

(V-60a) and (V-60b) can be replaced by matrix products in the case of 

discretized wave fields. 

We may replace equation (V-60a) by 

P^Zj ) = W + i Z j . z ^ P ^ ) , (V-61a) 

where the one-way wave field extrapolation matrix W is defined as 

dG+(z z=z ) 
W+(z.,z ) = 2 ^ — M _I(z ). 

v 1 o' dz v o' 
(V-61b) 
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Similar ly ,  we  m a y  rep lace  (V-60b) by 

(V-62a) 

where t h e  one-way wave f ie ld  ex t rapola t ion  m a t r i x  W- is def ined  as  

aG-(z ,z=z ) 
w-(z 0' z 1 ) = -2 a z  O M-'(z,). (V-62b) 

Here vec tors  FL(zo) and F L ( z l )  contain the  d iscre t ized  versions of the  
monochromat ic  wave  f ie lds  P-(x,y,z ;w)  and P-(x,y,z p), respect ively (see 
Appendix A,  sec t ion  A.2). Mat r ices  M(zo) and M ( z l )  a r e  diagonal  m a t r i c e s ,  
the  diagonal  e lements  represent ing the  d iscre t ized  versions of p(x,y,z ) and 
p(x,y,zl), respec t ive ly  (see Appendix A,  sec t ion  A.3). Mat r ix  G+(z ,z ) is a n  1 0  
opera tor  mat r ix ,  e a c h  column containing a d i scre t ized  monochromat ic  
"spat ia l  impulse  response" ~ + ( x , y , z ~ ; x ' , y * , z  ; w )  as  a funct ion of (x,y) a t  z 

f o r  a n  "impulse" (monopole source)  a t  (x ' ,y ' ,z  ). Similar ly ,  m a t r i x  G-(z z ) 

is a n  o p e r a t o r  mat r ix ,  e a c h  column containing a d i scre t ized  monochromat ic  
"spat ia l  impulse response" G-(x,y,z ;x',y'.z ; w )  as  a funct ion of (x,y) a t  z 
f o r  a n  " impulse"  a t  (x ' ,y ' ,z , )  (see Appendix A,  sec t ion  A.3). In this m a t r i x  
nota t ion ,  t h e  rec iproc i ty  principle reads 

t 
0 1 

0 

1 

0 0' 1 

0 

0 1 0 

(V-63) 

Note  t h a t  equat ions (V-61b) and (V-62b), which def ine  the one-way wave  
f ie ld  ex t rapola t ion  m a t r i c e s  Wt(z l , zo )  and W-(zo,zl), respect ively,  a r e  a n  
a l te rna t ive  formula t ion  of the  ex t rapola t ion  m a t r i c e s  def ined by the  Taylor  
se r ies  in equat ion  (111-81 b). The  Taylor  se r ies  approach is par t icu la r ly  su i ted  
for  smal l  ex t rapola t ion  s teps  whereas  t h e  "d iscre t ized  Rayleigh opera tor"  
approach is par t icular ly  sui ted for  large ex t rapola t ion  s teps .  

For an a rb i t ra r i ly  inhomogeneous acous t ic  medium be tween zo and z l ,  no 
analyt ical  expressions a r e  avai lable  f o r  the  Green ' s  m a t r i c e s  Gt (z l ,zo)  and 
G-(zo,zl). In p r a c t i c e  they may be obtained as  follows: 
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1. Define a reference medium which accurately describes the geology 

between depth levé 

this depth interval. 

between depth levels z and z. and which is non-reflecting outside 

2. Solve numerically the two-way wave equation (V-16a), 

2 —► — ►, 

V. ( — Vg(FV\t)) - - 1 — d S ( r j r V ) = -6(7*-7*')S(t), (V-64a) 
P(^) κ(Γ) atz 

imposing initial conditions 

g(r \F*\t ) = o for t<o (V-64b) 

and 

dg(r , r V ) = 0 f o r t < 0 (V-64c) 
at 

By choosing the source point r ' at z. one obtains the "spatial 

impulse response" g(x,y,z;x',y' ,z'=z.;t) . For z=z this Green's wave 

field is purely upgoing, which we denote by g (x,y,z=z ;x',y',z'=z ;t). 

3. Apply a temporal Fourier transform to this Green's wave field, 
according to 

oo 

G"(x,y,zo;x',y',z1;u) = J g"(x,y,zo;x',y',z1;t)e" ja ; dt. (V-65) 
o 

For a fixed frequency ω, the "spatial impulse response" 

G (x,y,z ;x',y',z ·ω) represents one column of the Green's matrix 

4. Repeat steps 2 and 3 for a range of source points r ' at z . , 

yielding the different columns of the Green's matrix G (z , z . ) . 

5. Determine the Green's matrix G ( ζ . , ζ ) by interchanging the rows 

and columns of matrix G ( z , ζ , ) . 
v o 1 
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In principle any accurate forward modeling scheme can be used to 
generate the Green's wave fields in step 2. 

Here we discuss an example with Gaussian beam modeling (Çerveny et al., 
1982). For the 2-D configuration of Figure V-13a, Gaussian beam modeling 
involves shooting a fan of rays from (χ',ζ.) and solving a high-frequency 
approximation of the 2-D version of wave equation (V-64) around each ray. 
The resulting beams exhibit a Gaussian amplitude distribution around the 
rays. The response at any point (x,z ) is now found by superposing the 
contributions of the individual beams at that point. Figure V-13b shows a 
band-limited version of a 2-D Green's wave field g~(x,z ;x\z ;t) for fixed 
x'. 

depth (m) 

Figure V-13: For an inhomogeneous acoustic medium the Green's wave fields must be 
determined numerically, for instance by Gaussian beam modeling: 
a. 2-D inhomogeneous acoustic medium with a fan of rays. 
b. Band-limited 2-D Green's wave field g (χ,ζ ;x',z ,;t). 

Finally, Figure V-14 shows an example of a 3-D Green's wave field 
obtained by raytracing through a 3-D inhomogeneous acoustic subsurface 
model. In chapter VII, section VII.3.6 we use the Green's wave fields 
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of Figures V-13 and V-14 in examples of acoustic 2-D and 3-D inverse 

wave field extrapolation. 

Figure V-14: Three-dimensional modeling of a Green's wave field by ray tracing. 

a. 3-D inhomogeneous acoustic medium with a fan of rays 

b. Cross-section for constant y of the band-limited 3-D Green's wave field 

g~(x,y,zo;x',y',zr't) 

c. Cross-section for constant x of the band-limited 3-D Green's wave field 

g~(x,y,zo;x',y',z ^t) 
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VI 
ELASTIC FORWARD WAVE FIELD EXTRAPOLATION 

VIA INTRODUCTION 

In this chapter we start with reviewing Betti's reciprocity theorem. This 

theorem gives the mathematical relationship between two independent 

elastic wave fields. A special form of the reciprocity theorem is obtained 

if one of the elastic wave fields represents the "impulse response" of a 

reference medium (the Green's function) whereas the other wave field 

represents the physical wave field in the true medium. This special form 

is commonly referred to as a representation theorem: it expresses the 

particle velocity of the physical wave field at any point in the true 

medium in terms of a closed surface- and a volume-integral over the 

same physical wave field. It is also known as the Kirchhoff-Helmholtz 

integral formula. We introduce modified Kirchhoff-Helmholtz integrals which 

express the P-wave or S-wave potential at any point in the medium in 

terms of a closed surface integral. We use these integrals as the starting 

point for deriving Rayleigh-integrals that express the P-wave or S-wave 

potential at any point in the medium in terms of the elastic wave field 

at a plane surface. We discuss both two-way and one-way versions of the 

Rayleigh integral. The one-way Rayleigh integral is the basis for deriving 

wave field extrapolation operators. We derive matrix operators for 

numerical forward extrapolation of downgoing and upgoing P- and S-waves 

through arbitrarily inhomogeneous anisotropic elastic media. These matrices 

play an important role in chapter XII, where we discuss an elastic 

processing scheme for multi-component seismic data. 

VI.2 ELASTIC RECIPROCITY THEOREMS 

Consider a volume V enclosed by a surface S with outward pointing 

normal vector n~\ see Figure VI-1. 
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- ► X 

f 
z 

Figure VI-1: Volume V, enclosed by surface S. 

In this volume we define two non-identical elastic wave fields  ("state A" 

and "state B") and we derive reciprocity relations for these wave fields. 

State A: 

Define in V 

c (r ) 

P (r ) 

stiffness tensor (components: c... i r )), 

volume density of mass, 
A,— v (r ,t) : particle velocity vector (components: v. (r ,t)), 

rV,t) 
f*V\t) 
*V,t) 

stress tensor (components: r..(r ,t)), 

volume density of external force (components: f. (r ,t)), 
A —► 1 

source stress tensor (components: cr..(r,t)). 

According to equations (11-14) and (11-21), the elastic wave field in state A 

satisfies in V the following two equations 

and 

d.T.. - p dv. 
j lj t i 

0 A A a A dr.. - c . By. t lj ijk£ £ k 
Λ

 Α 
-da.. 

t l j 

(VI-la) 

(VI- lb) 

State B: 

Define in V 

c (r ) 

P (r ) 
v (r ,t) 

rV,t) 
rVt) 
aV.t) 

stiffness tensor (components: c . i r )), 

volume density of mass, 
p K 

particle velocity vector (components: v. (r ,t)), g k * 
stress tensor (components: r..(r ,t)), 

volume density of external force (components: f. (r ,t)), 

source stress tensor (components: a . ( r , t ) ) . 
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According to equations (11-14) and (II-21), the elastic wave field in state B 

satisfies in V the following two equations 

d.rB - pBd v B = -fB (VI-2a) 
J 1J t 1 1 V ' 

and 

d rB - c.B d,vB = -doB . (VI-2b) 
t lj ijk£ £ k t lj 

For the moment we do not specify the initial conditions  nor the boundary 

conditions. We apply the temporal Fourier transformation (III-la)  to 

equations (VI-1) and (VI-2). The resulting equations in the space-frequency 

domain read 

State A: 

d.T^ - jupAV^ = - F ^ (VI-3a) 
J l j 1 1 

and 

H } - cikAvk = -Hj- (VI-3b) 

A — * A —► A —► A —+ 
where V. (r ,ω), r..(r ,ω), F (r ,ω) and σ..{τ ,ω) are the space-frequency 

1 ^ 1 A —► A —^ A -+ A —► 
domain representations  of v. (r ,t), r..(r ,t), f. (r ,t) and σ..(τ ,t),  respectively. 

State B: 

d.rB - )upBVB = -F.B (VI-4a) 
J iJ J i i 

and 

*"u - cfjkAvk - - H r (VI-4b) 

' Here and in the following equations  the symbol j has two different 
meanings. When used as a factor, it denotes the imaginary unit V^T 
Otherwise it is an index which may take the values 1, 2 or 3. 
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where V. (r ,ω), r..(r ,ω), E (r ,ω) and σ..(τ ,ω) are the space-frequency 
I IJ * B ► B ►̂  B ► B ► 

domain representations of v. (r ,t), r..(r ,t), f. (r ,t) and a..(r ,t), respectively. 

We apply the theorem of Gauss to a vector function Q(r ,ω), which we 

define as 

$ = Τ
ΑΫΒ - τΒΫΑ, (VI-5a) 

—► —*■ —*A —► - ^ B —► A —► B —» 
w h e r e the c o m p o n e n t s of Q(r ,ω), V (r ,ω), V (r ,ω), τ (r ,ω) and r (r ,ω) —► A —► B—► A —► B —+ 
read Q.(r ,ω), V. (r ,ω), V. (r ,ω), r.. (r ,ω) and r.. (r ,ω), respectively, hence 

Q. = r A V B - r ? V A . (VI-5b) 
V j jl 1 jl 1 ' 

The divergence of Q(r ,ω) reads 

V.Q = d.Qy (VI-6a) 

or, upon substitution of (VI-5b), 

V.C? = d . ( r A V B - r B V ^ ) , (Vl-6b) 
J J l 1 J l 1 ' 

or, by applying the product rule for differentiation and using the symmetry 
A A . Β Β 

properties T.. = T.. and T.. = r.., 
Ji iJ Ji iJ 

V 4 = a . r ^ V B - d.rB.VA+ r A 3 . V B - r B a . V A , (VI-6c) 
J iJ i J iJ i iJ J i iJ J i 

or, upon substitution of equations (VI-3) and (VI-4), 

T7 7? Γ· \ r A ΤΓΑΊΛΛΒ Γ· ΒΛΛΒ Τ-ΒΊΛ^ 
V.Q = 1)ωρ V. - F. JV. - (jw/> V. - F. J V. 

+ - 4 - c * ΒΝ^ a . V B - - ^ - c B ^ V B Ö . V A - ( j A a.V B + a B a .V A . (VI-6d) jw ijk£ £ k j i jw ijk£ ί k j ι IJ j ι IJ j ι ν ' 
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Hence, applying the theorem of Gauss 

§^MdS = / V.^dF (VI-7) 
s y 

yields 

? r Y - T V .n dS = F. V. - F. V. + a..d.V. - o..d.Y. 
J

s
 L J j> L i i i i iJ J i iJ J i 

1 r A B 1 , WB „ V A . (A Β ϊ Λ Λ Α Λ / Β-ι , τ . ' ,_,τ ΟΛ + —̂ — U - M - c , J a . V , d.V. + jwlp -p JV. V. JdF, (VI-8) 
jo ; v i j k £ i j k £ ^ £ k j i J v r r j' i i - J v ' 

A A where we made use of the symmetry property c - - k /= c
k /r · · Equation (VI-8) 

is generally known as Betti's reciprocity theorem (Aki and Richards, 1980). It 

is the basis for the elastic representation theorem, which is derived in 

section VI.3. Similar arguments as given in section V.2 lead to the 

conclusion that theorem (VI-8) is valid for any inhomogeneous anisotropic 

elastic medium, containing arbitrary interfaces. 

Let us consider a special situation. We choose identical medium parameters 

for state A and state B throughout volume V, according to 

and 

pV) = P V ) = K?). (VI-9b) 

Furthermore, we choose in V uni-directional point forces at r . and rR , 
respectively, according to 

F * ( r \ « ) = δ(ϊ*-ϊ*Α)δ[ηΜΑ(ω) (VI-10a) 

and 

' V denotes the volume, depicted in Figure VI-1; V denotes the particle 
velocity. 
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F B ( F \ Ü ; ) = 6(τ*-τ*Ώ)6. ΝΒ(ω), (Vl-lOb) 
î JD i n 

A B 
where M (ω) and N (ω) are the source signatures of the forces in the m-
and n-direction at r. and r R, respectively. 

Finally, we choose in V 

σ^(Γ,ω) = σί(Γ,ω) = o. (VI-10c
) 

1JV l j V 

Thus the reciprocity theorem (VI-8) simplifies to 

j [ V V B - rBV*A].rTdS = ν Α (^,ω)Ν Β (ω) - V B ( r ^ ,ω)ΜΑ(ω). (VI-11) 

Similar arguments as given in section V.2 lead to the conclusion that the 

surface integral vanishes when 5 is a rigid or a free boundary in both 

states or when V is unbounded in both states. Hence, in all these 

situations the reciprocity theorem (VI-11) simplifies to 

n B n*A> ' ( V I _ 1 2 ) 

ΜΑ(ω) ΝΒ(ω) 

A B 
For identical source signatures M (ω) and N (ω), equation (VI-12) states 
that the n-component of the particle velocity vector at r l , related to a 

J3 

force in the m-direction at r is identical to the m-component of the 
particle velocity vector at Ft , related to a force in the n-direction at 
rR. Note that this principle holds for arbitrarily inhomogeneous anisotropic 
elastic media. 

VI.3 ELASTIC REPRESENTATION THEOREMS 

VI.3.1 Elastic Green's functions 

An elastic Green's function defines the impulse response of a solid 

medium. For an impulse in the m-direction at Ft , the Green's function 
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satisfies the following two equations in the space-time domain 

Θ.Θ.. - pd e. = -5. S(r-rA)6(t) (VI-13a) 
j ij,m r t&i,m im v A ' v ' 

and 

dt9\\m - *\\vflßvm = °· (VI-13b) 
t ij,m ijk£ t k,m 

with initial conditions 

g i m ( r ,r A , t ) = o for t < o (VI-13c) 

and 

Bv m (r , r A , t ) = o for t < o. (VI-13d) 

For the moment we do not specify the boundary conditions for 

g. (r , r . , t ) and Θ.. (r ,rA ,t). In equation (VI-13), g. (r ,rA ,t) denotes &i,mv A' ' ij,mv ' A ' v &i,mv A ' 
the impulse response in terms of the i-component of the particle velocity 

at observation point r as a function of time t, related to an impulse in 

the m-direction at rA at t=o; Θ.. (r ,rA ,t) denotes the stress associated to A ' ij,nr A ' 
this impulse response. In this notation, the reciprocity principle (VI-12) can 

be reformulated as 

.mi'B'V« = « m ^ W « · ( V M 4 ) 

The initial conditions (VI-13c) and (VI-13d) ensure that g.  m (r*Jt »0 and 

Θ.. (F\iv.,t) represent a causal wave field which propagates away from the 

source at rA . Therefore we will also refer to g. and Θ.. _ as the A i,m ij,m 
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forward propagating elastic Green's wave field. Opposed to this we also 

define an anti-causal or backward propagating elastic Green's wave field 

which satisfies the same equations: 

d.t. - p<9 g. = -8. 5(Γ-ΓΑ )6(t) (VI-15a) 
j ij,m r t i,m im A7 ' v ' 

and 

df.. - c... βΛ. = o, (VI-15b) 
t ij,m ijk£ £&k,m v ' 

with final conditions 

gj (r*,r^,t) = o for t > o (VI-15c) 

and 

¥.. (r ,r A , t ) = o for t > o. (VI-15d) 
ij,mv A ' v 

In the following we assume that g. (r^,Ft ,t) and ^.. (F ,̂Ft ,t) satisfy the 
i,m A ij,m A 

same boundary conditions as -g. (r ,r A,-t) and Θ.. (r ,r ,-t). Then the l, m A l j , m A 

backward propagating Green's wave field is simply related to the forward 

propagating Green's wave field, according to 

and 

7.. (r ,rA,t) = Θ.. (r ,r A , - t ) , (VI-16b) 
ij,m A ij,mv A " v ' 

for all r ,r . and t. A 
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We define the forward propagating Green's wave field in the 
space-frequency domain according to 

° ί ^ ( Γ ' ν ω ) = J 8 i , m ( r ' V t ) e " J a ; t d t (VI-17a) 

and 

respectively. Note that, in analogy with (VI-14), the reciprocity principle 
reads 

^ m ^ B ' V * ) = Gm,i<rA-rITw>· ^ - 1 8 ) 

In the space-frequency domain, the backward propagating Green's wave 
field is related to the forward propagating Green's wave field, according to 

G i . m ^ V " ) » Λ , η ^ Α · " ) (VI-19a) 

and 

Θ.. (Γ\ΓΑ,ω) = θ* (Γ,Γ^,ω). (VI-19b) 
i j ,m v ' A ' ' i j ,m v ' A' ' v ' 

We define the forward propagating Green's wave field in the wavenumber-
frequency domain according to 

j(k x+k y) 
5 i ) m ( k x ' V Z ; X A ' y A - Z A ^ = J i ^ W ^ A V » * * d x d * ^ 2 0 ^ 

and 

 (VI-17a) 
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f°2 j(kxx+k y) 
ë i j , m ( k x ' k y ' Z ; x A ' V Z A ; a ; ) = J * 0 i j , m ( x > y ' z ; V y A ' Z A ; a ; ) e X * d x d y ' 

-°° (VI-20b) 

respectively. In the wavenumber-frequency domain, the backward 

propagating Green's wave field is related to the forward propagating 

Green's wave field, according to 

Λ ~ * 
G. (k ,k ,z;xA ,yA ,zA;o;) = -G. (-k ,-k ,z;x A ,y A ,ζ Α;ω) (VI-21a) 

i,nr x y ' A J A A' ' i,m v x' y' ' A'JA' A' ' v y 

and 
Λ ~* 
Θ. . (k ,k ,z;xA ,yA ,zA;o;) = Θ.. (-k ,-k ,z;x A ,y A ,ζ Α ;ω). (VI-21b) 

ij,mv x y ' A 3 A A' ' ij,mv x y ' A J A A' ' v ' 

VI.3.2 Elastic Kirchhoff-Helmholtz integral 

Our starting point is Betti's reciprocity theorem (VI-8). In the following, 

state A will represent a forward or backward propagating Green's wave 

field in a reference medium whereas state B will represent the physical 

wave field in the true medium. Hence, we make the following substitutions: 

State A: 

C i jk / r ) - "Cijk/r)' 

ρΑ(Γ) - p(f ), 

- ^ A —► 7=t —■*■ —*■ —► —* 

V (r ,ω) -> G (r ,τ . ,ω) (components: G. (r ,Γ.,ω)), or 

-G (r ,Γ.,ω) (components: -G. (r ,ΓΑ,ω)), 

r (r ,ω) -+ Θ (r ,Γ.,ω) (components: Θ.. (r ,ΓΑ,ω)), or 
v ' mv A ' ' v K i j ,m A' ' " 

* —► —► * —> —► 
©m(r JAM (components: θ.^ m (r ,rA,w)), 

F^(r\cu) — 8. $(r*-r*A), 
l v ' im v A 7 ' 

σ. .(r ,ω) —► o. 
i j v 

(VI-22a) 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



211 

State B: 

c . i j k / r > -* c i j k / r > ■ c i j k / r > + A c i j k / r >· 
p _ 

p (r ) — p(r ) = p(r ) + Ap(r ), 

V (r ,ω) —► V(r ,ω) (components: V.(r ,ω)), 

T (r ,ω) -► r(r ,ω) (components: r..(r ,ω)), (VI-22b
) 

FB(?V) - F.(F\a;), 
σ. .(r ,ω) —► σ. .(r ,ω). 

i j ' i j ' 

With these substitutions, we obtain the following two elastic representation 

theorems (De Hoop, 1958; Burridge and Knopoff, 1964; Aki and Richards, 

1980): 

V (ΓΛ,ω) = -j [ θ V" - r £ ].rTdS mv A' ' J L m mJ 

S 

+ f [F .G. + o..d.G. - jwApG. V. - -4- Ac... JBfi. 3.V.] dK, (VI-23a) f.L l i,m ij j i,m J i,m ι jo; ijk£ i k,m j iJ v 7 

or, equivalently, 

V (ΓΑ,ω) = - f [ θ * ν " + r ( î* ] .n\W nr A 7 J L m mJ 

S 

- f [ F . G * + a..d.G* - iuApG* Y. -—I—Ac... ßfi. d.V.ldK. (VI-23b) Ί L i i,m ij j i,m J y i,m ι jo; ijk£ i k,m j iJ ' 

These expressions are also known as the elastic Kirchhoff-Helmholtz integral 

formulas (Pao and Varatharajulu, 1976). They are the basis for multi

dimensional elastic forward and inverse scattering techniques. 
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Here we follow a different approach. By choosing the reference medium 

( c . . - , ρ ) equal or close to the actual medium (c.. .«p) in V and on S it is 

justified to ignore the deviation parameters (Ac... .,Δρ) in (VI-23a) and 

(VI-23b). When we also assume that volume V is source-free then 

expressions (VI-23a) and (VI-23b) simplify to 

V (ΓΑ,ω) « -j [ θ Ϋ - TCÎ IMUS (VI-24a) 
m V A > / J L m m _ l V / 

5 

or, equivalently, 

V (ΓΑ,ω) « -<f [ θ V* + r(? l . iTdS. (VI-24b) 
5 

These expressions describe the elastic wave field at r. in V in terms of 

the elastic wave field on S, enclosing V. The scattering effects related to 

the deviation parameters Ac... ir ) and Αρ(τ ) are zero or neglected. 

However, the propagation effects related to the reference parameters 

c . . j i r ) and p(r ) are properly included and therefore expressions (VI-24a) 

and (VI-24b) are the basis for multi-dimensional elastic forward and inverse 

wave field extrapolation techniques. 

Forward wave field extrapolation is often used to simulate wave 

propagation in a known medium. Therefore, for forward wave field 

extrapolation we may often choose the reference medium equal to the 

actual medium. In the following sections of this chapter we discuss elastic 

forward wave field extrapolation, based on Kirchhoff-Helmholtz integral 

(VI-24a) with the forward propagating Green's wave fields, which is exact 

when c . . . i r ) = c... ir ) and p(r ) = p(r ) throughout V. For notational 

convenience, in the following we will omit the bars above c . . . and p and 

we replace « by =. 

Inverse wave field extrapolation is generally used to eliminate wave 

propagation from seismic data acquired over an unknown medium. 

Therefore, for inverse extrapolation at best we may choose a reference 
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medium that is close to the actual medium . In chapters VIII and X we 

discuss elastic inverse wave field extrapolation based on Kirchhoff-

Helmholtz integral (VI-24b), with the backward propagating Green's wave 

fields. 

VI.3.3 Modified elastic Green's functions for P- and S-waves 

In this section we discuss modified Green's functions for P- and S-waves 

(Wapenaar and Haimé, 1989). In the next section these Green's functions 

will be used in the modified elastic Kirchhoff-Helmholtz integrals for P-

and S-waves. 

First we review the expressions for P- and S-wave sources. Consider the 

elastic two-way wave equation (11-27) for the particle velocity components 

v.(r ,t) in a homogeneous isotropic solid medium, 

(λ+μ)3.<9.ν. + μ3.5.ν. - pd\. = -3 (f.-d.cr..). (VI-25) 
î j j j j i t i tv i j \y v y 

The source term in the right-hand side may represent a point source of 

force in the m-direction if we choose σ..=ο and 
1 h i j 

fi = *im5 ( r " r A ) 5 ( t ) · (VI-26a) 

Oh the other hand, it may also represent a point source of volume injection 

at r . for P-waves if we choose f.=o and 
A l 

σ.. = δ..δ(τ -rA )i(t), (VI-26b) 
ij ij v A ' v ' 

' Choosing c... Jj*) and j>(7*) close to c... fr*) and p(j*) means that the 
reference medium must be designed in a geologically oriented way. 
Berkhout (1986) refers to such a reference medium as the macro 
subsurface model. 
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see also equations (II-33a) and (II-38a). Finally, it may represent a point 

source of moment at F* for S,-waves if we choose f.=o and A h l 

*ij = ehij5(F+_?A ) 5 ( t ) ' (VI-26c) 

where 

e,.. = o if any of h,i,j are equal, (VI-27a) 

otherwise 

£123 = Ê 312 " £ 231 = "£213 = "£321 = "£132 = '< ( V I - 2 7 b ) 

see also equations (II-33b, c, d) and (II-40a). e,.. is commonly known as 

the alternating tensor. 

Let us now consider the elastic two-way wave equation for the Green's 

function g. (r ,r A,t) in an arbitrarily inhomogeneous anisotropic solid 

medium. Eliminating Θ.. from equations (VI-13a) and (VI-13b) yields 

a/CijkA8k,m> - " a km = V W ^ W * ] · <V I ~2 8 a > 

with initial conditions 

8 i m^r ' r A'^ = ° for t < o (VI-28b) 

and 

atg. m(r ,r A , t ) = o for t < o. (VI-28c) 

S,-waves for h=l, 2, 3 are polarized in the plane perpendicular to the 

x-, y-, or z-axis, respectively, see section II.3.2. 
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The Green's function g. (r ,r ,t) for i=l , 2, 3 represents the three 

components of the Green's velocity vector g (r ,r . ,t), which is excited by 

an impulsive force in the m-direction at r. at t=o (see Figure VI-2a). 

We will now introduce P- and S-wave sources for the Green's function. 

We assume that the solid medium is locally homogeneous and isotropic in 

an infinitesimal region around the Green's source point r . At r. we 

define the constrained compression modulus, according to 

K c ( r A ) = A(rA) + 2/i(rA), (VI-29a) 

where the Lamé coefficients λ and μ are related to the stiffness 

coefficients, according to 

Cijk/rA> « A < r A>V" + "^A^ikV + W· (VN29b) 

We define an operator 

-K (rA)3 , (VI-30) c A m A 

where d for m=l, 2, 3 denotes differentiation with respect to the m 
A Green's source point coordinates x A , y A , z . , respectively. By applying this 

operator to both sides of equation (VI-28a) we obtain 

d.(c... ,3,g. ,) - pd\. . = da σ. , (VI-31a) 
j v ijk£ ΓΚφ' y t ι*Φ t m im' 

with 

g.^r ,r A , t ) Ä -Kc(rA)em g. ( r ,r A , . ) m-im 
A 

and 

σ. = -K (rA )S. 5(r -rA )6(t), (VI-31c) 
im cv A ' im v A ' ' 

where we made use of the property 

*m « r "'A* - - V < r -rA>· ( V I"3 1 d ) 

A 
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Green's velocity vector g  ( Γ , , , Γ . , Ο 
3 °xv B A 

Components: g. (Γ
Β*Γ

Α>0; i=K2,3 

Impulsive force in x-direction 

Green's velocity vector g , ( r D , r . , t ) 
φ D A 

Components: g. ,(rD,r . ,t); i=l,2,3 
1,0 D A 

Impulsive P-wave source 

Green's P-wave 7 , ,(Γ_,,Γ Α ,t) 
Φ,Φ D A 

Impulsive P-wave source 

Green s S -wave Ί, , ( Γ „ , Γ Α , 0 y 'φ ,6y Β' A ' 
y 

Impulsive P-wave source 

Figure VI-2: Overview of elastic Green's functions. 
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The source term in the right-hand side of (VI-31a), with σ. defined by 

(VI-31c), represents a (scaled) point source of volume injection at r for 
P-waves. Hence, the Green's function g. ,(r , r . , t ) for i 1, 2, 3 
represents the three components of the Green's velocity vector g ,(r ,r t), 

which is excited by an impulsive P-wave source at r. at t=o. Hence, the 

sub-script φ refers to the P-wave character of the Green's source at r 

(see Figure VI-2b). 

Green's velocity vector g. (r^,r~^,t) 
y 

Components: g. , (r^,r^,t); i=l,2,3 
y 

Impulsive S -wave source 

Green's P-wave 7 (F^,F^,t) 
y 

Impulsive S -wave source 

Green s S -wave η, , (r_,,r A,t) y 'φ ,V» Β' Α' ' 
y y 

Impulsive S -wave source 
A y 

Figure VI-2 (continued) 
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Of course, at the observation point r the Green's function may consist of 

both P- and S-waves. Let us now assume that the solid medium is also 

locally homogeneous and isotropic in an infinitesimal region around an 

observation point r = rR . Then, in agreement with (11-31 c), we may 

define a Green's P-wave potential 7 , ^(ΓΓ>»ΓΑΌ> according to 

V ^ V V « · -Kc(rB>VB·^ ^B-V')' <V I-3 2 a> 

atWrB'rA·') -W^i./'B-'-A·«· <VI"32b> 

where d. for i = 1, 2, 3 denotes differentiation with respect to the 
B 

Green's observation point coordinates x R ,y R ,z R , respectively. Similarly,  in 

agreement with (II-3Id) we may define a Green's S-wave potential 

WrB'rA·0· aCCOrding t0 

^"WB'V0 Q "<rB>VB * V r B ' V > ' (VI-33a) 

dt\/V^ = "^'kij V^(?B'rA·0' (VI"33b) 

where η. , represents by definition the k-component of vector 7 . ,. In 

the following, the symbol 7 stands for Green's potential functions. The first 

sub-script in 7 . ΛΓ
β>Γ

Α>0 and 7 , Λτ^τ\^ refers to the wave-type at 

observation point rR; the second sub-script refers to the wave-type at 

source point r. (<f> refers to P-waves, φ refers to S,-waves, see Figures 

VI-2c and VI-2d). 

Sofar we only considered modified Green's functions related to a P-wave 

source at r . Next we follow the same procedure for an S-wave source at 
r By applying the operator 

-μ(τ*.)6. d (VI-34) A' hmn n v ' 
A 
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to both sides of equation (VI-28a) we obtain 

d.(c... BA. , ) - pd\. , = dd σ. , (VI-35a) j v ijk£ t k,é t°i,v> t n in' v ' 
h h 

with 

g. . (r*,r*A,t) = -μ(Γ*Α)€, a g. (r\r* A,t) (VI-35b) öi,V A' ^v A7 hmn n &i,mv A ' v ' 
h A 

and 

"in = - ^ ^ h i n ^ - ^ W ) · ( V I " 3 5 C ) 

The source term in the right-hand side of (VI-35a), with o. defined by 

(VI-35c) represents a (scaled) point source of moment at r for S,-waves. 

Hence, the Green's function g. . (r ,r A,t) for i = 1, 2, 3 represents the 

three components of the Green's velocity vector g , (r  ,r A , t ) , which is 
> h 

excited by an impulsive S,-wave source at r at t=o. Hence, the 

sub-script φ refers to the S,-wave character of the Green's source at r. *h h A 
(see Figure VI-2e). At the observation point r =r D this Green's function 

r> 
may consist of both P- and S-waves. 

In agreement with (II-31c), we may define a Green's P-wave potential 
7 < Μ ( ? Β ' ν 0 ' a c c o r d i nS t0 

h 

V<M (rB'rA·0 = -Kc(rB>VB·^ <VV«>. (VI"36a) 

h h 

9 ΐ \ φ ( ΪΒ·ΓΑ'1) · -Kc(rB>ai «i,* (7Β'ΓΑ'1) ' ( V 1 " 3 6 b ) 

(see Figure VI-2f). 
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Similarly, in agreement with (II-3Id) we may define a Green's S-wave 

potential η, , (rR,r ,t), according to 
h 

h h 

a<y ,ψ < w « = - « ? B V J gi,é (1>νι>· < V I - 3 7 b > 
k h B h 

where η, , represents by definition the k-component of vector 7, , , (see 

Figure VI-2g). 

Next we give the expressions for the modified Green's functions for P-

and S-waves in the space-frequency domain. Define the Green's wave field 

G i , m ( r ' ? A ' w ) b y 

^ m ^ V " ) = J" Si>m(^.?;.t)e-JWtdt, (VI-38) 

with g. (r , r . , t ) being the solution of two-way wave equation (VI-28). In 

analogy with (VI-31b), (VI-32b) and (VI-33b) we define Green's functions 

related to a P-wave source at r A: 

G. ,(r ,rA,w) = -K (rA)d G. (r ,ΓΑ,ω), (VI-39a) ι,φχ A' ' cv A' m i,mv * A' " v ' 
A 

τ*Α*Ζ>Κ*ω) = - -J-K. (Fl)<9. G. .(ϊΙ,Γ^,ω) (VI-39b) 
φ,φχ Β' A' jw c Β' 1 i,<£v B' A' ' v ' 

and 

r / JÎ?X>?KJ*) = - ^ - ^ ( r t ) e . ..a. G. .(Ρΐ,Γ.,ω). (VI-39c) 
ψ ,<p B A jw ^v B7 kij j ι,φν B A v ' 

(VI-37a)
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In analogy with (VI-35b), (VI-36b) and (VI-37b) we define Green's functions 
related to an Su-wave source at rA: h A 

G. , (r\rt,(i>) = -At(rt)eu d G. (F\r* ,ω), (VI-40a) i,V> A* ^v A 7 h m n n i , m v ' A ' 7' v ' 
h A 

ΤφΑ(ΓΒ'ΓΑ·ω> = - - t Kc<rB>3i °1,φ ^ V « > <V I - 4 0 b ) 
h B h 

and 

r / / Ο^ντΊ,ω) = - - r - ^ r l K - . o . G. , (rl.rt.a;). (VI-40c) V> ,y> Β' A ' )ω ^ Ir kij j ι,ψ ν B A ' 7 v 7 
k h B h 

We derive reciprocity relations for the Green's potentials for P- and 

S-waves. Upon substitution of (VI-39a) into (VI-39b) we obtain 

Γ Λ Λ^ντ'Ι,ω) = - 4 - K (rt)K (fA)d. d G. ( r l , r ! ,ω). (VI-41a) 0,#v B' A' 7 )U) c v B 7 c v A7 1 m i , m v B ' A ' 7 v 7 
B A 

In a similar way we may derive 

Γχ ^ , Τ ΐ , ω ) = -4-K (F[)K (rl)d d. G .(ί^ ,Τΐ,ω). (VI-41b) <̂ ,0V A' B' 7 JÜ; cv A 7 c B m 1 m , r A ' B ' 7 v 7 
A B 

Hence, with reciprocity relation (VI-18) we easily find 

ν/ΓΒ·ΓΑ'ω> ■ W W W > · (VI"42a) 

In a similar way we obtain 

Τψ ,φ ( rB' rA'w ) ■ Τφ ,φ (rA'rB'w> ( V I " 4 2 b ) 

k h h k 

and 

Τψ , / Γ Β ' Γ Α < ω > « Τφ,φ ( Γ Α · Γ Β ' ω ) · ( V I - 4 2 C ) 

k k 
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Reciprocity relation (VI-42a) states that  the P-wave potential  at rR, 

related to a P-wave source at r . , is identical to the P-wave potential at 

r , related to a P-wave source at rR. 

Reciprocity relation (VI-42b) states that  the k-component of the S-wave 

potential at r„ , related to an S,-wave source at r A, is identical to the K B h A 
h-component of the S-wave potential  at r . , related to an S,-wave source 

at rB. 
Reciprocity relation (VI-42c) states that  the k-component of the S-wave 

potential at rR, related to a P-wave source at r , is identical to the 
P-wave potential  at r A, related to an S,-wave source at r_. A' k B 

Note that these reciprocity relations hold  for arbitrarily inhomogeneous 

anisotropic elastic media.  The only assumption is that the medium is 

locally homogeneous and isotropic at r and rR. 

As an example we consider the free space Green's P- and S-wave potentials 

in an unbounded homogeneous isotropic solid. In analogy with (11-38), (11-40) 

and (V-25), we may write for the Green's P- and S-wave potentials in the 

space-time domain 

«(t-Ar/c ) 

Wr'rA't) = "'»it 4 , Δ / )- <V I - 4 3 a > 

(2 Λ f«(t-Ar/c ) 
y ,ψ <r *ΓΑ'1> - - ( W a f " V J I 4,Ar 3 (VI-43b) 

k h 

and 

ΊΦ /Τ 'ΓΑ'1) ■ Ίφ,φ (Γ ' r A ' l ) * ° ' ( V I - 4 3 C ) 

k h 

with the propagation velocities c and c being given by 
P s 

c 
P 

\ / K Jp = ν(λ+2μ)/ρ (VI-43d) 

and 
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c = V μ/ρ , (VI-43e) 

respectively, and ΔΓ being the distance between the source point r. and 

the observation point r , according to 

ΔΓ = |r - r A | . (VI-43f) 

In the space-frequency domain, the corresponding expressions read, in 

analogy with (V-26) \ 

-jk ΔΓ 

Wr 'Vw) -pu}2 ί ̂ ssH · (VI-44a) 

2 " j k s A r 
(VI-44b) 

and 

\ / r 'ΓΑ'ω) * r ^ h < r ·ΓΑ·ω ) " ° · ( V I " 4 4 C ) 

respectively, with 

and 

k = ω/c (VI-44d) 
P P 

k = ω/c . (VI-44e) 

Finally, in the wavenumber-frequency domain, the corresponding expressions 

read, in analogy with (V-27), 

2 j ( k x X A + k y A } e" J k z , p | Z Z A ' Γ , .(k ,k ,z;x A ,y A , ζ Α;ω) = ρω e y ^ , (VI-45a) φ,φ^ x y ' Α'-Ά' Α' ' r 2jk ζ,ρ 

^ In the following the symbol k has two different meanings. When used as 
a factor, it denotes a wavenumber (k etc.). Otherwise it is an index 

p 
which may take the values 1, 2 or 3. 
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vi 1 x -jk | z - z . | 
. j(k x*+k y . ) z,s' A1 

?ψ J <k*V:XA-*A· VW> " V n V Y ^ ^ j k < V I - 4 5 b > 
*lc h J J Z,S 

and 

Γ . ,(k ,k ,z;x A,y A ,ζ Α;ω) = Γ . . (k ,k ,z;x A ,y A ,ζ Α ;ω) = o, (VI-45c) 
φ ,0ν χ' y' ' A JA Α' ' φ,ψ K x y ' A JA A' ' v ' 

respectively, where d, for h=l, 2, 3 stands for -jk , -jk and d 

respectively, and where 

(VI-45d) 

(VI-45e) 

(VI-45f) 

k = + V k 2 - k2 - k2 
z,p p x y 

. . . / . 2 . 2 . 2 k = - jVk + k - k z,p x y p 

. J,2 .2 .2 k = +Vk - k - k z,s s x y 

and 

k = - j \ / k 2 + k2 - k2 
z,s J v x y s 

c , 2 . 2 , 2 for k +k < k , x y ρ' 

c . 2 . 2 , 2 for k +k > k , x y p' 

2 2 2 for k +k < k x y ~ s 

for k +k > k . x y s (VI-45g) 

VI.3.4 Modified elastic Kirchhoff-Helmholt z integrals for P- and S-waves 

We return to the inhomogeneous anisotropic situation. Consider the elastic 

Kirchhoff-Helmholtz integral (VI-24a), 

ν η ι ( Ι Α ' ω ) = "^ [ em(F*'Fl»w)^F*' w) - ^ Λ ω ) ^ ( Λ ? ^ , ω ) ] . η ^ . (VI-46) 
S 

This integral expresses the velocity component V at r. in V in terms of 

the elastic wave field on S, enclosing V. As we showed in section VI.3.2, 

this expression is exact when the medium parameters for the Green's 

wave field are identical to the actual medium parameters throughout 

volume V. We now derive modified Kirchhoff-Helmholtz integrals that 

express the P-wave potential or the S-wave potential at r in terms of 

the elastic wave field on S. Again we assume that the solid medium is 
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locally homogeneous and isotropic in an infinitesimal region around r. . 
Hence, in agreement with (11-31 c), we may define a P-wave potential at 
r , according to 

}ωΦ(?Α,ω) ̂ -Kc(F^)VA Υ(Γ^,ω) (VI-47a) 

ja*KrA,u,) = - K c ( r A ν ^ , ω ) . (VI-47b) 
A 

By substituting Kirchhoff-Helmholtz integral (VI-46) into (VI-47b) and 
interchanging the order of integration and differentiation , we obtain 

)ωΦ(ϊ*Α,ω) = -j \βφ(?ΐΑ,ω)Ϋ(7*,ω) - τ(Γ,ω)3^(Γ,Γ^,ω)] .ïTdS, (VI-48a) 
S 

where 

ö ( Λ Ϊ ; . « ) Δ -Kei?Av>m ö m ( r ,?; , W ) (vi-48b) 
A 

and 

θ.(Γ*,Γΐ,ω) = -K (7*A)d θ (r*,rt,w). (VI-48C) #ν ' A' ' cv A' m mv ' A' ' ν ' 
A 

The modified Kirchhoff-Helmholtz integral (VI-48a) expresses the P-wave 
potential at Ft in F in terms of the elastic wave field on S, enclosing V. 

Note that for the components of Cj,(r~\r~l,w) we may write 
φ A 

G. (r ,rA>«) = -Kc(rA)a m G. m(r ,rA.«). (VI-49a) 
A 

which is equivalent to equation (VI-39a). Hence, C? ,(Γ\ΐν. ,ω), as defined by 

' This is justified as the integration takes place along S(7*) whereas the 
differentiation takes place at rA. 

A 
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(VI-48b), represents the Green's velocity field, related to a P-wave source 

at 7\ . Similarly, Θ ,(F\F*. ,ω), as defined by (VI-48c), represents the Green's 

stress field, related to the same P-wave source at r . In analogy with 

(VI-13b), the components of Θ, (Γ ,Γ ,ω) are related to the components of 

(? ,(F\îv. ,ω), according to 

J ^ i j ^ V " ) - W ^ M ^ ' V * * ^- 49b) 

Next, in agreement with (II-3Id), we define a S-wave potential at r , 
according to 

]ωΦ^,ω) = /z(r^)VAx ^(ί^,ω), (VI-50a) 

j * » h ( î > > Ä -*rAyehmnan V m ( r > ) . (VI-50b) 
A 

By substituting Kirchhoff-Helmholtz integral (VI-46) into (VI-50b) and 

interchanging the order of integration (along S(7*)) and differentiation (at 

rA), we obtain 

ju*h(r^,o;) = -§ [θφ (7*?Α>ω)Ψ(ϊ*,ω) - Γ ( Γ , ω ) ^ (Γ,Ρ^,ω)] .rTdS, (VI-51a) 
S h h 

where 

and 

3 . (Γ,Γ.,ω) = -μ(Γ.)€, d <3 (Γ,Γ.,ω) (VI-51b) 
h A 

θ , (Γ,Γ.,ω) = -μ(ΐΓ+
Α)£, d θ (Γ,Γ.,ω). (VI-51c) 

h A 
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The modified Kirchhoff-Helmholtz integral (VI-51a) expresses the 

h-component of the S-wave potential at r in V in terms of the elastic 

wave field on S, enclosing V. Note that for the components of 

G . (r ,Γ.,ω) we may write 
h 

G. , (r ,Γ.,ω) = -ß(rA)eu d G. (r ,Γ.,ω), (VI-52a) i,y> A ' A^hmn n i,nr ' A' " v ' 
h A 

which is equivalent to equation (VI-40a). Hence, (? , (F\Ft ,ω), as defined by h 

(VI-51b), represents the Green's velocity field, related to an S,-wave 

source at r Similarly, Θ, (r ,r ,ω), as defined by (VI-51c), represents the 
h y 

Green's stress field, related to the same S,-wave source at r In analogy 

with (VI-13b), the components of Θ. (r ,τ.,ω) are related to the 

components of G , (r ,r ,ω), according to 
h 

*»α,Φ(r -V") ■ cijk/r )ψκψ(r 'ΓΑ'ω)· (VI-52b) 

h h 

Kirchhoff-Helmholtz integrals (VI-46), (VI-48a) and (VI-51a) can be 

summarized by 

Ω(?^,ω) = -j Ιθη(7*,7*Α9ω)Ϋ(Γ9ω) - τ(?,ω)£Q(?^ω)] MUS, (VI-53) 

see Figure VI-3. 

1. If we choose for the Green's wave field an impulsive force in the 
m-direction at F. (i.e., <J0=CJ ; θ =θ ), then ft(F. ,ω) represents the A \l m \l m A 
m-component of the velocity V* at Ft . 

2. If we choose for the Green's wave field an impulsive P-wave source at 

rA (i.e., Sn-S,;_€ 
potential ]ωΦ at r. 

