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Samenvatting

Dit verslag beschrijft een nieuwe methode om de geluidsnelheidverde-
ling binnen een niet-plan-parallel gelaagd systeem te reconstrueren
aan de hand van zgn. CMP-metingen die aan het oppervlak van het sy-
steem zijn verricht. De methﬁde maakt gebruik van coherentie-technie-
ken &n van een algorithme voor achterwaartse extrapolatie van CMP-data,
gebaseerd op de golfvergelijkiﬁg.

In hoofdstuk II wordt de door Taner & Koehler (2) beschreven methode
behandeld, die alleen gebruik maakt van coherentie-technieken. Aange-
toond wordt dat deze methode een belangrijke beperking vertoont: het
systeem moet nagenoeg parallel gelaagd zijn. Er wordt aangegeven op
welke-manier m.b.v. achterwaartse extrapolatie van CMP-data deze be-
perking weggenomen wordt.

Hoofdstuk III behandelt de coherentie-technieken.

Hoofdstuk IV behandelt golfveld-extrapolatie in het algemeen en ach-

terwaartse extrapolatie van CMP-data in het byzonder.
In hoofdstuk V worden reken-experimenten beschreven waaruit geconclu-
deerd wordt dat toepassing van genocemde golfveld-extrapolatie tot aan-

zienlijk nauwkeuriger resultaten leidt. Tevens wordi een suggestie voor

een verfijning van de beschreven methode gegeven.
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Abstract

This report describes a new method of velocity-determination in non-
horizontally layered media by means of coherence-calculations and in-
verse wavefield-extrapolation of CMP-data, based on the wave-equation.
Chapter II describes a method, given by Taner & Koehler (2), This
method only makes use of cohefence-calculations. We shall indicate

the main restriction ofthis method, namely: all layers must be hori-

zontal. It will be shown how we can make use of inverse wavefield-
extrapolation to avoid this restriction.

Chapter III describes the coherence-calculations.

Chapfer IV describes wavefield-extrapolation in general and inverse
wavefield-extrapolation of CMP-data as a special case.

~In chapter V we describe the results, obtained with the new method
applied to modeled data. We conclude that application of inverse
wavefield-extrapolation leads to significantly better results.

Finally a suggestion is given to a further refinement.
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Lijst van de gebruikte symbolen

EMP Common MidPoint
V Cy (m/s) Effectieve geluidsnelheid tussen z=0 en z=zy bij ge-

laagde systemen

¢ (m/s) Geluidsnelheid

¢ (m/s) Schatter van ¢

cg (m/s) Schijnbare geluidsnelheid (bij scheve reflector)

E Coherentiefunctie

4229 Fouriertransformatie

F Convolutie-operator (-matrix) voor achterwaartse ex-
- trapolatie

£ (s-1) Frequentie

fs (s*1) Bemonsterfrequentie

fi(t) i° registratie in CMP-dataset als functie van t

Fi(f) Fourier-getransformeerde van fi(t)

gi(t) =fi(t +Ti)

Gi(f) Fouriergéetransformeerde van gi(t)

d, Rangnummer bron/ontvanger bij CMP-data (H II,III)

i “Rangnummer oppervlak (reflector) (H IV,V)

J Imaginaire eenheid: j = VF:T

E (™) Golfgetal ]

K 2K+1: aantal bron/ontvangers bij CMP-metingen (H II,IV.7)

n Rangnummer bron/ontvangerpositie (H IV,V)

2 Normaal op oppervlak

n,N Rangnummer reflector (H II)

N Aantal bron/ontvangers (H III,IV)

p(t) (No~%) Geluiddruk als functie vai de tijd

P(£f) (Nm—z) Fouriergetransformeerde van de geluiddruk

T (m) Afstand (straal)

As (m) Onderlinge afstand tussen bron/ontvangers op niet-

horizontaal oppervlak

Si Opperviak i ‘

S/N - Signaal/ruisverhouding

t (s) mTijd A

tp (s) Pulsduur

ot (s) Temporeel bemosterinterval

TO _ (s) Tijdstip van puls in zero-offset-registratie

T(0) {s) Idem

@0 (s) Schatter van T,

%) (s) Looptijd van puls bij offset x
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(m)
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(m)
(m)

(rad)
(rad)
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(g)
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Matrix voor voorwaartse extrapolatie van CMP-data

Zie W

Convolutie-operator (~matrix) voor voorwaartse extrapolatie
Laterale coSrdihaat of afstand tussen bron en ontvanger
Onderlinge afstand tussen bron/ontvangers, dus spatieel
bemonsterintervalv

Coordinaat zercoffset-registratie

Matrix voor achterwaartse extrapolatie van CMP-data
Coordinaat (Twee—dimensionale situaties zijn y-onafhankelijk)
Diepte |

Extrapolatiestapgrootte bij parallelle extrapolatie

Zero~-0Offset

Hoek tussen reflector i en horizontaal oppervlak

Hoek tussen reflector i en reflector i-1

Hoek tussen golfpad en normaal op Jaaggrens

= 3.141592 653589 793238 462643 383279 502884 197169 399375....
Dichtheid

Tijd waarover signaal fi(t) verschoven wordt

: <
Hoek tussen 71 en ¥
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I Inleiding

Echo-akoestiek is een techniek die gebruikt wordt bm op een niet;
destructieve manier iets te weten te komen over het inwendige van
een gysteem, bijv: de aardkorst, het menselijk lichaam, metasl- of
betonplaten, etce. Vanaf het oppervliak wordt geluid het systeem in-
gezonden, t.g.v. inhomogeniteiten bhinnen het systeem wordt een deel
van dit geluid gereflecteexrd, resp. gediffracteerd en zal het opper-
vlak weer bereiken, alwaar het geregistreerd wordt. M.b.v. onze ken-
nis van akoestische golfvoortplanting is het mogelijk om aan de hand
van deze registratie bepaalde eigenschappen van het onderliggende
systeem (subsurface) te bepalen, bijv. plaats en aard van reflecto-
ren, resp. diffractoren. In het algemeen is het gebruik van een com-

puter voor deze reconstructie onontbeerlijk.