Ft (i.e., C J ~ = 3 , ; θ_=θ . ) , then Ü(Ft ,ω) represents the scaled P-wave A u φ u φ A 
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Figure VI-3: Elastic Kirchhof f-Helmholtz integral. The Green's wave field (Gn,B) may 

be excited either by an impulsive force, an impulsive P-wave source or an 

impulsive S,-wave source at r .. Accordingly, il(r . ,ω) may represent either 

the velocity, the P-wave potential or the S,-wave potential at r .. 

3. If we choose for the Green's wave field an impulsive S,-wave source 

at Ft (i.e., 0?Ω=(?. ; ΘΩ
=Θ/ ), then Ω(Γ~*. ,ω) represents the h-component 

h h y > 

of the scaled S-wave potential ]ωΦ at r . . 

VIA ELASTIC TWO-WAY AND ONE-WAY RAYLEIGH INTEGRALS 

VI.4.1 Boundary conditions for the elastic Green's functions 

Consider the Kirchhoff-Helmholtz integral (VI-53). Using the symmetry 

property of the stress tensors r and Θ Ω we may rewrite (VI-53) as 

Ω(?^,ω) = -j [ (θΩ(Γ,Γ^ω)ΓΤ) Υ(Γ,ω) - £ Ω(Γ,Γ^,ω). (Γ(Γ,Ο;)ΓΤ) ] dS, (VI-54a) 

or, using Cauchy's formula (II-llb) for the tractions τ and Θ „, 

Ω(^,ω) = -j [θ^ Ω(Γ,Γ^,ω).ν>(Γ,ω) - ^ ( Γ , Γ ^ , ω ) . ^ ( Γ , ω ) ] US. (VI-54b) 

These expressions are exact when the medium parameters for the Green's 

wave field are identical to the actual medium parameters throughout volume 
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V. Outside V we may choose any convenient medium for the Green's wave 

field and on (parts of) S we may impose any convenient boundary 

condition for the Green's wave field. If we choose 

(?n(r*,r^,«) = ö* on 5, (VI-55a) 

then Kirchhoff-Helmholtz integral (VI-54b) simplifies to 

Ω(ϊ^,ω) = -f \βηη(?,?Α,ω).Ϋ(?,ω)] US. (VI-55b) 

However, a practical disadvantage is that the Green's wave field Θ  Q 

may become very complicated because boundary condition (VI-55a) means 

that S is a rigid surface, which is perfectly reflecting. Similarly, if we 

choose 

θ^ Ω (Γ ,ΓΑ,ω) = o on 5, (VI-56a) 

then Kirchhoff-Helmholtz integral (VI-54b) simplifies to 

Ω(Γ ,̂ω) = § ΡΩ(Γ,Γ^,ω).Γ (Γ,ω)] dS. (VI-56b) 

Again, the Green's wave field (? Ω may become very complicated because 

boundary condition (VI-56a) means that S is a free surface, which is 

perfectly reflecting. The Kirchhoff-Helmholtz integral (VI-54b) as well as 

its simplified versions (VI-55b) and (VI-56b) are in principle two-way 

expressions. In the next section we consider (VI-55b) and (VI-56b) for a 

special configuration. Next we divert from what is generally done in the 

literature and, instead of fully reflecting boundary conditions, we choose 
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fully absorbing boundary conditions for the Green ' s wave fields on S. 

Following this alternative route, we show how to derive elegant one-way 

expressions. 

VI.4.2 Elastic two-way Rayleigh integrals 

Consider the half-space geometry of Figure VI-4. Closed surface S consists 

of a horizontal flat surface S at z=z and a hemi-sphere S. in the o o K 1 
lower half-space z>z , with midpoint A and radius r . . Assuming that the 

sources of the elastic wave field are si tuated in the upper half-space 

z<z , then the contribution of the Kirchhoff-Helmholtz integral over S. to 

the elastic wave field at A vanishes if r . goes to infinity (Sommerfeld 

radiation conditions, see also section V-2 and Pao and Varatharajulu, 1976). 

Hence, for this situation equation (VI-54b) may be replaced by 

oo 

Ω(ϊ^,ω) = ! ! [θ*ζ Ω(Γ,Γ^,ω).ν>(7\ω) - 0 Ω ( Γ , ^ , ω ) . Γ ( ? \ ω ) ]  χ dxdy, (VI-57) 
-oo ' 0 

where we made use of the fact that n on S is a unit vector in the o 
negative z-direction. Again we consider rigid and free boundary conditions 

for the Green ' s wave field. 

Figure VI-4: Configuration for which the closed surface integral (VI-54b) may be 

replaced by the open surface integral(VI-57). The lower half-space is 

assumed to be source-free. This configuration is the basis for the derivation 

of several types of Rayleigh integrals. 
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If we choose 

3Ω(Γ,?^,ω) = ö* at Z=ZQ (VI-58a) 

then Kirchhoff-Helmholtz integral (VI-57) simplifies to 

Ω(ί^,ω) = !! \βζ η(7*ΐΑ,ω).Ϋ(?,ω\} χ dxdy. (VI-58b) 
-oo ' o 

Similarly, if we choose 

Θ n(r ,Γ.,ω) = o at z=z , (VI-59a) 
ζ,Ων ' A ' o 

then Kirchhoff-Helmholtz integral (VI-57) simplifies to 

Π(Γ^,ω) = - / / [ 5 Ω ( Γ , 7 ^ , ω ) . Γ ( Γ , α ; ) ] ζ dxdy. (VI-59b) 

In analogy with section V.4.2, we refer to expressions (VI-58b) and (VI-59b) 

as the elastic two-way Rayleigh I and Rayleigh II integrals, respectively. 

For a further discussion on the two-way aspects of the Rayleigh integrals 

we refer to section V.4.2. 

VIA3 Elastic one-way Rayleigh integrals 

We consider again the half-space geometry of Figur VI-4. Unlike in the 

previous section, we now choose for the Green's wave field a fully non-

reflecting upper half-space z<z . Hence, 

c , lx,y,z<z ) = c... ix ,y ,z ) for all z<z (VI-60a) 

ijk£v ' " o ijk£v 'J o' o 
and 

p(x,y,z<z ) = p(x,y,z ) for all z<z . (VI-60b) 
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With this choice no downgoing Green's waves return from the upper  half-

space, so the Green's wave field is purely upgoing at z=z : 

3 Ω (7 \ ΐ^ ,ω) = ^ ( Γ , ϊ ^ , ω ) at Z=ZQ (VI-61 a) 

and 

θ ζ , η ( Γ - Γ Α ' ω ) ■ θ ζ , η ( Γ · Γ Α · ω > a t Z = V ( Y 1 " 6 1 b ) 

In terms of boundary conditions we may say that surface z=z is an 

absorbing boundary for the Green's wave field. 

The sources for the elastic wave field are situated in the upper half-space, 

so at z this wave field consists of the downgoing incident wave field 

(including higher order terms) and the upgoing scattered wave field 

(including higher order terms), according to 

Ϋ(τ*,ω) = ν*+(Γ,ω) + Ϋ~(τ*,ω) at z=z (VI-62a) 

and 

T (r ,ω) - T (r ,ω) + τ ~(r ,ω) at z=z . (VI-62b) 

Substitution of (VI-61) and (VI-62) into Kirchhof f-Helmholtz integral (VI-57) 

yields 

Ω(Γ>) = //^"(v^+v*") - 3"(r +
+r")]. dxdy· (v1-63) 

Our aim is to simplify this expression by using the one-way wave equations 

for the downgoing and upgoing wave fields at z . For simplicity we 

assume that the solid medium is locally homogeneous and isotropic 
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(described by λ, μ and p) in an infinitesimal region around z . Hence, in 
agreement with (11-31 a) and (II-31b) we may define P- and S-wave 
potentials for the downgoing and upgoing elastic wave fields at z , 

o 
according to 

Ιν^ίΛω)] = - ^ - | W ( F \ « ) + V x ^ ( Γ , ω ) ]  ν , (VI-64a) 
Zo }ωρ zo 

with (for the source-free situation at z ) 

[ν.^-(Γ,ω)] Δ o, (VI-64b) 
o 

see Figure VI-5a. Similarly, we may define P- and S-wave potentials for 
the upgoing Green's wave field at z , according to 

with (for the source-free situation at z ) 

EV'ïWr'?A'a ; ) ] z = °· (VI-65b) 

see Figure VI-5b. In Appendix C, section C.2, we show that by applying the 
one-way wave equations for the P- and S-wave potentials  at z , the 

o 
Kirchhoff-Helmholtz integral (VI-63)  can be transformed to 

(b) 

Figure VI-5: Downgoing and upgoing P- and S-wave potentials at z=z 
a. Potentials for the elastic wave field. 
b. Potentials for the Green's wave field. 

(VI-65a)
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oo _ _ 
Ω(ΓΑ,ω) = - r - f f - Γ - τ Γ' 0 - ^ - + Γ*" ^f— dxdy, (VI-66a) 

or, alternatively, to 

A' ' ιω J J p z L dz dz Jz Ω(Γ A ,ω) = -^- I I - ^ - T - / ' " Φτ + / ' " . Φ dxdy. (Vl-66b) 
v A» ' ,ω J J p(z ) L dz dz J z J v y 

J -oo ^v 0 0 

In analogy with section V.4.3, we refer to expressions (VI-66a) and (VI-66b) 

as the elastic one-way Rayleigh I and Rayleigh II integrals, respectively. 

For a discussion on the one-way aspects of the Rayleigh integrals we 

refer to section V.4.3. Note that in both expressions (VI-66a) and (VI-66b) 

only the downgoing P-wave Φ interacts with the upgoing Green's P-wave 

T~, ~ and the downgoing S-wave Φ interacts with the upgoing Green's 
0,12 S-wave Γ. ~. No interaction occurs between the P-wave and the Green's φ,Ω 

S-wave nor between the S-wave and the Green's P-wave. Finally, note 

that for the situation of Figure VI-4 equations (VI-66a) and (VI-66b) are 

valid for an arbitrarily inhomogeneous anisotropic solid medium; the only 

assumption is that the solid medium is locally homogeneous and isotropic in 

infinitesimal regions around z and r A. 
o A 

Depending on the choice of the source for the Green's wave fields, Ω in 

equations (VI-66a) and (VI-66b) may represent either V for m = 1, 2, 3 

or }ωΦ, or ja;^, for h = 1, 2, 3, see also section VI.3.4. We consider the 

latter two cases. If the Green's wave fields have an impulsive P-wave 

source at r . , then Ω represents the scaled P-wave potential ]ωΦ at r . , 

hence 

OO p _ 

-> v _ z2_ f f _J Γ - 3Φ^ =>- dt+ 

ΓΑ'ω) " 2 J J p(z ) L y dz + ΦΛ ' 3z J ; Φ ^ « -2 J J W~) 1 Τ φ . φ ^ + \φ ' "fz" J z dxd^' <VI-67a> 
ω -oo rv o o 

or, alternatively, 
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, Τ , Γ 3Γ" οΓ*. . 1 
J J P ( Z ) L az ψ + dz ψ J *<;>) = A J J *Γ) L-i^-φΤ + " β ^ · ¥ J « d x d y · (VI_67b) 

ω -oo ^ν ο ο 

On the other hand, if the Green's wave fields have an impulsive S,-wave 

source at r , then Ω represents the h-component of the scaled S-wave 

potential jo;\I> at r , hence, 

rT_i—ΓΓ- &£ + r- ^ - ] 
J J p(z ) L φ,ψ dz φΑ ' dz J 

Φ,ΓΑ ,ω = -^r J J -r-^r\ T. , ^ - + Γ , , . -^t— dxdy, (VI-68a) hv A' ' 2 J J p(z ) L φ,φ dz φ,φ, dz J z J ' v ' ω -oo ^v o' h r'*h o 

or, alternatively, 

*h(v») = A / J i j [ h Φ+ + — τ — - . Ψ*+ dxdy. (VI-68b) 
r v_ , _ dz dz J z 

ω -oo o o 

For the special situation of a homogeneous isotropic medium, we may 

substitute the free space solutions (VI-44a) and (VI-44b) for the Green's 

wave fields Γ~ . and Γ" , (bear in mind that Γ, , denotes the 
<p^<f>_^_ v > k > v h vk,vh 

k-component of Γ. . ). Hence, for this situation equations (VI-67a) and 

(VI-67b) read 

oo — -jk ΔΓ -

-oo fc J o 

°°Γ " j kPA r 1 
φ<νω> = I F J J Ifr l ^ — J · e >ωυ z dxd*> (VI-69b) 

-oo 0 

respectively, with 
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k = ω/c (VI-69c) 
P P 

and 

ΔΓ = | r*-r^ | . (VI-69d) 

Note that the elastic one-way Rayleigh I and Rayleigh II integrals (VI-69a) 

and (VI-69b) are identical to the acoustic one-way Rayleigh I and Rayleigh 

II integrals (V-45a) and (V-45b), respectively, with k and P replaced by k 

and Φ, respectively. 

For the same situation equations (VI-68a) and (VI-68b) read 

-jk ΔΓ 
-i Γ Τ Γ Γ i · ■ i K< r>»>l 

k* A " " * "" - o 
s 

dxdy, (VI-70a) 

0 0 - . -jk Δ Γ W T "J s "I 

-oo ^ k J o 
s 

respectively, with 

k = ω/c . (VI-70c) 

Note that the elastic one-way Rayleigh I and Rayleigh II integrals (VI-70a) 

and (VI-70b) are somewhat more complicated than the acoustic one-way 

Rayleigh I and Rayleigh II integrals (V-45a) and (V-45b). However, in the 

next section we derive elastic extrapolation operators which, for the 

homogeneous isotropic situation, are again identical to the acoustic 

extrapolation operators. 

VI.5 ELASTIC FORWARD WAVE FIELD EXTRAPOLATION OPERATORS 

VI.5.1 Integral formulation of elastic forward wave field extrapolation 

We return to the inhomogeneous anisotropic situation. Our starting point 

for deriving elastic forward wave field extrapolation operators is the 

one-way version of the elastic Rayleigh II integral (VI-66b), which may 
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be rewritten as 

1 - - . 2 f f _ 1 _ \3ΤΦ^Τ 'ΓΑ'ω)
 Ä + , 

J J Ρ(ΖΛ) L az 
(r ,Γ.,ω) 

-Ω(ΓΑ ,ω) = -±r J J - τ Η - I * ^ - Φτ(Γ,ω) 
jw ν Α' ' 2 JJ p(z_) L dz v » / ω -οο ΓΧ ο 

.]. + * i Ω ( " / Α , ^ ( Γ , ω ) ] ζ dxdy, (VI-71a) 
α' ο 

where the modified Green's wave field reads, according to equation 

(C-21b) in Appendix C, 

SB" 0 (Γ,ΓΑ,ω) = e. . c . a . r " 0 (Γ,Γ. ,ω). (VI-71b) 
φ ,Ων Α' ' 3aj jik ι V. »Ω A v ' 

Bear in mind that Greek indices may only take the values 1 or 2. Hence, 

just as in section IV.2.2, we eliminated the z-component of the S-wave 

potential. In equation (VI-71), Φ (r ,ω) and Φ (r ,ω) for z=z represent the 

downgoing parts of the potentials for the elastic P- and S-wave fields at 

z , related to sources in the upper half-space (see Figure V-9a for the 

acoustic equivalence, where Φ =P and Φ =ο). Γ, ~(r ,r A,w) and a ' <ρ,Ω
ν
 A 

Γ" (r ,Γχ,ω) for z=z represent the upgoing parts of the potentials for 

the Green's P- and S-wave fields at z , related to a monopole Ω-wave 

source (i.e., a P-wave source, or an S^-wave source) at r. in the lower 
β A 

2 -half-space (see Figure V-9b for the acoustic equivalence, where Γ.
 Ω

=ω G 

and r" Ω=ο). ——Ω(Γ ,ω) represents the potential Φ(Γ ,ω) or Ψ-(r ,ω) for 
the total elastic P-wave or S fl-wave, respectively, at r. in the lower 

P A 
half-space (Φ=Ρ and ΦΛ=ο in the acoustic equivalence). Hence, equation 

P 
(VI-71) describes wave field extrapolation of the downgoing (i.e., one-way) 

potentials Φ (r ,ω) and Φ (r ,ω) at z , yielding the total (i.e., two-way) 

potential Φ or Φ_ at rA. For the Green's wave field the upper half-space 
P A 

was chosen reflection-free, so 

V n ( r ·ΓΑ'ω) - r^,fi(r -ΓΑ'ω) a t Z = V ( V I"7 2 a ) 

' S^-waves for β=\, 2 are polarized in the plane perpendicular to the x-
P 

or y-axis, respectively, see section II.3.2. 
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Γ , 0 ( r ,ΓΑ,ω) = Γ , 0 ( r ,ΓΑ,ω) at ζ=ζ , (VI-72b) φ ,Ων ' A φ ,Ων ' Α' ' ο ' 
k k 

and, consequently, 

& ι n(r »ΓΑ,ω) = <£ . _(r ,rA,w) at z=z . (VI-72c) 
t/> ,Ων ' A' ' φ ,Ων A ' o v ' 

Based on this property and the reciprocity relations (VI-42), 

W B ' V " ) = Γη,/ΓΑ'ΓΒ>ω> (VI"73a) 

and 

k k 

we may reformulate (VI-71) as 

1 o / - ^ 2 ΓΓ I " Χ Ω ^ ( Γ Α , Γ *ω) 1 . + , - , 
-— Ω(Γ Α ,ω) = — ζ - I *t —,—r Φ (r ,ω) 
ja; ν Α' ' 2 J J I dz ρ(ζ ) ν ' y 

sip*. 
+ 

where 

Se ( r t , r* ,w) = € . . e . . . ö . r o , ( F t , F \ w ) . (VI-74b) 
-Ω,τ/> Α 3o£j jik 1 ίΐ,φ A' 

Here Γ~ , ( r A , r ,ω) and Γ~ , ( r A , r ,u ; ) for z=z represent the p o t e n t i a l s for Ω,ών A Ω,ν> v A o 
k 

the Green's Ω-wave field (i.e., the P-wave field or the S^-wave field) at 

r in the lower half-space, related to a monopole P- or S,-wave source at 

F* at the surface z . Accordingly, d Γ„ .(Ft ,F\w) and 3.Γ„ , (Ft ,F\a;) for o z Ω,0ν A l Ω,ω v A ' 
k __,. 

z=z represent the potentials for the Green's Ω-wave field at r in the 

lower half-space, related to a dipole P- or S.-wave source at r at the 

surface z (see also section 1.3.1). Hence, equation (VI-74) actually states 

that the two-way Ω-wave field at r in the lower half-space is obtained 

as an integral over dipole source responses, the dipole sources being 

distributed over the surface z , and the strength of the dipole sources 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



239 

being given by the downgoing P- and S^-wave potentials Φ (F\w) and 

Ψ+(Γ\ω) at z= 
or ' 

equivalence). 

Φ (r ,ω) at z=z (Huygen's principle, see Figure V-10 for the acoustic 

We split the two-way Ω-wave field at r. into a downgoing and an 

upgoing part, according to 

Ω(ΓΔ,ω) = nV A ,o ; ) + Ω"(Π,ω). (VI-75a) 

Similarly, we split the two-way Green's wave fields at r. into a 

downgoing and an upgoing part, according to 

W V ' ^ = Γη,Α·Γ·ω> + Tn/V^ ( V I " 7 5 b > 

r o / ( Γ Ι . Λ « ) = Γ+ . (Γ.,Γ,ω) + Γ" . (Ft,F\ci>) (VI-75c) Ω,ω A Ω,ν> A Ω,τ/> A ' k k k 

and, consequently, 

a a a 

It can now be understood that the downgoing wave field Ω (7* ,ω) is given 

by 

- ^ Ω (r A,W) = — J J L ^ -7^-y Φ (r ,α,) 

Φ+(Γ,ω)] + # +
0 , (Ft ,Γ,ω) -—-τ- Φ"(Γ,ω) I dxdy, (VI-76a) - Ω,^ ν Α' p(zQ) av J ZQ 

(see Figure V - l l a for the acoustic equivalence, where —:—Ω =P ), whereas 

the upgoing wave field Ω (ΐ"Λ,ω) is given by 
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J J L ^ζ P(z ) -^-«"(?>) = - \ J J | " ' y
a r 77TT · !?>) 

+ * Ό , ( ϊ 1 · Γ · ω ) * b *α ( Γ - ω ) ] z d x d y · <VI-76b> l.*e - o' - -o 

(see Figure V - l l b for the acoustic equivalence, where —:—Ω~=Ρ"). In the 

following we only consider equation (VI-76a), which we rewrite in a 

slightly more general notation, according to 

-z ·ω) 1 .+, , 2 f fPWX'y-Zl ; X'-y''Z'= Zo; 

J in -tv> * -

1 ^ + , , , v —:—;—; :Φ (x ,y ,ζ ;ω) p ( x \ y \ z Q ) o' 

+ # + ( χ , γ , ζ - χ ' , γ ' , ζ ; ω ) - π Λ r - Φ + ( χ \ γ \ ζ ;ω)| dx'dy'.(VI-77a) 
~Ωι6 Γ ° P(x ,y ,ζ ) αν ο' Ί 'Ω,* 

Note that we replaced the laterally invariant mass density at z by the 

laterally variant mass density p(x\y' ,z ). We did this to enlarge the 

analogy with the acoustic one-way Rayleigh II integral (V-51a). Opposed to 

(V-51a), the elastic one-way Rayleigh II integral (VI-77a) is not longer 

exact when the medium parameters at z are laterally variant and/or 

anisotropic, because the separation into independent pure P- and S-waves 

at z is not longer possible. Despite of this small shortcoming, we will 

use expression (VI-77a) as the basis for elastic forward extrapolation of 

downgoing waves from depth level z to depth level z. (with z.>z , see 

Figure V-12a for the acoustic equivalence, where —:—Ω =P ). A similar 

expression can be derived for elastic forward extrapolation of upgoing 

waves from depth level z. to depth level z (see Figure V-12b for the 

acoustic equivalence, where —— Ω =P~), yielding 
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j-JPWx'y'zo:x''y''z'= 

-oo L 
— Ω ( X . y . Z ;ω) = r~ I I I ** — : —;—: : :Φ ( x ' . y ' . Z ' w ) 

v , j , 0* / 2 J J I dz' p(x',y' ,z,)  v '* ' Γ ' 

+ ^ f (x,y,z n;x',y',z t;a;) n , v , ^ ^ , Φ'ίχ' ,γ ' ,ζ^ω)j dx'dy'.(VI-77b) JL 
"Ω,* V A , J , V A " ' T w ' p ( x \ y \ z j ) 

In the derivation of (VI-77a) the upperhalf-space (z<z ) was chosen 

reflection free for the Green's wave field. Accordingly, in the derivation of 

(VI-77b) the lower half-space (z>z.) was chosen reflection free for the 

Green's wave field. In the following we will choose for both Green's wave 

fields one and the same reference medium which is reflection free in the 

upper half-space (z<z ) as well as in the lower half-space (z>z.) . With this 

choice, the reciprocity principle for the Green's wave fields reads 

Tj J(X ,y ,ζ ΐ χ , , γ . , ζ ' ω ) = Γ. . ( χ . , ν . , ζ ' χ ,y ,ζ ;ω), (VI-78a) 
φ,φ o J o o' Γ Μ ' Γ ' φ,φχ 1" Γ Γ o^o o 

Γ~, y(x ,y ,ζ ίχ . ,γ . , ζ , ιω) = Γ, . ( χ . , ν . , ζ ' χ ,y ,ζ ;ω), (VI-78b) 
φ φκ o' Jo' o' VJ Γ Γ ' φ,ψκ Γ ' Γ Γ ο 'Ό' ο' '* v ' 

r"l , (x ,y ,ζ ί χ . , γ . , ζ - ω ) = Γ, . ( χ , , γ , , ζ , ι χ ,y ,ζ ;ω) (VI-78c) φ,φ^ o J o o' Γ Μ ' Γ ' Φ^,Φ 1 1 1 o Jo o' ' ' 
h h 

and 

Γ, . (x ,y ,ζ ιχ , ,γ , , ζ , ιω) = Γ, . ( χ , , ν , , ζ ' χ ,y ,ζ :ω). (VI-78d) φ ,é o'"V o' I'M' V ' Φ ,Φ 1 1 Γ ο 'Ό' o' '  y ' 
k h h k 

For the special situation that the medium between z and z. is laterally 

invariant, equations (VI-77a) and (VI-77b) represent spatial convolutions, in 

analogy with (V-54a) and (V-54b) denoted as 

——Ω (χ,γ,ζ.;ω) = W,~ ,(x,y;z,,z :ω) * Φ (x,y,z ;ω) jo; V J Γ ' Ω,<̂ ν ' J ' Γ ο' ' v J o' ' 

+ W* . (x,y;z,,z ;ω) * * +(x,y,z ;ω) (VI-79a) 
Ω,ΐ/» v J* 1 o or J o' 

and 

—:—Ω (x,y,z :ω) = W~ ,(x,y;z ,ζ.;ω) * Φ (χ,γ,ζ,ιω) 

+ W~^ (χ,γ;ζο,ζ1;ω) * ψ'ίχ,ν,ζ^ω), (VI-79b) 
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respectively, where the one-way wave field extrapolation operators are 

given by 

^ A 2 3Γ+, (χ ,γ ,ζ ;o,o,z-z ;ω) 

ν* ( χ ·* ζ ι · ζ ο ; ω ) = - Γ 7 - ; — a i · (VI-80a) 
ω p(zQ) 

W+ f x v z z •0;) = & (x,y,z,;o,o,z *ω) . 
Ύα ω ρ(ζ ) 'α 

, Λ -2 ^Γ- (χ, Υ,ζο;ο,ο,ζ= Ζι;ω) 

V/ x ' y ; V z i ; w ) =^7~, ai 
ω ρ(ζ.) 

(VI-80b) 

(VI-80c) 

and 

Λ -2 
wn,* <*·*ν ζι;ω) = - Τ 7 Τ - n é ί χ^.ζο;ο·°·ζι;ω)· (VI"80d) 

·*α ω ρ(ζ ) ".V>a 

When the medium parameters between z and z. are homogeneous and 

isotropic, then we may substitute the free space solutions (VI-44), yielding 

-jk ΔΓ 

w l /WiV ' = -iF "ST" i ^ " ^ ' (YI"81a) 

o 

-jksAr 1) 

Wt , (x,y;z.,z ;ω) = 5 Λ —^- - ^ — (-^-τ- J , (VI-81b) ι/>Λ,ν> ν ,,Μ Γ ο' ' aß 2π θζ ν ΔΓ J ν ' 7 α ^ ο 

W* ,(χ,ν;ζ, ,ζ ;ω) = W* , (x,y;z, ,z ;ω) = o, (VI-81c) 
φβ,Φ 1 ο' φ,ψ Γ ο' 

-jk ΔΓ 
Ρ 

W" ,(x,y;z ,ζ.;ω) = - ^ - - / — (-^—τ-—} , (VI-81d) 
φ,φ ο Γ 2π dz. ν ΔΓ y ν ' 

- j k ^ r l) 

%Φ <*·* w"> = -W "à" -si- Î-^ÂH <V I -8 1 e > 
r 0 ' r a r 1 

and 

' Here we made use of the properties e, .£... 5.  n5.=6 0d~=8 Qd and 
3aj jik kß \ αβ 3 α0 ζ 

3aj jik l k β 
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W, ,(x,y;z , ζ · ω ) = W. . (x,y;z ,ζ,;ω) = o, (VI-81f) 

with 

Ar = \ / χ 2 + y 2 + (Zj-z o ) 2 , (VI-81g) 

kp = o;/cp (VI-81h) 

and 

k = ω/c . (VI-8H) 
s s 

Note that for the situation of a homogeneous isotropic elastic medium 

these P- and S-wave field extrapolation operators are identical to the 

acoustic wave field extrapolation operators (V-56a) and (V-56b), with k 

replaced by k or k . Also note that for this situation the following 

relations exist between the one-way operators for downward and upward 

extrapolation: 

* ; , / * · κ ν ν ω ) ■ w^<*'KWw> (VI-82a) 

and 

W+ , (x,y;z, ,z ;ω) = W~ . (x,y;z ,ζ.;ω). (VI-82b) 

According to (IV-56), a convolution in the space-frequency domain 

corresponds to a multiplication in the wavenumber-frequency domain. 

Hence, transforming expressions (VI-79a) and (VI-79b) for laterally invariant 

media to the wavenumber-frequency domain yields 

- 4 - S + ( k ,k ,ζ,;ω) = W* (k ,k ;z , ,z ;ω) $+(k ,k ,ζ ;ω) )ω v x y Γ Ω,0ν χ' y' 1 o x y o 

+WX , (k ,k ;z , ,z ;ω) i + ( k ,k ,ζ ;ω) (VI-83a) 
Ω,ι/> x y Γ ο' αν χ' y o ' 

and 
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- 4 - Ω (k ,k ,z ;ω) = W0 .(k ,k ;z ,z,;c<;)$~(k ,k ,ζ.;ω) ja; v x y o Ω,0ν χ' y' o 1 x y P 

+ W" . (k ,k ;z ,zt;u;)*~(k ,k ,ζ,;ω), (VI-83b) 
Ω,0 x y o' P ' oc x' y' P " v ' 

respectively, where 

Λ #Γ~ j(k »k ,z.;o,o,z=z ;ω) rr,+ ,. . x Λ 2 Ω,0Χ x' y' P o' /Λ„ 0/1 λ W~ ,(k ,k ζ , , ζ ω) = — r ** i , (VI-84a) Ω,ών x' y' 1 ο' ' 2 . λ dz v ' ω ρ(ζο) 

W 0 , (k ,k ζ . , ζ ω) = — ^ En J, (k ,k , ζ . ο,ο,ζ :ω), 
Ω,τ/> χ y 1 ο' 2 , . ^ ' , V V χ y 1 ο' 

' r a J ω ρ(ζ ) a J 

(VI-84b) 

Λ ^Γ^ j(k ,k ,z ;ο,ο,ζ=ζ,;ω) 
«/- / ι ι λ Λ -2 Ω,0ν x y o 1 /ΛΓΤ ΟΑ λ 
w ^ ( k x ' k y ; V z i ; w ) = " Τ Τ ^ al (VI"84c) 

and 

W! . (k ,k ;z ,ζ,;ω) Ä — ^ 1" . (k k z ; 0>ο,ζ ;ω). (VI-84d) Ω,τ/> x y o P ' 2 , λ Ω,0 x y o i α ω PCZ.) a 

When the medium parameters between z and z. are homogeneous and 

isotropic, then we may substitute the free space solutions (VI-45), yielding 

Λ f
 Z»P ~Jk Δ ζ 

W* (k ,k ;z . ,z ;ω) = 2 - ^ - ( ^ r J = e Z , P , (VI-85a) 0,0V x y 1 ' ο' dz v 2jk J ' v ' o J z,p 

-jk Δζ ., 
a r z,s -jk Δζ 

W* . (k ,k ;z , ,z ;ω) = δ Ω 2 -^- ί-^τη J = 5 0 e Z'S , (VI-85b) 
Φβ,Φα

 χ y 1 ο' 7 α/9 dzQ ^ 2jkz s
 J aß , \ ß 

W, ,(k ,k ;z , ,z ;ω) = W* , (k ,k ;z , ,z ;ω) = o, (VI-85c) 
Ψο,Φ x y P o ' ' ^,^ v x' y' P o' ' v ' 
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and 

with 

-jk Δζ ., A 
Λ

 J z,p -jk Δζ 
W" (k ,k ;z ,ζ,;ω) = -2 -£- ( ^ τ η - J = e Z 'P , (VI-85d) 

φ,φτ χ' y' o Γ dz. v 2jk y v ' 

-jk Δζ .. 
Λ

 J z,s - jk Δζ 
WT . (k ,k ;z ,ζ.;ω) = -5 a 2 -£- (-^rrr J = δ Ω e Z ,S (VI-85e) 

VV X y ° l aß dz\ 2jkz s aß 

W" ,(k ,k ;z ,ζ.;ω) = W" , (k ,k ;z ,ζ.;ω) = o, (VI-85f) 
ΨοιΦ x y o Γ ,̂V> x y o Γ ' v ' 

Δζ = | z r z o | = z r z o , (VI-85g) 

and k and k defined as in (VI-45). z,p z,s 

Note that these operators are identical to the phase-shift operators defined 
in (IV-36). 

VI.5.2 Matrix formulation of elastic forward wave field extrapolation 

Consider the elastic one-way Rayleigh II integrals (VI-77a) and (VI-77b) 

which describe forward extrapolation of downgoing and upgoing elastic 

waves, respectively, through arbitrarily inhomogeneous anisotropic solid 

media. In practical situations the wave fields are discretized along the x-

and y-axes. It is shown in Appendix A that integral expressions of the 

form (VI-77a) and (VI-77b) can be replaced by matrix products in the case 

of discretized wave fields. 

We may replace equation (VI-77a) by 

4 - f f + ( Z l ) = W+ . (ζ , , ζ )Φ*+(ζ ) + W* ( ζ . , ζ )Ψ*+(ζ ), (VI-86a) 
}ω v V Ω,0ν 1 o v o Ω,ψ 1 <r a o ' 

where —:—Ω (ζ , ) may stand for Φ (z . ) or Φ Λ (ζ , ) and where the one-way 
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wave field extrapolation matrices are defined as 

0 ^ Ω Λ » ( Ζ1 ' Ζ =Ζ ) - 1 
w n ^ z r V = "Y aT " M (zo> < V I " 8 6 b ) 

ω 

and 
W+ (z z ) ? - #+ (z z ) M - ] ( z ). (VI-86c) 

α ω a 

In a similar way, we may replace (VI-77b) by 

ir^v ■ v /w^v + V* <νζΛν· ( v i - 8 7 a > 
where ——Ω (z ) may stand for Φ (z ) or f Λζ ) and where the one-way jo; v o o β ο' J 

wave field extrapolation matrices are defined as 

9 ar ,(z z=z ) 
wn,*<Vzi> - 4 aT - M ( z i } (VI"87b) 

ω 

and 

,-1 
w - (z z ) = zL <e~ ( ζ . ζ , Ι Μ ' Ί ζ , ) , (VI-87c) 

-►± ->± 
In (VI-86) and (VI-87) vectors Φ (z ) and Φ (z . ) contain the discretized 

+_ 
versions of the monochromatic scalar P-wave fields Φ (x,y,z ;ω) and 

+_ 
Φ (x,y,z*o;), respectively (see Appendix A, section A.2). Similarly, vectors 
-*± —>± 
Φ (z ) and Φ ( ζ , ) contain the discretized versions of the monochromatic or o cr l7 +_ +_ 

S -wave fields Φ (x,y,z ;ω) and Φ (x,y,z,;a;), respectively. Matrices M(z ) 

and M(z.) are diagonal matrices, the diagonal elements representing the 

discretized versions of p(x,y,z ) and p(x,y,zA respectively (see Appendix A, 
section A.3). Matrices I\_ ,(z, ,z ) and & ( ζ . , ζ ) are operator matrices, Ω,^ν Γ ο' —Qj Γ o' 
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each column containing a discretized monochromatic "spatial impulse 

response" Γ η ,(x,y,z 'χ ' ,γ ' ,ζ ;ω) or # Ω . ( χ , ν , ζ ' χ ' , γ ' , ζ ;ω), respectively, as a 

function of (x,y) at z. for an impulsive source at (x' ,y' ,z ), (see Appendix 

A, section A.3). Similarly, matrices Γ~ ,(z , z . ) and £~ , (z , z . ) are J Ω,0ν o Γ ·~Ω,ν> v o r 

operator matrices, each column containing a discretized monochromatic 

"spatial impulse response" Γ~ .(x,y,z ; x \ y \ z ·ω) or #~ , (x,y,z jx ' .y ' . z 'w) , 

respectively, as a function of (x,y) at z for an impulsive source at 

( x \ y \ Z j ) . 

Note that equations (VI-86a) and (VI-87a) for elastic downward and upward 

extrapolation may be elegantly rewritten as 

ψ{ζγ) = W + ( Z l , z o )Ö + (z o ) (VI-88a) 

and 

D' (z o ) = W'(zo ,z1)D"(z1) , 

respectively, where the multi-component data vectors are defined as 

(VI-88b) 

^ ( O and ^"(Zj) 

Φ"( Ζ ι ) 

3?-(z.) x y Γ 

L y 1 J 

(VI-88c) 

and where the multi-component extrapolation operators are defined as 

W + ( z r z o ) = 

W * ( ζ , , ζ ) W * , ( ζ . , ζ ) W * , ( ζ , , ζ ) 
0,0V r o Φ,φ l o' Φ,Ψ l o 

W* , ( z , , z ) W* . ( ζ , , ζ ) Ψ+. . ( ζ , , ζ ) 
ψ .ér V ο' φ ,φ 1 ο φ ,Φ 1 ο' 

χ χ χ x y 

W * , ( ζ . , ζ ) W * , ( ζ , , ζ ) W * , ( ζ . , ζ ) 
φ ,φχ I ο φ ,φ 1 ο φ ,V> 1 ο 

(VI-88d) 

and 
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W"<VZ1> 

W. ,(z ,z.) W. , (z ,z.) W, , (z ,z.) 

WT .(z , z . ) WT , (z , z . ) W, , (z , ζ , ) t/> ,# o V Φ ,Φ o r φ ,φ o V x x x x y 

, W" ,(z , ζ , ) WT , (z , z . ) W" , (z , z . ) , I φ ,ών o Γ φ *Φ o 1 t/> ,tf o 1 J 
*" y y x y y "" 

(VI-88e) 

Note the high degree of similarity with equations (V-61a) and (V-62a) for 

acoustic downward and upward extrapolation: 

Ϋ+(ζ{) = Ψ + ( ζ Γ ζ ο ) ? + ( ζ ο ) (VI-89a) 

and 

P"(z0) = W i z ^ z ^ P ' i Z j ) . (VI-89b) 

For a homogeneous isotropic elastic medium the expressions for the 

multi-component extrapolation operators simplify to 

W ( z r z o ) = 

W z r z o> o 

o w , . (ζ,,ζ ) φ ,φ Γ o7 
X X 

o 

o 

o o WT / ( z P z ) . 
φ ,φ Γ o I 

y y and 

(VI-90a) 

y"<vzi> 

WT ,(z , z . ) <M ο' Γ 

O 

o 

W, , (z , z . ) ψ ,V> o' r 
X X 

o 

o 

o o W , , ( z , ζ , ) , ^ ,Φ o 1 1 
y y 

(VI-90b) 

where the sub-matrices contain the discretized versions of the free space 

Green's wave fields. 

For an arbitrarily inhomogeneous anisotropic elastic medium between z 

and z . , no analytical expressions are available for the Green's matrices. In 
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practice they are obtained as follows: 

1. Define a reference medium which accurately describes the geology 
between depth levi 
this depth interval 
between depth levels z and z. and which in non-reflecting outside 

2a. Solve numerically the two-way wave equation (VI-31), 

Ψα^ι\,φ> - »9ΚΦ = - iy^')V< r- r , ) V( t ) < (VI"91a) 

imposing initial conditions 

g. .(r ,r \ t ) = o for t<o (VI-91b) 

and 

^g . .(Γ,Γ',Ο = o for t<o. (VI-91c) 

The source-term in the right-hand side of equation (VI-91a) 
represents an impulsive monopole P-wave source at r ' (see Figure 
VI-2b). By choosing r ' at z. one obtains the "spatial impulse 
response" g. .(χ,ν,ζΐχ',γ',ζ'βζ'ί). For z=z this Green's wave field is 
purely upgoing, which we denote by g. ,(x,y,z=z ;x\y\z'=z.;t) . 

2b. Solve numerically the two-way wave equation (VI-35), 

h h 

imposing inititial conditions 

g. . (r ,r \ t ) = o for t<o (VI-92b) 

and 

5tg. , (r\r*\t) = o for t<o. (VI-92c) 
h 

The source-term in the right-hand side of equation (VI-92a) 
represents an impulsive monopole S«-wave source at r ' (see Figure 
VI-2e). By choosing r*' at z. one obtains the "spatial impulse 
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response" g. . (x,y,z;x',y',z'=z.;t). For z=z this Green's wave field is 
h _ 

purely upgoing, which we denote by g. , (x,y,z=z ;x',y',z'=z *t). 
h 

3. Apply equations (VI-32b), (VI-33b), (VI-36b) and (VI-37b) to compute 

the Green's potentials at r =(x,y,z=z ), related to the sources at F*' = 

(x',y',z'=z.), according to 

a t \ / r 'r *·*> - - K c ( r ) a i g i , / r 'r ''1)' ( V I ' 9 3 a ) 

(see Figure VI-2c), 

d t \ / r .«■ '.«) - -»(* >ekijajgI,/r -r '·«>· ( V I - 9 3 b ) 

(see Figure VI-2d), 

^φ,φ ( r 'r '·*> ■ "Kc( r )9ϊ\φ ( r 'r '·1)· ( V I - 9 3 c ) 

h h 

(see Figure VI-2f) and 

a t ^ ,Ψ (r >r '>£) = -"(r Κ α ' ρ ϊ , φ ( Γ ·Γ '- ι ) · <VI-93d> 
k h h 

(see Figure VI-2g). 

4. Apply a temporal Fourier transform to these Green's wave fields, 

according to 
oo 

W r , F + > ) = J 'fö,/ i* , ?*' ' t ) e" i W t d t (VI-94a) 
0 

and 
oo 

rn,tf ^ 7 * ' · ^ = ΐι}ι9φ(??'>ν*~}ωΐκ> (vi-94b) 

where Ω stands for φ or ψ,, and determine the modified Green's 
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wave field, according to 

Ζ'α,φ (r -r » = WjÄ*  (Γ ·Γ ''ω)' (VI"95a) 

where d.' for i=l, 2, 3 denotes differentiation with respect to 

x',y',z', respectively. For a fixed frequency ω and for fixed r*' at 

z,, the Green's wave fields Γ" ,(r ,r ',ω) and #~ . (r ,Γ\ω) at z 

each represent one column of the Green's matrices ΓΩ ,(ζ ,z ) and 

—~ntf *VZ1*· resPect ive ly-

5. Repeat steps 2, 3 and 4 for a range of source points r ' at z. , 

yielding the different columns of the Green's matrices. 

6. Apply the one-way reciprocity relations (VI-78), yielding ΓΩ ,(r ',r ,ω) 

and Γ , (r ',r ,ω), where Ω stands for φ or ψ,, and determine the 

modified Green's wave field according to 

£\Φ <r,<r'"> = «3 A e i r n . * (F+''r'w)· (VI-95b) 

For a fixed frequency ω and for fixed r at z , the Green's wave 

fields ΓΩ .(?*',F\u>) and &_ Ω , (F*',?*,^) at z. each represent one 
a + + column of the Green's matrices I\~ ,ίζ.,ζ ) and # ~ , (ζ,,ζ ), Ω,̂ ν Γ ο' —Ω,Φ 1 ο " 

respectively. 

In principle any accurate forward modeling scheme can be used to 

generate the Green's wave fields in step 2. Here we discuss an example 

with finite difference modeling (Kelly et al., 1976; Haimé, 1987). Consider 

the 2-D configuration of Figure VI-6a. A P-wave source is defined at 

ϊ^'^χ',ζ.). Subsequently, the discretized 2-D version of wave equation 

(VI-91) is solved numerically by a "marching on in time" procedure. The 

waves arriving at the surface z represent the Green's velocity vector 

r;(x,z o ;x\z i ; t ) . 
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layer nr 

1 

2 

3 

velocities 
Cp=2600 m/s 
Cs=1500 m/s 
Cp=3200 m/s 
Cs=1900 m/s 

Cp=3200 m/s 
Cs=1900 m/s 

layer nr 

4 

5 

6 

velocities 
Cp=2800 m/s 
Cs=1600 m/s 
Cp=3000 m/s 
Cs=1800 m/s 

Cp=3600 m/s 
Cs=2078 m/s 

(a) 

Figure VI-6: For an inhomogeneous elastic medium, the Green's wave fields must be 

determined numerically, for instance by finite difference modeling: 

a. 2-D inhomogeneous medium with a Green's P-wave source at (χ',ζ.) 

b. Vertical component of the band-limited Green's velocity at z 

c. Horizontal component of the band-limited Green's velocity at z 

d. Band-limited Green's P-wave potential at z 

e. Band-limited Green's SV-wave potential at z . 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



253 

layer nr 

1 

2 

3 

velocities 
Cp=2600 m/s 
Cs=1500 m/s 

Cp=3200 m/s 
Cs=1900 m/s 

Cp=3200 m/s 
Cs=1900 m/s 

layer nr 

4 

5 

6 

velocities 
Cp=2800 m/s 
Cs=1600 m/s 
Cp=3000 m/s 
Cs=1800 m/s 

Cp=3600 m/s 
Cs=2078 m/s 

(a) 

Figure VI-7: a. 2-D inhomogeneous medium of Figure VI-6a, this time with an SV-wave 

source at (x\z.). 

b. Vertical component of the band-limited Green's velocity at z 

c. Horizontal component of the band-limited Green's velocity at z 

d. Band-limited Green's P-wave potential at z 

e. Band-limited Green's SV-wave potential at z . 
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Figures VI-6b and VI-6c show band-limited versions of the Green's velocity 

components g ,(x,z ;x' ,z.;t) and g Λχ,ζ ;x ' ,z*t ) , respectively, for fixed 

x'. Finally, the Green's velocity wave field is decomposed into Green's P-

and S -wave potentials , using 2-D versions of equations (VI-93a) and 

(VI-93b), respectively. 

Figures VI-6d and VI-6e show band-limited versions of the Green's P- and 

S -wave potentials 7 , ,(x,z ;x' ,z.;t) and 7"̂  ,{x,z ;x' ,z . ; t ) , respectively, for 

fixed x'. Note that the potential wave fields (Figures VI-6d and VI-6e) are 

significantly less complex than the velocity wave fields (Figures VI-6b and 

VI-6c). 

The 2-D configuration of Figure VI-6a is shown again in Figure VI-7a, this 

time with an S -wave source defined at r '=(x',z,) . The 2-D version of y v Γ 
wave equation (VI-92) is solved numerically, yielding g~ . (x,z ;x' ,z.;t) and 

y 
g , (χ,ζ ;χ',ζ ;t), see Figures VI-7b and VI-7c. The 2-D versions of 

y 
equations (VI-93c) and (VI-93d) yield the Green's P- and S -wave potentials 

7 , , (x,z ;x',z *t) and 7 . , (x,z ;x' ,z . ; t ) , respectively, see Figures VI-7d and 
y y' y 

VI-7e. Note again that the potential wave fields (Figures VI-7d and VI-7e) 

are significantly less complex than the velocity wave fields (Figures VI-7b 

and VI-7c). 

In chapter VIII, section VIII.4.6, we use these results in an example of 

elastic inverse extrapolation of P- and S-wave fields. 

In this example we used the finite difference approach for illustrative 

purposes only. For practical applications we recommend to generate the 

Green's wave fields by elastic Gaussian beam modeling, similarly as 

discussed in section V.5.2 for the acoustic situation. 

' In the 2-D situation S -wave potentials are equivalent with SV-wave 

potentials. 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



255 

VI.6 REFERENCES 

Aki, K., and Richards, P.G., 1980, Quantitative seismology: W.H. Freeman 

and Co. 

Berkhout, A.J., 1986, Seismic inversion in terms of pre-stack migration and 

multiple elimination: Proceedings of the IEEE, 74, 415 - 427. 

Burridge, R., and Knopoff, L., 1964, Body force equivalents for seismic 
dislocations: Bull. Seis. Soc. Amer., 54, 1875 - 1888. 

De Hoop, A.T., 1958, Representation theorems for the displacement in an 

elastic solid and their application to elastodynamic diffraction theory: 

D.Sc. thesis, Delft University of Technology. 

Haimé, G.C., 1987, Full elastic inverse wave field extrapolation through an 

inhomogeneous medium: M.Sc. thesis, Delft University of Technology. 

Kelly, K.R., Ward, R.W., Treitel, S., and Alford, R.M., 1976, Synthetic 

seismograms: a finite difference approach: Geophysics, 41, 2 - 27. 

Kuo, J.T., and Dai, T.F., 1984, Kirchhoff elastic wave migration for the 

case of noncoincident source and receiver: Geophysics, 49, 1223 -

1238. 

Pao, Y.H., and Varatharajulu, V., 1976, Huygens 1 principle, radiation 

conditions, and integral formulas for the scattering of elastic waves: 

J. Acoust. Soc. Am., 59, 1361 - 1371. 

Wapenaar, C.P.A., and Haimé, G.C., 1989, Elastic extrapolation of primary 
seismic P and S waves: Geophysical Prospecting, 37, in press. 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



This page intentionally left blank

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



VII 
ACOUSTIC INVERSE WAVE FIELD EXTRAPOLATION 
IN LOW CONTRAST MEDIA 

VII.l INTRODUCTION 

In chapter V we discussed acoustic forward wave field extrapolation 

operators W (ζ . , ζ ) and W (z ,z . ) that simulate the downward and upward 

propagation effects, respectively (see Figure VII-1). These operators were 

derived from the acoustic Kirchhoff-Helmholtz integral (V-31a), which 

contains a forward propagating Green's wave field. 

<& >Fl· 
,W>(.,.z0) Tw"<Vi' 

^ ^ 

(a) (b) 
Figure VII-1 : Forward wave field extrapolation operators simulate propagation effects of 

downgoing waves (Figure a) and upgoing waves (Figure b). 

One-way seismic inversion techniques, such as migration (Berkhout and Van 

Wulfften Palthe, 1979; Berkhout, 1985) or redatuming (Berryhill, 1984; 

chapters XI and XII of this book) are essentially based on inverse wave 

field extrapolation. In this chapter we discuss acoustic inverse wave field 

extrapolation operators F (z , z . ) and F~(z.,z ) that eliminate the downward 

and upward propagation effects, respectively (see Figure VII-2). 

<& *Fl· 
| F+(z0,Zl) | F-(Z l .z0) 

(a) (b) 

Figure VII-2: Inverse wave field extrapolation operators eliminate propagation effects of 

downgoing waves (Figure a) and upgoing waves (Figure b). 
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Ideally, these inverse wave field extrapolation operators are directly 

related to the forward wave field extrapolation operators, according to 

F + ( z o , Z l ) = [ W ^ z j . z ^ ] " 1 (Vn 

and 

F"(z r z o ) = [ W i z ^ Z j ) ] " 1 . (VII 

There are two important reasons, however, why we do not use these 

equations in practice: 

1. Operators W (z z ) and W(z ,z . ) are often based on the true 

parameters K and p of the medium between z and z . , which are 

unknown in the inverse problem. 

2. Inversion of the forward extrapolation operators, as formulated by 

equations (VII-la) and (VII-lb), is unstable. 

Fortunately, since operators F and F need to eliminate propagation 

effects only, it is justified to replace the true medium (K, p) by a 

geologically oriented reference medium (K,p), thus ignoring scattering 

effects related to the deviation parameters (ΔΚ, Δρ). Hence, in order to 

perform inverse wave field extrapolation it is not necessary to have 

detailed knowledge of the true medium: knowledge of a geologically 

oriented reference medium (the macro subsurface model, Berkhout, 1986), 

will suffice. Although this demand is much less severe, it should not be 

underestimated. In fact, the success of seismic processing depends largely 

on the accuracy of the available macro subsurface model. Therefore much 

research is being carried out on improving macro model estimation 

techniques (Faye and Jeannot, 1986; van der Made et al., 1984; Cox et 

al., 1988). A discussion on macro model estimation is beyond the scope of 

this book. We will assume throughout that an accurate description of the 

macro subsurface model is available. Moreover, to concentrate on the 

inverse problem as defined by equations (VII-la) and (VII-lb), in the 

following derivations we will not distinguish explicitly between the macro 

subsurface model and the true medium. In this chapter we discuss the 
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acoustic inverse extrapolation problem for increasing complexity of the 

medium. First we show for a homogeneous medium that stable inverse 

extrapolation operators may be obtained simply by taking the complex 

conjugate of the forward operators. It is shown that this elegant solution, 

which is commonly known as the matched filter approach, imposes a 

restriction to the maximum obtainable spatial resolution. Next we consider 

the situation in which the medium parameters depend on the depth 

coordinate only. We show that, with a small modification, the matched 

filter approach is valid for smoothly varying medium parameters. We also 

analyse the limitations of the matched filter approach for a medium that 

contains high contrasts. Finally, we consider the situation in which the 

medium parameters depend on the lateral coordinates as well as on the 

depth coordinate. Our starting point is the acoustic Kirchhoff-Helmholtz 

integral (V-31b) that contains a backward propagating Green's wave field. 

Although the derivation is completely different, we arrive again at inverse 

extrapolation operators which are the complex conjugate of the forward 

extrapolation operators and which have restrictions with respect to the 

maximum obtainable spatial resolution. Again we analyse the limitations for 

a medium that contains high contrasts. In chapter IX we will modify the 

acoustic inverse extrapolation operators for the latter situation. The 

operators derived in chapters VII and IX play an essential role in chapter 

XI, where we discuss an acoustic processing scheme for single-component 

seismic data. 

VII.2 ACOUSTIC INVERSE WAVE FIELD EXTRAPOLATION IN LATERALLY 

INVARIANT MEDIA 

VI1.2.1. Homogeneous media 

For a homogeneous acoustic medium, forward extrapolation of downgoing 

waves (Figure VII-la) may be described by a spatial convolution along the x-

and y-axis, according to 

oo 

P+(x,y,Zl;o;) = J J W ^ x - x ^ - y ' i Z j ^ ^ P ^ x ' ^ z ^ d x ' d y ' , (VII-2a) 
-oo 
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or, symbolically, 

P+(x,y,Zl;w) = \ν +(χ,ν;ζ Γζο;ω) * Ρ+(χ,γ,Ζ();ω), (VII-2b) 

where 

W+(x,y;z,,z ;ω) = - ^ ^— (̂ —r ) , (VII-2c) v J' 1 o 2π dz v ΔΓ J V ' o 

with 

x /"2 2 " 2̂ 
Ar = V x + Y + (ζι~ζ

0) 
(VII-2d) 

and 

k = ω/c, (VII-2e) 

see equations (V-53) to (V-56). Similarly, the expression for forward 

extrapolation of upgoing waves (Figure VII-lb) reads 

oo 

P"(x,y,z ;ω) = J J W~(x-x\y-y';z ,z ;a;)P"(x\y\z ;o;)dx'dy\ (VII-3a) 
-oo 

or, symbolically, 

P (x,y,zQ;u;) = W (x,y;z ,ζ^ω) * P (χ,γ,ζ^ω), (VII-3b) 

where 

W (x,y;z ,ζ^ω) = W +(x,y;Zj,z ;ω). (VII-3c) 

Following Berkhout and Van Wulfften Palthe (1979), we describe inverse 

extrapolation of downgoing and upgoing waves (Figures VII-2a and VII-2b) 

as spatial deconvolution processes along the x- and y-axis, in the symbolic 
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notation 

Γ. + / X ^ + Ζ Λ ^. + / Ρ (x,y,z ;ω) = F (x,y;z ,ζ.;ω) * Ρ (x,y,z ·ω) (VII-4a) 

and 

P"(x,y,z ;ω) = F"(x,y;z rz ;ω) * Ρ (x,y,z ;ω), (VII-4b) 

where the deconvolution operators F and F are defined implicitly by 

F+(x,y;z o,z i ;a;) * W+(x,y;z1,z();a;) = 6(x)S(y) (VII-5a) 

and 

F (x ,y ;z r z ;ω) * W (x,y;z ,ζ^ω) = 6{x)8(y) . (VII-5b) 

Note that, in analogy with (VII-3c), 

F (x,y;z. ,z ;ω) = F (x,y;z ,ζ.;ω). (VII-5c) 

To find explicit expressions for operators F and F , we make use of 

equation (IV-56), which states that a convolution integral in the space-

frequency domain corresponds to a multiplication in the wavenumber-

frequency domain. Hence, transforming the expression for forward 

extrapolation of downgoing waves to the wavenumber-frequency domain 

yields 

P+(k ,k ,ζ,;ω) = W+(k ,k ;z , ,z ;w)P+(k ,k ,ζ ;ω), (VII-6) 
v x' y' Γ ' v x' y' Γ o' ' v x' y ο' " ' 

where, according to (V-59), 

W+(k ,k ;z , , z ;ω) = exp(-jk Δζ), (VII-7a) 
v x' y' Γ ο' v J z " 

with 
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= + Vk - k - k x y 
c , 2 . 2 . 2 for k +k <k , x y- (VII-7b) 

k = - j \ / k 2 + k2 - k2 for k?+k2>k2 

x y x y (Vn-7c) 

and 

Δ ζ = Ι ζ , - ζ I = z . - z . 1 1 o1 1 o (VII-7d) 

The amplitude spectrum of operator W is shown in Figure VII-3. Note 

that this spectrum is constant for the propagating wavenumber area: 

| W + ( k ,k ; z , , z ;ω)| = 1 1 v x y ' 1 ' o' 
r | 2 , 2 , 2 for k +k <k , x y - (VII-8a) 

whereas it is exponentially decaying for the evanescent wavenumber area: 

|W+(k ,k ;z , ,z ;ω)| = exp [ - \ /k 2 + k2 - k2 Δ ζ ] for k2+k2>k2 . 1 v x' y' Γ o' n L v x y J x y (VII-8b) 

Figure VII-3: a. Amplitude spectrum of the forward wave field extrapolation operator 
W+(k ,k ;z„z ;ω) K x y Γ o / 

b. Cross-section for k =o. 
y 
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Similarly, transforming the expression for inverse extrapolation of downgoing 

waves to the wavenumber-frequency domain yields 

P+(k ,k ,ζ ;ω) = F+(k ,k ;z ,z,;u;)P+(k ,k ,ζ,;ω), (VII-9) 
v x' y' o x y o Γ ' v x y 1' v ' 

where the operator F is defined by 

F+(k ,k ;z ,zt;w)W+(k ,k ;z , ,z ;ω) = 1. (VII-10) 
x' y' o Γ ' v x y' 1 o' ' v ' 

Hence, the explicit expression for F reads 

F+(k ,k ;z ,ζ,;ω) = l/W +(k ,k ;z . ,z ;ω) = exp(+jk Δζ) , (VII-11) 
v x' y' o 1 ' v x y* Γ ο' z ' v ' 

with k and Δζ as defined in (VII-7). The amplitude spectrum of operator 

F is shown in Figure VII-4. Note that this spectrum is constant for the 

propagating wavenumber area: 

|F+(k ,k ;z ,ζ,;ω)| = 1 for k 2+k2<k2, (VII-12a) 
1 v x' y' ο' Γ n x y v ' 

whereas it is exponentially growing for the evanescent wavenumber area: 

|F+(k ,k ;z ,ζ,;ω)| = exp [ + V k 2 + k2 - k2 Δ ζ ] for k 2+k2>k2. (VII-12b) 
1 x y' o 1 L x y J x y 

| | i F + i 

Figure VII-4: Amplitude spectrum (cross-section for k =o) of the exact inverse wave 
***■/■ field extrapolation operator F (k ,k ;z ,ζ .;ω). 

Note that this exact inverse operator is unstable. 
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Expression (VII-11) for the inverse extrapolation operator F is exact, but 

it is unpractical for the following two reasons: 

1. In practical situations seismic data contain noise. Hence, expression 

(VII-9) for inverse extrapolation should be modified according to 

P+(k ,k ,ζ ;ω) = F+(k ,k ;z ,z,;u;)[P+(k ,k ,ζ,;ω) + N(k ,k ,ζ,;ω)Ί, (VII-13) v x y ο' ' v x y' o Γ L x y 1 x y 1' '-■ v ' 

where N represents the noise spectrum in the wavenumber-frequency 

domain. In the evanescent wavenumber area the amplitude of the wave 

field is generally far below the noise level: 

|P+(k ,k ,ζ.;ω)| « |N(k ,k , ζ ·ω) | for k2+k2>k2. (VII-14) 
1 v x y 1' " ' v x y' Γ " x y v ' 

Hence, in the evanescent wavenumber area the exponentially growing 

inverse operator acts mainly on the noise term. This is unacceptable. 

2. The inverse extrapolation operator F in the space-frequency domain is 

related to the inverse extrapolation operator F in the wavenumber-

frequency domain via the inverse double spatial Fourier transform: 

F 
i r c -j(k x+k y) 

+(x,y;z ,ζ.;ω) = ~hr \\ F+(k ,k ;z ,ζ,;ω)β X y dk dk . (VII-15) 
v '■" o Γ ' . 2 J J v x' y' o Γ ' x y 4π -οο 

The integral in the right-hand side of this equation "explodes" for the 

exponentially growing function F . Hence, it is not possible to find an 

exact expression for the inverse extrapolation operator F in the 

space-frequency domain. 

Berkhout (1985, chapter VII) discusses three methods to stabilize the 

inverse extrapolation operator, namely: 

. band-limited inversion, 

. least-squares inversion, 

. matched filtering. 

Here we only discuss the matched filter approach. In this approach the 

inverse operator is approximated by taking the complex conjugate of the 
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forward operator, hence 

<F + (k ,k ;z ,ζ,;ω)> = [ W + ( k ,k ; z , , z ;ω)Ί . v x y' o Γ ' L v x' y' Γ o J (Vn-16) 

Here the notation <F > denotes that the matched filter is an 
approximation of F . 

Note that for the propagating wavenumber area, where k is real (see 

equation (VTI-7b)), this operator reads 

~+ 2 2 2 <F (k ,k ;z ,z,;u>)> = exp(+jk Δζ) for k +k <k . v x y' o' Γ ' v J z ' x y (VII-17) 

Comparing this expression with (VII-11) learns that operator <F > is exact 

for the propagating wavenumber area. The amplitude spectrum of operator 

<F > is shown in Figure VII-5. Note that this spectrum is exponentially 

decaying for the evanescent wavenumber area. Hence, the matched inverse 

operator <F >, as defined by (VII-16) is a stable, spatially band-limited 

approximation of the exact inverse operator F as defined by (VII-11). 

__y\ 
Î I<F + > I 

k___ 
-k 

Figure VII-5: Amplitude spectrum (cross-section for k =o) of the matched inverse wave 

field extrapolation operator <F (k ,k ;z fz -ω)>. 

Note that this matched inverse operator is stable. 

Substituting (VII-16) into (VII-15) yields 

<F (x,y;z ,ζ,;ω)> 
Γ °° 
I — -̂=- / / W+(k ,k ;z.,z ;ω)< 
I A 2 J J v x y 1 ο' 4ττ -oo 

+j(k x+k y) -j 
e y dk dk 

x y_ 
, (VII-18a) 

1) We speak of a stable spatially band-limited approximation because the 
matched inverse operator is exact only for the propagating 

2 2 2 2 2 2 wavenumber area k +k <k and attenuates for k +k >k . x y x y 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



266 

<F+(x,y;zo,Zl;a;)> = \yi+(-x,-y;zvz ;ω\\ , (VII-18b) 

or, since W is an even function of x and y (see equations (VTI-2c) and 

(Vn-2d)), 

<F+(x,y;z o,zi;a;)> = [\ν +(χ,Υ;Ζ ι ,ζο;ω)] *. (VU-19a) 

Similarly, 

<F"(x,y;zrzo;u;)> = [w"(x,y;z .Zjîw)] . (VII-19b) 

Hence, also in the space-frequency domain, stable inverse operators are 

obtained simply by taking the complex conjugate of the forward operators. 

This is also true if we use the matrix notation, described in Appendix A. 

In this notation, equations (VII-2) and (VTI-3) for forward extrapolation read 

Ϋ+(ζ{) = W+(zrzo)P*+(zo) (VII-20a) 

and 

P"(z0) = W*(z o ,z 1)P'(z 1) , (VII-20b) 

respectively, see section V.5.2. Similarly, in this notation equations (VII-4a) 

and (VII-4b) for inverse extrapolation read 

r + ( z o ) = F + ( z o , Z l ) r + ( Z l ) (VII-21a) 

and 

P (Zj) = F ( z r z o ) P (z o) , (VII-21b) 
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respectively, where ideally operators F and F are the inverse versions of 

operators W and W", see equations (VII-la) and (VII-lb). In analogy with 

(VII-19), however, stable spatially band-limited inverse operators are given by 

<F + (z o , Z l )> = [ W + ( Z l , z o ) ] * (VII-22a) 

and 

<F"(zrzo)> = [W"(z o ,Z l ) ] , (Vn-22b) 

respectively. 

Finally, following Berkhout (1984), we show that the spatial band-limitation 

of the matched inverse operators imposes a restriction to the maximum 

obtainable spatial resolution. 

Equation (VII-5a), 

F+(x,y;z o,z i ;u/) * ^(χ^ζ^^ω) £ 5(x)5(y), (VII-23a) 

states that the ideal inverse extrapolation operator F perfectly 

compensates for the lateral smearing effect caused by the forward 

extrapolation operator W (the "spatial wavelet"). If we replace F by the 

matched inverse operator <F >, then the spatial delta function in the 

right-hand side of equation (VII-23a) is "smeared" along the x- and y-axis, 

hence 

<F+(x,y;z ,z,;w)> * W +(x,y;z,,z ;ω) = d (x,y;w), (VII-23b) 
v ' ·" o 1 1 o o 

where d (x,y;o;) is a spatially band-limited version of 5(x)5(y). The "width" 

of this spatially band-limited delta function determines the maximum 

obtainable spatial resolution. To find an explicit expression for d , we 
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transform equation (VII-23b) to the wavenumber-frequency domain, yielding 

<F+(k ,k ;z ,z,;w)>.W +(k ,k ;z , ,z ;ω) = d (k ,k ;ω), (VII-24a) 
x y' o 1 x y 1 o ' o x y 

or, upon substitution of (VTI-7) and (VII-16), 

d (k ,k ;ω) = 1 for k2+k2<k2 (Vn-24b) 
o x y x y~ 

and 

d (k ,k ;ω) = exp [-2\ /k 2 + k2 - k2 Δ ζ ] for k 2+k2>k2, (VII-24c) 
o x y L- x y J x y 

with 

k = ω/c (VII-24d) 

and 

Δζ = IZj-zJ . (VII-24e) 

We apply an inverse double spatial Fourier transform to d to obtain an 

expression for d in the space-frequency domain. Hence 

i r c -j(k x + k y) 
d (x,y;w) = - Λ - / / d (k ,k ;ω)β X y dk dk . (VII-25) ov J* ' λ 2 J J ov x y' ' x y v ' 4π -c» 3 3 

In the following we assume that the extrapolation stepsize Δζ is 

sufficiently large (Δζ>λ, where λ represents the wavelength) so that 
2 2 2 d (k ,k ;ω)«ο for k +k >k , see Figure VII-6a. o x y x y 
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Figure VI1-6: Spatial resolution of "matched inverse extrapolation". 

a. Spectrum of the spatially band-limited inversion result. 

b. Spatially band-limited inversion result. 

c. Cross-section for y=o. 
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We introduce polar coordinates, according to 

x = r cos<£, (VII-26a) 

y = r sin<£ (VII-26b) 

and 

k = k cos0, (VII-26c) 
x r v ' 

k = k sin0. (VII-26d) 

Then 

k 2?r .. ,Λ 
- -jk rcos(0-1 r Γ r -Jkrcos(0-tf>) 1 

d (Γ,*;ω) = - ^ - J J e άθ k dk 
air n I· n J 4π o L o 

Jj (wVx + y / c ) 

oN c 
_ . / z 27TVX + "" 

(VII-27a) 

k _ π 

do(r,0;a;) = - ^ r J [ ^ J cos(krrcos0)d0 J krdkr, (VII-27b) 

or, using Abramowitz and Stegun (1970, equation 9.1.18), 

d (r.fcw) = -ις— J k J (k r)dk , (VII-27c) o 2π J r o r ' r' v y 
o 

where J is the zeroth-order cylindrical Bessel function, or, using 

Abramowitz and Stegun (1970, equation 9.1.30), 

J,(kr) 
do(r,#;W) = k - ^ - , (VII-27d) 

where J. is the first-order cylindrical Bessel function. 
Finally, returning to Cartesian coordinates, we obtain 

d (χ,Υ;ω) = ^ — — = = = , (Vn-28) 
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see Figure VII-6b. Note that the width of the main lobe of this spatially 

band-limited inversion result equals approximately 6Λ/5 (Figure VII-6c). 

VII.2.2 Vertically inhomogeneous media 

For a vertically inhomogeneous (i.e., laterally invariant) acoustic medium, 

forward extrapolation of downgoing and upgoing waves (Figure VII-1) may 

again be described by spatial convolutions along the x- and y-axis, in the 

symbolic notation 

P^x.y.Zj;«) = \ν+ (χ ,ν;ζΓζ ο ;ω) * P+(x,y,zQ;u;) (VII-29a) 

and 

Ρ"(χ,ν,ζο;ω) = W (x,y;z .Zj;«) * Ρ'ίχ,ν,ζ^ω), (VII-29b) 

respectively, where 

0 dG (x,y,z ;o,o,z=z ;ω) 
W+(x,y;z l fz0;«) Ä - ^ ^ °— (VII-30a) 

and 

Λ dG (x,y,z ;ο,ο,ζ=ζ,;ω) 
Λ -2 v J o3 1 

!1> 
W (x ,y;z 0 , z i : «) = - ^ £ '—, (VII-30b) 

see equations (V-53) to (V-55). In equation (VII-30), G and G~ represent 

the one-way Green's wave fields, see section V.5.1. For a laterally 

invariant medium, they satisfy the following reciprocity relation 

G~(x,y,z ;ο,ο,ζ.;ω) = G (x,y,z.;o,o,z ;ω). (Vü-31a) 

Note, however, that unlike for the homogeneous situation, 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



272 

\ν'(χ,γ;ζ ο,Ζι;ω) φ W+(x,y;zrzo;u>). (VII-31b) 

In analogy with (VII-4), inverse extrapolation of downgoing and upgoing 
waves (Figure VII-2) may be described by spatial deconvolution processes 
along the x- and y-axis, according to 

P+(x,y,z ;ω) = F+(x,y;z ,ζ^ω) * Ρ^χ,ν,ζ^ω) (VII-32a) 

and 

P (x,y,z ;ω) = F (x,y;z z ;ω) * P (x,y,z ;ω), (VII-32b) 

respectively. We follow a similar approach as in section VII.2.1 to find 
explicit expressions for operators F and F~. In the 
domain we write, in analogy with equation (VII-11), 
explicit expressions for operators F and F~. In the wavenumber-frequency 

F+(k ,k ;z ,ζ.;ω) = l/W+(k ,k ;z,,z ;u>) (VII-33a) 
v x y' o 1 x y 1 o ' 

and 

F"(k ,k ;z,,z ;ω) = 1/W"(k ,k ;z ,ζ,;ω). (VII-33b) 
x y 1 o x y o Γ v ' 

Again these operators are unstable for the evanescent wavenumber area 
and therefore alternative solutions must be looked for. We assume for the 
moment that the medium parameters are smoothly varying with depth 
between z and z.. Then the forward extrapolation operators W and W 
may be approximated by the WKB-solutions (III-44c) and (III-44d), 
respectively, according to 

W <kx.ky;zltzo;«) « [-j^j [ ^ y j exp J -jkz(z)dz (VII-34a) 

and 
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rWi* rWv ! Zf° 
W (k x .k y ;z o , z i : « ) * [ - ^ y J [ - ^ J exp J +jkz(z)dz, (VII-34b) 

where 

k (z) = +Vk 2 (z) - k2 - k2 for k2+k2<k2(z) (VII-34c) 

and 

kz(z) £ - j \ A j + kj - k2(z) for k 2+k2>k2(z). (VII-34d) 

These expressions break down when k (z) —► o, i.e., when the waves 
Z 1) 

propagate nearly horizontally. Consider the following modified matched 
inverse operators 

<F+(k ,k ;z ,ζ.;ω)> = [w"(k ,k ;z , ζ . ;ω) ]* (VII-35a) 
v x' y' o V ' L x y' o 1' J ' 

and 

<F~(k ,k ;z , ,z ;ω)> = [W+(k ,k ;z , ,z ;ω)Ί * , (VII-35b) 
v x y' 1 o L x y' 1 o' / J ' v ' 

respectively. It can be easily seen from equations (VTI-34a) and (VII-34b) 

that operators <F > and <F > are identical to operators F and F , 

respectively, for propagating waves, i.e., for real k (z) on the entire 

interval (z , z . ) . Furthermore, for evanescent waves they have the same 

stable amplitude behaviour as the forward extrapolation operators W and 

W , respectively. Hence, for smoothly varying vertically inhomogeneous 

media, the modified matched inverse operators <F > and <F >, as defined 

by (VII-35a) and (VII-35b), respectively, represent stable spatially band-

limited approximations of the exact inverse operators F and F , as 

defined by (VII-33a) and (VII-33b), respectively. Transforming equations 

1) We speak of modified matched inverse operators because, unlike in 
the homogeneous situation (equation (VII-16)), the inverse operator for 
downgoing waves is approximated by taking the complex conjugate of 
the forward operator for upgoing waves and vice versa. Of course 
equation (VII-16) is not in contradiction with equation (VII-35a), 
because in the homogeneous situation the forward operators for 
downgoing and upgoing waves are identical. 
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(VII-35a) and (VII-35b) back to the space-frequency domain yields 

<F+(x,y;z0,z1;u;)> = [W(x,y;z ,ζ^ω)] (VII-36a) 

and 

<F"(x,y;zrzo;o;)> = [W + (x ,y;z r z ;ω)] , (VII-36b) 

respectively. Similarly, in the matrix notation we obtain 

<F+(zo,Zl)> = [W"(zo,Zl)]* 

and 

(VII-37a) 

<F"(z1,zo)> = [ W + ( z r z o ) ] * . (VII-37b) 

Let us now investigate the behaviour of the modified matched inverse 

operators for the situation where the medium contains interfaces. For 

simplicity we consider two homogeneous half-spaces, separated by an 

interface at z. (Figure VII-7). In the wavenumber-frequency domain, the 

forward extrapolation operators for downgoing waves (Figure VII-7a) and 

upgoing waves (Figure Vü-7b) read, respectively, 

h+uj° ΐ*"(ζ°·ζι) 

£ l ^ _ H h p — Ί 
n - <Z1> Λ~ 

l w + u 2 . Z l , î W ~ ( z ^ 
^ V 

2 0 

^ ~ ~ * 
(a) (b) 

Figure VII-7 : Forward wave field extrapolation in a vertically inhomogeneous medium, 

containing an interface at z.. 
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W + (z 2 ,z o ) = W + (z 2 , z 1 )T + (z 1 )W + (z r z o ) (VII-38a) 

and 

W (z o , z 2 ) = W ( z o , Z l ) T ( Z l ) W ( z r z 2 ) , (VII-38b) 

where the extrapolation operators for the homogeneous layers are given by 

W + ( z r z o ) = W"(z o,Z l ) = e x p ( - j k z l | z r z o | ) (VII-39a) 

and 

W + (z 2 , Z l ) = W ' ( z r z 2 ) = e x p H k ^ l z ^ Z j l ) (VII-39b) 

and where the transmission operators for the interface at z. are given by 

T + (z . ) = 1 + R +(z,) (VII-40a) 

and 

Τ{ζχ) = 1 - R+(Zj), (VII-40b) 

with reflection operator R (z . ) given by equation (III-50a). Comparing the 

modified matched inverse operator 

<F+(zo ,z2)> ^ [W"(z o ,z 2)] *, (VII-41a) 

with the exact inverse operator 

F + (z o ,z 2 ) = l /W + (z 2 , z o ) , (VII-41b) 

yields for propagating waves (i.e., for real k . and k ^) the following 

relation: 
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<F+(zo,z2)> = [ τ " ( Ζ ι ) Τ + ( Ζ ι ) ] Ρ + ( ζ ο , ζ 2 ) , (VII-41C) 

<F+(zo,z2)> = [1 - ( R + ( Z I ) ) 2 ] F + ( Z O , Z 2 ) . (VII-42a) 

Similarly, 

<F"(z2,zo)> = [1 - ( R + ( Z I ) ) 2 ] F " ( Z 2 , Z O ) . (VII-42b) 

Hence, when the medium contains one or more interfaces, the matched 

inverse operators deviate from the exact inverse operators, even when we 

consider propagating waves only. To be more specific, by applying the 

matched inverse operators, amplitude errors are introduced which are 

proportional to the squared reflectivity of the interfaces (equation (VII-42)). 

In the following we will refer to these errors as second order amplitude 

errors. When the contrasts at the interfaces are low , these second order 

amplitude errors are negligible, so the matched inverse operators are 

applicable for media with low contrasts. On the other hand, when the 

contrasts at the interfaces are significant, the matched inverse operators 

are no longer accurate, so an alternative procedure must be followed. In 

chapter IX we will discuss acoustic inverse wave field extrapolation 

operators for media with high contrasts. 

As an example, consider a density contrast Δρ =  ΡΊ-ρχ = 3 3 
(2750-2250) kg/m = 500 kg/m . Then, according to equation (III-50a), 

R+(Zj) = (2750-2250)/(2750+2250) = 0.1. Hence, [ l - ( R + ( Z l ) ) 2 ] = 0.99, 

meaning that the relative amplitude error of the matched inverse 

operators is 1% for this situation. On the other hand, for a velocity 

contrast of the same magnitude, the relative amplitude error ranges 

from 1% at normal incidence to 100% at the critical angle (55 

degrees), meaning that for this situation the matched inverse 

operators are only valid for moderate propagation angles. 
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VII.3 ACOUSTIC INVERSE WAVE FIELD EXTRAPOLATION IN ARBITRARILY 

INHOMOGENEOUS MEDIA 

VII.3.1 Introduction 

For an arbitrarily inhomogeneous acoustic medium, forward extrapolation of 

downgoing and upgoing waves (Figure VII-1) may be described by the 

acoustic one-way Rayleigh II integrals (V-51a) and (V-51b), according to 

Ρ + (χ ,ν , ζ ·ω) = 

~ r d G + ( x , y , z i ; x \ y \ z ' = z o ; Q ; ) + -i 
2 J J I d? p(x',y',z )  P ^ • . y ' - V 0 ! d X , d y ' (VH-43a) 

-oo *· rv ,J ' 0 J 

and 

P (x,y,zQ;a;) = 

2_J J L dP p(x\y\z.)  Ρ ( χ , · ν ' . ζ Γ ω ) ] d x , d y ' · (VII-43b) 

respectively, where G and G" represent the one-way Green's wave fields, 

see section V.5.1. For the general inhomogeneous situation, inversion of 

these integral equations is not straightforward. In the matrix notation of 

Appendix A, equations (VII-43a) and (VII-43b) may be replaced by 

Ϋ+(ζ{) = W+(z1,zo)P> +(zo) (VII-44a) 

and 

p- (z o ) = W"(z o ,Z l )P"( Z l ) , (VII-44b) 

respectively, where the forward wave field extrapolation matrices are 

defined by 
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3G+(z ,z=z ) 
W + ( Z l , z o ) = 2 fz - M ' ^ z ^ (VII-45a) 

and 

* Γ ( ζ z-z ) 
W ( z o , Z l ) = -2 fz - M Vzj), (VII-45b) 

respectively, see section V.5.2. In this matrix notation, the inverse 

extrapolation problem can be formulated as follows 

r + ( z Q ) = F+(zo ,z1)P> +(z1) (VII-46a) 

and 

p-(Zj) = F"( Z l , z o )P ' (z o ) , (Vll-46b) 

where 

-1 F + ( z n , Z l ) ^ [ W ^ z - . z j ] " 1 (VII-47a) 

and 

F - ( z r z o ) Ù [ w " ( z o , Z l ) ] _ 1 . (VII-47b) 

However, we have seen already for the homogeneous situation that this 

inversion is unstable, so for the general inhomogeneous situation the 

problems may be even larger. Therefore, rather than trying to invert the 

forward problem, in this section we discuss the inverse extrapolation 

problem step by step, using the acoustic Kirchhoff-Helmholtz integral as 

the starting point (Wapenaar et al., 1989). After a number of necessary 

approximations we finally arrive at stable, spatially band-limited inverse 

extrapolation operators which read in the matrix notation 

<F + (z o , Z l )> = [W"(z o , Z l ) ]* (VII-48a) 

and 
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<F"(z rz o )> = [ W + ( z r z o ) ] * , (VII-48b) 

a result which was already found in section VII.2.2 for the situation of 

laterally invariant media. 

VI13.2 Acoustic Kirchhoff-Heimholtz integrals for inverse extrapolation 

In section V.3.2 we have derived the following two equivalent versions of 

the acoustic Kirchhoff-Helmholtz integral, 

P(r^,w) = j —— [CKr\r^,ft;)VP(r\w) - VG(r*,r^,ei;)P(r\ü>)] MUS (VII-49a) 

and 

Ρ(Γ^,ω) = j —— [G (r\r^,w)VP(F\fc/) - VG^r*,r^,w)P(F\tü)] .rTdS. (VII-49b) 

S p ( F + ) 

These expressions describe the acoustic wave field at r. in a source-free 

volume V in terms of the acoustic wave field and its gradient on surface 

S, enclosing V (Figure V-3). In (VII-49a), G represents a forward 
* 

propagating Green's wave field (Figure V-3a); in (VII-49b), G represents a 
backward propagating Green's wave field (Figure V-3b). 

In chapter V we used the Kirchhoff-Helmholtz integral (VII-49a) with the 

forward propagating Green's wave field as a starting point for deriving 

forward wave field extrapolation operators. Here we use the Kirchhoff-

Helmholtz integral (VII-49b) with the backward propagating Green's wave 

field as a starting point for deriving inverse wave field extrapolation 

operators. 

For the half-space geometry of Figure V-4, the backward propagating 

Green's wave field does not obey Sommerfeld's radiation condition on S. 

(see section V.2). Therefore, consider the modified configuration shown in 

Figure VII-8. We assume that an acoustic wave field, radiated by 

(secondary) sources in the subsurface, has been measured on "acquisition 

surface" S . Our aim is to find an expression which describes the acoustic 
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wave field at r. in the subsurface in terms of the acoustic wave field A 
and its gradient on S . We constructed a surface S enclosing a volume V 

such that Ft lies in V and such that V is source-free. Closed surface S A 
consists of "acquisition surface" S , a plane horizontal "reference surface" 

S. at z=z. (between r and the sources of the acoustic wave field) and a 

cylindrical surface S~ with a vertical axis through r. and radius r. For 

this configuration we analyse Kirchhoff-Helmholtz integral (VII-49b), with 

the backward propagating Green's wave field. The contribution of this 

integral over S~ vanishes when r goes to infinity (the cylindrical surface 
2 is proportional to r, the integrand is proportional to 1/r ). So for the 

geometry of Figure VII-8, Kirchhoff-Helmholtz integral (VII-49b) may be 

replaced by 

Ρ(ΓΑ,ω) = Ρ 0 (Γ Α ,ω) + ΔΡ(Γ Α,ω), (VII-50a) 

4 s 0 

'' * & 
Γ"(ζ=Ζι) 

A 
-»· X 

(b) 

Figure VII-8: Modified geometry for the Kirchhoff-Helmholtz integral (VII-49b) with 

the backward propagating Green's wave field. Under certain conditions 

(discussed in the text) the contribution of this integral over S. and S _ can 

be neglected. 

a. Perspective view. b. Cross section for y=o. 
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where 

P (7* ω) = J - [G*VP - VG*P].rTd5' (VII-50b) 
0 A s p 

o 
and 

ΔΡ(Γ^,ω) = J - [G*VP - V G * P ] . i T d 5 r (VII-50c) 
S p 

When Δ Ρ ( Γ ,ω), as defined in (VII-50c), may be neglected, then equation 

(VII-50b) describes inverse wave field extrapolation (towards the sources) 

from acquisition surface S to subsurface point r . In the next section we 

investigate under which conditions ΔΡ(Γ.,ω) may be neglected. 

VII.3.3 Error analysis 

At z=z. (the depth of "reference surface" S.), the acoustic wave field 

consists of upgoing waves P~(r ,ω) (including higher order terms), related to 

the sources below z „ and downgoing waves P (r ,ω) (including higher order 

terms), caused by scattering above z . , hence 

P(r\w) = Ρ+(Γ\ω) + Ρ"(Γ,ω) at z=Zj. (VH-51a) 

For the Green's wave field G we may choose below z=z. (outside V) any 

convenient reference medium. We choose c(x,y,z>z.) = c(x,y,z.) and 

p(x,y,z>z.) = p(x,y,z.). With this choice the Green's wave field at z is 

purely downgoing (the Green's source is situated at r. above z . ; the 

half-space below z. is reflection free), hence 

G(r\r^,a>) = G+(r~\r^,a;) at z=Zj. (VII-51b) 
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Thus we may rewrite equation (VII-50c) as 

ΛΡ(Ϊ>) - Hj [ (GV ( £ ♦ £ ) - (1-Y(P+
+P-)] d*dy. Cvn-52, 

In Appendix B, section B.3, we analyse the interactions between one-way 

acoustic wave fields (P ,P~) and one-way backward propagating Green's 

wave fields ((G+)*, (G~)*) . 

The starting point of this analysis is equation (B-26), which is identical to 

equation (VTI-52) if we choose G"=o and if we replace P by -ΔΡ and z 

by Z-. Hence, if we make the same alterations in the final result 

(equation (B-34b), generalized for laterally varying medium parameters) we 

obtain 

ΔΡ(ΓΑ,ω) « -2 j J [ - ^ - [ ^-^ J P+(r ,w)J z dxdy. (VII-53) 
-oo p(r ) 1 

+ * + 
Apparently, only the wave fields (G ) and P which propagate in opposite 
directions through z=z. contribute to the error term Δ Ρ ( Γ ,ω), see Figure 
VII-9. The underlying assumption is that G (k ,k ,ζ ·χ ,y ,ζ .;ω) or 

x y i /\ /\ /\ 
P (k ,k , ζ 'ω) , or both, are negligible in the evanescent wavenumber area v x y Γ 

(G+)* (G+)* 
Z = ZH Z =Z 

^ 

(a) (b) 

Figure VII-9: Choosing a reflection free lower half-space for G, the Kirchhoff-
Helmholtz integral over z . (VII-52) consists of terms containing the 

+ * -
products of (G ) and P at z=z Ί (Figure a) and terms containing the 

+ * + 
products of (G ) and P at z=z} (Figure b). Only the terms with the 
opposite propagating wave fields at z=z . (Figure b) contribute to the result 
AP(r.tw) [compare with Figure V-7J. 
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2 2 2 k +k >k ( z A This assumption is satisfied when the source of the acoustic 

wave field P and the source (at r . ) of the Green's wave field G are not 

both in the direct vicinity of the "reference surface" £ . , or in other 

words, when F* is not too close to the source of the acoustic wave field A 
P. In the following we replace "»" by "=" whenever the only approximation 

concerns the negligence of evanescent waves. 

Let us first discuss the consequence of this important result for the 

situation of a homogeneous medium. Then no scattering occurs, hence 

P+(F\w) = o at z=Zj (VII-54a) 

and, consequently, 

ΔΡ(ΓΑ,ω) = o. (VII-54b) 

With this result we may rewrite equation (VII-50) as 

Ρ(7^,ω) = Ρ0(Γ^,ω) = ! J [θ*(Γ,?^,ω)νΡ(Γ,ω) - νθ*(Γ,Γ^,ω)Ρ(Γ,ω)] .ndS^ 
S 

o 
(VII-55a) 

where, according to equations (V-22) and (V-26b), 

+ +jkAr 
G (Γ,Γ.,ω) = / e

 Λ , (VII-55b) 
v A ' 4π Ar 

with 

k = ω/c (VII-55C) 

and 

Ar = | Γ-Γ Α\. (VII-55d) 
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This Kirchhoff-Helmholtz integral describes inverse wave field extrapolation 

from acquisition surface S to subsurface point r . . It is interesting to 

note that, in order to arrive at this result, it was essential to make use 

of the backward-propagating Green's wave field G (if we had used G 
* —► —* 

instead of G , then P (rA,u>) would vanish instead of ΔΡ(Γ.,ω), so we ' o A A 
would have obtained a Kirchhoff-Helmholtz integral for forward 

extrapolation from S. to r ). The only approximation in equation (VII-55) 

is a spatial bandlimitation (the negligence of evanescent waves at z ). This 

imposes a restriction to the maximum obtainable spatial resolution, see 

also section VII.2. 

The validity of Kirchhoff-Helmholtz integral (VII-55) is demonstrated with a 

simple example (Peels, 1988). We consider 2-D wave propagation in the 

2-D configuration, shown in Figure VII-10a. The propagation velocity equals 

2000 m/s. The acoustic pressure field of a burried dipole source, measured 

at the curved surface S , is shown in Figure VII-10b as a function of o 
space and time. The normal derivative of the wave field at S is shown 

in Figure VII-10c. Inverse wave field extrapolation to depth level z is 

carried out by transforming the data from the time domain to the 

frequency domain and by applying the 2-D version of equation (VII-55) for 

all points r. at depth level z . and for all frequencies within the seismic 

band. The result, transformed back to the time domain, is shown in Figure 

V n - l l a . It represents a hyperbolically shaped dipole response. In Figure 

VII-lib the maximum amplitude of each trace is shown as a function of 

the lateral position (dotted line). Note the perfect match with the 

analytically computed response (solid line). The very small deviations at 

the edges are due to the limited aperture (ideally S should be of infinite 

extent). Next we used equation (VII-55) to extrapolate the data inversely 

from S to the source depth level z' thus violating the condition that r 

should not be close to the source. 

Figure VII-llc shows the result in the space-time domain. The real part of 

the data at 35 Hz is shown as a function of the lateral position in Figure 

VII-lld (the imaginary part is approximately zero). Note that the dipole 

source (ideally represented by a spatial delta function) is smeared out in 

space, due to the inevitable negligence of the evanescent wave field. 

Theoretically the width of the mainlobe should be equal to the wavelength 
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■►x(m) 
-1500 -1000 

<Z=ZA> 

\î/ 
z(m) (Z=Z'A) 

(a) 

-1500 -1000 

Figure VII-10: a. Homogeneous medium containing a burried dipole source 

b. Pressure field, measured at surface S , as 

c. Normal derivative of the data in Figure b. 
b. Pressure field, measured at surface S , as a function of space and time. 
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x(m) 

1.2 

1.0; 

0.8 

0.6^ 

ampl. 

Î 

-500 

computed 
exact 

0 
i 

500 \ 

(b) ►x(m) 

500 — - x ( m ) 

I ampl. 

! 

^AA/yl 

-500 

ll 

*̂1 1 \ \f\/\/^· -̂ ŝ v^ 

1/ 
0 500 
1 1 

x(m) 

(d) ►x(m) 

1.2-

1.0-

0.8-

0.6 

ampl. 

Î 

-500 
I 

computed 
exact 

0 500 \ 

if) ►x(m) 

Figure VII-11 : a. Inverse extrapolated data at z . (Kirchhoff-Helmholtz integral 

(VII-55)) 

b. Maximum amplitude per trace of Figure a. 

c. Inverse extrapolated data at z' (Kirchhoff-Helmholtz integral 

(VII-55)) 

d. Real part of central frequency component (35 Hz) from data in 

Figure c. 

e. Inverse extrapolated data at z . (Rayleigh approximation) 

f. Maximum amplitude per trace of Figure e. 
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λ. In this example λ equals 2000/35 = 57 m, whereas the width of the 

mainlobe in Figure VII-lld equals 74 m. The small difference is explained 

for the greater part by the limited aperture. Finally we carried out 

inverse wave field extrapolation based upon the Rayleigh approximation. 

That is, we assumed that only the pressure field P(r ,ω) at S is available 

and we approximated equation (VII-55) by replacing P(r ,ω) by 2Ρ(?\ω) and 

by omitting VP(r ,ω). The result at z , transformed back to the time 

domain, is shown in Figure VII-l le. Note that, apart from the expected 

hyperbolically shaped dipole response, some significant artifacts are present 

in these data. The maximum of each trace is shown as a function of the 

lateral position in Figure VII-11 f (dotted line). Note the significant 

amplitude deviations from the exact, analytically computed response (solid 

line). Obviously the Rayleigh approximation is not allowed for the 

configuration of a curved acquisition surface S . In the next section we 

show that the Rayleigh approximation is allowed for a flat surface S . 

We return to the situation of an inhomogeneous medium and continue our 

analysis of the error term ΔΡ(ΓΛ,ω), as defined by equation (VII-53): 

-oo p(r ) 1 

The wave field P (r ,ω) at z. represents a scattered wave field, hence 

Ρ+(Γ,ω) = Ρ*(Γ\ω) at z= Z j , (VII-57a) 

where the sub-script "s" stands for "scattered", (see Figure VII-12a). 