Kennis van akoestische golfvoortplanting voorondersteit kennis van

de geluidsnelheid in het systeem. Het gebruik van een verkeerde
waarde van de geluidsnelheid leidt tot een onnauwkeurige reconstruc-
tie. In de medische echo-akoestiek wordt meestal ¢=1480 m/s gebruikt,
d.i. de gemiddelde geluidsnelheid in menselijk weefsel, In de seis-
miek bestaat reeds een methode om de geluidsnelheden van de verschil-
lende aardlagen te schatten, de beperking hierbij is echter dat deze
aardlagen nagenoeg parallel moeten zijn. Taner & Koehler (2) geven

een beschrijving van deze methode.

Dit verslag is een eerste aanzet om in meer complexe en dazrdoor
meer realistische situaties de geluidsnelheid te kunnen schatten.

De eerste stap hiertoe is in een gelaagd systeem niet-plan-parallel-
le lagen toe te staan. Dit leidt tot de titel van dit verslag:
Reconstructie van de geluidsnelheidverdeling van een gelaagd systeem

bestaande uit meerdere niet-plan-parallelle lagen,
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Figuur 2.1

Situatieschets van het systeem met bron/ontvangers.

Voor CMP-metingen geldt dat door ontvanger i de druk wordt gere-

gistreerd, veroorzaakt door bron -i.
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II Common MidPoint metingen

II.1 Probleemstelling

In I ig reeds een korte probleemomschrijving gegeven, n.l.: recoﬁéfruc—
tie van de geluidsnelheidverdeling in een niet-parallel gelaagd systeem.
We zullen deze probleemstelling hier nader prciseren. bk
Het niet-parallel gelaagd systeem is aan de volgende voorwaardawgebqnden
(zie figs 2.1)s o
1 De situatie is twee-dimensionaal, dw.z. zowel de geometrie van het
systeem als het geluidveld is in de y-richting constant.
Per laag is het medium homogeen, d.w.z. c, constant, Fn constant.
3 De scheiding tussen de lagen hoeft niet horizontaal te zijn, maar

.wel vlak.

Aan het oppérvlak (z=0) worden zgn. Common MidPoint metingen verricht.
Hieronder verstaan wij het volgende:
Op het oppervliak bevindt zich op equidistante posities een oneven
~aantal (2K+1) bron/ontvangers (dit zijn transducenten die als bdbron

of als ontvanger gebruikt kunnen worden) symmetrisch rond X=Xy

Eerst zendt bron -K met x__ = -KAx een korte puls uit. Deze wordt

e
K 0
na reflectie aan de verschillende laaggrenzen geregistreerd door ont-

vanger K met Xg = XO+KAX. Wanneer alle reflecties binnen zijn zendt J

bron -K+1 een puls uit die geregistreerd wordt door ontvanger K-1,
enz., Algemeen: de door bron -i met x g xo—idx uitgezonden puls

wordt geregistreerd door ontvanger 1 met X = XO+iAx. Merk op dat

het middelpunt tussen bron -i en ontvanger i vastligt (d.w.z. onaf-

hankelijk is van i) n.l.: X=Xy Dit verklaart de term CMP-metingen.

Definities:

# De verzameling CMP-registraties van ontvanger -X met X g = xO—KAx
t/m ontvanger K met XK = XO+KAx noemen we de CMP-dataset.
#¥ De registratie van ontvanger O met x=x_ noemen we de zero-offset-re-

0
- gistratie, lmmers bron en ontvanger wvallen hier samen.

In het navolgende zal aangetoond worden dat met minimaal twee CMP-data-
sets met verschillende waarden voor X, de geluidsnelheidverdeling in
bovenstaande situatie te reconstrueren is. Het probleem zal in eenvoudi-
gere sub-problemen opgesplitst worden. Achtereenvolgens zullen behandeld

worden:



> Figuur 2.2
Wanneexr een vlagke golf onder een hoek 61 invalt op een scheidings-
vlak tussen twee homogene media met geluidsnelheid C, Tesp. s
dan zal een deel gereflecteerd worden onder een hoek 9{ = 61 en

een deel zal doorgelaten worden onder een hoek 62, waarveor geldt

sinéb = (02/01)sin91.




een systeem bestaande uit één plan-parallelle laag
een plan-parallel gelaagd systeem

een systeem bestaande uit één niet-plan-parallelle laag

E T S

een niet-plan-parallel gelaagd systeem.

Opmerking

Een voor de CMP-dataset specifieke eigenschap is dat registratie i iden-
tiek is met registratie -i. (Br is van uitgegaan dat het reciprociteits-
beginsel toepasbaar is). In de praktijk worden alleen de registraties 1
met i? 0 bepaald. Voor de in hoofdstuk III behandelde coherentietechnie-
ken is dit voldoende. De in hoofdstuk IV behandelde golfveldextrapolatie
maakt t.b.v. de nauwkeurigheid tevens gebruik van de registraties i, met
i< 0. Vanwege bovengenoemde eigenschap van de CMP-dataset wordt deze ver-
kregen door de opgemeten dataset te spiegelen t.o.v. de zero-offset-regi-

stratie.,

II.2 Een systeem bestaande uilt één plan-parallelle laag

Geluid dat op het scheidingsvlak tuésen twee homogene media met verschil-

lende eigenschappen (hier: verschillende geluidsnelheden c,, 02) invalt

zal door dit scheidingsvlak gedeeltelijk gereflecteerd en gedeeltelijk
doorgelaten worden. Berkhout (i) behandelt in hoofdstuk IV de reflectie
en transmissie bij zo een scheidingsvlak. -In het kort komt het er op neer
dat het invallende geluidveld wordt ontbonden in een aantal vlakke gol-
ven die onder verschillende hoeken invallen; volgens de wet van Snellius

geldt dat een vlakke golf die onder een hoek H1invalt gereflecteerd

wordt onder een hoek 9% = 91 en doorgelaten wordt onder een hoek 92 vol-
gens:
°2
81§92 = E: 31n91 . 2e1

zie figuur 2.2. Vervolgens wordt m.b.v. een hoekafhankelijke reflectie-

en transmissiecoefficient (die we hier niet geven) de complexe amplitude
van het gereflecteerde veld en van het doorgelaten veld (superpositie van
groot aantal vlakke golven) berekend.

De beschouwingen in dit hoofdstuk hebben alleen betrekking op looptijden
van pulsen van bron via transmissie en reflectie naar ontvanger. Volgens
het principe van Fermat moet hiervoor het golfpad met de kortste looptijd
gezocht worden. Een golfpad staat per definitie in ieder punt in de ruim-
te loodrecht op een golifront en gedraagt zich op snelheidsovergangen vol-
géns de wet van Snellius wanneer we de hoekafhankelijkheid van de reflec-

tie- en transmissiecoefficient mogen verwaarlozen, (locally reacting).