The Green's wave field G+(F\rt ,ω) at z. consists of a term G i r ^ , ^ , ω ) 

which propagates directly from r. to z . (see Figure VII-12b; the sub-script 

"d" stands for "direct") and a term G (τ*,τ*,ω) which is scattered by the 

inhomogeneities above r. before it arrives at z. (see Figure VII-12d). Hence 

G+(f,F^,ü;) = G+(F\r^,w) + G*(F\r^,w) at z = z r (VII-57b) 
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(d) 

S0 ^ ~ ~ ~ 

z = zA 

— = ^ " ~ Λ ~ ~ ^ * ^ - Z ^ 
(G+Γ 
(e) 

^ ^ s 0 

~^T Z = Zt 

Figure VII-12: 

a. The wave field at z. consists of a direct upgoing wave field P, and a scattered 

down going wave field P . 

b. G, at z - represents a Green's wave field which propagates directly from r to z ; . 
a+ % l A l 

c. (G.) at z j represents a Green's wave field which propagates directly back from z . to 

d. G at z j represents a Green's wave field which is scattered during propagation from 

rAt0
t
Zr + 

e. (G ) at z j represents a Green's wave field which is scattered during back-propagation 

from z . to r .. 

Consequently, 

[ G V / A , « ) ] * = [G*(F\ ï^ ,w)] * + [G+(F\ï^,w)] * at z = z r (VII-57c) 

+ * - ► 
Here (G,) propagates directly back from z=z and converges to r from 
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+ *  below') (Figure VII-12c). On t h e  o t h e r  hand, (Gs) 
z=zl, is s c a t t e r e d  by the  inhomogenei t ies  above r A  
f r o m  above (Figure VII-12e). With the  sub-division made  in ( V I I - ~ ~ C ) ,  we 
may rewr i te  (VII-56) as  

propagates  back  f r o m  
+ + 

and converges to  rA 

+ 
A P ( C , w )  = A P  1 A  (7 ,w) t AP2(rA,w), 

where  
00 + + +  

aGd(r ,rA.w) * 
A P , ( C , w )  = -2.f.f [+ ( az 1 P:(7 ,wdz  dxdy 

-w P(r ) 

and 

(VII-5 8 a )  

(VII-5 8 b) 

dxdy. (VII -58~)  

Equat ion (VII-58b) descr ibes  d i r e c t  back-propagat ion of  the t o t a l  downgoing 
wave f ie ld  P i  a t  z 1  to  rA (see also Figure VII-12c). Hence ,  A P 1  
represents  the  total downgoing wave f ie ld  a t  <: 

4 

t-+ AP (7 ,w) = P (rA,w).  1 A  
(VII-59 a)  

Equat ion (VII-58c) descr ibes  back-propagat ion of the  downgoing wave  f ie ld  
P; a t  zl, via t h e  s c a t t e r i n g  medium where  the  propagat ion d i rec t ion  
changes,  to  rA (see also Figure VII-I2e), so AP2 represents  a n  upgoing 
wave f ie ld  a t  TA: 

-+ 

AP2(;lk,w) = AP-(TAk,w). (VII-59b) 

+ *  I )  We will assume t h a t  (Gd) 
be tween  t h e  " r e f e r e n c e  sur face"  S1 a t  z=zl and r A .  This is jus t i f ied  
if we l e t  the  d e p t h  z 1  of t h e  r e f e r e n c e  sur face  approach t o  zA.  

undergoes no s c a t t e r i n g  in t h e  region 
+ 
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Note that, according to (VII-58c), ΔΡ"(Γ ,ω) is proportional to the product 

of the scattered wave P (Figure VII-12a) and the scattered back-propagating 

Green's wave field (G ) (Figure VII-12e). Hence, the magnitude of the 

error term ΔΡ (ΐ"Δ,ω) is proportional to the squared reflectivity of the 

interfaces in the inhomogeneous medium. This result was also found in 

section VII.2.2 for vertically inhomogeneous media. 

Consider again equation (VII-50a) for the total wave field at r , 

Ρ(ϊ^,ω) = Ρ0(ϊ^,ω) + ΔΡ(Γ^,ω), (VII-60a) 

with P (ϊ \ ,ω) and Δ?(τ* ω) defined by (VII-50b) and (VII-50c), respectively. 

On the other hand, define Ρ(Γ.,ω) as the sum of a downgoing and an 

upgoing term, according to 

Ρ(ί^,ω) = Ρ+0^,ω) + Ρ"(ΐ^,ω). (VII-60b) 

From the above analysis we thus obtain for the upgoing wave field at r. 

with 
Ρ"(ΓΑ,ω) = ΡΟ(ΓΑ'ω) + Δ Ρ ~< Γ

Α ' ω ) ' (VII-60C) 

Ρ~(ϊ^,ω) = P 0 ( ï^ ,«) . (VII-60d) 

Hence, assuming ΔΡ (ΐ"Α,ω) may be neglected, we obtain for the upgoing 

wave field at r. A 

Ρ'(Γ^,ω) « Ρ'(ϊ^,ω), (VII-60e) 

or, according to (VII-50b), 

P (Γ,,ω) « J — — [G*(r~VA ,ω)νΡ(Γ,ω) - VG*(r*,rt ,ω)Ρ(Γ,ω)] .rTdS . (VII-61) 
A 0 , ►» A A 0 S0 P(r ) 

This expression is used by many authors (Schneider, 1978; Berkhout, 1985; 

Clayton and Stolt, 1981; Castle, 1982; Carter and Frazer, 1984; Wiggins, 
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1984; Berryhill, 1984). It describes inverse wave field extrapolation (towards 

the sources) from acquisition surface S to subsurface point r (Figure 

VII-8). Our analysis has shown that in equation (VII-61) evanescent waves 

are neglected and that ΔΡ~(Γ~*. ,ω), as defined by (VII-58c) and (VII-59b), is 

neglected. The magnitude of the latter term is proportional to the squared 

reflectivity of the interfaces in the inhomogeneous medium. This means 

not only that internal multiply reflected waves are handled erroneously by 

equation (VII-61), but also that the primary wave contribution to P  (*"Α,ω) 

is not fully correct. The negligence of ΔΡ (ΐ"Δ,ω) is justified only when the 

contrasts in the medium are weak to moderate. In that case equation 

(VII-61) describes "true amplitude" inverse extrapolation of primary waves. 

This is illustrated by an example in section VII.3.6. 

When the contrasts in the medium are significant, ΔΡ (ΐ" Λ,ω) may not be 

neglected and should be estimated in an iterative way. This is discussed in 

chapter IX, section IX.3. 

VII.3.4 Acoustic one-way Rayleigh integrals for inverse extrapolation 

When the acquisition surface S is a plane surface at z=z , we may 

rewrite equation (VII-50b) as 

p;<v*> = // 7 [ © *p -G* f] z d x d * · (vn-62) 
-oo r o 

For the total wave field at z=z we write 
o 

Ρ(Γ,ω) = Ρ+(Γ\ω) + Ρ (Γ,ω) at z=z . (VII-63a) 

For the Green's wave field we may choose above z=z (outside V) any 

convenient reference medium. We choose c(x,y,z<z )=c(x,y,z ) and 

p(x,y,z<z )=p(x,y,z ). With this choice the Green's wave field at z is 

purely upgoing (no scattering occurs in the upper half space above z ), 

hence, 

G(r ,ΓΑ,ω) = G (r ,ΓΑ,ω) at Z=ZQ. (VII-63b) 
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We may thus rewrite equation (VII-62) as 

Kfa) - IS T [ S *(P+
+P·) - (G")* ( # ♦ ^ ) ] . dxdy. (VII-64) 

In Appendix B, section B.3, we show that this expression may be 

simplified to 

oo 

r<rA,U) = -2/; [-j- [G-<?,rA*»y ^ f ^ L «^y, (νπ-653) 
-oo up(r ) J o 

or, equivalently, 
oo 

Po(rA,a;) = 2} J - ^ - ( g z
 A J P (r ,ω) dxdy. (VII-65b) 

-oo L p(r ) J o 

_ * 
Note that only the wave fields (G ) and P which propagate in opposite 

directions through z=z contribute to the result P"(Ft ,ω), see also Figure 

VII-13. The underlying assumption is again that evanescent waves may be 

neglected at z . 

£ * 
• z = z n z = z, 

(G")* (G")* 

^ W ^~ ^ 
A A 

(a) (b) 

Figure VII-13: Choosing a reflection free upper half-space for G, the Kirchhoff-
Helmholtz integral over z (VII-64) consists of terms containing the 
products of (G ) and P at z=z (Figure a) and terms containing the 
products of (G ) and P at z=z (Figure b). Only the terms with the 
opposite propagating wave fields at z=z (Figure a) contribute to the 
result P (r .,ω). à A ' 
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Compare equations (VII-65a) and (VII-65b) with equations (V-44a) and (V-44b), 

Ρ ( Γ > ) = -2j j [ -b-G- ( r .? ; .«) ^ £ ^ ] z ^ y (vn-66a) 

and 

Ρ(Γ ω) = 2 / J I - Î - az
 A P V , » ) J Z dxdy. CVn-66b) 

A up(r ) J o 

These are the one-way versions of the acoustic Rayleigh I and Rayleigh II 

integrals, respectively, for forward extrapolation (the sources of P are 

above z , see Figure V-4). Analogously, we will refer to equations (VII-65a) 

and (VII-65b) as the one-way versions of the acoustic Rayleigh I and 

Rayleigh II integrals, respectively, for inverse extrapolation (the sources of 

P are below z , see Figure VII-8). Equations (VII-66a) and (VII-66b) for 

forward extrapolation yield the exact total wave field P(r ,ω). On the other 

hand, equations (VII-65a) and (VII-65b) for inverse extrapolation yield 

P"(r ,ω), which is an approximate version of the upgoing wave field 

Ρ"(ΓΑ,ω) = Ρ0(ΓΑ,ω) + ΔΡ (^,ω), (VII-67) 

see equation (VII-60c). The approximations involve the negligence of 

evanescent waves and the negligence of the error term ΔΡ (r ,ω), which is 

proportional to (but not restricted to) multiply reflected waves. For the 
* 

special situation of a homogeneous medium, we may substitute for (G ) 
the free space solution (V-26b), yielding 

-oo o 

or, equivalently, 
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r +jkAr τ 
ρ~<νω> - -kr H[-k t ^ - ) p " ( ^ ) J zdxd*· < V I I - 6 8 b ) 

-oo ° 
Here the only approximation concerns the negligence of evanescent waves. 

VII.3.5 Matrix formulation of acoustic inverse wave field extrapolation 

We return to the inhomogeneous situation. Consider the one-way version of 

the acoustic Rayleigh II integral (VII-65b) for inverse extrapolation of 

upgoing waves, which we rewrite in a slightly more general notation 

according to 

P (x,y,z*o;) « 

2J J L ( äT^ ] P(x'.y',z ) P <*'·*'· V > J d x ' d y ' · (VII"69a) 

Note that we replaced P" by P", i.e., we neglected the error term ΔΡ~, 

see equation (VII-67). A similar expression can be derived for acoustic 

inverse extrapolation of downgoing waves, according to 

P+(x,y,zQ;o;) « 

C°C r r
5 G V , y \ z ' = z ;x,y,z ;ω) * -i 

- 2 _{jL ( Έζ^ — ) là^J[) P V ^ z ^ J d x ' d y ' . (VII-69b) 

The Green's wave fields in (VII-69a) and (VII-69b) are defined in one and 

the same reference medium that is reflection free in the upper half-space 

(z<z ) as well as in the lower half-space (z>z.) . Hence, they satisfy the 

reciprocity relation (V-52), 

G (x ,y ,ζ ι χ - , ν . , ζ ' ω ) = G ( χ , , ν . , ζ ' χ ,y ,ζ ;ω). ν o , J V ο' V3 V Γ ' ν V3V Γ o , J o ο' ' (VII-70) 
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This implies that (VII-69a) and (VII-69b) may also be written as 

P (x,y,z 'ω) « 

2 j j [ ( ÖP J p (x ' ,yV * P V , y \ z „ ; « ) I dx'dy' (VII-7la) -, - ρ(χ ,y ,ζ ) ο 

and 

P (x,y,z :ω) « 

Γ dU (x,y,z ;x ,y ,ζ =ζ ;ω) * -1 
"2_J J [ C Û —) W~rJ;) 'V-y'·*!·")] dx'dy'. (VH-71b) 

Note the strong resemblance with the acoustic one-way Rayleigh II 

integrals (VII-43a) and (VII-43b), respectively, for forward extrapolation. In 

the matrix notation of Appendix A, equations (VTI-71a) and (VII-71b) may 

be replaced by 

P"(Zj) «<F"(z r z o )>P"(z o ) (VII-72a) 

and 

r + ( z o ) «<F + (z o ,z 1 )>P > + (z 1 ) , (VII-72b) 

respectively, where the approximated inverse wave field extrapolation 

matrices are defined by 

dG+(z z=z ) * 
<F- (z r z o )> = 2 ( ^ 2 . ) M- ! (z o ) (Vn-73a) 

and 

5G"(z ,z=z ) * . 
<F+(zo,Zl)> = -2( ^ H M'Vzj), (Vn-73b) 
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respectively, with 

G"(zo,z1) = [ G + ( z r z o ) ] T . (VII-73C) 

For a discussion of the vectors and matrices in (VII-72) and (VII-73) we 

refer to section V.5.2. 

Comparing equations (VII-73a) and (VII-73b) for the inverse wave field 

extrapolation matrices with equations (VII-45a) and (VII-45b) for the 

forward wave field extrapolation matrices yields 

<F"(z1,zo)> = [ W + ( z r z o ) ] * (VII-74a) 

and 

<F +(z o ,Z l )> = [W"(z o , Z l ) ]* . (VII-74b) 

VII.3.6 Examples of acoustic inverse wave field extrapolation 

We demonstrate the validity of equation (VII-72a), 

Ψ~{ζχ) « <F"(z1,zo)>P>"(zo), (VII-75a) 

with the aid of two numerical examples. Consider the 2-D inhomogeneous 

acoustic medium, shown in Figure VII-14a. A plane wave source of finite 

extent is burried in the subsurface at a depth of ζ.=600 m. The response 

at the reflection-free surface z =o is shown in Figure VII-14b. This o 
response was computed with a finite difference modeling scheme (Kelly et 

al., 1976). It represents the acoustic pressure p as a function of the 

lateral coordinate x and time t. Because the upper half-space z<z is 

homogeneous and acquisition surface z is reflection-free, the recorded 

pressure represents an upgoing wave field, hence, p=p~(x,z ;t). By applying 

a Fourier transform from time (t) to frequency (ω), the data is 

decomposed into monochromatic wave fields P~(x,z ;ω). According to 

Appendix A, section A.2, a discretized monochromatic wave field may be 
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- ► x 

(a) 

- ^ X 

(c) 

t(s) 
(d) 

Figure VI1-14: 
a. 2-D inhomogeneous medium with a hurried plane wave source at z =600 m. 
b. Upgoing wave field, registered at z . 
c. Fan of rays, used for Gaussian beam modeling of the Green's wave field. 
d. Time-domain representation of a (band-limited) Green's wave field. 
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Figure VI1-15: 

a. Inverse extrapolated data at z =600 m. 

b. Maximum amplitude per trace of Figure a (logarithmic scale). 

c. Central trace of Figure a. 

d. Wavelet, used for modeling the input data of Figure VII-14b. 
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represented by a vector P (z ). Inverse extrapolation of this upgoing wave 

field from depth level z to the source depth level z. is described by 

equation (VII-75a), where 

5G+(z z=z \* 
<F- (z r z o )> = 2 ( fz ^ M" !(zo). (Vn-75b) 

The numerical modeling of the Green's matrix 

G + ( z r z o ) = [ G " ( z o , Z l ) ] T (VII-75C) 

was discussed in chapter V (see also Figures VII-14c and VII-14d). By 

applying (Vü-75a) for all frequencies within the seismic band, we obtain a 

range of monochromatic data vectors P ( z A The result, after applying an 

inverse Fourier transform from ω to t, is shown in Figure VII-15a 

(Budejicky, 1988). It represents the space-time data p~(x,z.;t). Note that 

the distorting propagation effects of the "overburden" (the medium between 

z and z . ) have been removed (compare Figure VII-15a with VII-14b). 

Figure VII-15b shows the maximum amplitude of each trace as a function 

of the lateral position x. Note that the amplitude is almost constant along 

the plane wave source. Also note that some smearing occurs at the edges 

of the plane wave source. This is due to the negligence of evanescent 

waves (see section VII.3.3). 

Figure VII-15c shows the central trace of the inversely extrapolated data 

in Figure VII-15a. For comparison, in Figure VII-15d the wavelet is shown 

that was used for modeling the input data (Figure VII-14b). Apparently, the 

inverse extrapolation restored the wavelet almost perfectly. 

For the following example, consider the 3-D inhomogeneous acoustic 

medium, shown in Figure VII-16a. A plane wave source of finite extent is 

burried in the subsurface at a depth of z. = 1000 m. Two cross-sections of 

the response at the reflection-free surface z =o are shown in Figures 

VII-16b and VII-16c, respectively. Following the same procedure as in the 

previous example, we obtain the inverse extrapolated data at z=z . , see 

Figure VII-17 (Kinneging, 1989). Note that the finite plane wave source is 

correctly positioned and is perfectly aligned at t=o. 
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(a) 

Figure VII-16: 
a. 3-D inhomogeneous medium with a hurried plane wave source at z .=1000 m. 
b. Cross-section for constant y of the upgoing wave field, registered at z =o. 
c. Cross-section for constant x of the upgoing wave field, registered at z =o. 
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(b) 

Figure VII-17: Inverse extrapolated data at z =1000 m. 

a. Cross-section for constant y. 

b. Cross-section for constant x. 
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VIM 
ELASTIC INVERSE WAVE FIELD EXTRAPOLATION 
IN LOW CONTRAST MEDIA 

VIII.l INTRODUCTION 

In chapter VI we discussed elastic forward wave field extrapolation 

operators which simulate the downward and upward propagation effects of 

P- and S-waves. These operators were derived from the elastic Kirchhoff-

Helmholtz integral (VI-24a) which contains forward propagating Green's 

wave fields. In this chapter we discuss elastic inverse wave field 

extrapolation operators which eliminate the downward and upward 

propagation effects of P- and S-waves. As in the acoustic case, straight

forward inversion of the elastic forward extrapolation operators is unstable. 

In this chapter we first discuss the elastic version of the matched filter 

approach to inverse extrapolation through a homogeneous isotropic medium. 

It is shown that the maximum obtainable spatial resolution from inverse S-

wave extrapolation is higher than from inverse P-wave extrapolation 

(assuming the same frequency). 

Next we consider an arbitrarily inhomogeneous anisotropic medium. Our 

starting point is the elastic Kirchhoff-Helmholtz integral (VI-24b) which 

contains a backward propagating Green's wave field. We arrive again at 

inverse extrapolation operators which are the complex conjugate of the 

forward extrapolation operators and which have restrictions with respect to 

the maximum obtainable spatial resolution. We analyse the limitations for 

a medium that contains high contrasts. In chapter X we will modify the 

elastic inverse extrapolation operators for the latter situation. The 

operators derived ψ chapters VIII and X play an essential role in chapter 

XII, where we discuss an elastic processing scheme for multi-component 

seismic data. 

VIII.2 ELASTIC INVERSE WAVE FIELD EXTRAPOLATION IN HOMOGENEOUS 

ISOTROPIC MEDIA 

For a homogeneous isotropic elastic medium, forward extrapolation of 

downgoing P-waves may be described by a spatial convolution along the x-
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and y-axis, according to 

oo 

Φ^χ,γ,ζ^ω) = $ $ W+..(x-x\y-y';zvzQ\u})<S>*(x\y\zo;u))dx'dy\ (Vlll-la) 
-oo ψ'ψ 

or, symbolically, 

Φ (x,y,z'a;) = W . ,(x,y;z t ,z ;ω) * Φ (x,y,z ;ω), (VIII-lb) 

where 
-jk ΔΓ 

with 

ΔΓ = V x + y 2 + (z , - z ) 2 (VIII-ld) Ί o 

and 

k = ω/c , (VIII-le) 
P P 

where c is the P-wave propagation velocity, see equations (VI-77) to 

(VI-81). Similarly, the expression for forward extrapolation of downgoing 

S-waves reads symbolically 

Ψ*(χ,ν,ζ,;ω) = W* , (x,y;z,,z ;ω) * Φ (x,y,z ;ω), (Vin-2a) 

where 
-jk ΔΓ 

&»tf 1' o» ' " V 2π dz ^ ΔΓ 

with 

k = ω/c , (VIII-2c) 
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where c is the S-wave propagation velocity. 

The expressions for forward extrapolation of upgoing P- and S-waves read, 

respectively, 

Φ (x,y,z ;ω) = W , .(x,y;z ,ζ.;ω) * Φ (χ,γ,ζ.;ω) (VIII-3a) 

and 

ΦΛ(χ^,ζ ;ω) = W, . (x,y;z ,ζ,;ω) * Φ (x,y,z,;o;), (VIII-3b) 
r β a 

where 

and 

W" , (x,y;z ,ζ,;ω) = W* , (x,y;z,,z ;ω). (VIII-3d) 

In analogy with section VII.2.1 we describe inverse extrapolation of 

downgoing and upgoing P- and S-waves as spatial deconvolution processes 

along the x- and y-axis, in the symbolic notation 

Φ (x,y,z ;ω) = F, ,(x,y;z ,ζ,;ω) * Φ (x,y,z,;a;), (VIII-4a) 

Φ^(χ,Υ,ζο;ω) = Ft , (x,y;z o,Zl;a;) * Ψ^χ,ν,ζ^ω), (VIII-4b) 
' η β 

Φ~(χ,γ,ζ{;ω) = F~ ^ ( χ , ν ^ , ζ ^ ω ) * Φ~(χ,Υ,ζο;ω), (VIII-4c) 

and 

Φ"(χ,Υ,Ζι;ω) = F" . (x ,y;z p z ;ω) * *I(x,y,z ;ω), (VIII-4d) 
7 Ί β 

where the deconvolution operators F are defined implicitly by 
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F ^ ( x , y ; z o , z i ; w ) * W ^ x . y ^ . z ^ u ) = 5(x)5(y), (VIII-5a) 

F+ , (x,y;z ,ζ,;ω) * W* , (x,y;z„z ;ω) = δ i(x)i(y), (VIII-5b) 
Φ ,Φη o 1 ' φα,φ v J ' 1 o cry v w " v ' 

F ^ ( x , y ; z r z o ; W ) * ψ ' ^ χ , ν ^ , ζ ^ ω ) Û 5(x)6(y) (VIII-5c) 

and 

FT , (x,y;z l sz ;ω) * WT . (x,y;z ,ζ,;ω) = 5 i(x)i(y). (VIII-5d) 
Φ ,Φη 1 O' V'nïV' 0 Γ Û7 

r 7 τβ β a 
Note that, in analogy with (VIII-3c) and (VIII-3d), 

¥~φ/χ^ζνΖο*ω) = Ρ Ϊ , / χ · ^ ζ ο · ζ 1 : ω ) (VIII-5e) 

and 

FT , (x,y;z,,z ;ω) = F* , (x,y;z ,ζ,;ω). (VIII-5f) 
Φ ιΦο 1 O Φ ,Φο 0 Γ ' V y 

Expressions (VIII-1) to (VIII-5) for the elastic situation show a high degree 

of similarity with expressions (VII-2) to (VTI-5) for the acoustic situation. 

Therefore we may follow the same approach as in section VII.2.1 to find 

explicit expressions for the deconvolution operators F. In analogy with the 

acoustic matched inverse operators (VII-19a) and (VII-19b) we define the 

elastic matched inverse operators by 

<ΡΪ,/ Χ>*ν ζι ; ω ) > · [ w Jy* .y;vv w ) : i *· (VIII"6a) 

<F+. , (x,y;z ,ζ.;ω)> = δ [ w t , (x,y;z. ,z ;ω)Ί , (VIII-6b) 
Ψ i / o' 1* c n L Ψβ,Ψ^ 1 o' '-> K ' 

< F J / K i l V ) > Ä [ W - ^ ( x . y ; z o , z i : « ) ] · (VIII-6c) 

and 
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<FT , (x,y;z. ,z ;ω)> = 5 [WT , (x,y;z ,z.;u;)] . (VIII-6d) Φ ,Φ* 1 ο' cry L èa.ê v '■" o 1 J v ' 7 £ ί o 

These are stable spatially band-limited approximations of the exact inverse 

operators as defined in (VIII-5). We speak of spatially band-limited 

approximations because in the wavenumber-frequency domain the inverse 

operators are exact for the propagating wavenumber area only. For the 

inverse P-wave extrapolation operators (VIII-6a) and (VIII-6c) the 

propagating wavenumber area is defined by 

2 2 2 2 2 kz + kz < VT = c / / c ; (VIII-7a) x y p p' ' 

for the inverse S-wave extrapolation operators (VIII-6b) and (VIII-6d) the 

propagating wavenumber area is defined by 

2 2 2 2 2 kz + k < k = ω /c . (VIII-7b) x y ~ s s ' 

Since c <c , the spatial band-limitation for the inverse S-wave operators is s p 
less restrictive than for the inverse P-wave operators. In section VII.2.1 

we have seen that the spatial band-limitation imposes a restriction to the 

maximum obtainable spatial resolution. The width of the main lobe of the 

acoustic inversion result in Figure VII-6 equals approximately 6Λ/5, where 

λ=2πο/ω represents the wavelength for acoustic waves. 

Accordingly, the spatial resolution of elastic inverse P-wave extrapolation 

is determined by 6λ /5 , whereas the spatial resolution of elastic inverse 

S-wave extrapolation is determined by 6λ /5 , where 

A = 2?rc /ω (VIII-8a) 
P Px 

and 

λ = 2TTC /ω. (VIII-8b) 
s s 
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Note that 

λ < λ , s p' (VIII-8c) 

which means that, for a given frequency ω, inverse S-wave extrapolation 

yields a better spatial resolution than inverse P-wave extrapolation. This 

conclusion should be interpreted with care. In practical seismic data the 

temporal bandwidth of the S-wave registrations is generally much smaller 

than the temporal bandwidth of the P-wave registrations (Garotta, 1987). 

Therefore in practice the spatial resolution obtained from S-data is not 

significantly better than that obtained from P-data. 

VIII3 ELASTIC INVERSE WAVE FIELD EXTRAPOLATION IN ARBITRARILY 

INHOMOGENEOUS ANISOTROPIC MEDIA 

VI113.1 Introduction 

For an arbitrarily inhomogeneous anisotropic elastic medium, forward 

extrapolation of P- and S-waves may be described by the elastic one-way 

Rayleigh II integrals, in the matrix notation represented by 

D + ( Z l ) = W+ (Z l ,z o )D+ (z o ) (VIII-9) 

and 

D"(zo) = W"(zo ,z1)p"(z1), 

where the multi-component data vectors are defined as 

(VIII-10) 

p-<z
0) = 

Φ ^ ) 

and S _ ( z . ) = 

♦ " ( z j ) 1 

Φ ^ ί ζ , ) 
X v Γ 

?"(z.) y v l 'J 

(VIII-11 ) 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



and where the multi-component extrapolation operators are defined as 

311 

* ( z l ' Z o> = 

W* (ζ . , ζ ) W+ . ( ζ , , ζ ) W+ , ( ζ , , ζ ) 0,0V Γ o φ,φ ν Γ o φ,φ 1 o 

W+ , ( z . , z ) W* , ( ζ , , ζ ) W+ , ( ζ , , ζ ) 
x x x x y 

W* ,(z , ,z ) W* . ( ζ . , ζ ) W* , ( ζ , , ζ ) ψ 9ér V o' Φ ,φ 1 o φ ,φ \ o y y χ y y 

(VIII-12a) 

and 

w-<vzi> 

W. .(z , ζ , ) W. . (z , ζ , ) WT . (z , ζ , ) ^ v o' Γ #,V> o' r ^,V o' r 

W, .(z , z . ) W, . (z , z . ) W, , (z , z . ) 
φ ,0 o 1 ^ ,V o 1 V »Ψ o 1 

x x x x y 
WT ,(z , z . ) WT . (z , ζ , ) WT , (z , ζ , ) 

φ ,ών o 1 ' t/> ,t/> o Γ î/> ,t/> o 1 
y y x y y 

(VIII-12b) 

see section VI.5.2. In this matrix notation, the inverse problem can be 

formulated as follows 

S+(zo) = F+(zo,Zl)S+(Zl) (VIII-13) 

and 

D"(Zj) = F"(z r z o )p"(z o ) , (VIII-14) 

where the inverse extrapolation operators are defined as 

F + ( z o , Z l ) Ä [ ψ ^ ζ , , ζ ^ ] - 1 

and 

(VIII-15 a) 
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F " ( z r z o ) Ä [ W ' i z ^ z j ) ] " 1 . (Vffl-15b) 

Inversion according to equation (VIII-15) is unstable. Therefore, rather than 

trying to invert the forward problem, in this section we discuss the 

inverse extrapolation problem step by step, using the elastic Kirchhoff-

Helmholtz integral as the starting point (Wapenaar and Haimé, 1989). After 

a number of necessary approximations we finally arrive at stable, spatially 

band-limited inverse extrapolation operators which read in the matrix 

notation 

<F + (z o , Z l )> = [ W ' ( z o , Z l ) ] * (VIII-16a) 

and 

<F"(z z )> = [W+(z z ) ] * . (VIII-16b) 

VI113.2 Elastic Kirchhoff-Helmholtz integrals for inverse extrapolation 

In section VI.3.2 we have derived the following two equivalent versions of 

the elastic Kirchhoff-Helmholtz integral, 

ν π ι ( ? Α' ω ) = ' { [ ν " ' ν ω ) ^ ( ϊ " ' ω ) " ^ Λ ω ) ^ ( Γ , Γ ^ , ω ) ] .rTdS (VIII-17a) 

and 

V (r*A,w) = - A [ θ (F\r*A ,w)V*(r\w) + r(r\w)Gr (F\rt ,ω)Ί MUS. (VIII-17b) 
nr A' J L mv A' ' v ' v ' mv A' / J v ' 

These expressions describe the elastic wave field at r in a source-free 

volume V in terms of the elastic wave field on surface S, enclosing V 

(Figure VI-1). In (VIII-17a), 5 and Θ represent the velocity and stress 

of a forward propagating Green's wave field; in (VIII-17b), CJ and Θ 

represent the velocity and stress of a backward propagating Green's wave 

field. 
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In chapter VI we used the Kirchoff-Helmholtz integral (VIII-17a) with the 

forward propagating Green's wave field as a starting point for deriving 

forward wave field extrapolation operators. Here we use the Kirchhoff-

Helmholtz integral (VIII-17b) with the backward propagating Green's wave 

field as a starting point for deriving inverse wave field extrapolation 

operators. In analogy with section VI.3.4 we modify equation (VIII-17b) 

according to 

Ω(Γ^,ω) = - j [ θ ^ Γ , ϊ ^ , ω ^ Γ , ω ) + τ(Γ,ω)3 Ω(Γ,7^,ω)] .ïTdS, (VIII-18) 
S 

see Figure VIII-1. 

*_* _.*-Ω(Γ^,ω) = - £ [ e n v V r £ n ] . ? r d S 

S 

Figure VIII-1: Elastic Kirchhof f-Helmholtz integral. The Green's wave field f^o'^W 

may be excited either by an impulsive force, an impulsive P-wave source 

or an impulsive S-wave source at r . Accordingly, ü(r ,ω) may represen 

either the velocity, the P-wave potential or the S-wave potential at r A' 

1. If we choose for the Green's wave field an impulsive force in the 

m-direction at Ft (i.e., (?η=<3 ; θ η = θ ), then Ω(Γ^,ω) represents the A \i m \ι m A 
m-component of the velocity V at r . . 

2. If we choose for the Green's wave field an impulsive P-wave source at 

rA(i.e., 0Ω=^;θ£ 
potential )ωΦ at r. 

F*A (i.e., GL=CJ, ;θ~=θ .), then Ω(Γ~1 ,ω) represents the scaled P-wave A Ω φ Ω φ A 
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3. If we choose for the Green's wave field an impulsive S,-wave source at 

τ*Α (i.e., 3 0 = 3 , A v Ω ψ ΘΩ=Θ. ), then Ω(ΓΑ,ω) represents the h-component of 
h 

the scaled S-wave potential jwtf at r 

For the half-space geometry of Figure VI-4, the backward propagating 

Green's wave field does not satisfy Sommerfeld's radiation condition on 

S.. Therefore, consider the modified configuration shown in Figure VIII-2. 

We assume that an elastic wave field, radiated by (secondary) sources in 

the subsurface, has been measured on "acquisition surface" S . Our aim is 

to find an expression which describes the elastic wave field at r in the 

subsurface in terms of the elastic wave field on S . We constructed a o 
surface S enclosing a volume V such that r. lies in V and such that V is 

source-free. Closed surface S consists of "acquisition surface" S , a plane 

horizontal "reference surface" S. at z=z, (between r. and the sources of 1 1 A 
the elastic wave field) and a cylindrical surface S„ with a vertical axis 

through r and radius r. 

A 
-► X 

n -«— 

S 2 

V 
r 

f n 

A 

So 

r 

• ^ Γ < ; -" ' 
(b) 

Figure VIII-2: Modified geometry for the Kirchhof f-Helmholtz integral (VIII-18) with 

the backward propagating Green's wave field. Under certain conditions 

(discussed in the text) the contribution of this integral over S . and S -

can be neglected. 

a. Perspective view. b. Cross section for y=0. 
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For this configuration we analyse Kirchhoff-Helmholtz integral (VIII-18), 

with the backward propagating Green's wave field. The contribution of this 

integral over S~ vanishes when r goes to infinity (the cylindrical surface 
2 is proportional to r, the integrand is proportional to 1/r ). So for the 

geometry of Figure VIII-2, Kirchhoff-Helmholtz integral (VIII-18) may be 
replaced by 

Ω(ΓΑ,ω) = Ωο(ΓΑ,ω) + ΔΩ(ΓΑ,ω), (VIII-19a) 

where 

Ω ο ( ? Α' ω ) = " / ΕΘΩ^ + ^ ί ^ - ^ ο (VIII-19b) 
S 

o and 

ΔΩ(Γ^,ω) Ä - J [θ*Ϋ* + T$*n].ndSv (Vffl-19c) 

Sl 

When ΔΩ(Γ ω), as defined in (VIII-19c), may be neglected, then equation 

(Vni-19b) describes inverse wave field extrapolation (towards the sources) 

from acquisition surface S to subsurface point r. . In the next section 

we investigate under which conditions ΔΩ(Γ Δ,ω) may be neglected. 

VIII.3.3 Error analysis 

At z=z. (the depth of "reference surface" S.), the elastic wave field 

consists of upgoing waves (including higher order terms), related to the 

sources below τ and downgoing waves (including higher order terms), 

caused by scattering above z . , hence 

ν*(Γ\ω) = ν"+(Γ*,ω) + ν*~(Γ\ω) at z=Zj (VIII-20a) 

and 
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^(Γ,ω) = ^(Γ,ω) + τ* (Γ,ω) at z=Zj (VIII-20b) 

(the traction vector τ is the third column of stress tensor r). For the 
Green's wave field we may choose below z=z., (outside V) any convenient 
reference medium. We choose c... ix,y,z>z.)=c... ix,y,z.) and 
p(x,y,z>z.)=p(x,y,zA With this choice the Green's wave field at z. is 
purely downgoing (the Green's source is situated at r above z.; the half-
space below z. is reflection free), hence 

δ Ω ( " ' ν ω ) = ^Ω^'^Α'^ a t Z=Z1 (VIII-21a) 

and 

^ z / , y ) = ^ z
+ r f ^ , « ) at z=Zj (VIII-21b) 

(the Green's traction vector θ ~ is the third column of the Green's v ζ , Ω 
stress tensor ΘΩ). We may thus rewrite equation (VIII-19c) as 

ΔΩ(ΐ^,ω) = -ff [(e^fjMV^+v") + &%>*·<?? +rz"^ z d x d y · (Vm-22) 

In Appendix C, section C.3, we analyse the interactions between one-way 
elastic wave fields and one-way backward propagating Green's wave fields, 
assuming for simplicity that the medium is locally homogeneous and 
isotropic at z.. The starting point of this analysis is equation (C-22), 
which is identical to equation (VTII-22) if we choose <?0=^* o=°* anc* **" w e 

replace Ω by -ΔΩ and z by z.. Hence, if we make the same alterations o o J 1 ' 
in the final result, equation (C-28b), we obtain 

Δ Ι Κ Τ ^ ) - ^ - n ^ y - [ ( % ) V + ( 3 k ) V ] dxdy, (vm-23) 
J -oo r v V 1 
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where Φ and Φ̂  are the P- and S-wave potentials for the velocity V* 

at z. and where Γ. Ω and f\ Ω are the P- and S-wave potentials for the 

Green's velocity c L at z . , see equation (C-3) and Figure C-1. Apparently, 

only the wave fields which propagate in opposite directions through z=z. 

contribute to the error term ΔΩ(Γ.,ω) (see Figure VII-9b for the acoustic 

equivalence). The underlying assumption is that evanescent waves are 

negligible at z=z. . This assumption is satisfied when the source of the 

elastic wave field and the source (at r . ) of the Green's wave field are 

not both in the direct vicinity of the "reference surface" S . , or in other 

words, when rA is not too close to the source of the elastic wave field. A 
In the following we replace "«" by "=" whenever the only approximation 

concerns the negligence of evanescent waves. 

Let us first discuss the consequence of this important result for the 
situation of a homogeneous medium. Then no scattering occurs, hence 

Φ+(Γ,ω) = ο at z=z, (VIII-24a) 

and 

"1 

φ"+(Γ,ω) = (Γ at z=Zj (Vin-24b) 

and, consequently, 

ΔΩ(ΓΑ,ω) = o. (VIII-24C) 

With this result we may rewrite equation (VHI-19) as 

Π(ΓΑ,ω) = Ωο(ΓΑ>ω) = 

-ί [θ* ( Γ , ϊ ^ , ω ί ν ν , ω ) + ^ Γ , α Ο ^ Γ , ϊ ^ , ω ) ] MdS Q. (VIII-25) 

ο 
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This Kirchhoff-Helmholtz integral describes inverse wave field extrapolation 

from acquisition surface S to subsurface point r . The only 

approximation is a spatial bandlimitation (the negligence of evanescent 

waves at z A This imposes a restriction to the maximum obtainable spatia: 

resolution, see also section VII.2. 

For the situation of an inhomogeneous medium, a similar analysis as 

presented in section VII.3.3 leads to the conclusion that we may write for 

the upgoing wave field at r : 

Ω~(τ* ,ω) = Π*(Γ^,ω) + ΔΩ'(ϊ^,ω), (VIII-26a) 

where 

Ω ^ , ω ) Ä Ω ^ , ω ) = - J [θ*ν> + r Ö * ] .nâSQ (VIII-26b) 

and 

[ ÖL* "■* ÖL' ■*" Π 

( - ^ s <
+
 H^-hK],^ tvm-260 

5 
0 

- ar+ · ar? 

the sub-script "s" denoting that only scattered waves are considered (see 

Figures VQ-12a and VII-12e for the acoustic equivalence). According to 

(VIII-26c), ΔΩ (rA,w) is proportional to products of scattered wave fields. 

Hence, the magnitude of the error term ΔΩ"(Γ ,ω) is proportional to the 

squared reflectivity of the interfaces in the inhomogeneous medium. 

Neglecting ΔΩ (ΐ"Α,ω) means not only that multiply reflected waves are handled 

erroneously by equation (VIII-26), but also that the primary wave 

contribution to Ω"(Γ ,ω) is not fully correct. The negligence of ΔΩ^Τ,,ω) is 

justified only when the contrasts in the medium are weak to moderate. In 

that case equation (VIII-26b) describes 'true amplitude' inverse extrapolation of 

primary waves. This is illustrated by an example in section VIII.3.6. When 

the contrasts in the medium are significant, ΔΩ (r A,^) may not be 

neglected and should be estimated in an iterative way. This is discussed in 

chapter X, section X.3. 
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VII 1.3.4 Elastic one-way Rayleigh integrals for inverse extrapolation 

When the acquisition surface S is a plane surface at z=z , we may 
rewrite equation (VÜI-19b) as 

n f ö . « ) = / / [ < ( Ω · ? + ö£ . r ] z dxdy. (ΥΠΙ-27) 

For the total wave field at z=z we write 
o 

V*(F\w) = ν"+(Γ,ω) + Ϋ~(τ*,ω) at z=z (VIII-28a) 

and 

o 

Γ*(Γ\ω) = 7*+ (Γ,ω) + r*~ (r*,w) at z=z . (VIII-28b) 

For the Green's wave field we may choose above z=z (outside V) any 
convenient reference medium. We choose c... ix,y,z<z )=c... ix,y,z ) and 
p(x,y,z<z )=p(x,y,z ). With this choice the Green's wave field at z is 
purely upgoing (no scattering occurs in the upper half-space above z ), 
hence, 

^Ω(7*'ΪΑ'ω) = ^ Ω ^ ' Ϊ Α ' ^ a t Z=Zo (VIII-29a) 

and 

θ ζ , Ω < Γ <rA'<"> * θ"ζ,ίΐ( Γ <ΓΑ'ω> a t Ζ = Ζ ο · ( V I U - 2 9 b ) 

We may thus rewrite equation (VIH-27) as 

Ωο(1Α'ω) = J"J" B ^ z V * · ^ * * ^ + ^O*-^ + f z"^ z d x d y · CVm-30) 
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Assuming for simplicity that the medium is locally homogeneous and 

isotropic at 2 

simplified to 

isotropic at z , we show in Appendix C, section C.3, that (VIII-30) may be 

Ω"(ΓΑ,ω) = - ^ - / / - r - r ( l \ o ) * ψ- + ( r \ " o ) * · ~^Τ~ d x d v > (VIII-31a) 0 A ' jw J J p(z ) L ^ < ,̂Ω7 dz v ψ& 3z Jz J v ' 

or, equivalently, to 

lb) J
 _ ΛΛ

 ΓΚ
 Γι'

 f\ 

where Φ and Ψ are the P- and S-wave potentials for the velocity V* at 

z and where Γ. ~ and Γ. _. are the P- and S-wave potentionals for the 

Green's velocity 3 Q at z , see equation (C-3) and Figure C-l . Again, only 

the wave fields which propagate in opposite directions through z=z 

contribute to the result Ω(ΓΑ,ω) (see Figure VII-13a for the acoustic 0 A 

equivalence). The underlying assumption is again that evanescent waves 

may be neglected at z . 

Compare equations (VIII-31a) and (VIII-31b) with equations (VI-66a) and 

(VI-66b), 

00 
n(V"> = -fr/J" * b [ V « f r + ^,η · ^ ] z dxdy (VIII-32a) o *· -■ o 

and 

«*>> - ■%- J" J" ±1 [ ^ *+ + " ^ · ψ+] z d*d*· <vm-32b) 
o 

These are the one-way versions of the elastic Rayleigh I and Rayleigh II 

integrals, respectively, for forward extrapolation (the sources of Φ and Φ 
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are above z , see Figure VI-4). Analogously, we will refer to equations 

(VHI-31a) and (VIII-31b) as the one-way versions of the elastic Rayleigh I 

and Rayleigh II integrals, respectively, for inverse extrapolation (the sources 

of Φ" and Ψ*~ are below z , see Figure VIII-2). Equations (VIII-32a) and 

(VIII-32b) for forward extrapolation yield the exact total wave field Ω(τ* ω). 

On the other hand, equations (VTII-31a) and (VIII-31b) for inverse 

extrapolation yield Ω~(Γ ,ω), which is an approximate version of the upgoing 

wave field 

Ω~(7^,ω) = Ω~(ϊ^,ω) + ΔΩ~(ϊ^,ω), (VIII-33) 

see equation (VIII-26a). The approximations concern the negligence of 

evanescent waves and the negligence of the error term ΔΩ~(ΐν. ,ω), which is 

proportional to (but not restricted to) multiply reflected waves. 

Depending on the choice of the source for the Green's wave fields, Ω~ in 

equations (VIII-31a) and (VIII-31b) may represent either V" for m=l, 2, 3 

or )ωΦ , or jwtf, for h=l, 2, 3, see section VIII.3.2. We consider the latter 

two cases. If the Green's wave fields have an impulsive P-wave source at 

rA , then Ω represents the scaled P-wave potential }ωΦ at r A , hence 

·-(?;,«) * 4 U-^ [[τ-}'*£-+ (r-; )*. Ç j z dxdy, (vm-34a) 
ω -oo ^v o o 

or, alternatively, 

Φ (Γ
Α>ω) * 

ω -oo ^v o L J o 

On the other hand, if the Green's wave fields have an impulsive S.-wave 

source at F t , then Ω" represents the h-component of the scaled S-wave 

potential jwtf at r , hence 
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*h(?>) « =\ 
ω 

or, alternatively, 

-OO ^ O L h h J 0 

ar" , * dt 
* Η ( Γ Α , ω ) , - ^ Ι / ^ [ ( ^ ) Φ"+ h ^ ) -r]zdxdy. (VIII-35b) 

ω -oo r v o 

For the special situation of a homogeneous isotropic medium, we may 

substitute the free space solutions (VI-44a)  and (VI-44b) for the Green's 

functions Γ" . and Γ~ . (bear in mind that Γ" , denotes the 
._»_ k' h k' h 

k-component of Γ . . ). Hence, for this situation equations (VIII-34a)  and 

(VIII-34b) read 

° ° r + j kPA r - - 1 
·"<*>> = £ Si L ^ r - ^ J z ^ tvm-36a) 

-oo 

oo r + JV r 1 
Φ"(ϊΑ·ω) 2lT J J b ^ " 1^-ΔΓ^ Φ"( Γ 'ω ) Jz d x d y ' (VIII-36b) 

-oo 0 

respectively, with 

kp = ω/c (Vin-36c) 

and 

Ar = |r -r |, (VIII-36d) 
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For the same situation equations (VIII-35a) and (VTII-35b) read 

oo r , +Jk
s
Ar ^ «*:<?» 1 +jk Ar 

dxdy, (Vm-37a) 
ks 

oo Γ + j k s A r 1 
1 tt\k Kh+-rVh>^H*k(r^J 

-oo *· k J k J o 
s 

respectively, with 

kg = ω/c . (VIII-37C) 

The only approximation in (VIII-36) and (VIII-37) concerns the negligence of 

evanescent waves. 

VIII.3.5 Matrix formulation of elastic inverse wave field extrapolation 

We return to the inhomogeneous anisotropic situation. Consider the one-way 

version of the elastic Rayleigh II integral (VIII-31b) for inverse 

extrapolation of upgoing waves. Following the same procedure as in section 

VII.3.5, this expression may be rewritten in the matrix notation of 

Appendix A, yielding 

- τ - ί Π ζ . ) « < F 0 , (z , ,z )>Φ* (z ) + <F~ , ( ζ . , ζ )>Ψ* (z ). (VIII-38a) 
jo; v Γ Ω,<£ν Γ ο ' v ο' Ω,^ 1 o7 or o' 

Similarly, for inverse extrapolation of downgoing waves we obtain in the 

matrix notation 
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- ^ r ^ ) « <F +
n ^(z o ,z 1 )>r + (z 1 ) + <F +

f ) ^(z o ) z 1 )>* , +
a (z 1 ) . (VHI-38b) 

We neglected the error terms ΔΩ . The approximated inverse wave field 

extrapolation matrices  are defined by 

dT+ (z z=z ) * 
<F" < z | f z > = ~ V ( — ^ M M - ! ( z J f (VIII-39a) 

< F - (z z w ?_ r#+ ( z z ) ] M " ^ ) (VIII-39b) 
ιΩ,^ ν Ί ' Τ " 2 "̂"Ω,ν-fv 

<«1i./Vi> - = T t " 1 ° ' )  M"'(z,) tvm-390 

and 

<F +n Φ <Vzi» - -=T (*n Φα
{ζο^)] M'l{zil (VI"-39d) 

For a discussion of the vectors and matrices in (VTII-38) and (VIII-39) we 

refer to section VI.5.2. Comparing equations (VIII-39a)  to (VIII-39d) for the 

inverse wave field extrapolation matrices with equations (VI-86b), (VI-86c), 

(VI-87b) and (VI-87c) for the forward wave field extrapolation matrices 

yields 

« W ' l ' V * ■ Ι>η,*<ζι·ζο>]*· (VI,I"40a) 

< F n , ^ z l ' z o > = ^ ( Ζ , , ζ ) ] * , (VIII-40b) 

< F n , / V z i > ■ I > W V Z 1 ) ] * (VIII-40c) 

and 

< F n* ( V z i> " » n . ^ V 2 ^ * · ( v m-4 0 d ) 
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Note that equations (VIII-38a) and (VIII-38b) for elastic inverse extrapolation 
may be elegantly rewritten as 

S " ( z , ) « <F~(z, ,z )>ΰ~(ζ ) ~ v Γ ~ v Γ o ~ o (VIII-41a) 

and 

S + ( z o ) « <F+(zo,z1)>Dr+(z1), (VIII-41b) 

respectively, where the multi-component data vectors D ~ are defined by 

equation (VIII-11) and where the multi-component inverse extrapolation 

operators are defined as 

< F ( z r z o ) > = 

<I\i J ( Z I » Z )> < F , ■ ( ζ , , ζ )> <F, . ( ζ , , ζ )> φ,φ Γ ο' φ,φ v Γ ο φ,φ 1 ο' χ y 

<F, , ί ζ , , ζ )> <F. . ( ζ . , ζ )> <F . . ( ζ , , ζ )> φ ,φM ' o' ψ ,φ y V ο' φ ,φ M o' x x x x y 

<F, , (z . ,z )> <F, . ( ζ , , ζ )> < F . , ( ζ , , ζ )> ■ φ Av 1 ο' φ ,φ v 1 ο' φ ,φ v 1 o7 J 
y y x y y 

and 

(VIII-42a) 

<F (z
0>zi> s 

< F J J(Z ,z.)> <F , . (z ,z,)> <F, , (z ,z,)> #,#v o' r #,V> ο' r 0,V> o r 
x y 

< F . ,(z ,z f)> <F , . (z ,z,)> <F, . (z ,z,)> 
x x x x y 

<F. ,(z ,z,)> <F, . (z ,z,)> < F , , (z ,z.)> , 
. φ ,^v o' r Φ ,Φ o' 1 V ,V> o 1 J 

y y x y y 

. (VIII-42b) 

From equations (VIII-40) and (VIII-42) we easily find 

<F-(z , ,z o )> = [ W + ( Z l , z o ) ] * 

and 

<F + (z o , Z l )> = [ W " ( z o , Z l ) ] * , 

(Vni-43a) 

(VIII-43b) 

where the multi-component extrapolation operators W (ζ . , ζ ) and W (z ,z . ) 

are defined by (VIII-12a) and (VIII-12b), respectively. 
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When converted waves during propagation may be neglected, then the 

expressions for the multi-component inverse extrapolation operators simplify 

to 

< F ( ζ , , ζ )> « ~ v Γ o7 

% IW z i 
0 

0 

'zo>> 0 

< F , , ( ζ , , ζ )> φ ,φ 1 o7 
X X 

0 

0 ] 

0 

< F ~ . ( ζ . , ζ )> φ ,t/> 1 o y y J 

and 

(VIII-44a) 

<F (z ,z.)> « ~ v o r 

<F , ,(z ,z,)> 0 
<M o V 

0 <F , , (z ,z,)> 0 φ ,φ o 1 
X X 

<F , , (z z,)> φ ,Φ ο> Γ 

(VIII-44b) 

Substitution of (Vin-44a) into (VIII-41a) yields 

Φ ( z l } Ä < Ρ ^ ( ζ 1 > ζ ο ) > Φ ( ζ ο } (VIII-45a) 

for inverse extrapolation of upgoing P-waves and 

Φ ( z . ) « < F . , ( ζ . , ζ )>Φ (ζ ), 
xv Γ V ,ψ 1 o x o 

X X 

Φ z, « <F, . ( ζ . , ζ )>Φ (z ) yv Γ φ ,V> 1 o7 y v o7 

y y 

(VIII-45b) 

(VIII-45C) 

for inverse extrapolation of upgoing S-waves. 

Note the high degree of similarity with the acoustic algorithm (VII-72a) 

for inverse extrapolation of upgoing waves 

P"(Zj) « <F"(z rzo)>P"(zo) . 

Similarly, substitution of (VIII-44b) into (VIII-41b) yields 

? + ( z o } * < F ^ ( z o ' Z l ) > r + ( z l } (VIII-46a) 

for inverse extrapolation of downgoing P-waves and 
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r x ( V * <FJ ,φ (zo'Zl)>rx(zl>' (Vffl-46b) 
X X 

ry(zo> * <FJ φ (zo'zl)>ry(zl>> (VIII-46c) 
y y 

for inverse extrapolation of downgoing S-waves. Note the high degree of 
similarity with the acoustic algorithm (VII-72b) for inverse extrapolation of 
downgoing waves 

r + ( z o ) « < Ρ + ( ζ ο , Ζ ι ) > ? + ( Ζ ι ) . 

For practical applications in low contrast media, the simplified expressions 

(VIII-45) and (VIII-46) are preferred above the more correct expressions 

(VIII-38a) and (VIII-38b) for the following reason. The extrapolation 

operators <F> are based on Green's wave fields Γ which are modeled in a 

geologically oriented reference medium (the macro subsurface model), see 

also section VI.5.2. The most important parameters in such a reference 

medium are the P- and S-wave propagation velocities. In practice a 

reference medium contains errors. When these errors are small, then the 

simplified expressions (VIII-45) and (VIII-46) may still yield reasonably 

accurate results. For this situation the accuracy will not improve, however, 

by taking into account the converted waves, as in (VIII-38a) and (VIII-38b), 

because here two wave fields are superimposed which may be mutually 

shifted because they are based on the (slightly erroneous) P-wave velocity 

and the (slightly erroneous) S-wave velocity, respectively. 

In conclusion, when the contrasts in the medium are weak to moderate, 

wave conversion during propagation plays a minor role, so the simplified 

expressions (VIII-45) and (VIII-46) yield sufficient accuracy, even in the 

presence of small errors in the macro subsurface model. When the 

contrasts in the medium are significant then we should not use the full 

expressions (VIII-38a) and (VTII-38b) for the following two reasons: 

1. The error term ΔΩ", as defined in (VIII-26c), is not negligible. 

2. The two terms in (VIII-38a) and (Vni-38b) are mutually shifted in the 

presence of small errors in the macro subsurface model. 

In chapter X, section X.3, we discuss an iterative scheme for designing 

inverse wave field extrapolation operators which tackles both problems. 
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VIII.3.6 Examples of elastic inverse wave field extrapolation 

We demonstrate the validity of equations (VIII-45a) and (VIII-45c) 

with the aid of two numerical examples (Haimé, 1987). Consider the 2-D 

inhomogeneous elastic medium, shown in Figure VIII-3a. A plane P-wave 

source of finite extent is burried in the subsurface at a depth of 

z-=2000m. The response at the reflection-free surface z =0m is shown in 

Figures VIII-3b, c. This response was computed with a finite difference 

modeling scheme. It represents the vertical (b) and horizontal (c) 

components of the partical velocity v as a function of the lateral 

coordinate x and time t. Because the upper half-space z<z is 

homogeneous and acquisition surface z is reflection-free, the recorded 

velocity represents an upgoing wave field, hence, v =v (x,z ;t). 

In seismic practice the vertical motions are often associated to P-waves 

whereas the horizontal motions are often associated to SV-waves. However, 

due to the complex overburden in this example the vertical velocity data 

also contain SV-wave contributions and the horizontal velocity data also 

contain P-wave contributions. Therefore we prefer to speak of pseudo 

P-data and pseudo SV-data, respectively. Figures VIII-3d and VIII-3e show 

the true P-data and the true SV-data in terms of the potentials <Mx,z ;t) 

and 0"(x,z ;t), respectively. They are related to the velocity data 

according to equations (11-31 c) and (II-31d), respectively. 

By applying a Fourier transform from time (t) to frequency (ω), the 

P-wave potential φ (χ,ζ ;t) is decomposed into monochromatic wave fields 

Φ (χ,ζ ;ω). According to Appendix A, section A.2, a discretized 

monochromatic wave field may be represented by a vector Φ"(ζ ). Inverse 

extrapolation of this upgoing wave field from depth level z =0m to depth 

level z=1200m is described by equation (VIII-45a), where 

dT+ (z z=z ) * 

ω 
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The numerical modeling of the Green's matrix 

ΓΪ,*(ζι·ζο> = t r M ( V z i ) ] T (vra-47b) 

was discussed in chapter VI (see Figure VI-6d). By applying (VIII-45a) for 
all frequencies within the seismic band, we obtain a range of 
monochromatic data vectors Φ"(ζΛ The result, after applying an inverse 
Fourier transform from ω to t, is shown in Figure VIII-4a. It represents 
the space-time data 0~(x,z.;t). Note that the distorting propagation effects 
of the overburden have been removed. For comparison, Figure VIII-4b 
shows the exact upgoing P-wave potential at depth level z.. The inverse 
extrapolated data (a) and the direct modeled data (b) show a very good 
agreement. This is also illustrated in Figure VIII-4c where the amplitude 
cross-sections are compared. Apparently, the underlying assumption of 
equation (VIII-47a) (weak to moderate contrasts) was satisfied for this 
example. 

For the next example, we consider the same medium, this time with a 
plane SV-wave source burried in the subsurface at a depth of z~=2000 m, 
see Figure VIII-5a. The response in terms of the vertical and horizontal 
velocity components is shown in Figures VIII-5b and VIII-5c, respectively; 
the response in terms of the P-wave and SV-wave potentials is shown in 
Figures VIII-5d and VIII-5e, respectively. The Fourier transformed SV-wave 
potential is respresented by a vector Φ~(ζ ). Inverse extrapolation from z 
to Zj is described by equation (VIII-45c), where 

<*> ,φ <'Γ«ο> » - T K ,Φ {Ζ1'Ζο)] *ΜΛΖΟ>- (Vm"48) 

y y ω y y 

The numerical modeling of the Green's matrix was discussed in chapter VI 
(see Figure VI-7e). 
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(a) 

(d) (e) 

Figure VIII-3: a. Inhomogeneous elastic medium with a hurried plane P-wave source 

at z =2000 m. 

b. Vertical component of the velocity, registered at z (pseudo P-data). 

c. Horizontal component of the velocity, registered at z (pseudo 

SV-data). 

d. Upgoing P-wave potential at z (true P-data). 

e. Upgoing SV-wave potential at z (true SV-data). 
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(a) 

{■I 

mini 

0.5 

J-1.0 
t(s) 

(b) 

1000 2000 3000 
(c) 

► x ( m ) 

Figure VIII-4: a. Inverse extrapolated upgoing P-wave potential at z =1200 m. 

b. Exact upgoing P-wave potential at z .=1200 m. 

c. Maximum amplitude per trace of Figure a (dotted line) and b (solid 

line). 
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2000 
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ure VIII-5: a. Inhomogeneous elastic medium with a hurried plane SV-wave source 
at z2=2000 m. 

b. Vertical component of the velocity, registered at z (pseudo P-data). 

c. Horizontal component of the velocity, registered at z (pseudo 
SV-data). 

d. Upgoing P-wave potential at z (true P-data). 

e. Upgoing SV-wave potential at z (true SV-data). 
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(a) 

(b) 

11 ampl. 
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Figure VIII-6: a. Inverse extrapolated upgoing SV-wave potential at z =1200 m. 
b. Exact upgoing SV-wave potential at z =1200 m. 
c. Maximum amplitude per trace of Figure a (dotted line) and b (solid 

line). 
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The inverse extrapolation result, after applying an inverse Fourier 

transform from ω to t, is shown in Figure VIII-6a. It represents the 

space-time data φ (x,z.;t). Note that the distorting propagation effects of 

the overburden have been removed for the greater part. For comparison, 

Figure VIII-6b shows the exact upgoing SV-wave potential at depth level z. 

The agreement of the inverse extrapolated data (a) and the direct modeled 

data is less good than in the previous example. This is also illustrated in 

Figure VIII-6c where the amplitude cross-sections are compared. Apparently, 

the underlying assumption of equation (VIII-45c) (weak to moderate 

contrasts), was not fully satisfied for this example. 
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IX 
ACOUSTIC INVERSE WAVE FIELD EXTRAPOLATION 
IN HIGH CONTRAST MEDIA 

IX.l. INTRODUCTION 

For the configuration of Figure IX-1, inverse extrapolation of the upgoing 

wave field P 

described by 

wave field P from acquisition surface z=z to subsurface point r. is 

P (ΓΑ,ω) = Ρ0"(ΓΑ,ω) + ΔΡ~(ΓΑ,ω), (IX-la) 

where 

r°°fr 1 Γ
3 ° ( Γ ' Γ Α · ω ν -- . 1 dxdy 

-oo Lp(r ) 
(IX- lb) 

and 

ΔΡ"(Γ , ,Γ°°ΓΓ Ι {^y^kK^r Λ «* 
-oo up(r ) J 1 

(IX-lc) 

see section VII.3. The only approximation concerns the negligence of 

- z = zn Z=Zr 

= z< — 

(b) 

Figure IX-1: The error in acoustic inverse wave field extrapolation is proportional to the 
product of the scattered wave field P (Figure a) and the scattered Green's 

+ $ 
wave field G (Figure b). 
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evanescent waves at z=z and z=z. . However, in practice no measurements 

of Ρ+(Γ\ω) are available at z=z. , so the term ΔΡ"(ϊ\,ω) is neglected, 

which means that equation (IX-1) is approximated by 

Γ°°ΓΓ 1 r w"( r ' îA' tV - - 1 P (r «) « 2 j J - ^ - ( a z
 A J P (r ,ω) dxdy. (IX-2) 

-oo Lp(r ) J o 

In section VII.3.3 we showed that this approximation is justified when the 

contrasts in the medium are low: ΔΡ (τ Α,ω) is proportional to the product 

of the scattered wave field P at z=z. (Figure IX-la) and the scattered 

Green's wave field G at z=z 1 (Figure IX-lb). 

The subject of this chapter is acoustic inverse wave field extrapolation in 

high contrast media, where equation (IX-2) breaks down. Looking at the 

"error term" ΔΡ~(τ Α,ω), as defined by (IX-lc), we see that there are two 

possible paths to be followed: 

1. By choosing a non-scattering reference medium for the Green's wave 

field, G will be zero and, consequently, ΔΡ (r .,ω) will vanish. 

Of course we cannot choose just any reference medium for the Green's 

wave field. However, by applying the inverse wave field extrapolation 

recursively from layer interface to layer interface (taking into account 

the boundary conditions at the layer interfaces), the total reference 

medium may be subdivided into a number of reference layers, each of 

which may be (almost) non-scattering. The recursive approach to acoustic 

inverse wave field extrapolation in high contrast media is discussed in 

section IX.2. 

2. On the other hand, for non-recursive applications, we should derive an 

(approximate) expression for P (r ,ω) at z=z.. In this way ΔΡ~(Γ ω) can 

be estimated and, subsequently, added to P~(r ,ω). In section IX.3 we 

discuss an iterative approach to acoustic inverse wave field extrapolation 

in high contrast media, which is based on iteratively estimating the 
"error term" ΔΡ (r A,w). A 
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IX.2 RECURSIVE ACOUSTIC INVERSE WAVE FIELD EXTRAPOLATION 

IX.2.1 Principle 

Consider the i'th layer between the arbitrarily curved surfaces S. . and S. 
l - l l 

in an inhomogeneous acoustic medium (Figure IX-2a). The medium 
parameters in this layer read c.(r ) and p.(r ). We will assume that the 
contrasts within the layer are weak. However, the contrasts at surfaces 
S._. and S. may be arbitrarily high. 

i-1 Volume V. for the Kirchhoff-Helmholtz integral is bounded by surfaces S. 
and S.. For the Green's wave field G we may choose outside V. any 
convenient reference medium. We choose this reference medium such that 
S._. and S. are non-reflecting for G (Figure IX-2b). In the special 
situation of a homogeneous layer, the reference medium for G would be 
homogeneous throughout, so G would be just the free space Green's 
function. 

i-1 

^ .Y A 

^ S i _ i -1 

- - Si 

(a) (b) 

Figure IX- 2: a. Layer i in an inhomogeneous acoustic medium. 
b. Non-reflecting reference medium for the Green's wave field. 

According to chapter VII, inverse wave field extrapolation from S._. to 
any point r. in V. is described by 
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Ρ-(Γ Α .«) 

p 1 Γ * _ _ * aixT* ιΛ öO (r ,r ω) -ι 1) 
/ iV [G ( Γ^>> *gr f - - an. ,A P H d*i-r <ΙΧ"3*> 
f. . p.U ) L l-l l- l J 5 i - l 

where d/dn. . stands for n . . .V and n . . being the downward pointing 

normal vector on surface S... In (IX-3a), P(r ,ω) represents the total 

acoustic wave field at r on 5. . , whereas P (r ,ω) represents the upgoing 

acoustic wave field at r A below S. .. In the following we take r just 

above surface £. , see Figure IX-2b. P (ΐ" Λ'ω) thus represents the upgoing 

wave field just above S.. For the primary wave, this upgoing term 

represents the total wave field just above 5. , see Figure IX-2a. Hence, we 

can easily find the total wave field just below S. by applying the 

following boundary condition for the acoustic pressure: 

lim [ Ρ ^ , ω ) ] = lim [Ρ~(Γ α>)] . (IX-3b) 
r A ÎS. A r A | S . 

This total wave field just below S. (the upgoing primary wave plus its 

reflection from £., see Figure IX-2a) can be used again in equation 

(IX-3a), with S._. replaced by S., to compute the upgoing primary wave 

just above S. .. For this purpose, however, we also need an expression for 

5Ρ(Γ~\Ο>)/3Λ.. From (IX-3a) we obtain 

d? (ΓΑ,ω) 

d \ A 

. * , - - x . 2 * -

(IX-4a) 

l- l rr 

Here the summation convention does not apply to the layer index i. 
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where d/dn. A stands for n..V , n. being the downward pointing normal 

vector on surface S. and V . being the gradient at r . In analogy with 

(IX-3b), the boundary condition for the particle velocity at S. reads 

lim Γ i ^ν^Ί limr_L_^!Jvi] . (IX-4b) 

Equations (IX-3) and (IX-4) together can be used in a recursive mode to 

extrapolate the primary upgoing wave field inversely from layer interface 

to layer interface. 

Generally, in recursive one-way forward wave field extrapolation schemes, 

significant additional effort is required at the layer boundaries in order to 

take transmission effects into account. Here we have presented a recursive 

scheme for inverse wave field extrapolation, in which transmission effects 

are simply taken into account by (IX-3b) and (IX-4b). For the situation of 

homogeneous layers, the free space Green's wave field (V-26) may be 

substituted into (IX-3a) and (IX-4a). In this case the only approximation in 

the recursive scheme concerns the negligence of internal multiples and 

evanescent waves, irrespective of the magnitude of the contrasts and the 

shape of the interfaces. 

IX.2.2 Example 

We illustrate the validity of the recursive approach with the aid of a 

simple example. We consider two homogeneous half-spaces separated by an 

interface at z =500 m, see Figure IX-3a. The medium parameters of the 
3 upper half-space read c.=1500 m/s and p. = 1000 kg/m ; the medium 

3 parameters of the lower half-space read c^=3000 m/s and p^=2000 kg/m . 
Note the significant contrast at z . . A 2-D acoustic wave field is radiated 
by a source in the lower half-space at (x=o, z~=1500 m). The upgoing 
wave field p~(x,z ,t) for z =o m is shown as a function of x and t in H v ' o' ' o 
Figure IX-3b; the upgoing wave field p~(x,z-,t) for z.=1000 m is shown in 

Figure IX-3c. 
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z1 =500 m 

z«,=1500 m 

r 

c,=1500 m/s 
p1 =1000 kg/m3 

c2=3000 m/s 
p =2000 kg/m3 

P 

(a) 

figure IX-3: a. Inhomogeneous acoustic medium with a high contrast at z. 

b. Upgoing wave field at z . 

c. Upgoing wave field at z γ 

In the wavenumber-frequency domain, these wave fields are related 

forward wave field extrapolation operator, according to 

P (zo) = W (z o ,z 2 )P (z2) , (IX-5a) 

where 

W"(zo,z2) = W"(zo,z1)T"(z1)W"(z1,z2), (IX-5b) 

with 

W (zo ,z1) = exp(-jkz j l Z j - zJ ) , 

W"(z r z 2 ) = exp(-jkz ^ ζ ^ ζ ^ ) , 

(IX-5c) 

(IX-5d) 
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T'CZj) = l-R+(Zj) (IX-5e) 

and 

p.k ,-p.k -
r ( z l > = ok Jk ' (IX"5f) 

1 p2 z , l + P l z , 2 

see section Vu.2.2. Before we apply the recursive approach, we show that 

the modified matched filter approach fails for this configuration. Following 

section VII.2.2, inverse extrapolation according to the modified matched 

filter approach reads 

<P"(z2)> = <F"(z2 ,zo)>P'(zo), (IX-6a) 

where 

<F"(z2,zo)> £ [W + (z 2 , z o ) ] *, (IX-6b) 

<F"(z2,zo)> ^ [W + (z 2 , z 1 )T + (z 1 )W + (z 1 , z o ) ] , (IX-6c) 

with 

W + ( z r z o ) = W"(zo ,Z l), (IX-6d) 

W + (z 2 , Z l ) = W"(z r z 2 ) (IX-6e) 

and 

T + ( Z l ) = 1 + R + ( Z l ) . (IX-6f) 

Note that for propagating waves, <F ( ζ . , ζ )> is related to the forward 

operator W (z ,ζ^), according to 
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<F-(z2,zo)> = [ 1 - ( R + ( Z I ) ) 2 ] [ W - ( Z O , Z 2 ) ] _ 1 . (IX-6g) 

The result of (IX-6a), transformed back to the space-time domain, is 

shown in Figure IX-4a. It represents the upgoing wave field <p (x,z2,t)> for 

z9=1000 m as a function of x and t. The maximum amplitude of each 

trace is shown as a function of x in Figure IX-4b (dotted line). Note  the 

important mismatch with the exact result (solid line). This could  be 

expected because for high R (z . ) , operator <F (ζ^,ζ )> deviates significantly 

from [W(z , z - ) ] " , see equation (IX-6g). 

Next we analyse the recursive approach,  as discussed in the previous 

section. For the laterally invariant configuration  of Figure IX-3a, the 

integrals in equations (IX-3a) and (IX-4a) represent spatial convolutions, 

which correspond to multiplications in the wavenumber-frequency domain. 

For the first inverse extrapolation step from  z to z. we rewrite (IX-3a) 

and (IX-4a) as 

.1 Γ * e ? _ ( z o ) a 5 * ( V z i > - 1 
p <zi> - jr[G <Vzi> -Ί^ - - ^ ρ <zo>J <IX"7a> 

H\ L 0 0 J 

and 

3Ρ-( Ζ 1) , Γ 5 δ * ( ζ ο , Ζ ι ) a?"(2o) ö 2 G*(z o , Z l ) 
Ρ ' ( Ζ Λ ) , (IX-7b) öz t p, L dz. dz dz dz, v o 

1 o O 1 

respectively. Note that the total wave field at z is equal to the upgoing 

wave field P (z ), see Figure IX-3a. It satisfies one-way wave equation 

(III-45b): 
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Figure IX-4: Inverse extrapolation according to the modified matched filter approach. 

a. Upgoing wave field at z .. 

b. Maximum amplitude per trace (dotted line) compared with the exact 

result (solid line). 

Figure IX-5: Inverse extrapolation according to the recursive approach. 

a. Upgoing wave field at z γ 

b. Maximum amplitude per trace (dotted line) compared with the exact 

result (solid line). 

(The dotted line is hidden by the solid line). 

— — - = jk ,P (z ). dz J z,l v o' (IX-8a) 

The Green's wave field G(z , z . ) is given by the free space solution (V-27a): 
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5 < V Z 1 > ■ -^hx e x p ( - j k Z ) 1 | z r Z o | ) . (IX-8b) 

For the boundary conditions at z p we rewrite (IV-3b) and (IV-4b) as 

lim PCZj+e) = lim ?~(z{-e) (IX-9a) 
e-+o e->o 

and 

a?(z +c) . 3P~(z -e) 
l im— 1 - ^ = lim—- ^ — , (IX-9b) p_ d z . p. σ ζ , e-+o K2 1 e->o H\ 1 

respectively. For the second inverse extrapolation step from z. to z~ we 

rewrite (IX-3a) as 

Γ * 5P(z ) 5G*(z z ) _ 1 
P-(Z2) = ^ [ G (ΖΓΖ2) - — L - a z | P(Zl) J , (ix-io) 

where the Green's wave field ό ΐ ζ . , ζ ^ ) is given by the free space solution: 

P2 G(z , , z 0 ) = -^τξ exp(-jk„ , Ι ζ , - z J ) . (IX-11) 

The result of (IX-10), transformed back to the space-time domain, is 
shown in Figure IX-5a. It represents the upgoing wave field p (x,z~,t) for 
z(?=1000 m as a function of x and t. The maximum of each trace is 
shown as a function of x in Figure IX-5b (dotted line). Note the perfect 
match with the exact result (solid line). This very good result is explained 
analytically as follows. Substitution of (IX-8) into (IX-7) yields for 
propagating waves (k is real) 
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and 

?'(z{) = exp(+jkZ j l |z1-zol)P"(zo) (IX-12a) 

3 P ( z ) 
-= jk ,exp(+jk J z . - z J ) P ' ( z ) . (IX-12b) dz. J z,l v J ζ,Γ 1 o o 

Applying boundary conditions (IX-9a) and (IX-9b) and substituting the results 

together with (IX-11) into (IX-10) yields for propagating waves (k . is real) 

rP2kz l + p l k z 2Λ P (z ) = exp(+jkz 2 | z 2 - z | ) [ / ^ k
J Z ? ZJexp(+jkz |z -z |)P (z ), (IX-13a) 

' 1̂ z,2 ' 

P"(z2) = F"(z2,zo)P"(zo), (IX-13b) 

where 

F"(z2,zo) = \y/'(zoizl)T-(zl)W'(zvz2)]-1 = [ W " ( z o , z 2 ) ] _ 1 . (IX-13c) 

Equation (IX-13) confirms that inverse wave field extrapolation according 

to the recursive approach yields a result which is exact for the primary 

waves in the propagating wavenumber area. Hence, even in the presence 

of significant contrasts, the only approximation concerns the negligence of 

internal multiples and evanescent waves. Bear in mind that we presented 

this analysis in the wavenumber domain only as an illustration. In practice, 

(recursive) inverse wave field extrapolation is entirely carried out in the 

space domain. 

1X3 ITERATIVE ACOUSTIC INVERSE WAVE FIELD EXTRAPOLATION 

IX.3.I Principle 

We consider again the non-recursive expression (IX-1) for acoustic inverse 

extrapolation of the upgoing wave field P from acquisition surface z=z 

to subsurface point r (Figure IX-1): 
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Ρ"(ΓΑ,ω) =Ρ0(ΓΑ,ω) + ΔΡ'(ΓΑ,ω), (IX-14a) 

where 

and 

P0(rA,W) = 2j 1 1 - 4 - ( ^~—) P (r .«) J z dxdy (K-Ub) 

Γ°?Γ i 3G + (r \r t ,«) * "I 
"(ί^,ω) = - 2 j j - ^ - ( % z ) Ρ,<Λ«) L dxdy. (IX-14c) 

-oo Lp(r ) J 1 
ΔΡ 

Since P (r ,ω) at z. is unknown, ΔΡ (ΐ"Δ,ω) cannot be computed directly. 

When the contrasts in the medium are significant, ΔΡ (ΐ" Α,ω) may not just 

be neglected. In this section we discuss how ΔΡ (ΐ"Δ,ω) can be computed 

iteratively. For this purpose we choose the "reference surface" z=z just 

below 7* (see Figure IX-lb). 

The first step is described by equation (IX-14b), which is illustrated in 

Figure IX-6a. Here P (r ,ω) for r =(x,y,z=z ) represents the upgoing wave 

field at z=z . G~(r ,ΐ\. ,ω) for r =(x,y,z=z ) represents an upgoing Green's 

wave field at z=z , related to a source at r =(x. ,y  A ,z . ). Hence, * o A A J A A' 
[G (F\r~.,ü;)J for F*=(x,y,z=z ) represents a downgoing Green's wave field 

at z=z which propagates backward to r . 

Applying this backward propagating Green's wave field to the upgoing 

wave field at z=z according to equation (IX-14b), yields the "zeroth 

order" estimate P (ΐ"Α,ω) °f t n e t r u e upgoing wave field P (r ,ω). 

The second step is described by 

2j J LTS" ai V r ·ω) Jz, c 

-oo "-p(r ) J 1 

Ρ8,ι(?Α'ω) = ~ 2 ^ ' - — s ~ £ Ρ ^ ω ) L dxdy> (ιχ-15) 

which is illustrated in Figure IX-6b. ' Here G (r.,F*,a;) represents a 

scattered downgoing Green's wave field at r. , related to sources at 

' A similar situation was discussed in section  V.5.1, see equation (V-50b) 
and Figure V- l lb . 
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(G-(r,rA>ü>)r 

G£(fAf?,Q>) 

(G+(rfrA,o>))* 

(c) 

Figure IX-6: Iterative acoustic inverse wave field extrapolation. 
a. Back-propagation of the upgoing wave from z to r .. 
b. Simulation of the scattered downgoing wave at z. from the upgoing wave 

c. Back-propagation of the simulated scattered downgoing wave from z . to 

The latter two steps are applied iteratively. 
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r =(x,y,z=z.). Applying this scattered Green's wave field to the upgoing 

wave field P~(F\w) at z=z. according to equation (IX-15), yields the first 

order estimate P .(r ,ω) of the true scattered downgoing wave field 

The third step is described by (IX-14c) (with P replaced by P . ) , hence 

ΔΡ 
°?Γ 3G+(r\rt,o>) * "I 

;(r>) = -2l![-j- i S
 dz

A ) P S 7 ^ ) J .dxdy, (IX-16) 
-oo Lp(r ) J 1 

which is illustrated in Figure IX-6c. Here G (r ,ΐ"Λ,ω) for r =(x,y,z=z.) 

represents a scattered downgoing Green's wave field at z=z. , related to a -* r + - > - > ï * - + 
source at r . Hence, {G (r ,rA,o;)J for r =(x,y,z=z.) represents an upgoing 

Green's wave field at z=z. which propagates backward via the scattering 

medium to r . Applying this backward propagating Green's wave field to 

the first order estimate P .(r ,ω) at z=z. according to equation (IX-16), 

yields the first order estimate Δ Ρ " ( Γ ,ω) of the "error term" A?~(r* ω). 

Substituting this result into (IX-14a) (with ΔΡ replaced by Δ Ρ Α yields 

Pj(F^,o;) = Ρ0(ί^,ω) + ΔΡ~(Γ^,ω), (IX-17) 

where P.(r ,ω) represents the first order estimate of the true upgoing 

wave field P~(r A,w). 
A 

The essence of this scheme is that the unknown scattered downgoing wave 
P at z. is simulated by forward modeling in the second step. Since the 
"input" P" for this forward modeling is not exact, the second and third 
step should preferably be carried out iteratively. In this case, iteration i 
(with t>\) reads 

v v > - -2^\rk ~^— pM(r.«»Jz1
dxdy' (IX"18a) 

-oo up(r ) J 1 
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^ , ω ) = -iff M - ( » A ) p ; (Γ,ω) I dxdy (IX-18b) 
-oo Lp(r ) J 1 

ΔΡ . . . . _ 
Lp(r ) 

and 

Ρ'(ΓΑ,ω) = Ρ~(ΓΑ,ω) + ΔΡ'(ΓΑ,ω), (DC-18c) 

with P"(rA,w) being given by equation (IX-14b). 

Note that in this iterative scheme the computations must be carried out 

for all r A just above z=z Therefore the matrix notation is more 

appropriate. In the matrix notation of Appendix A, expressions (IX-18a), 

(IX-18b) and (IX-18c) may be replaced by 

K.M = W s + ( z r Z A < Z l > ' <IX~19a> 

Δ Ρ ^ ζ , ) = [ W ^ ( z 1 , z 1 ) ] V s
+ ( z 1 ) (IX-19b) 

and 

P^Zj) = Po"(Zl) + AP£-(Zj), (IX-19c) 

where P ' i z . ) is defined by expression (IX-14b) in the matrix notation: 

Ϋ-(Ζ{) = <F"(z1,zo)>P>"(zo). (IX-20) 

In expressions (IX-19a) and (IX-19b), the forward extrapolation operator 

W+(z, ,z , ) is defined as s Γ Γ 

3G+(z z=z ) 
W ^ Z j ^ p = -2  S-± l- M '(Zj), (IX-21a) 
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where the columns of G ( z . , z ) contain the discretized versions of 

G+(r* ,r~\w)=G+(F\r^ ,ω) for z=z =z,; in expression (IX-20), the modified 
S / \ S J\ r\ 1 

matched inverse operator <F ( ζ . , ζ )> is defined as 

3G+(z,,z=z ) * 
2( ' °1 M-^z ), <F ( z r z o ) > = 2 [ fz - J M*(z o ) f (IX-21b) 

where the columns of G ( ζ , , ζ ) contain the discretized versions of 
v Γ ο' G (r . , r ,w)=G (r ,Γ.,ω) for z=z and z = z , . For a further discussion of the A A o A 1 

matrices and vectors in (IX-19), (IX-20) and (IX-21) we refer to sections 

V.5.2 and VII.3.5. 

Expressions (IX-19a), (IX-19b) and (IX-19c) can be combined into one 

expression, according to 

P£ (zj) = Po" (Zj) + BizpP^jiZj), (IX-22a) 

where 

S(Zj) = [W^Zj .Zj f l 'w^Zj .zp . (IX-22b) 

Upon substitution of (IX-20), equation (IX-22a) can be rewritten as 

P p Z j ) = F ^ Z j . z ^ i z ^ , (IX-23a) 

where the £'th order estimate F"(z.,z ) of the inverse operator F ( z . , z ) 

reads 

F / z r z o ) = Σ [E(z{))m<F-(zvzo)>. (IX-23b) 

Equation (IX-23a) elegantly describes inverse extrapolation of the upgoing 

wave field P at depth level z , yielding the Tth order estimate of the 

upgoing wave field P~ at depth level z . Equation (IX-23b) relates the V th 

order estimate of the inverse operator F ( z . , z ) to the modified matched 
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inverse operator <F~(zrz )>. Note that 

F~(Zl,zo) = <F"(zrzo)>, (IX-23c) 

which means that for b=o the iterative approach to inverse wave field 
extrapolation degrades to the modified matched inverse approach, which 
was discussed in chapter VII. Finally, for inverse extrapolation of 
downgoing waves the corresponding expressions read 

?+(zo) = F^(zo,z1)P>+(z1), (IX-24a) 

where 

t 
F£(Z O , Z I ) = Σ (s(zo))m<F+(zo,z1)>, (IX-24b) 

with 

Ξ(ζ ) = [W (z ,z )] W"(z ,z ). (IX-24c) 
v o' L sv o' oyj sv o' oy v ' 

Matrices W(z ,z ) and <F (z ,zj> are defined in a similar way as above. 
In the next section we show for some simplified situations that for i—κχ> 
the iterative approach converges to exact inverse wave field extrapolation 
for the propagating wavenumber area. 

1X3.2 Examples 

We illustrate the validity of the iterative approach with the aid of some 
simple examples. We consider again the situation depicted in Figure IX-3. 
For the the laterally invariant configuration of Figure IX-3a, we replace 
(IX-23a) and (IX-23b) by the following expressions in the wavenumber-
frequency domain: 
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V z 2 > ■ F ;( z 2' z o ) P " ( z o>' ( I X " 2 5 a ) 

where 

¥ Z 2 ' Z o } = Σ (S (z 2 ) j m <F'(z 2 ,z o )> , (IX-25b) 
m=o 

with 

S(z 2) = [Wg(z2 ,z2)] *Ws
+(z2,z2). (IX-25C) 

CT,+, The forward extrapolation operator W (ζ^,ζ«) describes upward propagation 

from : 

hence 

from z~ to z scattering at z and downward propagation from z. to z«, 

W^(z2,z2) = W+(z2,z1)R"(z1)W"(z1,z2), (IX-26a) 

where 

R"(Zl) = -R+(z ), (IX-26b) 

with W (z-,z ), W~(z ,z~) and R (z ) defined in section IX.2.2. Substitution 

into (IX-25) yields for the propagating wavenumber area 

t 
F^(z2,zo) = Σ (R + (z 1 ) ) 2 m <F"(z 2 ,z o )> . (IX-27a) 

m=o 

In section IX.2.2 we found that for propagating waves the modified 
matched inverse operator is related to the exact inverse operator, 
according to 

<F"(z2,zo)> = [ 1 - ( R + ( Z I ) ) 2 ] F " ( Z 2 , Z O ) , (IX-27b) 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



353 

1000 

333 

667«. mac 

I, 

i=5 

1000 

333 

667 msec 

1000 i, 

1000' 

(a) (b) 
Figure IX-7: Inverse extrapolation of the data in Figure IX-3b, according to the iterative 

approach. 

a. Upgoing wave field at z ^ for iterations 0, 1, 5 and 100. 

b. Maximum amplitude per trace (dotted lines) compared with the exact 

result (solid lines) for iterations 0, 1, 5 and 100. 
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see equations (IX-6g) and (IX-13c). Substitution of (IX-27b) into (IX-27a) 

yields 

F-(z2 ,zo) = [ l - ( R + ( Z l ) ) 2 £ + 2 ] F - ( z 2 , z o ) . (IX-28) 

This result expresses that for propagating waves the errors of the iterative 

approach to inverse wave field extrapolation are proportional to 

[ R ( Z . ) J . For pre-critical propagation (i.e., for propagating waves in 

both half-spaces), the modulus of R (z ) is smaller than one, hence, the 

errors vanish for £-+oo. This is illustrated in Figure IX-7. Figure IX-7a 

shows the inverse extrapolated upgoing wave field p ix , z 9 , t ) as a function 

of x and t for iterations &=0, 1, 5 and 100. Figure IX-7b shows the 

maximum amplitude per trace as a function of x for iterations £=0, 1, 5 

and 100 (dotted lines). Note the rapidly decreasing mismatch with the 

exact result (solid lines). 

In the next example we show that the iterative approach takes also care 

of internal multiple reflections. Consider the configuration depicted in 

Figure IX-8a. The medium contains significant contrasts at z = 3 0 0 m and 

z^=800 m. A 2-D acoustic wave field is radiated by a source in the lower 

half-space at (x=o, z4=1800 m). The upgoing wave field p"(x,z ,t) for 

z =0 m is shown as a function of x and t in Figure IX-8b. Note the 

events related to the multiple reflections between the contrasts at z and 

z^. The exact upgoing wave field p (x,z . , t ) for z~=1200 m is shown in 

Figure IX-8c. Note that this wave field contains no multiple reflections. 

Figure IX-9a shows the inverse extrapolated upgoing wave field p~(x,z^,t) 

for iterations £=0, 1, 2 and 5. Note that the number of internal multiples 

in the extrapolation result decreases when I increases. Finally, Figure 

IX-9b shows the maximum amplitude per trace for iterations &=0, 1, 2 and 

5 (dotted lines). Note again the rapidly decreasing mismatch with the 

exact result (solid lines). The small deviations at the edges are due to the 

negligence of evanescent waves. 

Internal multiples can only be handled correctly when the macro subsurface 

model is accurately known (in the example we used the exact subsurface 
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z3=1200 m 

^ 

c.=1000 m/s 

co=3000 m/s 

cQ=5000 m/s 

^ 

o 
(a) (c) 

Figure IX-8: a. Inhomogeneous medium with high contrasts at z ; and ζγ 

b. Upgoing wave field at z , containing internal multiple reflections. 

c. Upgoing wave field at z ^ 

model). Even small errors in the macro subsurface model may already give 

rise to significant artifacts. These additional artifacts can only be avoided 

at the cost of the correct multiple handling of the iterative operator. 

Finally, in practical situations with high contrasts, one iteration (£=1) will 

generally be sufficient. Higher order iterations will hardly improve the 

result, particularly when the macro subsurface model is slightly in error. 
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1 
I I I 
I I 

1000 

(a) (b) 

Figure IX-9: Inverse extrapolation of the data in Figure IX-8b, according to the iterative 

approach. 

a. Upgoing wave field at z , for iterations 0,1,2 and 5. 

b. Maximum amplitude per trace (dotted lines) compared with the exact 

result (solid lines) for iterations 0,1,2 and 5. 
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ELASTIC INVERSE WAVE FIELD EXTRAPOLATION 
IN HIGH CONTRAST MEDIA 

X.l. INTRODUCTION 

For the configuration of Figure X-1, inverse extrapolation of the upgoing 

P- and S-waves (Φ and Φ , respectively) from acquisition surface z=z to 

subsurface point r. is described by 

Ω'(ι·Α,ω) =Ωο(ΓΑ,ω) + ΔΩ~(ΓΑ,ω), (X-la) 

where 

oo Γ 5Γ * dr*~ * Ί 

and 

ΔΩ 

see section VIII.3. Depending on the choice of the source for the Green's 

wave fields, Ω may represent either V for m=l, 2, 3 or }ωΦ , or .ίωΨ, 

for h=l, 2, 3. The only approximation in (X-1) concerns the negligence of 

evanescent waves at z=z and z=z. . However, in practice no measurements 

of Φ and Φ are available at z=z. , so the term ΔΩ (r ,ω) is neglected, 

which means that equation (X-1) is approximated by 
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<ΠΪ>> - f "-*h-[H?} *-+ ^ · r l d x d y · (x-2) 
J -OO rv O *" J Q 

In section VIII.3.3 we showed that this approximation is justified when the 

contrasts in the medium are low: ΔΩ"(Γ ,ω) is proportional to the product 

of scattered wave fields at z=z. (Figure X-1). 

(a) (b) 

Figure X-1: The error in elastic inverse wave field extrapolation is proportional to the 

product of scattered elastic wave fields (Figure a) and scattered Green's 

wave fields (Figure b). 

The subject of this chapter is elastic inverse wave field extrapolation in 

high contrast media, where equation (X-2) breaks down. Similar as in 

chapter IX, we discuss a recursive and an iterative approach. 

X.2 RECURSIVE ELASTIC INVERSE WAVE FIELD EXTRAPOLATION 

Consider the i'th layer between arbitrarily curved surfaces S._. and S. in 
an inhomogeneous anisotropic elastic medium (see Figure IX-2a for the 
acoustic equivalence). The medium parameters in this layer read 
[c, . (r )] . and [p(r )] .. We will assume that the contrasts within the 

layer are weak. However, the contrasts at surfaces S._. and S. may be 
arbitrarily high. 
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Volume V. for the Kirchhoff-Helmholtz integral is bounded by surfaces S. 

and S.. For the Green's wave field we may choose outside V. any 

convenient reference medium.  We choose this reference medium such that 

S._. and S. are non-reflecting (see Figure IX-2b for the acoustic 

equivalence). In the special situation of a homogeneous layer, the reference 

medium would be homogeneous throughout. 

According to chapter VIII, inverse wave field extrapolation from  S. . to 

any point 7* in V. is described by 

* * 0 
V m ( ï A ' w ) = J [ e m (^^)vV.") + ^Γ,ω^Γ,Γ^,ω)] .Ht^dS.^, (X-3a) 

Si-\ 

where n*. . is the downward pointing normal vector  on surface S. .. ν*(Γ\ω) 

and r(r ,ω) represent the total elastic wave field at r on 5 . , , whereas 

V~ (ΐ"Α'ω) for m=l, 2, 3 represents the components of the upgoing elastic 

velocity wave field V* (ϊ\ν,ω)  at 7\ below S. .. In the following we take r. 

just above surface  S. (see Figure IX-2b for the acoustic equivalence). 

Hence, V* (ΐ\ν>ω) now represents the upgoing wave field just above  S.. For 

the primary wave, this upgoing term represents  the total wave field just 

above S. (see Figure IX-2a for the acoustic equivalence). Hence, we can 

easily find the total wave field just below  S. by applying the following 

boundary condition for the particle velocity: 

lim [V(r!,ü;)] = lim [Y'(rt ,ω)] . (X-3b) 

rAis. A rAis. 

This total wave field just below  S. (the upgoing primary wave plus  its 

reflection from S., see Figure IX-2a for the acoustic equivalence) can be 

used again in equation (X-3a), with S. . replaced by 5. , to compute the 

upgoing primary wave just above  S. . . For this purpose, however, we also 

need an expression for r(r ,ω). 