Figuur 2.3
a) Eén plan-parallelle laag met CMP-metingen
b) Bijbehorende looptijden T,

als functie van de ontvangerpositie X,
¢) Een meer realistische voorstelling van b '




We zullen nu voor één plan-parallelle laag de looptijd als functie van de
onderlingeﬁpOSities van bron en ontvanger en de positie van de reflector
(de overgang in de geluidsnelheid is een niet-akoestisch-harde reflector)
voor CMP-metingen bekijken.

Voor de in figuur 2.3a geschetste situatie is eenvoudig af te leiden dat
voor de looptijd Ti van de puls,’uitgezonden door bron -i, gereflecteerd

door vlak z=z, en geregistreerd door ontvanger i gegeven wordt door

1
. 2
’l‘i S (32—"—}5) , 2.2a
waarin‘
2z1
TO = S 2.2b

de looptijd van de puls in de zero-offset-registratie is, ¢ de geluid-

snelheid en 2iAx de offset tussen bron -i en ontvanger i. De looptijden

Ti liggen dus op een hyperbcol met minimum Ti = TO en asymptoten
o = ¥EAE 2.2¢
c

zie figuur 2.3Db.

Dus: i

wanneer gegeven is dat de reflector parallel ligt aan het opperviak z=0

en de looptijden Ti’ verkregen uit CMP-metingen, bekend zijn dan liggen

de positie z=z, van de reflector en de geluidsnelheid c van het tussen-

liggend medium eenduidig vast volgens relaties 2.2a,b en c.

Echter:

de in figuur 2.3b geschetste situatie is een vereenvoudigde voorstelling
van de praktijk. In de praktijk hebben de pulsen n.l. een eindige fijds«
duur en zal ruis de waarnemingen vertroebelen (zie fig. 2.3c).

Om uit waarnemingen zoals geschetst in figuur 2.3c de hyperbolische be-

trekking (2.2a) en daarmee c en T, te reconstrueren moet gebruik gemaakt

0
worden van_coherentie—technieken. Deze technieken maken gebruik van de
eigenschap dat de pulsvorm in de verschillende registraties gelijk is
terwijl de ruis ongecorreleerd is.

Deze methode zal behandeld worden in hoofstuk IIT.

Alvorens hiertoe over te gaan wordt in de volgende paragrafen van dit
noofstuk onderzocht welke uitdrukking in complexere situaties de looptijd
Ti ais functie van xilbeschrijft en onder welke voorwaarden deze uitdruk-
king te benaderen is door, dan wel te transformeren is tot de in 2.2a ge- -
geven eenvoudige hyperbolische betrekkihg.

Deze transformatie wordi verwezenlijkt d.m.v. golfveldextrapolatie en is
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Figuur 2.4
a) Parallel gelaagd systeem. (Merk op: an(O) is de zero-offset looptijd van

een puls die in lmag n heen en weer loopt).

b) Bijbehorende CMP-registraties.
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beschreven in hoofdstuk IV,

II.3 Een plan-parallel gelaagd systeem

We beschouwen een parallel gelaagd systeem zoals geschetst in figuur
2.4. We zullen de looptijd TN(X) bekijken van een puls die wordt uitge-
zonden op het vlak zo=O, gereflecteerd wordt door het vlak Z=zy en ont-
vangen wordt op zO=O, met een offset X tussen bron en ontvanger. Zgn.
"multiple reflections™ (de puls gaat per laag meer dan één keer heen en
weer) worden buiten beschouwing gelaten. Dit mag wanneer de transmissie
.per snelheidsovergang veel groter is dan de reflectie, dus wanneer de
(snelheidssprong relatief klein is.

In appendix A wordt afgeleid dat voor de looptijd TN(X) geldt:

2
2 . m2 X 4
TN(X) = TN(O) + 52 + 0(x") , 2.3a
N
waarin
N N ZAZn
Pel0) = JTaR (0} = 3 —= 2.3b
n=1 Ti= 1 n
2 ,
5 — 5% cﬁATn&Q)
c§ ] . 2.3c

7,,(0)

e

0(x4) stelt hogere orde termen in x (vanaf X4) voor, C; is het kwadraat

van de effectieve geluidsnelheid tussen z=0 en Z=Zpe

Wanneer we x niet te groot nemen dan heeft, met verwaarlozing wvan O(x4),
relatie 2.3a dezelfde_gedaante als relatie 2.2a, met dit verschil dat

02 vervangen is door C% o Dit betekent dat m.b.v. de in hoofdsiuk III
beschreven coherentie-technieken uit de CMP-registraties TN(O) en\/5§

voor N = 1,2,4..+ bepaald kunnen worden,

De geluidsnelheid ¢y per laag is te reconstrueren m.b,v. de recursiefor-

mule ot
2 g .
2 CyInt0) = Cp 4Ty _4(0)
ey T s N DA
Ty(0) - Ty ,(0)
A 2.4

2 2 2

Cy = ©; = C1 s N =11

(te bewijzen door 2,3c mat‘ATN(O) =,TN(0) s T 1(o) in 2.4 te substitu-

eren)., Zie ook Taner & Koehler (2)e
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Figuur 2.5

a) Eén niet-plan-parallelle laag. De "reflector" maakt een hoek o met het
horizontale oppervlak. De schijnbare geluidsnelheid wordt gegeven door
¢, = c/cosil «

b) Om zowel ¢ als ® te bepalen zijn minstens twee CMP-datasetls nodig.




II.4 Een systeem bestaande uit één niet-plan-parallelle laag

We beschouwen een situatie met één scheve reflector zcals geschetst in

figuur 2.5a. De looptijd T(x) van een puls die wordt uitgezonden op 245=0,
gereflecteerd wordt door de scheve reflector en ontvangen wordt op zO=O,
met een offset x tussen bron en ontvanger, wordt gegeven door
2
(x) = 1°(0) + %5 | 2.5a
C .
s
met
c
= «5b
cs cosol 2 2

Relatie 2.5 wordt afgeleid in appendix Bel.

Opmerking

Relatie 2.5 is exact!