Here the summation convention does not apply to the layer index i. 
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Consider the stress-velocity relation (11-21), which reads in the 
space-frequency domain 

\ωτ. 0 = c. a d V . J k£ k£mn n m 

Substitution of (X-3a) yields 

ft AK .ω) = - 4 - [c. - (r*A )] Γ [d θ* (?*,ΓΑ ,ω)ν"(Γ,ω) k£v A' ' \ω L k£mnv A/J . i L n mv A ' v ' J " - " ϊ S . ^ "A 

+ f(r*,w)a 3 (r\rt ,ω)] .îï\ ,dS. ,, (X-4a) v n nr A /J l-l ι-Γ v ' 
A 

where d for n=l, 2, 3 denotes differentiation with respect to the 
"A 

Green's source point coordinates xA, yA, z . , respectively, and where 
T, irA,a;) for k=l, 2, 3 and £=1, 2, 3 represents the components of the 
upgoing elastic stress wave field τ (r .,ω). In am 
boundary condition for the traction at S. reads 
upgoing elastic stress wave field τ (r .,ω). In analogy with (X-3b), the 

lim [τ(Γ ,̂ω)ϊΓ.] = _lim [r (Γ ,̂ω)ϊΓ.] , (X-4b) 
rAÎS; rAlS.. 

where n. is the downward pointing normal vector on surface S.. 

Equations (X-3) and (X-4) together can be used in a recursive mode to 
extrapolate the primary upgoing wave field inversely from layer interface 
to layer interface. 

Generally, in recursive one-way forward wave field extrapolation schemes, 
significant additional effort is required at the layer boundaries in order to 
take transmission effects into account. Here we have presented a recursive 
scheme for inverse wave field extrapolation in which transmission effects 
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are simply taken into account  by (X-3b) and (X-4b). However, this 

recursive scheme is very sensitive to errors in the ratio of the P- and 

S-wave propagation velocities  in each layer. 

For practical applications of elastic inverse wave field extrapolation  in 

high contrast media we prefer the iterative approach which  is discussed in 

the next section. 

X.3 ITERATIVE ELASTIC INVERSE WAVE FIELD EXTRAPOLATION 

X.3.1 Principle 

The derivation of the matrix operators for iterative elastic inverse wave 

field extrapolation is very similar to the derivation for the acoustic 

situation, as presented in section IX.3.1. We skip the derivation and 

present the results only. In analogy with (IX-22a), iterative inverse 

extrapolation of upgoing P-waves from z to z. reads in the matrix 

notation of Appendix A 

(r(z1))< = (r(2,))o ♦ B^zptrtz,))^, (x-5a) 

where, in analogy with (VIII-45a), the "zeroth order" estimate reads 

[f(zl))o = < F ^ ^ ( z 1 , z o ) > r ( z o ) > (X-5b) 

and where, in analogy with (IX-22b) 

S^(ZI> = K,/Zl'ZlÖ*l>L(Zl'Zl)]s + tWî .* e
( Z rZ l ) ]»C WV( ZrZ l ) : ] s 

+ CwM<zrz
0fl*l>$.* (Vzifl · (x"5c) 
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In (X-5b), <F~ ( ζ . , ζ )> represents the modified matched inverse operator 

as discussed in section VIII.3.5. In (X-5c), the matrices [W, . ( ζ . , ζ . ) ] , 

[W, , (z z j ] and [W, . ( ζ . , ζ . ) ] describe forward extrapolation from 

z. to z. via the scattering medium above z. (see Figure IX-6b for the 

acoustic equivalence); the sub-scripts φ an φ refer to P-waves and 

S -waves , respectively. In the iterative scheme these matrices take care a 
of the scattered downgoing P- and S-waves at depth level z . . Finally, in 

(X-5c) matrices W, , ( ζ , , ζ ) and W~ ,(z , ζ , ) are forward extrapolation 
v
 ' φ,φ

 v
 1 o

7
 ψ ,0

V
 o 1 

operators, as defined in section VI.5.2. In the iterative scheme these 

matrices take care of the converted upgoing S-waves at depth level z , 

which were neglected for practical reasons in equation (VIII-45a), see the 

discussion in section VTII.3.5. 

Upon substitution of (X-5b), equation (X-5a) can be rewritten as 

( * " ( * , ) ) < - ( F ^ / z , ^ ) ) / - ^ ) , (X-6a) 

where the V th order inverse P-wave extrapolation operator reads 

( F M ( z l ' z o > ^ - Σ ( B w ( z 1 ) ) m < F w ( z 1 , z o ) > . (X-6b) 

Equation (X-6a) elegantly describes inverse extrapolation of the upgoing 

wave field Φ at depth level z , yielding the £'th order estimate of the 

upgoing wave field Φ*~ at depth level z . . Equation (X-6b) relates the Vth 

order estimate of the inverse P-wave extrapolation operator to the 

modified matched inverse operator <F, , ίζ , ,ζ )>. 
φ,φχ Γ o' 

The expressions for iterative inverse extrapolation of upgoing S -waves 
from z to z, read o 1 

S -waves for a=l, 2 are polarized in the plane perpendicular to the x-

or y-axis, respectively, see section II.3.2. 
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(r(Z,))£ = OÇMo + % , ^ Ζ Ι ) ^ ; Μ Μ · <x-7a> 

where, in analogy with (VIII-45c), the "zeroth order" estimate reads 

(^" (z j ) = <F. . (ζ,,ζ )>φ"(ζ ), (X-7b) 
^ y v \'J o é ,t/> v 1 ' o y o 

y y 

and where 

S ,^zi> - » J , / z r z i^s*K,^ ( z r z i ) : i s + t w î ,* < z rV^I> î ,*<νζι>3 - - r , r - - S 

y a a y 

+ O j ,/ζΓζο>] * ^ <VZ1>] + &1 ,φ (ζΓΖο^ * l>; ,* ( V Z 1^ · 
x y 

(X-7c) 

In (X-7b), <FT I (ZpZ )> represents the matched inverse operator as 
y' y 

discussed in section VIII.3.5. In (X-7c), the forward extrapolation matrices 

are defined similarly as in (X-5c). 

Upon substitution of (X-7b), equation (X-7a) can be rewritten as 

(φ"(ζ , ) ) , = (F" , (ζ,,ζ ))/F~(z ), (X-8a) 
v y 1 J ί v ψ ,ψ 1 o J i y o 

where the Tth order inverse S -wave extrapolation operators reads 

(*> ,ψ ( Ζ Γ Ζ < Α = Σ (H (z ) ) m <F- (z z)>. (X-8b) 
V y m=0 V*y V y 
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iterative inverse extrapolation of downgoing P- and S-waves from z to z . 

Equation (X-8a) elegantly describes inverse extrapolation of the upgoing 

wave field Φ" at depth level z , yielding the V th order estimate of the 

upgoing wave field Ψ*~ at depth level z.. Equation (X-8b) relates the £'th 

order estimate of the inverse S -wave extrapolation operator to the 

modified matched inverse operator <F, , ( ζ , , ζ )>. φ ,V> 1 o 
y y 

The expressions for iterative inverse extrapolation of upgoing S -waves 

from z to z are obtained by interchanging the indices x and y in 

equations (X-7) and (X-8). Finally, similar expressions can be found for 

iterative inverse extrapolât 

This is left to the reader. 

X.3.2 Examples 

We illustrate the validity of the iterative approach with the aid of some 

simple examples. We consider two homogeneous isotropic half-spaces 

separated by an interface at z =600 m, see Figure X-2a. The medium 

parameters of the upper half-space read c .=2600 m/s, c  . = 1500 m/s and 

p. = 1000 kg/m ; the medium parameters of the lower half-space read 
1 3 

c 2=3800 m/s, c 2=2800 m/s and p2=1000 kg/m . Note the significant 

contrast at z . . A 2-D elastic wave field is radiated by a P-wave source 

in the lower half-space at (x=o, z^=1600 m). The upgoing P-wave field 

φ (x,z ,t) for z =o m is shown as a function of x and t in Figure X-2b. 

Inverse extrapolation to depth level z~=700 m is carried out according to 

equation (X-6). The amplitude cross sections of [<£ (x,z.,t)J . for iterations 

£=0, 1, 2 and 5 are shown in Figure X-3 (dotted lines). Note the rapidly 

decreasing mismatch with the exact result (solid lines). 

In Figure X-4a we consider the same subsurface configuration, this time 

with an SV-wave source in the lower half-space at (x=o, z~=1600 m). 

The upgoing SV-wave field φ (χ,ζ ,t) for z =o m is shown as a function of 

x and t in Figure X-4b. Inverse extrapolation to depth level z«= 700 m is 

carried out according to equation (X-8). The amplitude cross-sections of 

(V (x,z-,t)J ç for iterations £=0, 1, 2 and 5 are shown in Figure X-5 

(dotted lines). Again, note the rapidly decreasing mismatch with the exact 

result (solid lines). 

In the 2-D situation S -waves are equivalent with SV-waves. 
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z1 =600 m 
zo=700 m 

CP.1 
Cs.1 

ΡΛ 

= 2600 m/s 
=1500 m/s 
= 1000 kg/m3 

cPp2 =3800 m/s 
cs>2 =2800 m/s 

p2=1000 kg/m 3 

o 
P-wave source 

(a) 

(b) 

i 
t(s) 

Figure X-2: a. Inhomogeneous elastic medium with a high contrast at z. and a hurried 

P-wave source at z , . 

b. Upgoing P-wave field at z . 

Figure X-3: Amplitude cross-sections of the inverse extrapolated upgoing P-wave at z 

(dotted lines), compared with the exact result (solid lines) for iterations 

i=0, 1, 2 and 5. 
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2-| =600 m . 
z2 = 700 m -

c p 1 = 2 6 0 0 m/s 
ce'i =1500 m/8 

ρλ =1000 kg/m 3 

c p2=3800 m/s 
c 82=2800 m/s 

p 2=1000 kg/m 3 

ft*y~ 

z 3 = 1 6 0 0 m 
SV-wave source 

(b) 

(a) 

Figure X-4: a. Inhomogeneous elastic medium with a high contrast at z and a hurried 

SV-wave source at z~. 

h. Upgoing SV-wave field at z . 

lampl. 

t 

s/' 

1 U 

/' \ 

f=0 \ v 

Figure X-5: Amplitude cross-sections of the inverse extrapolated upgoing SV-wave at z. 

(dotted lines), compared with the exact result (solid lines) for iterations 

1=0, 1,2 and 5. 
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XI 
ACOUSTIC REDATUMING OF SINGLE-COMPONENT 
SEISMIC DATA 

XI.l INTRODUCTION 

As we explained in the introduction, redatuming is the computational 

process which transforms seismic surface data in such a way as if they 

were recorded at a "datum plane" in the subsurface. This process is 

essentially based on the elimination of wave propagation effects (down and 

up) between the surface and the new datum in the subsurface. In chapters 

VII and IX we have discussed acoustic inverse wave field extrapolation 

operators which eliminate the propagation effects from primary one-way 

(i.e., downgoing or upgoing) acoustic wave fields. These operators play a 

central role in the redatuming scheme. However, they cannot be applied 

directly to the seismic data because in seismic data acquisition two-way 

wave fields (including multiple reflections related to the earth's surface) 

are recorded. Obviously, pre-processing is required at the acquisition 

surface in order to decompose the recorded two-way wave fields into 

one-way wave fields and to remove the multiple reflections related to the 

earth's surface. 

Before we discuss the actual acoustic processing scheme, we present a 

forward model for single-component seismic data. This forward model is 

built up step by step. Following Berkhout (1985), first we discuss the 

relationship between the reflectivity properties of the subsurface and the 

primary one-way seismic response at the surface. Next we include the 

multiple reflections related to the earth's surface. Finally we include the 

acquisition properties, i .e., we transform the one-way seismic response into 

a two-way seismic response. It is important to bear in mind that the 

description of this forward model is not a proposal for a numerical 

modeling scheme for single-component seismic data. It only serves as an 

introduction to the acoustic processing scheme which is discussed in 

sections XI.3 and XI..4. 
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XI.2 FORWARD MODEL FOR SINGLE-COMPONENT SEISMIC DATA 

First we derive an expression for the one-way seismic response at z of a 

single interface at z.>z between two homogeneous acoustic half-spaces, 

see Figure XI-1. A downgoing acoustic wave field is incident from the 

upper half-space z<z . In the space-frequency domain, the acoustic pressure 

of this downgoing wave field at z reads P (x,y,z ;ω). In the following we 

will make extensively use of the matrix notation of Appendix A. In this 

notation, P (x,y,z ;ω) is replaced by the vector P (z ). The relationship 

between the downgoing wave fields at z and z. is described by the 

forward extrapolation matrix W (ζ . , ζ ), according to 

t\zx) = W + ( z r z o ) ? + ( z o ) , (XI-la) 

see section III.3.2. The relationship between the downgoing and upgoing 

wave fields at z. is described by the reflection matrix R (z . ) , according to 

^"(Zj) = R ^ z ^ P ^ Z j ) , (XI-lb) 

see section III.3.3. Finally, the relationship between the upgoing wave 

fields at z. and z is described by the forward extrapolation matrix 

W (z ,z ), according to 

P"(z o) = W"(z o,z1)P"(z 1), (XI-lc) 

P"(z0) 

c i 'Pi 
c2,P2 

P+(z0) 

*?F ^ 

R+(21) 
A 

-►x 

Figure XI-1: Two homogeneous acoustic half-spaces, separated by an interface at z .. 
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see again section III.3.2. The combination of equations (Xl-la), (Xl-lb) and 

(XI-lc) yields the following relationship between the downgoing and upgoing 

wave fields at z : o 

P*"(zo) = W"(z o,z1)R+(z1)W+(z1,zo)P> +(zo), (XI-2) 

P"(z ) = X(z ,z )P T(z ), v oy v o' o' v o" (XI-3a) 

where 

X(zo,zo) = W"(zo,z1)R+(z1)W+(z1,zo), (XI-3b) 

see Figure XI-2. Matrix X(z ,z ), as defined by equation (XI-3b), is the 

one-way response matrix. For the subsurface configuration of Figure XI-1, 

equations (XI-3a) and (XI-3b) are exact. 

p-uj*-

WiZo.z , ) 

P+(z0) 

)N+(zvz0)\ 

Figure XI-2: Diagram, showing the one-way response at z of a reflector at z.. 

Let us now consider an arbitrarily inhomogeneous acoustic half-space z>z 

below a reflection free surface z . Again we assume that a downgoing 

acoustic wave field P* (z ) is incident from the upper half space z<z . We 

investigate the following forward model for the upgoing wave field P (z ): 
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P"(z ) = X(z ,z )P*+(z ), (XI-4a) 
v O 0 0 0 

where 

oo 
X(z o ,z o ) = J W"(zo,z)lR+(z)W+(z,zo)dz. (XI-4b) 

z o 

For the operators W (z,z ) and W(z ,z) we refer to section V.5.2. Note 

that the forward model of equation (XI-3) can be seen as a special case 

of equation (XI-4) when we define 

]R+(z) = R+(z)5(z-Zj). (XI-5) 

For the general inhomogeneous situation, the one-way response matrix 

(XI-4b) is not exact. The main approximation is the negligence of internal 

multiple reflections. Furthermore, the definition of 3R (z) is not straight

forward and therefore it is not recommended to use equation (XI-4b) in 

numerical forward modeling. Equation (XI-4b) is very useful, however, to 

derive the relationship between the primary one-way responses at different 

depth levels. 

In the following, in the inhomogeneous acoustic half-space z>z we 

distinguish between an overburden z <z<z and a target zone z>z , see Figure 

XI-3a. For the one-way response at the upper boundary z of the target 

zone, we may write in analogy with equations (XI-4a) and (XI-4b), 

where 

F~(zt) = X(z t , z t )? + (z t ) , (XI-6a) 

X(z t ,z t ) = ί W"(z t,z)H+(z)W+(z,z t)dz, (XI-6b) 
Zt 
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see Figure XI-3b. Using the following properties of the one-way 

extrapolation matrices, 

W + (z ,z o ) = W + ( z , z t ) W + ( z t , z Q ) for z Q <z t <z (XI-7a) 

and 

W ( Z Q , Z ) = W"(z o ,z t )W"(z t ,z ) for z Q <z t <z , (XI-7b) 

equation (XI-4b) can now be rewritten as 

X(z .z ) = J W"(z n ,z ) ]R + (z )W + (z ,zJdz 
0 0' " v O z 

0 

+ W ( z o , z t ) X ( z t , z t ) W T ( z t , z o ) . (XI-8) 

P"(Zo) . P + ( 2 0 ) 

over
burden 

X U0,z0) 
— — Zr — z c 

P+(zt) 

target I 
(a) 

X(z t ,z t ) 

(b) 

Figure XI-3: a. The primary one-way response matrix X(z ,z ) describes the 

relationship between primary downgoing and upgoing wave fields at 

depth level z . 

b. The primary one-way response matrix X('z ,z ) describes the 

relationship between primary downgoing and upgoing wave fields at 

depth level z . 
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P"(z0)^ 

W-(z0,zt) I 

X(zt,zt) \> 

P+(z0) 

W+(zt,z0)| 

Figure XI-4: Diagram, showing the primary one-way response at z of a target zone 

below z . 

(The response of the overburden is ignored). 

The first term in the right-hand side describes the primary one-way 

response at z of the overburden; the second term in the right-hand side 

describes the primary one-way response at z of the target zone, see also 

Figure XI-4. In section XI.4, equation (XI-8) will be used as the starting 

point for the derivation of an acoustic redatuming scheme. 

So far we assumed that the surface z is reflection free. In practical 

seismic situations, however, surface z represents the earth's free surface 

which is a perfect reflector for the upcoming waves P (z ). Therefore in 

the forward model (XI-4a) we should write for the total downgoing wave 
field at z , o 

P*+(z ) = P*+(z ) + P*+(z ). 
Q' r v o' s v o' (XI-9a) 

Here P (z ) is the reflected upgoing wave field at z , according to 

P (z ) = Rr (z )P (z ), r v o7 frv o' v o7 (XI-9b) 

where R f (z ) describes the reflectivity of the earth's free surface for 
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upgoing waves. Note that for an acoustic free surface 1) 

Ri (z ) = -I. f r o (XI-9c) 

In equation (XI-9a), P (z ) is the downgoing source wave field at z . The 

relationship between P (z ) and the seismic sources at or below z is 

discussed later on. Upon substitution of (XI-9a) and (XI-9b) into the 

forward model (XI-4a) we obtain the following implicit expression for the 

upgoing wave field P (z ): 

P*~(z ) = X(z ,z ) [ R : (Z )P"(z ) + P*+(z ) ] , (XI-10) 
v o7 o o7 L f r o o s v o / J 

see Figure XI-5. This expression can be rewritten explicitly, according to 

(XI-11a) 

where the free surface one-way response matrix X- (z ,z ) is defined as 

X r (z ,z ) = [I - X(z ,z ) R : (z ) ] _ 1 X ( z ,Z ), (XI-llb) 
f r o o7 L o o f r o7J v o o7 v 

or, rewriting the inverse matrix as a series expansion, 

X r (z ,z ) = | I + Y (X(z ,z ) R : ( Z ) ] m l X(z ,z ). (XI-l lc) frv o o I » o o f r o'J J v o o *· m=l J 

P (z ) = X r (z ,z ) P x ( z ), v o7 frv o o7 s v o7' 

p-(z0) ^ 
Pr+^o> 

R7r(z0) ! - — > < + > * — Ps
+<z0> 

X(z0,z0) p 
P+(z0) 

Figure XI-5: One-way forward model, including surface related multiple reflections. 

l y Choose Hj 1 M = 0 in equation (III-89a). 
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The latter expression clearly shows that the free surface generates an 

infinite number of multiple reflections. 

Next we discuss the relationship between the one-way wave fields in the 

forward model (XI-11) and the two-way seismic data, see Figure XI-6. 

First we derive the relationship between the two-way seismic source and 

the downgoing source wave field P* (z ). For a pressure source P*(z ) at 

the free surface (Figure XI-7a) this relationship is very simple. Since for 

this situation the upgoing source wave field must be zero we may write 

P(z ) = P (z ), sv o' s v o (XI-12a) 

P*+(z ) = C " \ z )P*(z ), s v o' s v oJ sv o" (XI-12b) 

where the source-decomposition operator C (z ) simply reads 

-1, C (z ) = I. s v oy (XI-12c) 

For a burried source (Figure XI-7b) the situation is more complicated. We 

consider a volume injecl 

notation represented by 

f (z) = Γ (z )i(z-z )."' (XI-13a) 
V V ,0 S S 

consider a volume injection source at depth level z , in the vector 

2) 

jzjy^ one-way 
forward 

model 

Ρί<ζ0) ^two-way! 
seismic 
source Λ 

Figure XI-6: Diagram, showing the relationship between the one-way forward model 

(Figure XI-5) and the two-way seismic data. 

C (z ) : decomposition operator for the source wave field. 

C (z ) : composition operator for the received wave field. 

1) 

2) 

For a point pressure source, vector P(z ) contains only one non-zero 
element, its value representing the source signature S(w). 
For a point source of volume injection, vector I (z ) contains only one 
non-zero element, its value representing the source signature S(w). 
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4^ 
(a) (b) 

Figure XI-7: a. Pressure source (vibrator) at the free surface. 

b. Volume injection source (airgun) below the free surface. 

According to equation (III-79c) the one-way representation of this source 

reads 

S*~(z) = S*-(z )S(z-z ), (XI-13b) 

where 

S f ( z s ) = \ ja,2H-VzpM(z s )rV i 0(zs), (XI-13c) 

with matrices H. and M as defined in section III.3.2. For the total 

downgoing source wave field at z we write 

P*+(z ) = S*+(z ) + W+(z ,z ) R : (z )W"(Z ,Ζ ) Γ " ( Ζ ). (XI-14a) 
s v s7 o v s7 v s' o7 f r o7 v o s7 o v s7 v ' 

The second term in the right-hand side represents the "ghost" wave field 

related to the free surface, see Figure XI-7b. We obtain an expression for 

the effective downgoing source wave field at z by applying inverse 

extrapolation to P (z ), according to 

P*+(z ) = F+(z ,ζ )P*+(z ), s v o7 v o' s7 s v s7' (XI-14b) 

P*+(z ) = F+(z ,z )S*+(z ) - W"(z ,z )S*~(z ), s v o v o s7 o s7 v o s7 o v s7 (XI-14c) 

where 

F+(z ,z ) è [w+(z ,z ) ] " \ v o ' s7 L v s' o 7 J (XI-14d) 
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Note that we used the free surface property R~ (z ) = -I. Substituting the 

matched filter solution (VII-74b) and the one-way source expression (XI-13c) 

into (XI-14c) yields 

P*+(z ) =C_ 1 (z )T (z ), (XI-15a) 
s v o s o v,o s 

where the source-decomposition operator C" (z ) reads 

C s 1 ( z o } = Ί iu)2 ( tW"(z0,zs)] * - W ^ z ^ H " 1 ^ ^ ) , (XI-15b) 

or, upon substitution of the Taylor series expansion (III-8lb), 

-1 9 Γ °° (z _ z ) 1 
C _ 1 (z ) = -(z -z )c / I + Σ ( " 0 m A ° n , H. (z ) I M(z ). (XI-15c) s v oy s o I i (2m+l)! 2mv s ' J s7 v ' u m=l v J 

When |z -z | is small in comparison with the half wavelength, this 

expression simplifies to 

C " 1 ^ ) « - ( z s - z o ) tAl (z s ) . (XI-15d) 

Hence, for small | z -z | , the "source-decomposition" degenerates to 

frequency- and space-dependent scaling as M(z ) is a diagonal matrix, 

containing the discretized mass density p at depth level z . 

Next we derive expressions for the receiver -composition operator C (z ). 

According to equations (III-76) and (III-77a), the relationship between 

two-way and one-way acoustic wave fields reads 

[p*(z) i f 1 ι l r?+(z) i 

K{z)J [i*4"1*2)11!*2) v M " 1 ( z ) H i ( z ) J L r"(z) J 

(XI-16a) 

P*(z) = P^Cz) + P^z) (XI-16b) 

and 

V>(z) = £ M" 1(z)H 1(z)[T +(z) - ? " ( z ) ] . (XI-loc) 
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For velocity receivers (geophones) at the free surface (Figure XI-8a) we 

obtain upon substitution of (XI-9b) into (XI-16c) ' 

Ϋ(ζ ) = - M_1(z )H.(z ) [ R : (Z )P*~(Z ) - P*-(z ) ] , (XI-17a) 
z o ω v o 1 o L fr o o o J 

v>z(z0) Û c r ( z o ) r ( z 0 ) . (XI-17b) 

where the receiver-composition operator C (z ) reads 

C (z ) r o' - M_1(z )H,(z ). ω v o 1 o (XI-17c) 

m in m in 
ί-Χ-Χ Z , 

(a) (b) 

Figure XI-8: a. Velocity receivers (geophones) at the free surface. 

b. Pressure receivers (hydrophones) below the free surface. 

For pressure receivers (hydrophones) below the free surface (Figure XI-8b) 

we obtain from (XI-16b) 

P(z ) = W (z ,z )R r (z )W (z ,z )P (z ) + P (z ). (XI-18a) 

The first term in the right-hand side represents the "ghost" wave field 
related to the free surface. The upgoing wave field P*"(z ) is related to 
P (z ) via an inverse extrapolation operator, according to 

0 We ignore the direct source wave and we use the free surface property 
Ri (z )=-I. f r o7 
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P"(zr) = F-(zr>zo)p-(zo), (XI-18b) 

where 

F"(z ,z ) = [W"(z ,z )l~l. (XI-18c) 
v r o u o r J 

Substitution of (XI-18b) into (XI-18a) yields 

P*(z ) = [-W+(z ,z ) + F"(z ,z ) ]P"(Z ), (XI-18d) 
v r/ L v r o r o J o 

or, using the matched filter solution (VII-74a), 

P(z ) = C (z )P'(z ), (XI-19a) 

where the receiver-composition operator C (z ) reads 

C (z ) = [W+(z ,z ) ] * - W+(z ,z ), (XI-19b) 
rv o' L v r' o /J v r' oy' v ' 

or, upon substitution of the Taylor series expansion (III-8lb), 

/ .2m 
Γ °° (z -z ) "I C (z ) = 2(z -z ) I + Σ (-l)m ^ ° H0 (z ) jH.(z ). (XI-19c) r o r o I i (2m+l)! 2mv o J J 1 o ■- m=l v 7 J 

When | z -z | is small in comparison with the half wavelength, this 
expression simplifies to 

C (z ) « 2(z -z )jH,(z ). (XI-19d) 
r oy v r o/J Γ o 

Hence, for small |z -z | , the "receiver-composition" degenerates to taking 
the scaled vertical derivative of the upgoing wave field at z (see also 
equation (III-80b)). 

We summarize our expressions for the forward model for single-component 
seismic data. 

We introduce a source vector S (z ) which may represent either a pressure 
source P(z ) at the free surface (Figure XI-7a), or a volume injection 
source I (z ) below the free surface (Figure XI-7b). We introduce a data 
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vector P (z ) which may represent either the velocity V*(z ) at the free 

surface (Figure XI-8a), or the pressure P (z ) below the free surface (Figure 

XI-8b). The data vector P*(z ) is related to the source vector S*(z ) 
o v o7 

according to 

t(z ) = C (z )XC (z ,z )C _ 1 (z )S*(z ), (XI-20a) 
o rv o frv o o s o o7 v ' 

see also Figure XI-6. In this expression the direct source wave is ignored. 

The source-decomposition operator C" (z ) is defined by equation (XI-12c) 

or (XI-15b); the receiver-composition C (z ) operator is defined by equation 

(XI-17c) or (XI-19b). 

In equation (XI-20a), the free surface one-way response matrix X f (z ,z ) is 

related to the primary one-way response matrix X(z ,z ) according to 

X r (z ,z ) = [I - X(z ,z )R f (z ) ] _ 1 X ( z ,z ), (XI-20b) 
f r o o L o o frv o J o o' v ' 

see also Figure XI-5. Rl (z ) represents the free surface reflectivity for 

upgoing waves (ideally, R f (z )=-I). The primary one-way response matrix 

X(z ,z ) at the surface z is related to the primary one-way response 

matrix X(z ,z ) at the target depth level z according to 

X(z ,z ) = W"(z ,z )X(z z )W+(z z ) + "overburden response", (XI-20c) 

see also Figure XI-4. In this expression the internal multiple reflections 

are ignored. Operators W and W~ are forward wave field extrapolation 

operators for downgoing and upgoing waves, respectively, see also chapter 

V. The total forward model, as described by equations (XI-20a), (XI-20b) 

and (XI-20c), is visualized in Figure XI-9. Note that this forward model 

consists of three "layers" which have each their own specific character 

(Berkhout and Wapenaar, 1989). Layer I is fully determined by the 

acquisition and the near-surface properties. Layer II is fully determined by 

the propagation properties of the overburden. Finally, layer III is fully 

determined by the propagation and reflection properties of the target zone. 
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f ( Z o ^ - | C r ( Z o ) ^ j H B7r(Zo> I K + > « [ c V Ü o J ^ Q 

W ( z 0 , z t ) | W+(z t,z0)| 

X(z t ,z t ) |« III 

Figure XI-9: Forward model for single-component seismic data. 

(The direct source wave, the response of the overburden and the internal 

multiple reflections are ignored). 

Layer I : Acquisition and near-surface properties. 

Layer II : Overburden propagation properties. 

Layer III: Target propagation and reflection properties. 

XI.3 SURFACE RELATED ACOUSTIC PRE-PROCESSING 

XI.3.1 Introduction 

Before redatuming can be applied the recorded two-way seismic wave 

fields must be decomposed into one-way wave fields and the surface 

related multiple reflections must be removed. In  <h* frequency domain this 

problem can be formulated as follows: given a d a ^ .ector P ( z J , 

determine the primary one-way response matrix X(z ,z ). Obviously 

problem is underdetermined: the number of unknowns (i.e., the elements o' 

matrix X(z ,z )) largely xceeds the number of knowns (i.e., the elements 

of vector P (z )). In practi-β many seismic experiments are carried out for 

different lateral positions of the source. Hence, in practice many 

independent data vectors are available. Accordingly, the forward model 

(XI-20a) for one seismic experimer* (i.e., one shot record) can be extended 

to a forward model for many seismic experiments, yielding 

P(z ) = C (z )Xr (z ,z )C _ 1(z )S(z ). v o' r o frv o o7 s v o' v o' (XI-21a) 
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Here the columns of the data matrix P(z ) contain the different data 

vectors P(z ) (see also Appendix A, section A.2); the columns of the 

source matrix S(z ) contain the corresponding source vectors S*(z ). For 

point sources, each source vector S (z ) contains only one non-zero 

element, its value representing the source signature S(w). Hence, for 

identical point sources the columns of matrix S(z ) can be ordered in such 

a way that S(z ) represents a scaled identity matrix, according to 

S(Z Q ) = S(w)I. (XI-21b) 

Thus equation (XI-21a) may be replaced by 

P(z ) = C (z )X (*\z ,z )C _ 1 (z ), (XI-21C) 
v o' rv o frv o o s o 

with 

X(^(z ,z ) = S(«)Xf (z ,z ). (XI-21d) 
frv o' oy v ' frv o' ο' ν ' 

In principle this formulation also holds for the situation with source and 

receiver patterns. Of course, in this case the definitions of the matrices 

C" and C must be modified. A further d s r 
patterns is beyond the scope of this book. 

XI.3.2. Acoustic decomposition 

C" and C must be modified. A further discussion of source and receiver s r 

Decomposition of the recorded two-way seismic wave fields into one-way 

(i.e., downgoing and upgoing) wave fields should be preceded by the 

removal of the direct (i.e., horizontally propagating) wave fields. We do 

not discuss this procedure; a good reference is Yilmaz (1987). 

Our starting point is equation (XI-21c), which is the forward model of a 

multi-experiment multi-offset single-component seismic dataset, excluding 

the direct source waves. Assuming that the source signature S(w) is un

known, the scaled free surface one-way response matrix can be obtained 

from the two-way seismic data matrix P(z ) by inverting equation (XI-21c), 
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yielding 

X (^(z ,z ) = C _ 1 (z )P(z )C (z ), (XI-22) 
frv o' o7 r v o7 v o7 sv o7' 

see Figure XI-10. For point pressure sources at the free surface, we obtain 

from equation (XI-12c) 

C (z ) = I, (XI-23a) 
sv o7 

which means that for this situation decomposition for the source may 

simply be omitted. For point sources of volume injection just below the 

free surface, we obtain from equation (XI-15d) 

C s(zo) « - ! 2~ M ~ 1 ( z s 7 ' (XI-23b) 
(z -z )ω v s o7 

which means that for this situation decomposition for the source may 

simply be carried out by frequency- and space-dependent scaling of the 

data. For point sources of volume injection significantly below the free 

surface, we obtain from equation (XI-15b) 

C s(zo) = ^ - M - ' ^ J H ^ ^ t W l z ^ z ^ ' - W l ^ , ^ ) ) , (XI-23c) 
ω 

which means that for this situation decomposition for the source is 

actually a "deghosting" process. 

For velocity receivers at the free surface we obtain from equation (XI-17c) 

C _ 1 (z ) = - % H T ^ Z )M(Z ), (XI-24a) 
r v o 2 1 v o7 v o7 v ' 

whereas for pressure receivers just below the free surface we obtain from 
equation (XI-19d) 

C _ 1 (z ) « -zr^ v H T ^ Z ), (XI-24b) r v o 2(z -z ) 1 v o7 v 7 
v r o7 

hence, for both these situations decomposition of the received waves may 

be carried out by removing the scaled vertical derivative from the data. 
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For pressure receivers significantly below the free surface we obtain from 

equation (XI-19b) 

-1 
(XI-24c) C _ 1 (z ) = ( [W + (z ,z ) ] * - W+(z ,z )) r o v *- r o J r o J 

which means that for this situation decomposition of the received waves is 

actually a "deghosting" process. 

C^1(Zo> 

\ 

P(z„) 

\ 
\ \ \ \ \ \ \ \ \ \ 

I 

/I \ 

\ ^ / 

I 

Xi 
\ 

P(Zo) Cs'2») 

! 
X X X- common receiver record 

A X X -

common shot record 

Figure XI-10: According to equation (XI-22), acoustic decomposition involves lateral 
deconvolution processes along the receivers in each common shot record 
and along the sources in each common receiver record. The same principle 
holds for acoustic redatuming, as described by equations (XI-30a) and 
(XI-30b).(After Berkhout, 1985). 
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Summarizing, decomposition of the recorded two-way seismic wave fields 
into one-way wave fields may be carried out by applying the matrix 
operators C" (z ) and C (z ) to the data matrix P(z ), see equation (XI-22) 
and Figure XI-10. Note that C" (z )P(z ) describes a lateral deconvolution 
process along the columns (i.e., the common shot records) of matrix P(z ), 
whereas P(z )C (z ) describes a lateral deconvolution process along the 
rows (i.e., the common receiver records) of matrix P(z ). 
We illustrate the acoustic decomposition procedure with a simple 2-D 
example. For the subsurface configuration shown in Figure XI-lla, we 

I 
z(m) 

Layer 
1 
2 
3 
4 
5 
6 
7 

C(m/s) 
2400 
3000 
3400 
4100 
3700 
4200 
3500 

(a) 

Figure XI-11: Acoustic decomposition. 
a. 2-D inhomogeneous subsurface. The pressure receivers are hurried 4 m 

below the free surface. 
b. One shot record. The source position is indicated by the arrow in Figure 

a. 
c. The same shot record, after decomposition. 
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g e n e r a t e d  a number  of se i smic  shot  records by f in i te  d i f f e r e n c e  model ing 
(Kelly e t  al.,  1976). We used pressure  sources  a t  the  f r e e  s u r f a c e  and  
pressure  rece ivers  a t  a d e p t h  of z -z = 4 m below the  f r e e  sur face .  One  r o  
shot  record  is shown in the  space- t ime domain  in Figure X I - l l b .  N o t e  t h a t  
t h e  d i r e c t  waves d e c a y  rapidly wi th  the o f f s e t  due  t o  t h e  dipole-like 
behaviour of the  source  and rece ivers  in combinat ion wi th  t h e  f r e e  sur face .  
Therefore  they  c a n  be easi ly  removed f r o m  t h e  d a t a  by muting.  All shot  
records a r e  t ransformed f r o m  t h e  t ime domain to  the  f requency  domain ,  
yielding a d a t a  m a t r i x  P(zo) f o r  e a c h  f requency  in the  se i smic  band (5 Hz 
<f=- 4 0  Hz). Next ,  decomposi t ion is car r ied  out  by applying equat ion  
(XI-22) f o r  e a c h  f requency  in the  seismic band, with Cs(zo)=I and C;I(z0) 
given by equat ion  (XI-24b)’). Finally, the  resul ts  a r e  t ransformed back 
f rom the f requency  domain  to  the  t ime domain.  Figure X I - l l c  shows t h e  
shot  record  of Figure X I - l l b  a f t e r  decomposi t ion.  N o t e  t h a t  t h e  main  
e f f e c t  of t h e  decomposi t ion is an offset-dependent  change of  t h e  wave 
form.  

w 
2iT 

X1.3.3 Acoustic multiple elimination 

A f t e r  t h e  decomposi t ion has been car r ied  out ,  t h e  sca led  f r e e  s u r f a c e  
one-way response m a t r i x  X(’)(z ,z ) is avai lable  f o r  a l l  f requencies  in t h e  
seismic band. This response m a t r i x  contains  s ignif icant  mult iple  re f lec t ions  
re la ted  to  the  f r e e  sur face  (see Figure XI- l lc ) .  They c a n  be removed by 
invert ing equat ion  (XI-20b), yielding (Berkhout, 1985) 

f r  o o 

(XI-25a) 

(XI-25b) 

(XI-25 C) 

’) For  t h e  maximum f requency  the  wavelength is equal  to  Xmin=cI/fmax= 
2400/80 m= 30 m .  Compared  to  + A m i n ,  the  rece iver  d e p t h  z -z  = 4 m 
is suff ic ient ly  smal l  to  just i fy  t h e  use of equa t ion  (XI-24b). 

r o  
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see equation (XI-21d). Hence, acoustic surface related multiple elimination 

involves 

source signature deconvolution, i.e., removal of S(u)) from the data, 

according to equation (XI-25c), 

multiple prediction and substruction, according to equation (XI-25b). 

Note that the multiple predictor 

0 0 r - ï m 

X r (z ,z ) Σ l - R f (z ) x r (z >z )J frv 0 0 *-. ^ frv o' frv 0 0 ' m=l 

is fully determined by the free surface response matrix X f (z ,z ) and the 

free surface reflection matrix R~ (z )=-I. Hence, no knowledge of the 

subsurface is required for surface related multiple elimination. Only 

knowledge of the source signature S(w) is required for the deconvolution. 

However, when the source signature is not known, it can be estimated by 

applying adaptive multiple elimination. This can be seen as a standard 

minimization problem: the multiple reflections are optimumly removed (i.e., 

the energy in the broad-band data is minimized) when the correct source 

signature is used for the deconvolution. Hence, using an adaptive 

procedure, the source deconvolution and the multiple elimination are 

carried out simultaneously. For an extensive discussion on adaptive 

elimination of surface related multiple reflections we refer to Verschuur et 

al. (1989). 

We illustrate the acoustic multiple elimination procedure with a 2-D 

example. We consider the decomposed data of the example in section 

XI.3.2. One decomposed shot record is shown in Figure XI-12a. 

The same shot record after adaptive multiple elimination is shown in 

Figure XI-12b. Note that this result clearly shows the primary one-way 

response (including minor internal multiple reflections) of the subsurface 

Although only one shot record is shown, bear in mind that all shot 

records (the columns of X r (z ,z )) were involved in the multiple 
f r 0 o7 

elimination process. 
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configuration of Figure XI- l la . For comparison, Figure XI-12c shows the 

primary one-way response, obtained by finite difference modeling. 

(b) ~~*x (c) ~ * X 

Figure XI-12: Acoustic multiple elimination. 

a. The decomposed shot record of Figure XI-lie. 

b. The same shot record, after adaptive multiple elimination. 

c. For comparison, the same shot record obtained by forward modeling in 

the subsurface configuration of Figure XI-11 a, without the free surface. 

XIA ACOUSTIC REDATUMING 

XI.4.1 Introduction 

After surface related acoustic pre-processing, the primary one-way response 

matrix X(z ,z ) is available for all frequencies within the seismic band. 

The aim of acoustic redatuming is to find the primary one-way response 

matrix X(z z ) that would be measured at the target depth level τ χ for 

all frequencies within the seismic band. 
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According to equation (XI-20c), 

X(z o ,z o ) = W"(z o ,z t )X(z t ,z t )W +(z t ,z o)1 ) , (XI-26) 

the response matrix X(z ,z ) is a distorted version of the response matrix 

X(z ,z ), the distortion being determined by the operators W (z ,z ) and 

W~(z ,z ). These operators describe the propagation properties of the 

overburden. Hence, acoustic redatuming can only be carried out when the 

acoustic macro model of the overburden is known (Berkhout, 1986). In 

practice the acoustic macro model is obtained mainly from travel time 

information contained in the primary one-way response matrix X(z ,z ). A 

discussion on macro model estimation is beyond the scope of this book. In 

the following we assume that an accurate acoustic macro model of the 

overburden is available. 

XI.4.2 Acoustic redatuming of a multi-shot record 

Acoustic redatuming involves compensation for the distortion caused by 

propagation through the overburden. By inverting equation (XI-26) we obtain 

the following expression for the redatumed response matrix (Berkhout, 1985): 

X(z t ,z t ) = F"(z t ,z o )X(z o ,z o )F + (z o ,z t ) , 2 ) (XI-27a) 

where 

and 
F+(zQ,z t) £ [ W + i z ^ ) ] " 1 (XI-27b) 

F"(zt,zQ) Û [W"(z o , z t ) ] _ 1 . (XI-27C) 

For simplicity the overburden response is ignored. 
2) 

Again, for simplicity the overburden response is ignored. In reality 
X(z ,z ), as defined by (XI-27), consists of a causal term representing the 
target response and a non-causal term related to the overburden 
response. The latter can be easily removed after the redatumed data 
have been transformed back to the time domain. 
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In practice, direct inversion of the extrapolation matrices W and W" 
should be avoided. When the contrasts in the overburden are weak to 
moderate, we may apply the modified matched inverse operators 

. * 

and 

<F+(zo,zt)> = [W(z o,z t)] (XI-28a) 

<F"(zt,zo)> = [W+(zt,zo)] *. (XI-28b) 

For an extensive discussion of these operators we refer to chapter VII. 
When the contrasts in the overburden are significant we should apply 
higher order approximations of the inverse operators. For the £'th order 
estimates of F and F~ we may write 

t m 
F ^ V V = Σ (S(z0)j <F+(zQ,zt)> (XI-29a) 

m=o 

and 

1 f ï m -F£(zt,z0) = Σ (S(zt)j <F (zt,zo)>, (XI-29b) 
m=o 

where operators Ξ(ζ ) and Ξ(ζ ) take care of the scattering effects related 
to the contrasts in the overburden. For an extensive discussion of these 
operators we refer to ' apter IX. 

Consider again equation (XI-27a), where F and F~ may represent either 
the modified matched inverse operators <F > and <F >, respectively, or the 
Tth order approximations F and F~ respectively. Note that redatuming, as 
described by equation (XI-27a), could be carried out as a two-step 
procedure, according to 

X(zt,zo) = F"(z ,z )X(z z ), (XI-30a) 
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followed by 

X(z . , zJ = X(z.,z )F +(z , z j , (XI-30b) 
v t' r v t' o7 v o' t7' 

see also Figure XI-10. Equation (XI-30a) describes a lateral deconvolution 

process along the receivers in each common shot record (i.e., along the 

columns of X(z ,z )). Physically it means that the receivers are downward 

extrapolated from the surface z to the target depth level z . Hence, 

X(z ,z ) represents the one-way target response at z , related to sources 

at z . Equation (XI-30b) describes a lateral deconvolution process along the 

sources in each common receiver record (i.e., along the rows of X(z ,z )). 

Physically it means that the sources are downward extrapolated from the 

surface z to the target depth level z . The redatuming scheme described 

by Berryhill (1984) is based on a similar principle. 

XI.4.3 Acoustic redatuming of single-shot records and stacking 

For practical applications, redatuming according to (XI-30a) and (XI-30b) 

may not be the most efficient solution. Particularly for 3-D applications it 

involves a cumbersome data reordering process (from common shot records 

to common receiver records) in between the two steps. Berkhout (1985) 

and Wapenaar and Berkhout (1987) show that equations (XI-30a) and 

(XI-30b) can be rewritten as extrapolation per shot record, followed by 

'stacking', without loss of accuracy. Therefore, define vectors )?.(z ,z ) for 

i=l,....,I,  which represent the different common shot records (i.e., the 

columns of matrix X(z ,z )). Downward extrapolation of the receivers in v o' o77 

the i'th shot record from z to z, is then described by 
o t J 

£ . ( z t , z o ) = F'(z t ,zo)5?.(z o ,zo) , (XI-31a) 

where 3?.(z ,z ) denotes the one-way target response at z , related to the 
i'th source at z . Note that >?.(ζ Λ,ζ ) represents the i'th column of o r t o7 

matrix X(z z ), as defined by equation (XI-30a). Define row vectors 
[ ? . ( z . z j ] for i=l,...,I, which contain the rows of F +(z , z j . 

1 O t O t 
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With simple matrix calculus it can be verified that equation (XI-30b) may 

thus be replaced by 

I 
X(z t , z t ) = E ^ . ( z t , z o ) [ F : + ( z o , z t ) ] (XI-31b) 

see Figure XI-13. Equations (XI-31a) and (XI-31b) confirm that redatuming 

may be carried out per shot record, followed by 'stacking'. For a 

discussion on the implementation aspects of 3-D redatuming per shot 

record we refer to Wapenaar (1986) and Kinneging (1989). 

[ (F|) T 

[ Φ Τ ] 

[ (FÎ)T ] 

x2 

x<w 
Figure XI-13: Mathematical representation of acoustic redatuming of single-shot records 

and stacking (equation (XI-31 )). The result is identical to acoustic 

redatuming of a multi-shot record (equation XI-30)). 

' The summation convention does not apply to the shot index i. 
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XI.4.4 Examples of acoustic redatwning 

We illustrate the acoustic redatuming procedure with some 2-D and 3-D 

examples. First we consider the data of the examples in sections XI.3.2 

and XI.3.3. The subsurface configuration is shown in Figure XI-14a. The 

upper boundary of the target zone at z = 450 m is indicated by a dashed 

line. One shot record at the surface z = 0 m after decomposition and 

multiple elimination is shown in Figure XI-14b. Note that the response of 

the target zone is distorted due to the propagation effects of the 

overburden. The result of acoustic redatuming per shot record and stacking 

is shown in Figures XI-14c and XI-14d. Figure XI-14c represents one shot 

record at the upper boundary of the target zone. Figure XI-14d represents 

the zero offset section at the upper boundary of the target zone. Note 

that the structure of the reflectors in the target can be clearly recognized. 

Next we discuss a 2-D land-data example (Kinneging, 1989). Two of in 

total 342 shot records are shown in Figure XI-15. The macro subsurface 

model, shown in Figure XI-16a, was obtained by traveltime inversion (Van 

der Made et al., 1984). The shot records were redatumed to the upper 

boundary of the target zone at z =3250 m, indicated by the dashed line in 

Figure XI-16a. A zero offset section, selected from the redatumed data, is 

shown in Figure XI-16b. For comparison, Figure XI-16c shows data related 

to the same target zone, selected from a conventional common midpoint 

stack at the surface . Note that the redatumed data in Figure XI-16b 

show much more details of the target zone than the stacked data in 

Figure XI-16c. 

Finally we discuss a 3-D redatuming example (Kinneging, 1989). Cross-

sections of two 3-D shot records (50 x 50 traces each) are shown in 

Figure XI-17. These are two of in total 600 shot records that were 

modeled for the 3-D subsurface configuration shown in Figure XI-18a (only 

the responses of the five point diffractors at z =1000 m were modeled; 

the acquisition surface was non-reflecting). 

For an introduction to conventional seismic processing we refer to 
Yilmaz (1987). 
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Layer 
1 
2 
3 
4 
5 
6 
7 

C(m/s) 
2400 
3000 
3400 
4100 
3700 
4200 
3500 

Figure XI-14: Acoustic redatuming. 

a. 2-D inhomogeneous subsurface. The dashed line indicates the target 

upper boundary. 

b. The pre-processed shot record of Figure XI-12b. The source position is 

indicated by the arrow at z in Figure a. 

c. One shot record, selected from the redatumed data. The source position 

is indicated by the arrow at z in Figure a. 

d. Zero offset section, selected from the redatumed data at z . 
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offset 

t(s) 

(a) (b) 

Figure XI-15: Two shot records of land-data. The source positions are indicated by 

arrows in Figure XI-16a. (By courtesy of the Nederlandse Aardolie 

Maatschappij, Assen, The Netherlands) 

Figure XI-18b shows two vertical cross-sections through the subsurface. The 
shot records were redatumed to the target depth z =1000 m. Two zero 
offset cross-sections, selected from the 3-D redatumed data, are shown in 
Figure XI-18c. Note that these results clearly show the point diffractors, 
indicated by the dots in Figure XI-18b, at their correct lateral positions 
at t=o. 
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0.50 
(b) 

Figure XI-16: Acoustic redatuming of land-data. 

a. Macro subsurface model. The dashed line indicates the target upper 

boundary. 

b. Zero offset section, selected from the redatumed shot records at z =3250 

c. The same target zone, selected from the conventional common midpoint 

stack at the surface. 
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(a) 

(b) 

Figure XI-17: Cross-sections of two 3-D shot records. The source positions are indicated 

by the arrows in Figure XI-18a. 
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1000 m 

(a) 

► x ( m ) -y (m) 

Figure XI-18: 3-D acoustic redatuming. 

a. 3-D subsurface model with five point diffractors at the target depth 

z =1000 m. 

b. Two vertical cross-sections through the subsurface model. 

c. Two zero offset cross-sections, selected from the redatumed shot records 

at z =1000 m. 
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ELASTIC REDATUMING OF MULTI-COMPONENT 
SEISMIC DATA 

XII.l INTRODUCTION 

In agreement with the acoustic situation, elastic redatuming of multi-

component seismic data is preferably preceded by pre-processing at the 

acquisition surface. By surface related elastic pre-processing, the recorded 

two-way wave fields are decomposed into one-way P- and S-wave fields and 

the multiple reflections and conversions related to the earth's surface are 

removed. An important consequence is that the decomposed primary 

one-way P- and S-wave responses can be redatumed independently in a 

manner that is very similar to acoustic redatuming. 

Before we discuss the actual elastic processing scheme, we present a 

forward model for multi-component seismic data. It is important to bear 

in mind that the description of this forward model is not a proposal for a 

numerical modeling scheme for multi-component seismic data. It only 

serves as an introduction to the elastic processing scheme which is 

discussed in sections XII.3 and ΧΠ.4. 

XII.2 FORWARD MODEL FOR MULT I-COMPONENT SEISMIC DATA 

First we derive an expression for the one-way seismic response at z of a 

single interface at z .>z between two homogeneous isotropic elastic 

half-spaces (see Figure XI-1 for the acoustic equivalence). A downgoing 

elastic wave field is incident from the upper half-space z<z . In the 

space-frequency domain, the P- and S-wave potentials associated to this 

downgoing wave field at z read Φ (x,y,z ;ω) and Φ (x,y,z ;ω), respectively. 

The components of the S-wave potential at z read Φ (x,y,z ;ω), 

Φ (x,y,z ;ω) and Φ (x,y,z ;ω). Only two of these components are 

independent, see section II.2.5. In the following we only consider the x-

and y-components. In the matrix notation of Appendix A, the wave fields 

Φ+(χ^,ζ ;ω), tf+(x,y,z ;ω) and tf+(x,y,z \ω) are replaced by the vectors 
Φ*+(ζ ), Φ*+(ζ ) and Φ*+(ζ ), respectively. In analogy with equation (IV-62d), v o x o y o 
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these three vectors are combined in one three-component data vector D (z ): 

5+(V Ä 

- ? + ( z ) 

Ψ*+(ζ ) 
X v 0 

. Φ"+(ζ ) L y v o, 

(XII-1) 

The relationship between the downgoing wave fields at z and z. is 

described by the forward extrapolation matrix W ( ζ . , ζ ), according to 

Ë>+(Zl) = W + ( Z l , z o )S + (z o ) , (XII-2a) 

r + ( Z j ) 

^ + ( z . ) x v Γ 

y v 1 -

= 

Wt ,(z,,z ) Φ,Φ 1 ο' 

0 ¥ 

0 

φ ,φ Γ ο7 

X X 

0 W, , ( ζ . , ζ ) . φ ,φ Γ o 'J y y 

r+
(zo) 

^ + ( z ) x v o' 

^ + ( z ) „ y v o y J 

,(XII-2b) 

see section IV.3.2. The relationship between the downgoing and upgoing 

wave fields at z. is described by the reflection matrix R ( z A according to 

S"(zj) = R ^ Z J ^ Z J ) , (XII-3a) 

[^"(Zj) 

Xv Γ 

1 y l 

= 
X 

R+ .(z.) R* , (z . ) 
Φ A l Φ ,Φ y \ 

X X X 
R+ .(z.) R* . (z . ) 

Φ ,Φ 1 φ ,φ I y y χ 

R M ( z i } 

y 
R î , * ( z i > 

x y 
R ; , ^ Z , ) 

y y J 

r+(Zl) 
Î + ( z . ) xv Γ 

**+(z.) y v r 

,(XII-3b) 
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see section IV.3.3. Finally,  the relationship between the upgoing wave 

fields at z. and z is described by the forward extrapolation matrix 

W"(z , z j , according to 

D " ( Z O ) = ψ · ( ζ ο , Ζ ι ) ρ · ( Ζ ι ) , (XII-4a) 

or 

Φ - ( Ζ Ο ) 

Φ"(ζ ) x v o7 

Φ " ( ζ ) , 
y o J 

WT ,(z , ζ , ) Φ,ΦΚ ο' Γ 

0 WT , (ζ , ζ , ) φ ,φ ν o' Ι' 

0 W , , (ζ , ζ , ) 
y y 

Φ (Zj) 

Φ ( ζ , ) 
χ ν I 7 

φ " ( ζ ι ) ι 
y ι J 

(Xn-4b) 

see again section IV.3.2.  The combination of equations (ΧΠ-2), (XII-3)  and 

(ΧΠ-4) yields the following relationship between the downgoing and upgoing 

wave fields at z : o 

D"(z ) = X(z ,z )Dr(z ), ~ v o' ~ v o' ο'~ v o" (XII-5a) 

where 

X(z ,z ) = W"(z ,Z l )R (z,)W ( z n z ), ~ v o' o7 ~ v o' \'~ v r~ v Γ o7' (XII-5b) 

(see Figure XI-2 for the acoustic equivalence). Matrix X(z ,z ), as defined 

by equation (XH-5b), is the multi-component one-way response matrix. Note 

that we may also write 

r-(z0)" 

* > ο > 

* y ( z o > . 

= 

x ^ A* ,z ) φ,φκ ο' ο' X . . (z ,z ) φ,φ ν o' ο' X . . (ζ ,ζ ) φ,φ ν ο' ο7 

X . ,(ζ ,ζ ) X . . (ζ ,ζ ) X . . (ζ ,ζ ) 
φ ,φκ ο' ο' V ιΨ ο ο Φ ,Φ ο' ο' 

χ χ χ χ y 
X , , ( ζ , ζ ) X , , ( ζ , ζ ) X , , ( ζ , ζ ) , φ ,0ν Ο Ο Φ ,Φ Ο Ο7 V ,^ Ο 0 7 | 

y y χ y y 

r+
(zo)· 

φ"+(ζ ) xv o7 

^ + ( z ) . 
y o J 

,(XII-6a) 
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where the single-component one-way response matrices  are given by 

x n ,n <Vzo> 
2 ' 1 

w ô >Ω < V Z X ,n <zi>wn ,n <zi-V· 
2 ' 2 2 1 1 1 

(XII-6b) 

where Ω. and Ω- each may stand for φ or φ or φ . Note the high 
e acoustic one-way resp 

defined by equation (XI-3b): 
degree of similarity with  the acoustic one-way response matrix X(z ,z ), as 

X(z ,z ) = W'(z ,z1)R+(z.)W+(z1,z ). v o o 0 v v r v 1 0 (XII-7) 

Let us now consider an arbitrarily inhomogeneous anisotropic elastic 
half-space z>z below a reflection free surface z . Furthermore, let us H o 0 
distinguish between an overburden z <z<z and a target zone z>z (see Figure 

XI-3 for the acoustic equivalence). In analogy with equation (XI-8) we 

obtain the following relationship between the multi-component one-way 

response matrices at the surface z and at the upper boundary z of the 

target zone: 

X(z o , z o ) = W"(z0.zt)X(zt>zt)W (z t , z 0 ) 

+ "overburden response", (XII-8a) 

(see Figure XI-4 for the acoustic equivalence), where the forward 
extrapolation matrices read 

W+(zt,zo) = 

WT Λ ζ „ ζ Λ ) Ψ, , (ζ . ,ζ ) W* , (ζ. ,ζ ) <M t' ο' φ,φ ν t' ο' φ,φ ν t' ο' 
χ y 

Φ ,Φ V ο' 

WT Λζ,,ζ ) Φ ,Φ f ο' 
y 

w ; , ( ζ . , ζ ) φ ,φκ V ο' 
X X 

W"t , (Ζ.,Ζ ) φ ,φ X Ο7 
y χ 

w ; , ( ζ , , ζ ) φ ,φ t ο' 
χ y 

W * , ( ζ . , ζ ) φ ,φ t 0 
y y 

(XII-8b) 

and 
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y <νν= S ,/Vzt> 
w* yvv 

W" , (z , z j W" , (z , z j 
φ,ψ v o' t7 φ,ψ v o' t7 

W" , (z , z j W" , (z , z j ψ ,ψ v o t' φ ,ψ o t7 
x x x y 

W" . (z , z j W" . (z , z j ^ ,ψ v o t' ψ ,Ψ oy v 
y x y y 

, (Xn-8c) 

see section VI.5.2. For the general inhomogeneous anisotropic situation, 
equation (XII-8a) is not exact. The main approximation is the negligence of 
internal multiple reflections. In section XII.4, equation (XII-8) will be used 
as the starting point for the derivation of an elastic redatuming scheme. 

Sofar we assumed that the surface z is reflection-free. In practical 
seismic situations, however, surface z represents the earth's free surface 
which is a perfect reflector for the upcoming waves D~(z ). The free 
surface reflection matrix R~- (z ) is defined by equation (IV-73b). 
In analogy with equation (XI-11) we obtain for this situation 

D"(z ) = Xr (z ,z )D (z ), - v o7 - frv o' o7~ sv o" (XII-9a) 

where D (z ) represents the downgoing source wave fields at z and where - s o o 
the free surface multi-component one-way response matrix X f ( z ,z ) is 
defined as 

Xr (z ,z ) = [I - X(z ,z )R; (Z ί Ι ^ Χ ί ζ ,z ), - f r o' o7 L ~ v o' o7~ f r o7J - v o' o7' (XII-9b) 

X r ( z ,z ) = 1+ V (X(z ,z )R'r(z ) ) m | X ( z ,z ). 
m=l 

(XII-9c) 

The latter expression clearly shows that the free surface generates an 
infinite number of multiple reflections and conversions (see Figure XI-5 for 
the acoustic equivalence). 
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Next we discuss the relationship between the one-way wave fields in the 

forward model (XII-9) and the two-way seismic data (see Figure XI-6 for 

the acoustic equivalence). According to equation (IV-62a), the relationship 

between two-way and one-way elastic wave fields reads 

Γ?<ζ>" 

L ? * ( z i 
"fefc) 

fejw 

LJU) 1 

hl^) \ 

[V*w 1 
1 ?"(z)J 

(Xn-10a) 

\f(z) = L{(Z)Ö+(Z) + Lj(z)ß'(z) (XII-10b) 

and 

r z ( z ) = L+(z)ïî+(z) + L~(z)iT(z), (XII-10c) 

where the three-component velocity and traction vectors \f(z) and 7* (z) are 

defined according to 

\f(z) = 
Γ V"(z) 1 1
 xv ' ■ 

(XII-10d) 

and 

LZW = 

r (z) xzv ' 

T* (z ) yzv 

. T* (z) L zzv , 

(Xn-10e) 

respectively, and where matrix L (z) for a=l , 2 is defined by equation 

(IV-62e). 
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Unlike in section XI.2, in the following we restrict ourselves to the 

situation where the sources and the receivers are at the free surface 

(Figure XII-1). In analogy with equation (XI-12b) we define a 

source-decomposition operator C~ (z ) which describes the relationship 

between the traction source vector 7* (z ) ' at the free surface and the 
~z,s o 

downgoing source wave fields D (z ), according to 

D»+(z ) = C_1(z )r* (z ). ~s v o' ~s v o'~z,sv o' (XII-11a) 

(a) 

(b) 

Figure XII-I: Multi-component data acquisition. 
a. Three differently oriented seismic vibrators, imposing stresses in the x-, y-

and z-direction to the earth's surface. 
b. Three differently oriented geophones, measuring the x-, y- and 

z-components of the particle velocity at the earth's surface. 

1) The multi-component vector τ (z ) contains the vectors r (z ), 
~z,s o xz,s o T (z ) and f* (z ). For a point source of tensile stress (a vertical yz,sv o' zz,sv ο' κ ν 

vibrator), vector r (z ) contains only one non-zero element, its 
value representing the source signature S(w). Similarly, for a point 
source of shearing stress (a horizontal vibrator), one of the vectors 
T (z ) or T (z ) contains only one non-zero element, its value xz,sv o7 yz,s o7 J 

representing S(w). When the vibrators are not ideal point sources, as in 
Figure XII-la, then the source vectors contain the stress distribution at 
z . 
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Since for this situation the upgoing source wave fields at z must be 
zero, we obtain from equation (XII-lOc) 

r* (z ) = L*(z )S+(z ). (Xll-llb) 
~z,sv o' ~2V o'~sv o' v ' 

Hence, the source-decomposition operator reads 

Ç ; 1 ^ ) = [ L ^ ) ] - 1 . (XII-12) 

Next we derive an expression for the receiver-composition operator Ç (z ). 
For velocity receivers at the free surface (geophones, see Figure XH-lb) 
we obtain from equation (ΧΠ-lOb) and (IV-73a) ' 

Y(zQ) = L|(zo)R'fr(zo)0"(zo) + L"1(zo)0"(zo), (Xn-13a) 

or, upon substitution of equation (IV-73b) for the free surface reflection 
matrix | 0 (z ), 

?<*„) = [ - t > 0 ) ^ 2 ( z o ) ^ 1 f e 2 ( z o ) + h~il*0ÜTb0)> (Xn-13b) 

?(* 0) = [Ν',ίΖο)]"1?^^)· (ΧΠ-130 

with N"(z ) defined in equation (IV-64). Hence, if we define the receiver-
composition process in analogy with equation (XI-17b) as 

V>(zo) Ä Cr(z0)6"(z0), (XII-13d) 

then the receiver-composition operator Ç (z ) reads 

Çr(z0) = ΒΓ,ίζ^]" 1 . (XII-13e) 

We ignore the horizontally propagating surface waves ("ground-roll"). 
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We summarize our expressions for the forward model for multi-component 
seismic data. According to equations (XII-9a), (XII-lla) and (XII-13d), the 
three-component velocity vector Ϋ(ζ ) is related to the traction source 
vector τ (ζ ) according to 

V*(z ) - C (z )Xf (z ,z jC'^z )r* (Z ). ~v o' ~rv o'~ frv o' o'~ s v o'~z,sv o' (XII- 14a) 

In this expression the surface waves are ignored. The free surface one-way 
response matrix X f (z ,z ) is related to the primary one-way response 
matrix X(z ,z ), according to 

ïfr<Vzo> » [I - ̂ V^y^'^VV' (XII-14b) 

where 

X(z ,z ) -~ v o' o' 

mX. ,(z ,z ) 
φ,φ θ' θ' 

X , .(z ,ζ ) V» ,0 ο' ο7 

X , ,(ζ ,ζ ) V ,# ο' ο' 

X . , (ζ ,ζ ) 
0,V» ο' ο' 

X . . (ζ ,ζ ) ψ ,ψ 0 θ' 
X X 

X , , (ζ , ζ ) 
ψ ,ψ 0 θ' 

y χ 

X . , (ζ , ζ ) 

Χ / , (Ζ ,Ζ ) 
χ y 

X . , (ζ ,ζ ) 
y y 

(XII-14c) 

The multi-component one-way response matrix X(z ,z ) at the surface z 
is related to the multi-component one-way response matrix X(z ,z ) at the 
target depth level z according to 

x(zo,zo) = y-(z0.ztsç(zt.zt)w*(zt.»o) 

+ "overburden response". (XII-14d) 

In this expression the internal multiple reflections are ignored. The forward 
model, as described by equations (XII-14a), (XII-14b) and (XII-14d), is 
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Q K - j Ç r ( z 0 ) U j H gfr<Zo> | *<+)« 1 C"8
1(Zo)h--gz,s^ol) I 

W-(z0>2t)| [W+(zt,Z0)) 

X(z t ,z t ) |«-

Figure XI1-2: Forward model for multi-component seismic data. 

(The surface waves, the response of the overburden and the internal 

multiple reflections are ignored). 

Layer I : Acquisition and near-surface properties 

Layer II : Overburden propagation properties 

Layer III: Target propagation and reflection properties. 

visualized in Figure XII-2. Finally, note that if wave conversion during 

propagation may be neglected, we obtain from (XII-14c) and (XII-14d) 

independent expressions for the single-component one-way response matrices: 

xn ,n ( W = wn ,n ( W x n ,n <Vzt>wn .n (zt<zo> 
2 1 2 2 2 1 1 1 

+ "overburden response". (XII-14e) 

Here Ω, and Ω« may stand for <f> or φ or ψ . 
1 2 J Ύ r x r y 

XII3 SURFACE RELATED ELASTIC PRE-PROCESSING 

XII.3.I Introduction 

The aim of surface related elastic pre-processing is to decompose the 

recorded two-way seismic wave fields into one-way P- and S-wave fields 

and to remove the surface related multiple reflections and conversions. 
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Similar as in the acoustic situation, this can only be accomplished if many 

seismic experiments are carried out for different lateral positions of the 

source. Moreover, in the elastic situation ideally three independent seismic 

experiments should be carried out for each source position by applying 

three differently oriented seismic vibrators. The resulting measurements can 

be described by an extended version of the forward model (XII-14a), 

according to 

. - 1 / V(z ) = C (z ) X f (z ,z )C (z )T (Z ) ~v o' ~ r o'~ frv o' o'~ s v o'~z,s v o' (XII-15 a) 

Here the columns of the data matrix V(z ) contain the different data 

vectors Ϋ(ζ ); the columns of the source matrix r (z ) contain the - 0 ~Z,S O 

corresponding source vectors £ (z ). When use is made of independent 

horizontal vibrators, imposing shearing stresses in the x- and y-direction, 

and vertical vibrators, imposing tensile stresses in the z-direction (Figure 

XIMa), then the source vectors can be ordered in such a way that the 

source matrix may be written as 

r (z ) = ~z,s v o' 

T (z ) 0 
xz,sv o' 

0 T (z ) 0 yz,sv o' 

0 T (z ) 
ZZ,S 0 ' 

(XII-15b) 

Furthermore, for identical point sources this expression may be further 

simplified to 

*z.,<«o> = δ ( ω ) Ι > (ΧΠ-lSc) 

S(w) representing the source signature. Now equation (XII-15a) may be 

replaced by 

V(z ) - C (z ) X ? \ z ,z )C" ! (z ), 
- v o7 ~ rv oy~ f r v o' o7~ s v o" 

(XII-15d) 

' In practice the different vibrators may be oriented in arbitrary 
directions. In this case, mutually perpendicular vibrators can be 
simulated by applying a weighted summation to the different responses. 
A similar remark can be made for the geophones (Cliet and Dubesset, 
1987). 
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with 

2&W*«> = S«-)Xfr(z„,zJ k-/» V*< »*· 

•frv o' o frvV V (XII-15e) 

and 

Y(zo> 

V (z ) V (z ) V (z ) 
x,xv o7 x,yv o7 x,zv o7 

V (z ) V (z ) V (z ) 
y,x o7 y,yv o7 y,zv o7 

_ V (z ) V (z ) V (z ) 
L z,xv o7 z,yv o7 z,zv o7, 

(XII- 15f) 

Here any of the sub-matrices V. .(z ) for i=x,y,z and j=x,y,z represents a 
(monochromatic) single-component seismic survey, carried out with 
geophones oriented in the i-direction and vibrators oriented in the j -
direction. In Figure XH-3a the 2-D situation is shown for one element of 
matrix V (z ). z,zv o7 

Similarly, in Figures XII-3b, c and d the 2-D situation is shown for the 
corresponding elements in matrices V (z ), V (z ) and V (z ), K ö x,zv o z,xv o7 x,x o 
respectively. 

geophone vibrator 

(a) 

geophone vibrator 

C l 

(c) 

geophone vibrator geophone vibrator 

t 
n^n 

(d) 

Figure XII-3: 2-D visualization of multi-component data acquisition at a free surface 
z . The double ray paths symbolically represent P- and S^waves. 
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XI1.3.2 Elastic decomposition 

Elastic decomposition should be preceded by the removal of the surface 

waves. We do not discuss this procedure; a good reference is 

Beresford-Smith and Rango (1989). 

Our starting point is equation (XII-15d), which is the forward model of a 

multi-experiment multi-offset multi-component seismic dataset, excluding 

the surface waves. Assuming that the source signature S(o>) is unknown, the 

scaled free surface one-way response matrix can be obtained from the 

two-way seismic data matrix V(z ) by inverting equation (XII-15d), yielding 

(Wapenaar et al., 1989), 

X ( / \ z ,z ) = C _ 1 (z )V(z )C (z ), ~ f r v o' o' ~ r v o '~ v o'~s v o" (XII-16a) 

where 

es
( zo} = w>> (XII-16b) 

and 

C (z ) = NT(Z ), (Xn-16c) 

matrices L~(z ) and N~(z ) being defined by equations (IV-62e) and 

(IV-64b), respectively. Note that Ç" (z )V(z ) describes a lateral 

deconvolution process along the columns (i.e., the common shot records) of 

matrix V(z ), whereas V(z )C (z ) describes a lateral deconvolution process ~ v o7 ~ v o'~ sv o' 
along the rows (i.e., the common receiver records) of matrix V(z ), (see 

Figure XI-10 for the acoustic equivalence). 

(s) In analogy with equation (XII-14c), the decomposed data matrix Xj.  7(z ,z ) 

may be written as 

x i S ) ( z ,z ) ~ f r v o' o7 

é,dr o* ο' 

X . ,(z ,z ) φ ,0V o' o' 

X, .(z ,z ) ψ ,<fr o ' o' 
y 

(z ,z ) v o' o' X, , (z . z j 0,V> o o 
-i(s) 

X . . (z ,z ) X . . (z ,z ) φ .φ o o' ψ ,v> o o 
x x x y 

X / / (Z ,Z ) ψ ,ψ O O7 

y x 

X . . (z ,z ) . φ ,φ o oil 
y y 

. (ΧΠ-17) 

fr 
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Any of t h e  sub-matr ices  s imula tes  a (monochromatic)  single-component 

one-way seismic survey a t  t h e  f r e e  sur face .  Mat r ices  

[X,,,a(zo,zo)] r) f o r  a=x,y represent  seismic surveys in t e r m s  of received 

upgoing P-waves re la ted  to  sources  in t e r m s  of downgoing P-waves or 

downgoing Sx- or  S -waves. Similarly, m a t r i c e s  [X (z  ,z )I(’) and 

[X (z ,z )I:) and A, 0 0 

Y $@,$ o o f r  
)] E) for  /3=x,y and a=x,y represent  seismic surveys in te rms  

Sx- or  S -waves re la ted  t o  sources  in t e r m s  of 
Y 

downgoing P-waves or  downgoing S - or S -waves. In Figure XII-4a t h e  

2-D s i tua t ion  is shown f o r  one e lement  of m a t r i x  [X 

Similarly, in Figures  XII-4b,c and d the  2-D s i tua t ion  is shown f o r  the  

Y 
(z  z )I:! A, 0’ 0 

corresponding e lements  in m a t r i c e s  [X (z ,z )] (s)  f r ,  [X,,, (zo,zo)] rf‘ and 
Y. ,y9, 0 0 

[X, ,, ( z o , z o ) ] ~ !  respect ively.  Note  t h a t  in  the  2-D s i tua t ion  $ re fers  to  

SV-waves. 
Y Y Y  

Figure XII-4: 2-0 visualization of decomposed data at a free surface z 
0’ 

We i l lus t ra te  the  e las t ic  decomposi t ion procedure with a s imple 2-D 
example.  For  the subsurface configurat ion shown in Figure XII-5, we 
g e n e r a t e d  128 mult i -component  seismic shot  records by f in i te  d i f fe rence  
modeling (Kelly e t  al.,  1976; Haime,  1987). We used ver t ica l  and horizontal  
vibrators  as  well as  ver t ica l  and horizontal  geophones a t  the  f r e e  sur face  
zo. One mult i -component  shot  record is shown in the  space- t ime domain  in 
Figure XII-6. 

Sx- or S -waves 
Y 

downgoing P-waves or  downgoing 
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z(m) 

1000 2000 

Layer 
1 
2 
3 
4 
5 
6 
7 

Cp(m/s) 
2400 
3000 
3000 
4100 
3700 
4200 
3500 

Cs(m/s) 
1400 
2000 
2000 
2200 
2000 
2400 
2100 

p(kg/m3) 
1000 
1600 
2100 
2200 
2300 
2000 
1800 

► x(m) 

Figure XI I-5: 2-D inhomogeneous elastic subsurface. The multi-component vibrators and 

geophones are situated at the free surface z =0 m. 

MJLJ t(8) 

~ t(8) 

Figure XII-6: Multi-component shot record. The source position is indicated by the arrow 
in Figure XII-5. 
a. Pseudo P-P data c. Pseudo P-SV data 

(V , see Figure XII-3a) 
b. Psèudo SV-P data 

(V , see Figure XII-3c) 
d. Pseudo SV-SV data 

(V , see Figure XII-3b) (V , see Figure XII-3d) 
The arrows indicate the ground-roll. 
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Figure XII-7: Multi-component shot record of Figure XII-6 after removal of the 
ground-roll. 
a. Pseudo P-P data c. Pseudo P-SV data 
b. Pseudo SV-P data d. Pseudo SV-SV data 
The arrows indicate spurious events. 

Figure ΧΠ-7 shows the same multi-component shot record after removal of 
the ground-roll. All multi-component shot records are transformed from the 
time domain to the frequency domain, yielding a data matrix V(z ) for 
each frequency in the seismic band (5 Hz<f= -z— < 80 Hz). Next, Ζ7Γ 

decomposition is carried out by applying equation (XII-16a) for each 
frequency in the seismic band. Finally, the results are transformed back 
from the frequency domain to the time domain. Figure XII-8 shows one 
multi-component shot record after decomposition (Herrmann et al., 1989). 
Note that the spurious events, indicated by the arrows in Figure XII-7, 
vanished completely. 
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Figure XII-8: Multi-component shot record, after decomposition into one-way P- and 
SV-wave responses. The source position is indicated by the arrow in Figure 
XII-5. 
a. True P-P data c. True P-SV data 

(see Figure XII-4a) (see Figure XII-4c) 
b. True SV-P data d. True SV-SV data 

(see Figure XII-4b) (see Figure XII-4d) 
The arrows indicate surface related multiple reflections and conversions. 

XII.33 Elastic multiple elimination 

After the decomposition has been carried out, the scaled multi-component 
is) free surface one-way response matrix XV(z ,z ) is available for all 

frequencies in the seismic band. This response matrix contains significant 
multiple reflections and conversions related to the free surface (see Figure 
ΧΠ-8). They can be removed by inverting equation (XII-14b), yielding 
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Χ(ζ ,ζ ) = X r ( z ,z ) [ l + R f (z )X r (z ,z ) ] ~ v o o7 ~ f r o o7 L ~ f r o ~ f r o o J 
-1 (XII-18 a) 

X(z ,z ) = Xc (z ,z ) Γΐ + Y (-R~ (z )X r (z ,z )) 1 , (XII-18b) ~ v o' oJ ~ f r o oy I ^ Λ ~ fr o7~ f r o' o'J J *■ m = l ■* 

with 

X r (z ,z ) = - Ξ Τ ^ - Χ ^ Ζ ,ζ ). ~ f r o' o7 S(w) - f r o' o7 (XII-18 c) 

Using an adaptive procedure, the source deconvolution (equation (XII-18c)) 

and the multiple elimination (equation (XII-18b)) may be carried out 

simultaneously. For a further discussion see section XI.3.3. 

Note that the final result may be written as 

X(z ,z ) = ~ v o' o7 

<M o' o7 

X , ,(z ,z ) 
V> , 0 0 O7 

X . ,(z ,z ) 
φ ,0V 0' O7 

X , . (z ,z ) ,̂V> ο' o7 

X , , (z ,z ) V> ,V> o o 7 
X X 

X . . (z ,z ) ^ ,V> o' o7 

X . , (z ,z ) <£,V> o o 7 
y 

X i / (Z ,Z ) V> ,V> o ' o 7 
x y 

X , / (z ,z ) 
ψ ,ψ O 0 

y y 

(ΧΠ-19) 

Any of the sub-matrices simulates a (monochromatic) single-component 

one-way seismic survey at a reflection-free surface. In Figure XII-9a the 
2-D situation is shown for one element of matrix X , ,(z ,z ). Similarly, in <f>,<f>y o o 7 J 

Figures XII-9b, c and d the 2-D situation is shown for the corresponding 

elements in matrices X , ,(z ,z ), X , . (z ,z ) and X , , (z ,z ), 
ψ ,0 0 O7 φ,φ v O 0 φ ,φ 0 O 

respectively.  y y y y 

We illustrate the elastic multiple elimination procedure with a 2-D 

example (Verschuur et al., 1989). We consider the decomposed data of the 
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\ 

(b) « ) 

Figure XI1-9: 2-D visualization of decomposed data at a reflection-free surface z 

(after surface related elastic multiple elimination). 
i-o 

- * x t(e) 
(b) (d) 

Figure XII-10: Multi-component shot record, after elastic multiple elimination. The 
source position is indicated by the arrow in Figure XII-5. 
a. True P-P data c. True P-SV data 

(see Figure XI1-9a) (see Figure XII-9c) 
b. True SV-P data d. True SV-SV data 

(see Figure XII-9b) (see Figure XII-9d) 
The arrows indicate the response of the target reflectors below z =450 m. 
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example in section ΧΠ.3.2. One multi-component shot record after adaptive 

multiple elimination is shown in Figure ΧΠ-10. Note that this result 

clearly shows the primary one-way response (including minor internal 

multiple reflections and conversions) of the subsurface configuration of 

Figure XII-5. 

XII.4 ELASTIC REDATUMING 

XII.4.1 Introduction 

After surface related elastic pre-processing, the primary one-way response 

matrix X(z ,z ) is available for all frequencies within the seismic band. ~ v o' o' 
The aim of elastic redatuming is to find the primary one-way response 

matrix X(z ,z ) that would be measured at the target depth level z for 

all frequencies within the seismic band. According to equation (XII-14d), 

X ( z o , z o ) = W"(z o , z t )X(z t , z t )W + ( z t , z o ) 2 ) , (XII-20a) 

the response matrix X ( z ,z ) is a distorted version of the response matrix 

X(z ,z ), the distortion being determined by the operators W (z ,z ) and 

W~(z ,z ). These operators describe the propagation properties of the 

overburden. Hence, elastic redatuming can only be carried out when the 

elastic macro model of the overburden is known. The main parameters in an 

elastic macro model are the P- and S-wave propagation velocities. These 

parameters can be estimated independently if we may assume that wave 

conversion during propagation can be neglected. In that case we may write 

for the single-component one-way response matrices, according to equation 

(XII-14e), 

x n ,n <Vzo> = w n ,o <Vzt>xn ,n <Vzt>wn ,« (zt-zo>>2) <xn-20b> 
2 1 2 2 2 1 1 1 

Although only one multi-component shot record is shown, bear in mind 
is) that all multi-component shot records (the columns of X f (z ,z )) were 

involved in the multiple elimination process. 
2) 

For simplicity the overburden response is ignored. 
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where n1 and n2 may stand for 4 or gX or $ 

for  X (z ,z ) contains the P-wave extrapolation operators W+ (z ,z ) and 944 0 0 4 9 4  t 0 
W- (z z ), hence the P-wave macro model may be obtained from the 

travel t ime information contained in the P-wave response matrix 

X (z z ). Similar arguments lead to the conclusion that  the S-wave 

macro model may be obtained from the travel time information contained 

Note that the expression 
Y’ 

4 4  0’ t 

4 4  0’ 0 

in the S-wave response matrices X (z ,z ) and 

between the S-wave macro models obtained from 

X (z ,z ) may be an indication for azimuthalanisotropy (see section 

II.4Y.l and Martin and Davis, 1987). A further discussion on elastic macro 

model estimation is beyond the scope of this book. In the following we 

assume that an accurate macro model of the overburden is available. 

*x,*x 0 0 

* 0 0 

X11.4.2 Principle of elastic redatuming 

Elastic redatuming involves compensation for  the distortion caused by 
propagation through the overburden. By inverting equation (XII-20a) we 
obtain the following expression for the redatumed response matrix: 

where 

(XII-2 1 b) 

and 

- 
Again, for simplicity the overburden response is ignored . In reality 
X(z t , z t ) ,  as defined by (X11-21), consists of a causal term representing 
the target response and a non-c’ausal term related to the overburden 
response. The l a t t e r  can be easily removed a f t e r  the redatumed da ta  
have been transformed back to the time domain. 

information contained 
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In practice, direct inversion of the extrapolation matrices W and W 
should be avoided. Assuming that the contrasts in the overburden are weak 
to moderate, we may apply the modified matched inverse operators 

<F+(zQ,zt)> = [W"(z0,zt)]* (XII-22a) 

and 

<F"(zt,zo)> = [W+(zt,zo)] *. (XII-22D) 

For an extensive discussion of these operators we refer to chapter VIII. 

Elastic redatuming of multi-component data by means of equation (XII-21a) 
is useful only when the P- and S-wave macro models are fully consistent. 
In practice, however, these macro models contain (small) errors. In section 
VIII.3.5 we argued that, as long as the contrasts in the medium are weak 
to moderate, wave conversion during propagation is preferably ignored. 
Therefore redatuming should preferably be based on inverting equation 
(XII-20b), yielding 

ΧΩ ,Ω ( V V » Fn ,Ω (νΖο>ΧΩ ,Ω <VZo>Fî> ,Ω <VZt>> t™"23*) 
1 1 2 2 2 1 1 1 

where Ω. and Cl. may stand for φ or φ or φ . Since we assumed that the I 2
 J Ύ r

x *y 
contrasts in the overburden are weak to moderate we may apply the 
modified matched inverse operators 

<Fn .n <Vzt> - » n , n ( V z t a * <x«-23b> 
I I l' 1 

and 

<Fn ,n lzv*o» - Cw+n , n («t.'0fl *· (XII"23c> 
2 ' 2 2 ' 2 
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When the contrasts in the overburden are significant we should apply 

higher order approximations of the inverse operators Ffi Ω (ζ ,z ) and 

F (z ,z ) (see section X.3) rather than returning to equation (XII-21a). 
2 ' 2 

Finally, note that equation (XII-23a), which describes redatuming of elastic 

data, is fully equivalent with equation (XI-27a), which describes redatuming 

of acoustic data. Hence, redatuming of any of the one-way response 

latrices ΧΩ η (z ,z ) may also be carried out per shot record, followed by ma 
2* 1 

stacking, just as we explained in section XI.4.3 for the acoustic situation. 

XI1.43 Example of elastic redatuming 

We illustrate the elastic redatuming procedure with a 2-D example. We 

consider the data of the examples in sections XII.3.2 and XII.3.3. The 

subsurface configuration is again shown in Figure XII-11. The upper 

boundary of the target zone at z = 450 m is indicated by a dashed line. 

One multi-component shot record at the surface z =o m after elastic 

decomposition and multiple elimination was shown in Figure XII-10. Note 

that the response of the target zone is distorted due to the propagation 

effects of the overburden. The four data types (P-P, SV-P, P-SV and 

SV-SV) were redatumed fully independently from z to z . Figure XII-12 

shows one multi-component shot record at the upper boundary of the 

target zone. Note that this result clearly shows the angle-dependent 

reflectivity properties of the reflectors in the target. Finally, Figure 

XII-13 shows the P-P and SV-SV zero offset sections, selected from the 

redatumed data at the upper boundary of the target zone. Note that the 

structure of the reflectors in the target can be clearly recognized. 
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Figure XII-11: 2-D inhomogeneous elastic subsurface. The dashed line indicates the 

target upper boundary. 

Figure XII-12: Multi-component shot record, selected from the redatumed data at z . The 

source position is indicated by the arrow at z =450 m in Figure XII-11. 

a. True P-P data 
b. True SV-P data 

c. True P-SV data 
d. True SV-SV data 
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Figure XI1-13: Zero offset sections, selected from the redatumed data at z 
a. True P-P data 
b. True SV-SV data. 
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APPENDIX A 

MATRIX NOTATION 

A.I INTRODUCTION 

In this book we often encounter operations that are written as a 
generalized spatial convolution integral, according to 

oo 

Q(x,y,z;w) = JJ H(x,y,z;x\y\z';u))V(x\y\z';<t))dx'dy\ (A-l) 
-oo 

Here P represents a quantity related to an acoustic or elastic wave field 
(for instance the acoustic pressure or one component of the particle 
velocity), H represents an operator (for instance for downward wave field 
extrapolation) and Q represents again a quantity related to an acoustic or 
elastic wave field (for instance the downward extrapolated wave field). In 
this Appendix we discuss a matrix notation for wave fields and operators, 
as introduced by Berkhout (1985), generalized for 2-D and 3-D applications. 
This matrix notation has the important advantage that operations of the 
form (A-l) are replaced by simple matrix products, like 

3(z) = H(z,z')PV), (A-2) 

where vectors P and Q contain discretized versions of the wave fields P 
and Q and where matrix H represents the discretized operator. This 
notation suits very well with the seismic situation, where we always deal 
with sampled wave fields. Furthermore, with this notation we can easily 
describe more complicated operations. For instance, if (A-2) represents 
forward wave field extrapolation, then inverse wave field extrapolation is 
simply described by 

P V ) = [H(z,z')]_1^(z). (A-3) 
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In the following we discuss the matrix notation in more detail. We 

separately treat wave fields and operators. 

A.2 MATRIX NOTATION FOR WAVE FIELDS 

Consider a 2-D wave field, measured at a constant depth level as a 

function of lateral position and time, described by 

p(x,zQ ; t ) , (A-4a) 

where 

wave field (for instance the acoustic pressure), 

lateral coordinate of the receivers, 

depth level of the acquisition surface, 

time. 

After a Fourier transformation from time to frequency, as defined by 

(III-la), this wave field is described by 

P(x,z ;ω), v ' o' " (A-4b) 

where 

P : Fourier transformed wave field, 

ω : circular frequency. 

In the following we only consider the frequency domain representation, 

that is, we assume that monochromatic wave fields P(x,z :ω.) are available o' r 
for a range of ω. values. All these monochromatic wave fields can be 
treated independently. If we consider one frequency component ω. only, 
then the discretized version of the wave field can be represented by a 
vector, according to 

P(z 0 ) 

Ρ(-ΚΔχ,ζ ;ω.) v . ο' Y 
P(kAx,z :ω.) v '. ο' Y 

Ρ(ΚΔχ,ζ ;ω.) 

(A-4c) 
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where Δχ is the distance between the receivers. 

For the seismic situation this vector may represent the (monochromatic) 
data in one common shot record. Let us now write this vector 
symbolically as 

P(z0) 
-K 

p; K J 

(A-5a) 

where x denotes that the different elements in this vector correspond to 
the different lateral positions of the receivers. With this notation we can 
write the (monochromatic) data P(x ,z 
symbolically as a matrix, according to 
write the (monochromatic) data P(x ,ζ ;χ ,ζ ;ω.) in a 2-D seismic survey 

P(z0) = 

P P P 
-K,-M -K,m -K,M 

P P ' P ' 
rk,-M k,m k,M 

p · p · p · 
K,-M K,m K,M 

(A-5b) 

where x denotes the different lateral positions of the sources. 
Each element P. corresponds to a fixed lateral receiver coordinate x . k,m K r,k 
and a fixed lateral source coordinate x . Each column (fixed x ) in this s,m s 
data matrix represents one (monochromatic) common shot record; each row 
(fixed x ) represents one common receiver record; the diagonal (x =x ) 
represents zero offset data and the anti-diagonal (x =-x ) represents 
common midpoint data. 

The (monochromatic) data P(x ,y ,z ;x ,y ,ζ ;ω.) in a 3-D seismic areal 
survey can also be represented by a matrix (Kinneging et al, 1989), 
according to 

Co
py

rig
ht

 E
ls

ev
ie

r 2
01

9 
Th

is
 b

oo
k 

be
lo

ng
s 

to
 K

ee
s 

W
ap

en
aa

r



428 

P(z0) = 

P P P 
-L,-N -L,n -L,N 

£,-N 

L,-N 

£,n £,N 

p · p · 
L,n L,N 

(A-5c) 

where y denotes the different cross-line positions of the receivers and 

where y denotes the different cross-line positions of the sources. Each sub-

matrix P corresponds to a fixed cross-line receiver coordinate y . and a 

fixed cross-line source coordinate y . The elements in the sub-matrix 
J
s,n 

itself are defined as in (A-5b). Note that each column (fixed x , y ) of 

the total matrix P(z ) represents one (monochromatic) common shot record 

and each row (fixed x , y ) represents one common receiver record. In this 

book a data matrix P(z ) may represent either a 2-D seismic survey, as in 

(A-5b), or a 3-D seismic areal survey, as in (A-5c). Hence, a data vector 

P(z ) (one column of P(z )) may represent either a 2-D or a 3-D seismic 

shot record. 

A3 MATRIX NOTATION FOR OPERATORS 

Consider again the operation described by (A-l) . If we replace the wave 

fields P and Q as well as the operator H by their discretized versions, 

then the integrals are replaced by summations, according to 

Q(kAx,£Ay,z;o;.) = 

(A-6) 

M N 
J] J] H(kAx,£Ay,z;mAx,nAy,z,;o;.)P(mAx,nAy,z,;a;.)AxAy, 

m=-M n=-N 

for k=-K, .... , K and £=-L, .... , L. 
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Here it is assumed that M and N are "sufficiently large" and that Δχ and 

Ay are "sufficiently small". The la t te r condition can always be satisfied as 

we deal with band-limited seismic data . For an extensive discussion on 

various aspects of discret izat ion the reader is referred to Berkhout (1985). 

In analogy with section A.2, we define data vectors P ( z ' ) and Q(z) which 

contain the discret ized wave fields P and Q. Next we replace equation 

(A-6) by the matr ix equation (A-2) 

Q(z) = H(z , z ' )P (z ' ) . (A-7) 

This implies that we define the operator matr ix Η(ζ ,ζ ' ) according to 

Η ( ζ , ζ ' ) = 

H L,-N 

H £,-N 

H L,n 

H Ln 

H ■L,N 

H £,N 

H L , - N H L,n H L , N 

(A-8a) 

where the elements of the sub-matrices H. read 
t,n 

(Η*,Α,ιη AxAy H(kAx,£Ay,z;mAx,nAy,z';o;.). (A-8b) 

Note the high degree of similarity of this operator matr ix Η(ζ ,ζ ' ) with the 

data matr ix P(z ) defined in (A-5c). 