Omdat 2.5a dezelfde gedaante heeft als 2.2a, met cs i1epeve ¢, wordt Cq de
schijnbare geluidsnelheid genoemd. Dit impliceert dat de CMP-dataset niet
te onderscheiden is van de CMP-dataset behorende bij een plan-parallelle

laag met dezelfde T(O) en snelheid c 1epeVe Cs

M.b.v. de in hoofdstuk III beschreven coherentietechnieken kunnen we T(O)
en c_ bepalen. Als ¥ bekend is kunnen we m.b.v. relatie 2.5b tevens c be-
palen. Is o onbekend dan lukt het niet om m.b.v. één CMP-dataset de ge-

luidsnelheid c te bepalen. Wanneer we een tweede CMP-dataset tot onze be-

schikking hebben, waarvan het middelpunt x, op een andere plaats ligt als

bij de eerste dataset, bijv 8x naar rechts? dan is het in principe moge-
lijk K en daarmee ¢ te bepalen.

We vinden m.b.v. de tweede dataset weer dezelfde waarde voor oo de loop-
tijd TZ(O) van de zero-offset-registratie is echtgr ongelijk aan T1(O)
van de eerste CMP-dataset (zie fig. 2.5b).

Eenvoudig is af te leiden dat voor & en ¢ geldt

(T1(O) - T2(O))CS

o (
atan T ) . 2.6a
¢ = c_cos® | 2.6b
Opmerking

Het 1ijkt voldoende i.p.v. een tweede CMP-dataset alleen &én extra zero-

offset-registratie te gebruiken, immers ¢g is reeds bekend. Echter: de
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Figuur 2.6
Scheef gelaagd systeem.
(De looptijden staan bij de golfpaden aangegeven).

Merk op: ATB(O) # TB(O) - TZ(O) .



coherentie~-technieken uit hoofdstuk IIT zullen, toegepast op de tweede
CMP-dataset, nauwkeuriger waarde van TZ(O) opleveren dan uit één zero-

offset-registratie te verkrijgen is (denk aan ruis, eindige pulsduur).

Kls extra informatie wordt hier nog gegeven hoe de afstand q in figuur
2.5a, n.l. de afstand waarover het nreflectiepunt" van het golfpad bij

toenemende x verloopt, samenhangt met x, &, <C en T(0):

xzsina cos

1 = 2c1(0) Eeif
. ; 2
q is maximaal voor X = T/4, n.l. Upoye = ¥ JAsTL0 )
Bijvoorbeeld: x = 1000 m
T7(0)= 2.5 s
¢ = 2000 m/s
dan: Q™ 50 me

De afstand q speelt een rol wanneer de reflector niet vlak is: q is een
maat voor de afstand waar binnen de reflector bij benadering vlak moet
zijn. In dit verslag wordt hier verder niet op ingegaan.

Relatie 2.7 wordt in appendix B.2 afgeleid.

II.5 Een niet-plan-parallel gelaagd systeem

7

De looptijdeh TN(X) in de CMP-registraties behorende bij een scheef ge-
laagd systeem zoals geschetst in figuur 2.6 zijn niet eenvoudig als '
functie van x te beschrijven. Relatie 2.3, behorende bij een parallel
gelaagd systeem, voldoet hier niet,immers: de looptijd van een puls door
één laag is bij een offset x#0 heen en terug verschillend. Wanneer de

hoekenuN niet te groot zijn zal TN(X) té benaderen zijn door

2

2 2 X
TN(X) = TN(O) + g VOOT X LX s 2.8
Cq
N
"
echter: CN, te bepalen met de in III beschreven conerentietechnieken,

zal sterk afhankelijk zijn van B Terugrekenen van de snelheid cy Per
laag volgens ___

2 =2 2 2 \
CNcos “NTN(O)_— CN_ cos “N—1TN-1(O’ T
7,(0) - Ty (0] ’

2 1
N-1
2:9

l

— N

2 2
= C = C COSTK1

2

°N 1

introduceert opnieaw een fout omdat AT, (0) # TN(O) - TN 1(O),(vergelijk
N -

rel. 2.4). Wanneer tevens de hoeken W“ onbekend zijn wordt het nog moei-
A




lijker de geluidsnelheid per laag te berekenen.

Bovens
is om

wikkel
Gelukk
eerste
2.9 zi

De pro
1.

zet di
ad 1,3

ad 2,4

taande beschouwingen leiden tot de conclusie dat het noodzakelijk
voor niet~plan-parallelle lagen een alternatieve procedure te ont-

€Ne

ig hebben we in hoofdstuk II.4 gevonden dat we de snelheid in de
laag in principe wel exact kunnen bepalen (immers: relatie 2.8 en
jn exact voor N=1). '

cedure om de geluidsnelheid in alle lagen te vinden is als volgt:

bepaal de geluidsnelheid in de eerste laag m.b.v. relatie 2.8 en

2,9 voor N=1,

extrapoleer de CMP-dataset naar de eerste reflector, gebruik de on-

dér 1 gevonden geluidsnelheid,

bepaal m.b.v. de geextrapoleerde CMP-dataset de geluidsnelheid in

de tweede laag m.b.v. relatie 2.8 en 2.9 voor N=1,

-extrépoleer de CMP-dataset naar de tweede reflector, gebruik de on-

der 3 gevonden geluidsnelheid,

t proces voort tot het gehele systeem doorlopen is.

™ hoeft niet bekend te zijn, er zijn dan minstens twee CMP-data-
sets nodig.

Een algorithme voor de achterwaartse extrapolatie van een CMP-data-
set wordt in hoofdstuk IV afgeleid. Het resultaat van deze extrapo-
latie is een CMP-dataset "geregistreerd" op de eerst volgende re=~
flector; Afhankelijk van de nauwkeurigheid van de extrapolatie kan
de geluidsnelheid van de volgende laag (d.i. de eerste laag in de
geextrapoleerde situatie, dus de looptijden T(x) voldoen aan de

hyperbolische betrekking) bepaald worden.



ITITI Coherentietechnieken

In hoofdstuk II.2 hebben we gezien dat het verrichten van CMP-metingen in
een systeem bestaande uit één plan-parallelle laag (geluidsnelheid c, diep-
te z) een serie signalen (registraties) oplevert met in het i€ signaal een

puls op tijdstip Ti, gegeven door

2
2 2 21Ax
Ty o= T+ (55) r ‘ 2.2a
waarin
27 . .
Iy = 2.2b

en waarin ax de afstand tussen de bron/ontvangers voorstelt (zie figs 2.3).
Dit hoofdstuk is gewijd aan coherentietechnieken die het mogelijk maken,

gegeven de signalen, de looptijden Ti te bepalen, zodat ¢ en T. (en daar-

0
mee z) gevonden kunnen worden.