One column in the data matr ix P(z ) represents the (monochromatic) data 

P(x ,y ,z ;x ,y ,ζ ;ω.) as a function of (x ,y ) for a source at v r ' -V o' s Js o' r r v 
(x =mAx,y =nAy,z ). Similarly, one column in the operator matr ix Η(ζ ,ζ ' ) 

represents the (monochromatic) "spatial impulse response" of the operator 

H(x,y,z;x\y ' ,z ' ;a ; . ) as a function of (x,y) for an "impulse" at 

( χ ' ^ ϋ ΐ Δ χ , γ ^ η Δ γ , ζ ' ) . 
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Finally, let us consider again operation (A-l) and choose a very special 
operator, given by 

H(x,y,z;x\y\z'=z;u;) = h(x,y,z)$(x-x')5(y-y'). (A-9a) 

Substitution into (A-l), taking z'=z, yields 
oo 

Q(x,y,z;w) = h(x,y,z) Jj5(x-x,)5(y-y,)P(x,,y',z;W)dx,dy', (A-9b) 
-oo 

or 

Q(x,y,z;w) = h(x,y,z)P(x,y,z;o;), (A-9c) 

which is a simple product of two scalar functions. The discretized version 
of the "operator" (A-9a) reads 

5. S 
Η^Δχ,^,ζ;πιΔχ,ηΔν,ζ'=ζ;ω.) = h(kAx,£Ay,z) - ^ - -^- . (A-9d) 

Hence, the matrix representation of the product of two scalar functions, 
as described by (A-9c), becomes 

Q(z) = H(z)P(z), (A-lOa) 

where the elements of the sub-matrices HL of H(z) read 

( ^ A m = h<kA*.*y.*)i km*to. (A-10b) 

Hence, for this situation matrix H(z) is a diagonal matrix, the diagonal 
elements representing the discretized version of the scalar function h at 
depth z. 
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APPENDIX B 

INTERACTIONS OF ONE-WAY ACOUSTIC WAVE FIELDS 

B.l. INTRODUCTION 

In chapters V and Vu we frequently encounter integrals of the form 

Ρ(Γ ,̂ω) = J 7 — 1 — \ Γ ^ Α > ω Ρ(Λω) - G(?yA ,ω) ^ ^ Ί dxdy (B-la) 
-oo p(r ) L J z o 

and 

Vv»> = Π-^ Γ Π ^ ) V,») - (G(r,rA,.))* - g ^ ] z dxdy, 
-oo p(r ) L J o 

(B-lb) 

where P and G satisfy the acoustic two-way wave equation. Throughout 
this Appendix, we assume that P and G at z consist of independent 
downgoing and upgoing waves (see Figure B-l), which we denote by 

Ρ(Γ,ω) = Ρ+(Γ,ω) + Ρ"(Γ*,ω) at Z=ZQ (B-2a) 

and 

G(F\r^ ,ω) = G+(F\r^ ,ω) + G""(r~\r̂ \u;) at Z=ZQ, (B-2b) 

where the downgoing waves (P , G ) and the upgoing waves (P ,G ) satisfy 
independent acoustic one-way wave equations at z 

By substituting equations (B-2a) and (B-2b) into the integrals (B-la) and 
(B-lb) and by applying the one-way wave equations at z=z the 
"interaction" of downgoing and upgoing waves can be analysed. It will be 

The relationship between the acoustic two-way wave equation and the 
acoustic one-way wave equations is extensively discussed in chapter III. 
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+ 
shown-that the only contribution to  P and P 
and G+ which propagate in opposite directions through zo. 

comes from wave fields P- 
O 

(a) (b) 

Figure B - I :  At z=z the wave fields P and G consist o f  independent downgoing and 
0' 

upgoing waves. 

B.2 ANALYSIS FOR FORWARD PROPAGATION 

We analyse integral (B-la), where both P and G represent causal or forward 
propagating acoustic wave fields, (Berkhout and Wapenaar, 1989). Upon 
substitution of (B-2a) and (B-2b) into (B-la) we obtain 

The downgoing and upgoing waves satisfy independent one-way wave 
equations a t  z=z when the vertical  derivatives of the medium parameters 
vanish a t  z=z which is expressed by 

0 

0' 

and 

(B-4b) 
0' 

ape= a t  z=z a z  

where K and p represent the adiabatic compression modulus and the 
volume density of mass, respectively, of the acoustic medium. To show 
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the principle first, we assume for the moment 

VK(x,y,z) = o at z=z (B-5a) 

and 

Vp(x,y,z) = o at z=z , (B-5b) 

meaning that, in addition to (B-4), the medium is also assumed to be 

laterally invariant at z . In analogy with equation (III-4a), we define the 

2-D spatial Fourier transform A(k ,k ) of a space-dependent function A(x,y) 
x y 

by 

j(k x+k y) 
A(k k ) = Π A(x,y)e X y dxdy. (B-6a) 

y -oo 

Similarly, we define 

B ( k x , V = / j B ( x , y ) e J ( k x X + V W . (B-6b) 
X y -oo 

With these definitions, the generalized version of Parseval's theorem reads 

oo oo 

/ / A(x,y)B(x,y)dxdy = ( - ^ ) 2 / / Ä(-kx>-k )B(kx,k )dkxdk (B-7) 
-oo -oo y y y 

Note that the left-hand side of this equation represents nothing  but the 

spatial cross-correlation function  of A(x,y) and B(x,y) for zero shift. 

Applying this theorem to equation (B-3) yields 

-oo ^v o 

-(G^GOtC+f^dk^k , (B-8a) 

where 
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Y1 = P^k ,k ,ζ;ω) (B-8b) 
v x y ' ' 

and 

G ' 1 = G ± (-k x , -k y ,z;x A ,y A ,z A ;a;) . (B-8c) 

The prime (') denotes that k and k are replaced by -k and -k , 
x y x ~ + x L + 

respectively. According to equations (III-45a) and (III-45b), P — and G'~ satisfy the following one-way wave equations 

~± 
-̂ f— = + jk Y~ at z=z (B-9a) 

dz J z o 

and 

d&~ - .. ^,± 
-QT~ = + j k z G

 at z=z (B-9b) 

where 

k (z ) = +Vk 2 (z ) - k2 - k2 for k2+k2 < k2(z ) (B-lOa) 
zv o o x y x y o v ' 

and 

k (z ) = - j \ / k 2 + k2 - k2(z ) for k2+k2 > k2(z ), (B-lOb) 
zv o' J v x y v ο' x y v o" v ' 

(see equations (III-32e) and (III-32f)), with 

k2(zQ) = ω2ρ(ζ ο)/Κ(ζ ο). (B-lOc) 

Substitution of one-way wave equations (B-9a) and (B-9b) into expression 

(B-8a) yields 

-oo r v o 

- ( G , + + G'") ( P + - P~)] dk dk (B- l la) 
o y 

respectively. According to equations (III-45a) and (III-45b)satisfy the following one-way wave equations 
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r l ï 2 f 7 ' j k z ( z o ) Γ - +~- - -~+l p ( r A ^ > - h ^ J J - f e r L2G p -2G'p Jz d k x d k y (B- l lb> 

-oo r v o 

or, equivalently, 

a) 

p(z ) L Jz x y' 
-oo rv o o 

Note that this integral does not contain the terms G' P and G' P . 
Applying the one-way wave equation (B-9a) or (B-9b), we obtain either 

P ( ï > ) = -2 (-J-) J 7 —±^r- \G+ | H + G'" 1 ^ 1 dk dk , (B-12 
Α' ν 2 π 7 J J p(z ) I dz 9z J z x y' v 

-oo KV o u J o 

or, equivalently, 

p<?>) = 'H^tf-si-rL^r-*" - 7 r ? + L « W <B-12b> 

Applying Parseval's theorem (B-7) again, yields either 

oo _ _ 
Ρ̂ ,ω) = -2// -^y [G+ g - + G' f f J dxdy, (B-13a) 

OO — -

■H + In both integrals, the first term contains the wave fields G and P , 
which propagate in opposite directions through z (Figure B-2a). Similarly, 
the second terms contains the wave fields G" and P , which also 
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propagate in opposite directions through z (Figure B-2b). 

^ p - ^ < 
p+ 

Z=Z„ Z = Zr 

(a) (b) 
± ±_ 

Figure B-2: Integral (B-3) contains all possible products of G and P . 

Equations (B-13a) and (B-13b) show that only the waves propagating in 

opposite directions have "interaction" at z . 

We generalize these results for the situation where the medium parameters 

are laterally variant at z . We only assume that the vertical derivatives 

of the medium parameters vanish at z , which is expressed by equation 

(B-4). We introduce scaled pressure functions P and G , according to 

Pg = P/v^p" at z=z Q (B-14a) 

and 

Gs = G/VT at Z=ZQ, (B-14b) 

hence, equation (B-3) may be rewritten as 

,°? r , d G + dG~ 3P+ dP" Ί 
dxdy. 

o 
(B-15) 

Substitution of Ρ=ν Γ/Γρ and G=v/p~~ G into the two-way wave equations 

2 
V. (^-VP) + | - P = 0 at Z=ZQ (B-16a) 

and 
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yields 

2 
V. ( - V G ) + £ - G = o at z=z , (B-16b) 

0 ISL. 0 

V 2 P e + lA> = o at z=z (B-17a) 
S S S 0 

and 

V2G + k2G = o at z=z , (B-17b) 
S S S 0 

with 

ks = 4- i l? l 2 + ^ -t«0. <B-i 7 c> 
see also Brekhovskikh (1980). In analogy with (III-61), equation (B-17a) can 

be rewritten as 

d2? (r*,w) 
§ ~ 2 — = -#2(Γ\ω)Ρ (Γ,ω) at Z=ZQ, (B-18a) 

, 3z 

where 
2 2 

H9(r*,w) = k2(r*,w) + - A r - + - ^ - y at z=z . (B-18b) 
Z S <9xZ dyZ ° 

2 2 Assuming band-limited wave fields, the spatial differentiations d /dx and 
2 2 5 /dy can be written as spatial convolutions along the x- and y-axis, 

respectively, according to 

2 
d A ( * ? y ) = ! d,(x-x')A(x',y)dx' (B-19a) 

and 

a 2 ~ 2 

dx -oo 

2 
* A ( 2 ? y ) = f d2(y-y')A(x,y')dy\ (B-19b) 

dy -oo 
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with d~(x) and d^(y) as defined in (ΙΠ-62). With these definitions, two-way 

wave equation (B-18) can be written, in analogy with (III-63), as a 

generalized spatial convolution integral, according  to 

ah (Τ,ω) I ,7 
S~2 = -il [H2(7*,F*»P (F*»] z dx'dy*, (B-20a) 
dz I z -oo O 

O 

where 

H 2 ( f , f » = k*(F\w)i(x-x')i(y-y·) + d2(x-x')S(y-y') + 6(x-x')d2(y-y'), (B-20b) 

with 

r* = (x,y,z) (B-20c) 

and 

Γ ' = (x \y ' ,z '=z) . (B-20d) 

Note that operator PL· is symmetric in r and r ': 

Η2(Γ*\Γ\ω) = Η2(Γ*,Γ*',ω). (B-20e) 

Let us now, in analogy with (III-67), implicitly define an operator H. 

according to 

oo 

Η2(Γ,Γ",ω) = J 7 H1(F+,Γ^ω)H1(Γ^F+^ω)dx,dy^ (B-21a) 
-oo 

with 

Γ" = (x\y",z"=z). (B-21b) 

Due to the symmetry property of operator H-, operator H. is also 
symmetric in r and r ': 
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Hj(r \ r ,ω) = Hj(r ,r ',ω). (B-21c) 

From (B-20) and (B-21) we obtain, in analogy with (III-72), the following 
one-way wave equations for the scaled pressure functions: 

dP~(r ,ω) 
dz + j J 7 [Η 1 (Γ ,Γ ' ,ω)ρ- (Γ ί ,ω)] ζ dx'dy'. (B-22a) 

Similarly, 

3G7(r \ΓΑ,ω), 
dz = + J ί! [Η1(Γ,Γ',ω)Θ-(Γ, Γ^,ω)] ζ dxdy. (B-22b) 

Substitution of (B-22) into (B-15) yields 

oo oo 

n?A,">) = J7 [{//-jHjcr.r'^fG^r^^-G^r^^jdxdyJx 
-oo -oo 

( p V » + P l ( r » ) ] dx'dy' 

-OO 

oo 

{ J 7 -^ (Γ ,Γ ' ,ω^Ρ+ίΓ ' ,ωϊ -Ρ ' ίΓ ' ,ω) ) dx 'dy '}]  z dxdy, (B-23a) 

Ρ(?Α,ω) = 2 / / / / [-]Η 1(Γ)Γ\ω){θ^(Γ,Γ^,ω)Ρ^(Γ',ω) 

- G~(F\F^,w)P+(F*»}] z dxdy dx'dy'. (B-23b) 
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Applying the one-way wave equation (B-22a) or (B-22b), we obtain 

°? Γ ^Ρ'(Γ,ω) 5Ρ +(Γ,ω) "] 
P(r>) = -lu fcyt?AtU)—L·— + Gy?^)—*-^- J z dxdy, (B-24a) 

or, equivalently 

P ( r > ) = 2 / J [  S
 dz

 A Ρ̂ (Γ » + % z
 A Ρ * ( Γ > ) ] ζ dx'dy\(B-24b) 

Expressions (B-24a) and (B-24b) are the generalized versions of expressions 

(B-13a) and (B-13b), respectively. Again, note that only the waves 

propagating in opposite directions have interaction at z (see Figure B-2). 

Substituting (B-14) into (B-24a) and choosing G =o yields 

°°Γ Ί 

-2//[-t^-A,.)^^-]zdxdy, Ρ(ΓΑ,ω) = -2J J L ^ 7 " G <r 'ΓΑ'ω) dz J z d x d y ' ( B "2 5 a ) 

-oo p(r ) o 

which is the one-way version of the Rayleigh I integral (V-44a). 

Substituting (B-14) into (B-24b), choosing G =o and omitting the primes, 

yields 

Ρ(ΓΑ,ω) = 2 j J [ - ^ dz P+(r ,u;)J χ dxdy, (B-25b) 
-oo p(r ) o 

which is the one-way version of the Rayleigh II integral (V-44b). 

B. 3 ANALYSIS FOR BACKWARD PROPAGATION 

We analyse integral (B-lb), where P represents a causal or forward 
propagating acoustic wave field, whereas G represents an anti-causal 
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or backward propagating acoustic wave field (Wapenaar et al., 1989). Upon 
substitution of (B-2a) and (B-2b) into (B-lb) we obtain 

-OO r O 

(B-26) 

The downgoing and upgoing waves satisfy independent one-way wave 
equations at z=z when the vertical derivatives of the medium parameters 
vanish at z=z , which is expressed by equation (B-4). In this section we 
only show the principle, assuming for simplicity that the medium 
parameters are also laterally invariant at z=z , which is expressed by 
equation (B-5). 

Consider the following version of Parseval's theorem 

oo oo 

J7 A*(x,y)B(x,y)dxdy = ( - ^ ) Jf A % k )B(k k )dk dk (B-27) 
-oo -oo y y y 

Applying this theorem to equation (B-26) yields 

- o o ^V 0 

- ( G +
+ G ) * ( - ^ + ^ ) ] dkxdky, (B-28a) 

1 z 
0 

where 

p - = P~(k ,k ,ζ;ω) (B-28b) 
v x y ' 

and 
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G ± Ä G ± (k x ,k y , z ;x A ,y A , z A ; W ) , (B-28c) 

where, in analogy with (B-9), P and G satisfy the following one-way 

wave equations 

ap-
dz 

~ + 
dG~ 
dz 

= +jk P~ J z 

= + jk G J z 

at z=z (B-29a) 
o v ' 

at z=z , (B-29b) 

with k defined by (B-10). Consequently, the backward propagating wave 
l· ± * 

field (G ) satisfies the following one-way wave equation 

\rfr> = ± j k z ( G _ ) at z = zo· (B_29c) 

Note that, according to equations (B-lOa) and (B-lOb), 

k* = k for k2+k2 < k2(z ) (B-30a) 
z z x y v o ' 

and 

k* = -k for k2+k2 > k2(z ). (B-30b) 
z z x y v o v y 

Hence, unlike in section B.2, it appears to be necessary to analyse 

equation (B-28a) separately for the propagating wavenumber area 
2 2 2 2 2 2 (k +k < k (z )) and the evanescent wavenumber area (k +k > k (z )). v x y v o v x y v o 

Substitution of one-way wave equations (B-29a) and (B-29c) into expression 

(B-28a) yields 
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V A ^ = H?) , / ' - ^ T [(-G+
+G)(P+

+P) 
k +kz<kz(z ) ° x y o 

- (G++G")*(P+-P")] dkdk 

* 4 F ) \ // ^ WMnWï 
k +k >kz(z ) ° x y v o' 

(G++G~) (P-P~)] 7 d k d k , (B-31a) 
z x y 
o J 

P^U) - {-^\ A Î £ f » + > V ♦ 2(G)*P-]Z dkxdky k +k <k (z ) HK o' o J 

x y v o' 

r M 2 f f "^kz^zo^ i- ~+ *~- ~-*~+-i 
+ Π Ρ " 1 ) [2(G+) P - 2(G) P+] dk dk (B-31b) Ζ7Γ .2 .2 . 2 , Λ

 P i V Zo X y 
k +k >k (z ) x y o' 

In equations (B-31a) and (B-31b), the second integral over the evanescent 
2 2 2 ~± 

wavenumber area (k +k >k (z )) is negligible when the source of P and 
the source of G~ are not both in the direct vicinity of z . Hence, for 

o this situation we may approximate (B-31b) by 

_> r 1 Λ 2 r c "Jkz^zo^ i- ~+ * ~+ ~- * ~—i 
Ρο(ΓΑ'ω) * ("IF JJ Jz Î"2 ( G ) P + 2(G) P ] dk dk 0 A Ζπ .2 .2 . 2 , Λ

 P ( V zo X y 
k +k <k (z ) x y~ o' 

(B-32) 

~+ *— — *~+ 
Note that this integral does not contain the terms (G ) P and (G ) P . 
Applying the one-way wave equation (B-29a) or (B-29c), and adding a 
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negligible integral over the evanescent wavenumber area, we obtain 

2 °° Γ ~+ ~ "I 
ρ

0(^> * -2H$ H~W)l&* *k+ (δ~}* ί τ \ z d kxdV (B"33a) 

or, equivalently, 

p ( r ω ) « 2(_J_) !ί^-τ\ {ψ~) Ρ+
 + ( ^ ) F"! dk dk . (B-33b) 

ov A' ' y 2TTJ JJ />(z ) L v d z ' ^ dzJ J z x y v ' 

Applying Parseval's theorem (B-27) again, yields 

00 Γ - 1 
ρ

0<νω> - - 2 Π - ^ τ τ L(G+)* ! r + (°">* f - J z d ^ <B-34a) 
-oo r v 0 O 

or, equivalently, 

00 Γ + * - * 1 

-oo ^v o 0 

In both integrals, the first term contains the wave fields (G  ) and P , 

which propagate in opposite directions through  z (Figure B-3a). Similarly, 

the second term contains the wave fields (G  ) and P , which also 

propagate in opposite directions through  z (Figure B-3b). Note that, unlike 

expressions (B-13a) and (B-13b)  in section B.2, expressions (B-34a) and 

(B-34b) are not exact. The approximation concerns the negligence  of 

evanescent waves at z=z . o 

<&" %=£■ 
^0c'm -if̂ 1 

. (G")* 

(a) (b) ± * ± 
Figure B-3: integral (B-26) contains all possible products of (G ) and P . Equations 

(B-34a) and (B-34b) show that only the waves propagating in opposite 

directions have "interaction" at z . 
o 
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Expressions (B-34a) and (B-34b) may be generalized for laterally varying 

medium parameters at z=z in a similar way as described in section B.I 

A further discussion is beyond the scope of this Appendix. 

Choosing G =o and generalizing (B-34a) and (B-34b) for laterally varying 

medium parameters at z=z , yields 

Ρο(7Α'ω) * - 2 ^ L ~ V (G"(F\Î^,«))* 9 Ρ ] Γ ^ ] Ζ dxdy (B-35a) 
-oo p(r ) 0 

and 

Ρο(ΓΑ,ω) » 2j J [-^- ( g ^ - i P (r ,ω) J z dxdy, (B-35b) 
-oo p(r ) o 

respectively. These are the one-way versions of the Rayleigh I and 

Rayleigh II integrals (VII-65a) and (VII-65b), respectively, for inverse wave 

field extrapolation. 
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APPENDIX C 

INTERACTIONS OF ONE-WAY ELASTIC WAVE FIELDS 

C.L INTRODUCTION 

In chapters VI and VIII we frequently encounter integrals of the form 

oo 

ίΐ(?Α,ω) = / J [ ζ / . ϊ χ Λ ν ' ^ ) - 3 η(Γ,^,«).^(Γ,«*)] dxdy (C-la) 
-oo ' 0 

and 
00 * * 

Ω ο ( ? Α' ω ) = i f t ^ z n ^ ' V ^ -̂ ("."H (δ
Ω

(Γ·^·ω)ΐ ·Γζ(Γ'ω)^ζ dxdy> 
-00 ' o 

(C-lb) 

where (Ϋ,Τ* ) and (£*Ω,Θ* Ω) represent two elastic wave fields in terms of 

the particle velocity vectors V* and ( ? n and the traction vectors 7* and 

Θ n . Throughout this Appendix, we assume that at z the elastic wave 

fields consist of independent downgoing and upgoing waves, which we 

denote by 

Ϋ^Γ,ω) = Ϋ*(τ*9ω) + \Γ(Γ,ω) at Z=Z Q, (C-2a) 

T (r ,ω) - T (r ,ω) + r (r ,ω) at z=z , (C-2b) 
zy z v ' ' z v ' o 

^n ( F *> ? A' w ) Ä ^ Ω ^ ' ^ Α ' ω ) + ^Î7(F+'*A 'ω ) a t Ζ = Ζ ο ( C " 2 C ) 

and 

^ Ζ , Π ^ ^ Α >ω> = ^ , η ^ 'ω) + K(f>rA ·ω> at Z = V (C"2d) 
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Furthermore, we assume that at z the downgoing and upgoing waves 

consist of independent P- and S-waves (see also Figure C-1), which we 

denote by 

[ V V , w ) ] z = - ^ [ ν Φ ^ Γ , ω ) + ν χ Φ ^ Γ , ω ) ] , (C-3a) 

with (for the source-free situation at z ) 

[ ν . Ψ ^ Γ , ω ) ] = o (C-3b) 

and 

=>± - + -► 

^Π^Α ·«)] z = i ^ W ^ A '<"> + V x ï t « ( r ' r A .«A z - <C"3C> 

with (for the source-free situation at z ) 

ν>,Ω Α ζ
0 

(C-3d) 

where the downgoing P-waves potentials (Φ ,Γ,  η ) , the downgoing S-wave 
—►+ —►+ - -

potentials (Φ , Γ ,  Ω ) , the upgoing P-wave potentials (Φ ,Γ.  Ω) and the 
upgoing S-wave potentials (Ψ*~,Γ*~  0 ) satisfy independent elastic one-way 

1) ψ* 
wave equations at z \ 

Ψ" Φ' 1 . 0 ^φ,Ώ 

% r * * a 

Figure C-1: At z-z , the elastic wave fields consist of independent downgoing and 

upgoing P- and S-waves. 

The relationship between the elastic two-way wave equation and the 
elastic one-way wave equations is extensively discussed in chapter IV. 
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By substituting equations (C-2) and (C-3) into the integrals (C-la) and 

(C-lb) and by applying the one-way wave equations at z=z , the 

"interaction" of downgoing and upgoing waves can be analysed. We will 
_+ 

show that the only contribution to Ω and Ω comes from P-waves (Φ , 
+ —►i —►+ 

Γ, n ) and from S-waves (Φ , Γ. Ω) which propagate in opposite directions 
through z . 

C.2 ANALYSIS FOR FORWARD PROPAGATION 

We analyse integral (C-la) , where both the elastic wave fields (V\r* ) and 

(CJQ, Θ* ) are causal or forward propagating, (Wapenaar and Haimé, 1989). 

Upon substitution of (C-2) into (C-la) we obtain 

0 (C-4) 

The downgoing and upgoing waves satisfy independent one-way wave 

equations at z=z when the vertical derivatives of the medium parameters 

vanish at z=z , which is expressed by 

dc... ,(x,y,z) g i jk/ = o at z=z (C-5a) 

and 

dz o 

^ ^ = o at z - V (C-5b) 

where c . . . and p represent the stiffness tensor and the volume density of 
mass, respectively, of the elastic medium. For simplicity, however, we 
assume in addition to (C-5) that the medium is isotropic and laterally 
invariant at z=z , which is expressed by 

cijk* ■ XSifkt + "IVj£ + VjkJ a t z=zo· ( C"6 a ) 
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νλ(χ,ν ,ζ) = o at Z=ZQ, (C-6b) 

νμ(χ^ , ζ ) = o at z=z (C-6c) 

and 

Vp(x,y,z) = o at z=z , (C-6d) 

where λ and μ are the Lamé coefficients. Applying Parseval's theorem 

(B-7) to equation (C-4) yields 

-οο 

- ^Ü + èô"i · ̂ ζ + \ ) ] zo
dkxdky <c"7a> 

where 

and 

V>± è V*n(k ,k ,ζ;ω) (C-7b) 
x y ' ' 

? ί = ^ k x V : w ) (C"7c) 

θ*'1- Ä ^ o i - k ,-k ,z;x A,yA,zA;o;). (C-7e) 
ζ,Ω ζ,Ων x' y' * A' JA' A' ' v ' 

The prime (') denotes that k and k are replaced by -k and -k , 
x y x y 

respectively. 

In analogy with (C-3a) and (C-3b) we express v in terms of P- and 
S-waves potentials, according to 
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ν ~ = Ο ~ Φ _ + Ο ~ Φ ~ 
P s 

at ζ=ζ , (C-8a) 
ο 

with 

s at z=z , (C-8b) 

where 

D _ = 
P jwp 

-jk 

-jk 

ijk 
z,p J 

(C-8c) 

s jwp 

-jk 
J X 

-jk 

+jk 
z,s J 

(C-8d) 

and 

~ + 
D " = 

s 
]ωρ 

0 ±jk c -jk. 

+jk 
z,s 

z,s 

0 K 
L jk -jkv o J 

(C-8e) 

Note that we made use of the one-way wave equations (IV-29c) and 

(IV-29d) for the P- and S-wave potentials, respectively: 

5Φ" 
dz +jk Φ z,p at z=z (C-9a) 

and 

d*~ 
dz = +jk Φ" J z,s at Z=ZQ, (C-9b) 

where 
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k (z ) = + \ /k 2 (z ) - k2 - k2 for k2+k2 < k2(z ), (C-lOa) 
z,p o7 v p o x y x y p o 

k (z ) = - j \ / k 2 + k2 - k2(z ) for k2+k2 > k2(z ), (C-lOb) 
z,pv o7 J x y p o7 x y P o7 

and 

k (z ) = +\/k 2(z ) - k2 - k2 for k 2+k2 < k2(z ) (C-lOc) 
z,sv o7 v sv o7 x y x y sv o7 v 7 

k (z ) = - j V k 2 + k2 - k2(z ) for k2+k2 > k2(z ), (C-lOd) 
z,s o7 J x y sv o7 x y s o7 

with 

and 

2 _ ω ^ ζ
0 ) 

k p ( z o } - λ(ζο)+2μ(ζ ο) (C-lOe) 

2 ω ρ ( ζ ο 7 
kz(z ) = 7—^- . (C-10f) sv o7 μ(ζο) 7 

Similarly, in analogy with (C-3c) and (C-3d) we express G' in terms of 

P- and S-wave potentials, according to 

G l " = D ' - rV"n + D'"~ r ; ~ at z=z , (C- l la) 
Ω ρ 0,Ω s ^,Ω o 7 

wi th 

Β ' - . f*;™ = o at z=z . ( C - l l b ) 
s ν>,Ω ο 

Here we made use of the o n e - w a y wave equations 

ô F fo ~ + 
/ ' = +jk Γ'- (C-12a) 
dz J ζ,ρ 0,Ω v 7 
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and 

dT 

dz 

Note that 

iSL. is-= +Jk„ Γ z,s φ,Ω (C-12b) 

P p 

D ' ~ = -D 
s s 

(C-13a) 

(C-13b) 

and 

D ' ~ = -D 
s s 

(C-13c) 

Next, we express r in terms of V . In analogy with equation (IV-3b) we 

write 

>ωτζ m -ikßC3ßr + C33 ST (C-14a) 

with C-„ and C~~ defined by (II-23b). At z=z , where the medium is 

assumed to be homogeneous and isotropic (see also equation (C-6)), we 

obtain 

äz" ° -μΚ 
0 ä̂z" -nky 

-Ajkx -Ajky ( λ + 2 μ > ^ j 

(C-14b) 

Upon substitution of (C-8) and one-way wave equations (C-9a) and (C-9b) 
we may express r in terms of P- and S-wave potentials, according to 

r ~ = F D " Φ" + Γ F Φ" z P P S S at z=z (C-15a) 

where 
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E " = 
P 

1 
jo; 

+ MJk z,p 

0 

-Ajk L J x 

0 

+ ujk P J z,p 

-Ajk 
y 

-izjk ™ x 

-/ijk 
y 

;(A+2M)jkzp J 

(C-15b) 

and 

s jo; 

ïMjkZfS 0 -Mjkx 

0 lß}kzs -Mjky 

-Ajkx -Ajky +(A+2/z)jk ZjSj 

(C-15c) 

Similarly, we may express Θ ' Ω in terms of P- and S-wave potentials, 
according to 

2^ + ~ + ^ + ~,+ ~ + ~ + r̂  + 
θ ' ~ = E»~ D , _ r - + E ' _ D ' _ Γ ' " 

ζ,Ω ρ ρ 0,Ω s s ν>,Ω 
at z=z (C-16a) 

Note that 

E'~ = -E 
P P 

(C-16b) 

and 

E ' - = -E 
s s 

(C-16c) 

From equations (C-8), (C-10), (C-11), (C-13), (C-15) and (C-16) we may 

derive 

L ζ,Ω Ω z J : (C-17) 
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This equation expresses that no interaction occurs between elastic wave 

fields which propagate in the same direction through z=z . 

From the same equations we may also derive 

[f'7> · ^ ; - So1· ^ 4 ] - ± - π Dk ΓΤ·0Φ; + jk F;* . t ; ] . 
L ζ,Ω Ω z J z }ωρ(ζ ) υ ζ,ρ ^,Ω J z,s ψ,Ω J z 

' 0 0 0 
(C-18) 

+. + 
This equation expresses that interaction occurs between P-waves (Φ , Γ. ) 

which propagate in opposite directions through z=z and between S-waves 
-►± -► + ° 

(Φ , Γ. ) which propagate in opposite directions through z=z . No 
interaction occurs between P- and S-waves. 

Substitution of (C-17), (C-18) and the one-way wave equations (C-9) or 

(C-12) into equation (C-7a) and applying ParsevaFs theorem (B-7) again, 

yields 

oo 
„-♦ v 2 f f 1 Γ _+ 3Φ~ =>+ 

+ Γ ^ o π τ — + Γ / ο · ■£Έ— d x d y · ( C - 1 9 

ψ,Ω 5ζ ψ,Ω 3ζ J z 

or, equivalently, 

a) 

ν A ' ' }ω J J p(z ) l dz 

ar* ^ 5r*+ 

+ »,n 
az . Φ 

^ - Φ+
 + 5 ^ - . r + l dxdy. (C-H 

az az J z 

Choosing Γ* =o and F? Ω=(Γ in (C-19a) and (C-19b) yields the elastic 

one-way Rayleigh I and Rayleigh II integrals (VI-66a) and (VI-66b), 

respectively. 
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Finally we derive an alternative representation  of equation (C-19b) by 

eliminating the z-component of the S-wave potential  Φ . From equations 

(C-8b) and (C-8d) we obtain 

+jk $ + = +jk Φ + + j k Φ+ at z=z . 
- ^ z,s z J x x y y o 

Substitution of this expression into equation (C-18) yields 

L ζ,Ω Ω z J z 
0 (C-20) 

. } λ [jjk ?7L$++f+jk f r ^ + j k ? ,
/
±

r i )$++ f+ik r'r^+jk ΓΓ^Ίφ"1"] jo;p(z ) L - J ζ,ρ 0,Ω v—' z,s φ ,Ω J x ψ ,QJ x ^ z,s φ ,Ω J y V ,Ω y z 
o 

Substitution of (C-17), (C-20) and the one-way wave equations (C-12) into 

equation (C-7a) and applying Parseval's theorem (B-7) again, yields 

Ω(ΓΑ,ω) = 

° ° Γ dT+ dr+i o ^ Γ * η ^ Γ * o dT+i o 

jw J J p(z ) L dz Ψ + l dz ax J x + L dz dy )Ψ 
y 

(C-21a) 

+ 
dr, 0 dr . 0 dr . 0 dr . 0 η 

Μ_φ+ + Γ_Μ__Μ]Φ+ r_VL._M]^l dxdy 
>z Φ + ^ dz dx J x + l dz dy J y j z Q x a y * 

dz 

or, using a more compact notation, 

n(rA jw J J p(z ) L 9z ^ 3aj j i k ι ^ k ^ a 

+ / ? Ω Φ+ + (e- .e . . .d . r '  η ) φ + dxdy, 
dz v 3aj j i k ι ψ^Μ a J z 

where e... is the alternating tensor as defined by equation (VI-27). 

(C-21b) 
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Choosing Γ. Ω=ο and Γ. Ω=ο in (C-21b) yields the modified elastic one-way 

Rayleigh II integral (VI-71) 

C.3 ANALYSIS FOR BACKWARD PROPAGATION 

We analyse integral (C-lb), where (v \ r* ) represents a causal or forward 

propagating elastic wave field, whereas (G n , θ Ω) represents an anti-causal 

or backward propagating elastic wave field. Upon substitution of (C-2) into 

(C-lb) we obtain 

-oo O 

(C-22) 

The downgoing and upgoing waves satisfy independent one-way wave 

equations at z=z when the vertical derivatives of the medium parameters 

vanish at z=z , which is expressed by equation (C-5). For simplicity, 

however, we assume in addition to (C-5) that the medium is isotropic and 

laterally invariant at z=z , which is expressed by equation (C-6). 

Applying Parseval's theorem (B-27) to equation (C-22) yields 

2 °° 

-oo 

+ ( ^ o + e ö ) · &+ + T*') ] dk dk . (C-23) v Ω QJ v z z V J z x y x y 
o 3 

In analogy with section C.2, we express the downgoing and upgoing wave 

fields in terms of P- and S-wave potentials, according to 

V"" = D ~ Φ~ + D ~ Φ~ at z=z , (C-24a) 
p s o' 

with 
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and 

D ~ . Φ~ = o at z=z (C-24b) 
s o 

( S " ) Ä ( D - ) ( Γ - Ω ) + ( Ε Γ ) ( Γ - η ) at z=z o , (C-24C) 

with 

( D - J . ( r - n J = ο at z=zo. (C-24d) 

Similarly, 

r ~ = E~ D ~ Φ~ + E~ D ~ Φ~ at z=z (C-24e) 
z p p s s o 

and 

C*y = ( ^ Π ^ Π ΐ ^ Γ ^ ( ^ Χ Λ 
at z=z . (C-24f) 

r̂ + r%+. ~ ± ~+ ~+ Here D , D , D , E~ and E~ are defined as in section C.2. Note that p s s p s 

r~>+\ * r̂ + 2 2 2 
[ D ~ J = D ~ for k +k z < k (z ), (C-25a) 
v pJ p x y p o 

(ËÇf = Ë£ for k W < kjz0), (C-25b) 

Γ ~ + Λ * ~ + 2 2 2 
( D ~ J = D ~ for k +k < k (z ), (C-25c) 
v sJ s x y s o7 v 7 

r~+^ * ~+ 2 2 2 
ÎE-J = E~ for k + k z < kz(z ) (C-25d) 
^ pJ p x y pv o7 v 7 

and 

r~+^ * ~+ 2 2 2 
ÎE-J = E~ for k + k z < kZ(z ). (C-25e) 
v sJ s x y sv o v ' 

These relations are valid only for the propagating wavenumber areas 
2 2 2 2 2 2 k +k < k (z ) and k +k < k (z ), because only in those areas the x y pv o7 x y s o J 
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wavenumbers k and k , respectively, are real (see equation (C-10)). 

Hence, assuming evanescent waves are negligible at z=z , we may derive in 
analogy with (C-17), 

rt^X^+ ^ί'^ν ° for an ( w (C-26) 

This equation expresses that no interaction occurs between elastic wave 
fields which propagate in the same direction through z=z (keep in mind 
that the asterisk (*) denotes back-propagation). 

Similarly, we may derive in analogy with (C-18), 

£(θΙ.η) Y " + &$ - z ^ z * 
0 (C-27) 

- - / x Dk ΙΓΤ 0 ] Φ~ + jk ( Γ 7 0 1 .Φ~] for all (k ,k ). 
+ }ωρ(ζ ) u ζ,ρ ^ ,̂Ω^ J z,s v ,̂Ω z x y 

This equation expresses that interaction occurs between P-waves which 
propagate in opposite directions through z=z aud between S-waves which 
propagate in opposite directions through z=z . No interaction occurs between 
P- and S-waves. 

Substitution of (C-26), (C-27) and the one-way wave equations (C-9) or 
(C-12) into equation (C-23) and applying Parseval's theorem (B-27) again, 
yields 

oo 

<VV»> « -Hinten)* £ * W-IF 
+ KJ* f1 + W · Ή-] zo

d*dy> (c-28a) 
or, equivalently, 
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Ω (T. ,«) « "2 
ο A ' \ω J -οο 

•(^)' ·" * (^)' ■ r] t dxdy. (C2«b) 

Note that, unlike expressions (C-19a) and (C-19b) in section C.2, 

expressions (C-28a) and (C-28b) are not exact. The approximation concerns 

the negligence of evanescent waves at z=z . 

Choosing Γ. n =o and Γ*. Ω=ο in (C-28a) and (C-28b) yields the elastic 

one-way Rayleigh I and Rayleigh II integrals (VIII-31a) and (VIII-31b), 

respectively, for inverse wave field extrapolation. 

Finally, we may derive an alternative representation of equation (C-28b) by 

eliminating the z-component of the S-wave potential Φ . In analogy with 

equation (C-21b) we obtain 

°° Γ 5Γ+ * * 
Ω (F>) « ^ H-T-A ( -4^) Φ+ + («, ^d.T+, J Φ+ 

ov Α' ' )ω J J p(z ) L dz 3aj Jik ι φ^ a 

dT~ * * 1 
♦ [-£?-) ·" ♦ [<3afiik*^a) *;JZodxdy.(C-29) 
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A 
Acoustic waves 7 - 33 
Airgun 11 
Alternating tensor 214, 458 
Anisotropie solid 54 
Anti-causal 16, 442, 459 
Azimuth angle 19, 65, 78, 97 
Azimuthai anisotropy 65, 419 

B 
Backward propagating 16, 443, 459 
Bessel function 270 
Betti's reciprocity theorem 205 
Birefringence (shear wave) 65 
Boundary conditions 83, 94, 138, 338, 359 
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Cauchy's formula 40, 228 
Causal 16, 434, 451 
Composition 

acoustic 91, 377, 378 
elastic 120, 133, 151, 406 

Compression modulus 11, 46 
Compressional waves 7, 35, 47, 59 
Conservation 

angular momentum 42 
mass 8 
momentum 8, 40 

Constitutive relation 9, 42 
Continuity (equation of) 8, 11, 78, 99 
Conversion 134, 327, 415 
Convolution (spatial) 101, 148, 259, 271, 305, 425 
Cross-correlation (spatial) 435 

D 
Decomposition 

acoustic 92, 374, 376, 381 - 385 
elastic 120, 133, 151, 405, 411 - 414 

Deconvolution (spatial) 260, 307, 384, 390, 411 
Deghosting 382, 383 
Dipole 

source 14, 187, 238 
wave field 18 

Direct waves 381 
Dirichlet boundary condition 175, 177 
Downgoing waves 29, 89, 91, 433, 449 
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Eigenvalue decomposition 88, 120 
Einstein's summation convention 6 
Elastic waves 35 - 74 
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F 
Finite difference modeling 
Forward model 

acoustic 
elastic 

Forward propagating 
Fourier transformations 

properties 
spatial 
temporal 

Free space Green's wave field 
acoustic 
elastic 

Free surface 

G 
Gauss' theorem 
Gaussian beam modeling 
Geophones 
Ghost 
Green's functions/wave fields 

acoustic 
backward propagating 
boundary conditions 
elastic 
forward propagating 
one-way 
P- and S-waves 
two-way 

Green's matrix 
acoustic 
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Ground-roll 

H 
Homogeneous plane waves 
Hooke's law 
Huygen's principle 
Hydrophones 

I 
Inhomogeneous plane waves .... 
Interactions of wave fields 

one-way acoustic 
one-way elastic 

Interface 
Isotropie solid 
Iterative extrapolation 

K 
Kirchhoff-Helmholtz integral 

acoustic 
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P- and S-waves 

Kronecker symbol 

251, 296 
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16, 434, 451 
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Lamé coefficients 
Lamé potentials 
Longitudinal 

M 
Macro subsurface model 
Matched filter 
Matrix notation 
Migration 
Monochromatic 

plane waves 
wave fields 

Monopole 
source 
wave field 

Motion (equation of) 
Multi-component data 
Multi-component operators 
Multi-component shot record 
Multiple elimination 

acoustic 
elastic 

Multiple prediction 
Multiple reflections 3, 
Multi-shot record 
Muting 

N 
Neumann boundary condition 
Newton's law 

O 
One-way response matrix 

acoustic 
elastic 

Overburden 

P 
Parseval's theorem 
Pascal's law 
Phase 

slowness 
velocity 

Phase-shift operator 
Plane waves 

acoustic 
elastic 
evanescent 
homogeneous 
inhomogeneous 
monochromatic 
propagating 

Polarization 

465 

46, 56 
.... 47 
22, 59 

174, 213, 258, 388, 418 
264, 273, 308, 341 

425 - 431 
2 

22 
426 

13, 187, 238 
18 

9, 11, 41, 78, 99, 116, 144 
3, 247, 310, 325 

247, 311, 325 
413, 414, 415, 417, 422 

385 - 387 
415 - 418 

386 
93, 134, 180, 291, 318, 354, 374, 403 

388 
385 

175, 177 
8, 40 

369 
401 

4, 370, 402 

435, 443 
37 

20, 54 
20 

193, 245 

18 - 33 
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30, 71, 78 
19, 54 
24, 67 

22, 31, 70, 77 
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Potential 
Green's P-waves 218 
Green's S-waves 218 
P-waves 47, 132, 233 
S-waves 48, 132, 233 

Pre-processing (surface related) 
acoustic 380 - 387 
elastic 408 - 418 

Pressure 9, 11 
Primary waves 93, 108, 291,318, 338 
Propagating waves 30, 71, 78, 262 
Propagation velocity 16, 19, 52, 53 
Propagator 83 
Pseudo P- and S-waves 328 
P-waves 47 

qP 60, 62 

Q 
Quasi-longitudinal 62 
Quasi-trans versai 63 

R 
Rayleigh integral 

acoustic one-way (forward) 180 - 185 
acoustic one-way (inverse) 291 - 294 
acoustic two-way 176 - 180 
elastic one-way (forward) 231 - 236 
elastic one-way (inverse) 319 - 323 
elastic two-way 230 - 231 

Rayleigh's reciprocity theorem 163 
Rayleigh wave 28, 70, 143 
Reciprocity 

acoustic 159 - 166, 167, 168, 195 
elastic 201 - 206, 207, 209, 221, 241 

Recursive extrapolation 337 - 345, 358 - 361 
Redatuming 5 

acoustic 387 - 397 
elastic 418 - 423 

Reference medium 171, 181, 210, 258 
Reflection operators 

acoustic 96, 111 
elastic 139, 154 

Representation theorem 
acoustic 166 - 174 
elastic 2 0 6 - 2 2 8 

Resolution (spatial) 267, 309 
Rigid surface 175, 229 

S 
Seismic inversion 1, 4 
Shear modulus 46 
Shear waves 7, 35, 48, 59 
Shear wave birefringence 65 
Single-component data 2, 367 
Single-shot record 390 
Slowness 

phase 20, 54 
surface 57, 137 
vector 20, 54, 57 
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Snell's law 97 
Sommerfeld's radiation condition 166, 176, 230, 279, 314 
Sources 

airgun 11 
dipole 14, 187, 238 
force 9, 213 
mass injection 8 
moment 50, 214 
monopole 13, 187, 238 
one-way 92, 108 
pressure 374 
P-waves 50 
strain 43 
stress 44 
S-waves 50 
traction 405 
vibrator 405 
volume injection 11, 50, 213, 374 

Space-frequency domain 76 
Space-time domain 76 
Spatial wavelet 267 
Spherical waves 

acoustic 13 - 18 
elastic 49 - 53 

Square-root operator 103, 110 
State (equation of) 9, 11 
Stiffness coefficients 43, 56 
Strain 37 
Stress 36 
Stress-displacement relation 44 
Stress-strain relation 43 
Stress-velocity relation 44, 116, 144 
Summation convention 6, 41 
Surface waves 70 
S-waves 48 

SH, qSH 58, 60, 63, 64 
SV, qSV 58, 60, 63, 64 
S ,S ,S 53, 412 

x' y' z 
T 
Target zone 4, 370, 402 
Taylor series 82, 90 
Three-component data 149, 400, 404 
Tilt angle 19, 62, 78, 97 
Traction 36, 405 
Transmission operators 

acoustic 96, 111 
elastic 140, 154 

Transversal 59 
Transverse isotropy 55, 56, 121, 136 
True amplitude 291, 318 

U 
Upgoing waves 29, 89, 91, 433, 449 
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V 
Velocity 

acoustic propagation 
particle 
phase 
P-wave propagation 
S-wave propagation 

Vibrator 
Voigt notation 

W 
Wave equation 

acoustic 
elastic 
one-way 
P-waves 
S-waves 
two-way 

Wave field extrapolation 
acoustic 
elastic 
forward 
integral formulation 
invers e 
matrix formulation 194 -
multi-component 
one-way 
P-waves 
S-waves 
two-way 

Wave front 
plane 
spherical 

Wave length 
Wave-number frequency domain 
WKB-solutions 

Z 
Zero offset data 

acoustic 
elastic 

16 
10 
20 

52, 59, 127 
53, 59, 127 

405 
56 

12, 32 
45, 72, 134, 144, 151 

3, 32, 72, 92, 105, 108, 121, 134, 151 
48, 51 
48, 51 

2, 12, 45, 81, 87, 99, 117, 144 

83, 101, 185 - 198 
119, 146, 236 - 254 

159 - 255 
185 - 193, 236 - 245 

257 - 366 
198, 245 - 254, 294 - 296, 323 - 327 

247 
32, 159 - 366 

243 
243 

83, 101, 119, 146 

19, 25 
16 

22, 268 
76 

93, 193, 272 

392, 394 
421 
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