Opmerkiﬁg

Door de eindige duur van de pulsen krijgt de uitdrukking "tijdstip van de
puls" een niet-éénduidige betekenis. We houden deze uitdrukking toch aan

en bedoelen ermee het tijdstip waarop een ideale diracpuls zou optreden.

Wanneer er sprake is van nulfase-pulsen bedoelen we dus het tijdstip pre-

cies halverwege de puls, dus het maximum.

IIT.1 Algemeen principe

Stel de in de inleiding gegeven signalen worden gegeven door fi(t), O0<£i< N.
De signalen zijn qua vorm aan elkaar gelijk, ze zijn echter in de tijd t.o.v.
elkaar verschoven, de amplitude is niet voor alle signalen gelijk en de ruis
in de verschillende signalen is engecorreleerd. Beschouw nu

#

N-1
B (T TyhTy evealy o) = % i};() g, (t) 3.1a

met
g (t) = £ (++T).

Ea is de coherentiefunctie van de N signalen gi(t). (De t-sommatie wordt in
principe over de gehele signaallengte uitgevoerd).

}Deze functie-Ea is maximaal wanneer alle signalen gi(t) voor O£i< N op een
lconstante factor na identiek zijn, Dit wordt bewezen in appendix C,

Daar gi(t) het over een tijd Ti verschoven signaal fi(t) voorstelt treedt
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Figuur 3.1

&) De CMP-data fi(t) voor 1=0,1 ...,. N-1

b) De in de tijd verschoven signalen gi(t) = fi(t+zi),
met % = Tp voor i = 0,1 ..., N=-1

¢) Als b, hier is echter de tijdverschuiving verwezenlijkt
d.m.v. een lineaire fasedraaifné in het f-~domein

De coherentiefunciie E zal voor de coherents signalen in c¢)

maximaal zijn.

Merk op dat de schaal van de tijdas in b)en c)anders is dan

18 &)«




s

dit maximum op wanneer voor 0<£i<N geldt: Ti = Ti, het tijdstip van de puls
in signaal fi(t),(zie fig. 3.%a,b).(Verschillen in de amplitudes van de sig-
nalen en ruis hebben wel invloed op de waarde van het maximum, echter niet

op de plaats hiervan).

Merk op dat voor de coherentieberekening volgens relatie 3.1a het voldoende
is te kunnen beschikken over de’ signalen fi, i3 0. Dit verklaart de enkelzij-

dige hyperbool in figuur 3.1a.

Het zoeken naar de tijden Ti komt dus neer op de volgende procedure:
% kies waarden voor ?b ""TN—1’
bereken Ea’

3

# herhaal dit voor verschillende combinaties Zb coas 7&_1,
% het resultaat is een N-dimensionale functie Ea’

¥

T =T T.,=T

=g Sg™y =T

het maximum van Ea treedt op als TO=TO, we oG

N-1 N-1°

Het berekenen van de N-dimensionale functie Ea is een enorm rekenintensief
proces. Gelukkig kunnen we voor ons probleem Ea terugbrengen tot een twee-
dimensionale functie Eb’ we veronderstellen n.l. esn betrekking tussen de

verschillende Ti’ gegeven door relatie 2.2a. Dit betekent dat we in ‘boven-
staande procedure de coherentiefunctie alleen hoeven te berekenen voor com-

binaties wvan ?b $vEe s TN—1 die voldoen aan

2 az 2iA£ ;

A
waarin & en T
0 0

functie”Ea(TO ....2&_1 ) is m.b.v. relatie 3.2 teruggebracht tot een twee-di-

schatters voor resp ¢ en T, voorstellen. Dus de N-dimensionale

. N - e ~
mensionale functie nb(To,c):

N-1 2
E (T ,8) = 22| % 8. (%) 3.10
50 ; a.
» t [i=0
met .
waarin
22 . 52, ,ZiAx)z
3 0" Y o *
c
N
Het maximum van Eb treedt op als TO = TO en & = c. (Dus Ti = Ti voor O€ i< N).
N
PO 0+ 4 - e , ! & 5
Het is niet altijd nodig Eb te berekenen voor O SEO éTO,max en 0g¢Cg C hax?
aarin T le lengte le signaley “C# 3 2 | ;
waarin To,max de lengte van de signalen fi(t) en c .o de grootst voorkomende
geluidsnelheid voorstelt. Van T  kunnen we i.h.a. aan de hand van het zero-

0

offset-signaal reeds een schatting maken: TO

¢ [
T. + AT

0 0 en op basis van erva-



ring zal ook vaak een onder- en bovengrens Cnin’ resp. Chax VOOT de geluid-

snelheid bekend zijn. Dus Eb hoeft slechts berekend te worden wvoor
N [7ad

[ [
~ < \ 4 , s _
TO ATO\CQ)sio + A%B en cmingczscm s hetgeen voornamelijk door de be

grenzing van To een aanzienlijke rekenbesparing betekent.

Opmerking 1

Een genormeerde versie van Eb wordt gegeven door

N-1 2
Z Zgi(t)
Eg(ao,f‘:) = -t l=O °

N-T
N2 2 es(t)
t i-o0

Deze functie kan waarden tussen O en 1 aannemen. Voor identieke signalen
N

gi(t) geldt: E_ = 1.

Opmerking 2

In de praktijk zal de sommatie over t in 3.1b over een eindig tijdinterval
uitgevoerd worden. Om te voorkomen dat voor t <0 gesommeerd moet worden,

| hetgeen kan optreden bij naar t=0 verschoven nulfase-pulsen met totale leng-

te tp, moet gi(t) vervangen worden. door gi(t) = fi(t+7i—tp/2). Terwille va§

de duidelijkheid zullen we in het vervolg echter de notatie van 3.1b aanhou-

deﬁ.

IIT.2 Praktische problemen

IIT.2a Tijdverschuiving

Zoals uit relatie 3.1 blijkt maakt de coherentiefunctie E gebruik van in de
tijd verschoven signalen g(t) = f(t+T).4In de praktijk zijn de signalen

f(t) bemonsterd met bemonsterinterval 4t, d.w.z. zij zijn slechts op dis-
crete tijdstippen t=kat, k geheel, bekend. In het algemeen zal gelden:
T#uat, m geheel. Dit betekent dat de verschuiving in het tijddomein van sig-
naal f£(t) over een tijd T ter verkrijging van g(t) i.h.a. niet exact is uit
te voeren. Dit is duidelijk waarneembaar in figuur 3.1b. Berekeningen aan
modelsituaties hebben uitgewezen dat een exacte tijdverschuiving wel wense-

lijk is. Hieronder wordt beschreven hoe dit te realiseren is.

Volgens het tijdverschuivingstheoréma (van den Bos (3)) komt een tijdver-

schuiving in het tijddomein overeen met een lineaire fasedraaiing in het

frequentiedomein., Als de fouriergetrnsformeerde van f(t) gegeven wordt door



F(f), wat we noteren als

(%) &L, F(f) 3.3a

dan geldt voor de fouriergetransformeerde van f(t+7T)
T : .
f(t +T) € F(f)exp(jonfT). . 3.3b

Dit betekent dat een tijdverschuiving T exact kan worden uitgevoerd met de
volgende procedure: A
# breng het signaal f(t) m.b.v. een fouriertransformatie in het frequen-
tiedomein, resultaat: F(f),
¥ vermenigvuldig F(f) voor iedere frequentiecomponent afzonderlijk met
exp(jZﬂTiT), deze berekening is uiteraard exact, ook voor T # mat,
m geheel,
¥ breng het signaal F(f)exp(j2%fT) m.b.v. een inverse fouriertransformatie
terug in het tijddomein, resultaat: £(47).
In figuur 3.71c komt tot uitingdat een tijdverschuiving volgens deze methode

nauwkeuriger resultaten oplevert.
ITI.2b Verscherping van het maximum

Beschouw nogmaals relatie 2.2

2
2 2 2148x
Ti = .TO i = ) 2.2a
met
27
TO = 2 . 2 520
Indien nu geldt
. 2 2 ; . .
(2iax) & (2z)7, voor alle i z.d.d. O i< N, 3.42

dan kan voor Ti geschreven worden

. 2
Bk g w w o ABE) 3.4b
5 202T )
O .
hetgeen een parabool voorstelt. Voor de tijdverschuiving ?i geldt analoog

. 2
2 (2iax)

. 3sde
O =

We zien nu een lastig effect optreden!



HIER VOLGT DE COHERENTIE

A n
ALS FUNKTIE VAN TO EN C

N
N 16(S) .9B0086E+00 ,990GO0E+08 .100000E+01 .4040G0E+0f .102000E+04
3 |
1400.00 K/ .350376E+08 ,S77AORE+E8 ,414043C+01 ,203408E+01 _ 299298E+01
486,60 /8 LAVIGHBE+00 ,103G28E+01 ,494420E401 ,29682iE+01 |, 366400E+D1
£490,00 ¥/S  ,90972SE+08 ,1B43B6E+Df .28BH7SE+0L | 370705E+08 3B2095E+04
1495.60 H/S AG4BI9E40S 2757066408 | 365T4CE+04 393537401 _ J41423E40L
i506.08 #/S  .25HA94E+01 3593395404 . 394414E+ J97486E405 26034 3E+0L
{565,860 H/S ,3363576+64  ,388932E+01 T, 364796E+UL . 277660E+01 170056E+04
569,60 H/5  I74323E+08 |, 36S273E+0 ,2B9879E+04 L 4BSYIVE4DL ,F71497E+00
§545,60 H/8  .351650F+01 L 296h30F+04 .499045E+04 ,110422E+08 ,SA4S96E+00
1528.00 W/5  .2B44SBE+0f .20976SE+01 120722E+01 .636016E+00 . 3794BBE+DD
MAXIMALE COHERENTIE IS8 GEVONDEN VOOR:
G 15060.000000 M/8
TOo= ,40000000E+04 S
N 5,
]

Piguur 3.2

Voor gemsdeleerde data behorende bij een plan-parallelle laag wearvoor

geldt: Ty

= 18 en ¢ =

1500 m/s is de coherentiefunctie

Eb berekend. De

figuur en de tabel tonen de functie voor ,98s £ T,£1.02s8 en 1480 m/s «
& £1520 n/sg. De waarden die minder dan 25% afwijken van het in de tabel
dubbel onderstreepte maximum zijn enkel onderstreept.




D e i

i b=

Zoals reeds eerder opgemerkt vinden we het maximum van Eb(ao,é) als geldt
A
= &= S R é. .
TO TO en ¢=c en du Ti Tl voor O£ 1< N
Echter:
indien ézﬁ = ch terwijl & # ¢ en T # T. vinden we voor
g T itg d ot i
P
m - <i<N, v .
T, =~ T, 4+ (TO TO) voor 0 €i<¢ N 3.44
Dit betekent dat behalve de correcte tijdverschuiving alle signalen nog een
~
extra tijdverschuiving ondergaan, n.l.: TO - TO. Deze voor alle signalen ge-
lijke tijdverschuiving heeft géén invloed op de coherentiefunctie Bb(ﬁo,é).
(Bedenk dat de coherentiefunctie maximaal is wanneer de signalen "gelijk lo-
pen"). Omdat de sommatie over t in principe over de gehele signaallengte
wordt uitgevoerd zal E, , toegepast op de signalen gi(t) = fi(tiTi), O0gi<N,
dezelfde uitkomst geven als toegepast op de over een constante tijd verscho-

ven signalen g!(t) = fi(t+Ti+'tEO~To), 0¢i<N.

Conclusie
De coherentiefunctie Eb(ﬁo,ﬁ) heeft geen scherp maximum voor %O=TO en 8=a,
maar een maximum dat zich uitstrekt langs de kromme égﬁo = c2To (=constant).

Dit geldt uiteraard slechts zolang aan de vooronderstelling 3.4a voldaan is.
Wanneer hieraan slechts gedeeltelijk voldaan is (grote NAx) zal de functie

Eb(%O’é) aan beide zijden van het maximum (To,c) langs genoemde kromme lang-
zaam afnemen, Een scherp maximum wordt op deze manier echter niet verkregen.,

Figuur 3.2 illustreert het bovenstzande.

Oplossingen

i) Zoals reeds is opgemerkt heeft de constante tijdverschuiving EO—TO geen in-
vloed op de coherentiefunctie Eb(@o,é) t.g.v. de ongewogen sommatie over %
over de gehele signaallengte. We kunnen hier verbetering in aanbrengen door
een weegfunctie in de t-sommatie aan te brengen. Indien we er van uitgaan
dat de pulsvorm symmetrisch en nulfase is dan stellen de signalen gi(t) =
fi(t+Ti), met ?i:Ti (de correcte tijdverschuiving) voor 0£ i ¢ N, symmetri-

sche nulfase-pulsen rond t=0 voor. Vervang nu Eb(ﬁa,é) door

p/Z ;
N-1 2
A, 2ok
EC(TO,C) = Z cos (R'-Em) }:gi(t) ' 3.1¢
t=-'p p | i=0
2

waarvan gi(t) in 3.1b gedefinieerd is en tp de totale pulslengte voorstelt.
Toepassing van Ec betekent dat we een symmetrisch cosinuswindow rond t=0
aanbrengen (met een lengte tp waarbinnen de nulfase-puls past). De in 3.1c

gedefinieerde coherentiefunctie is maximaal indien de pulsen gi(t)



- = window

rulfase-puls

N
N\
\\
\\\
N a)
7
N N
HIFER UOLGT DE COHERENTIE ALS FUNKTIE VAN T0 EN C
" :
A TS(S) L980000E400 ,996200E+60 .400000E+08 404G00E+BL 102000404
C

1480.00 H/S  (BAYOBLE-BY .204446F+80 .7LIA13E+0) .402573E+01 .B74940E+00

$465.00 H/S JA274GE408 9742688400 L 4278ABE+RL L 160430E+04 1243738404

$498.00 H/S  JT3I0L7E490 4423560401 .2022BBE+0{ ,24A757Et0% L 1434BYE+04

$495.06 M/S J704249E400 L 4790976404 264994404 2458428401 |, {44149E+04

1600.60 H/8  A442BSE+RL  ,PIDABIE+0%  ,292237E+04  ,231800E+01 ,113370E+01

1565.06 H/S JA30029E408 2440496404 .23521va«ﬁ?‘ AB0440E408 L 726336E106

1548.08 W/S AGIBSPE40E (2454336404 L20294SE+04 L LIS294EH0L  (361104E+D0D

{545,060 H/S  ,124326E+04 L 461474E404 L 134228E+04 . 64Si27E400 ., 14B043E+07

i520.80 H/S  .894353E+00 . L06141F+B1 ,7SBBOGEH00 .314026E+80 .B77i27E-04
MAXIMALE COMERENTIE I8 GEUONDEN VOOR:

C= 4500.000000 M/8

TO= 40000000E+04 8 B b)

‘¢
T
{10

//// Figuur 3.3

///g &) get product van de puls met het symmetrisch cosinus-
window zal een maximale energie-inhoud hebben indisn
de puls symmetrisch rond t=0 ligt.
b) Voor de CMP-daia die bij figuur 3.2 beschreven zijn
is de ccherentiefunciie By berekend. De waarden die
winder dan 255 afwijken van het meximum zijn oﬁder-

stfreept. Het is duidelijk waarneembaar dat het maxi-
mum geherper is dan in figuur 3.2,




id)

- s

# "gelijk lopen" &n

# symmetrisch rond t=0 liggen,

dus indien 8=c en TO TO. De tweede voorwsarde komt voort uit de weegfunc-~
tie en is uitgebeeld in figuur 3.3a. Een berekening volgens relatie 3.7c
is weergegeven in figuur 3.3b. Een vergelijking tussen figuur 3.35en fig.

3.2 toont dat toepassing van het cosinuswindow een scherper maximum levert.

Opmerking

Een algemenere methode wordt verkregen door het cosinuswindow te vervangen
door de omhullende van de puls. De eis dat de signalen nulfase moeten zijn
komt.dan te vervallen. Dit moet nog verder onderzocht worden.

Een tweede methode ter verscherping van het maximum in E. kan toegepast

worden wanneer de (ruisvrije) systeemresponsie s(t) besciikbaar 8, dals
een puls op t=0 waarin het bronsignaal en de totale ontvangerkarakteri-
stiek verwerkt zijn. De pulsvorm is dus van dezelfde gedaante als de pul-
sen in de signalen fi(t), echter ruisarm t.0.v. fi(t). Verder eisen we

dat de amplitude van s(t) van dezelfde grootteorde is als de amplitude van
fo(t). De invloed van het medium (absorbtie) op de puls wordt verwaarloosd.
De procedure is nu als volgt:

A P
Definieer h(Ib,é,t) volgens

N-1
n(T,,8,t) = Zgi(t), : 5.5

waarin g, (t) in 3.1b gedefinieerd is. Nu stelt —h(T 4Gt dode *h(T ,&,%)
met TO TO en =c (dus de correcte tijdverschuiving ?i—Ti voor Os;1< N is
toegepast), éen puls op t=C voor met de zelfde vorm als de systeemresponsie
s(t). BEen coherentieberekening analoog aan 3.1b toegepast op de signalen
h(@o,é,t) en Ns(t) volgens

2
Ed(ﬁo,é) = %1%(60’6’t) + Ns(tﬂ .- 3.1d

zal dus een maximum vertonen voor TO TO en C=c. Wanneer we Ed vergelijken

mevt Eb volgens relatie 3.1b, die we kunnen herschrijven als

<1 %

dan is het niet moeilijk in te zien dat E ¢€en scherper maximum zal verto-

2
~ ~ A ~ '
E, (Ty,8) = E[h(To,c,t)] 4 3.1b"

S o ; d ; :
-nen. De functie E, kunnen we interpreteren als een criterium voor het

b

"gelijk lopen" van de signalen gs(t), E, interpreteren we als een criteri-

a
um voor het "op de Juiste tijd" (t=0) gelijklopen van de signalen gi(t).
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HIER VOLGT DE COHERENTIE ALS FUNKTIE VAN TO0 EN C

n
n T0(s) .9B00CRE+E0 ,970000E+60 ,1000B0E+DY A01000E401 ,102000E¢01
C

1430.00 B/S  ,24075SE-63 ,S76675E-03 .437763E-02 L582158E-03  ,34343BE-02
1485.00 N/S  .296288E-03 .11B44bE-82 ,292129E-02 J904157E-03 L 382666E-02
£496,80 N/S  .AL404BE-§3 .219820E-02 S4b177E-02 ,1SB2H1E-02 .315024E-02
{495.00 /5 .SBO77AE-03 ,3{35A4E-02 B43752E-02 ,257809€-02 ,193543E-02
§500.00 H/S  .9B261BE-03 ,329694E-02 93010602 ,329203E-02 .100725E-82
1505.00 K/S  .490154E-02 ,257653E-02 OTIBI0E 1z . 343265E-02 ,S96474E-03
£550.00 /S .310845E-02 .1G9I36E-02 ,SS0420E-02 ,223520E-02 .428218E-03
{515,986 ¥/6  ,3809426-62 ,921728E-03 ,303G94E-02 . 425652E-02 J313434E-03
{520,680 M/  .IG0K99E-82 L 60499SE-03 .149B23E-02 .640553E-03 .252652E-03

e

MAXIMALE COHERENTIE IS5 GEVONDEN VOOR:
Cm 1500.000000 M/S
T0= ,40000000E+0%1 S

Figuur 3.4

Voor de CMP-data die bij figuur 3.2 beschreven zijn is de coherentie~-
functie Ee berekend. De waarden die minder dan 25% afwijken van het
maximum zijn onderstreept.

Merk op dat alleen in de kolom @O = 18 nog onderstireepte waarden voor-

komen. Dit duidt op een relatief zeer scherp maximum.




Het product Ee van beide functies:

A A A " f\ A

N
levert een zeer scherp maximum voor TO=TO en &=c. Een berekening volgens

relatie 3.1e is weergegeven in figuur 3.4.

1

Opmerking

Wanneer we Ed volgens relatie 3.1d vervangen dcor de genormaliseerde cor-

relatiecoefficiént volgens
A ~
EN('CE ) T n(f,,8,t)s(t)
a‘vo®’ T3 .2A ek
v <h (To,c,t)gs (t)

dan komt de eis over de grootteorde van de amplitude van s(t) te vervallen,

Tevens zal deze functie een scherper maximum vertonen dan Ed omdat de auto-

correlatie.van de signalen h en s hier buiten beschouwing gelaten wordt,

Dit moet nog verder onderzocht worden.

Conclusie

De

in het begin van III.2b geconstateerde versmering van het maximum van de

coherentiefunctie Eb kan op twee manieren tegengewerkt worden:

i

ii

Wanneer de pulsen nulfase zijn kan een symmetrisch cosinuswindow worden toe-
gepast. Wanneer de systeemresponsie s(t) aanwezig is kan daaruit de omhul-
lende bepaald worden die het cosinuswindow vervangt. De pulsen hoeven dan
niet nulfase te zijn.

Behalve dat uit de systeemresponsie de omhullende bepaald wordt kan de
systeemresponsie zelf gecorreleerd worden metd h(%o,é,t) ter verscherping

van het maximum.

Toepassing van de onder ii) beschreven methode heeft de beste verscherping

tot gevolg.

IIT.2c¢ Jitter

Naast de in III.2a en III.2b gesignaleerde problemen die direct uit de in

IXTI.1 beschreven theorie volgen, wordt hier nog een probleem beschreven dat

inherent is aan de praktische situatie.

Door verschillende oorzaken (kleine snelheidvariaties binnen een homogeen ver-

onderstelde laag, slechte triggering van het meetsysteem) kunnen random ver-

deelde looptijdfouten in de registraties optreden.

Dit effect duiden we aan met de term jitter,
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Wanneer dit effect te sterk wordt zullen de in dit hoofdstuk beschreven
coherentietechnieken het laten afweten. We zijn dan aangewezen op een an-
dere methode die gebruik maakt van kruiscorrelatiefuncties. Deze methode
wordt uitgebreid behandeld door Prinzen (6). De methode komt in het kort
neer op de volgende procedure:

# bepaal voor de N signalen N(N-1)/2 kruiscorrelatiefuncties (d.w.z.
voor iedere combinatie van twee registraties wordt de kruiscorrelatie
berekend), hieruit volgen N(N-1)/2 looptijdverschillen,

% m.b.v. een kleinste kwadratencriterium wordt het aantal onderlinge loop-
tijdverschillen teruggebracht tot N-1 looptijdverschillen 91 tussen re-
gistratie i en de zero-offset-registratie,

¥ veronderstel dat de looptijd T0 van de zero-offset-registratie bekend
is, bepaal de looptijd Ti behorende bij de 1 registratie volgens
Ti = TO +9i,

¥ herschrijf 2.2a als

Y. = AX. + B

i i
met

Y. = T?
al i

X, = (2iAx)2
i

A = 1/02

2
B = TO

en bereken A en B (dus c en TO)'m.b.v. een kleinste kwadraten lineaire
regressie methode,

# bereken tevens 62, de gemiddelde kwadratische afwijking van de meetpunten
(Xi,Yi) van de rechte Y. = AXi + B; indien de looptijdfout in alle signa-

len nul is zal gelden =0,

Bovenstaande methode veronderstelt kennis van TO. Wanneer TO niet bekend is

zouden we c, TO eno‘2 volgens bovenstaande procedure als functie van de
schatter TO kunnen berekenen., Het minimum van G (T ) zal dan gevonden worden
bij TO TO’ bij dit minimum horen tevens de juiste waarden van c¢ en T (Indlen
de looptijdfout in alle signalen nul is zal voor dit minimum gelden 62(T )=0.)
Om de zelfde reden {(genocemd in III.2b) dat F(io,c) geen scherp maximum ver-
toont zal G \~ ) geen scherp minimum vertonen., De in III.2b voorgestelde me-
thoden ter verscherping van het maximum van E(To,p) kunnen niét gebruikt wor-
den ter verscherping van het minimum van GZ(TO
Conclusie

Indien in de CMP-registraties zich een random verdeelde looptijdfout voordoet
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Figuur 3.5
Vergelijking tussen het zero-offset-signaal en het gemiddelde van de in
N i,wmnOfi(N.

De correcte tijdverschuiving is toegepast, dus TO = T

de tijd verschoven signalen f,, resp F

o B & = c.

De coherentieberekening in het f-domein is in de in b) aangegeven fre-

quentieband uitgevoerd, omdat daar de signaal/ruisverhocuding maximaal is,




wa'] s

die zodanig sterk is dat de in dit hoofdstuk besproken coherentietechnieken
niet gebruikt kunnen worden ter bepaling van de geluidsnelheid, kan met suc-~
ces gebruik gemaakt worden van de door Prinzen (é) beschreven kruiscorrela-
tietechnieken. ' .

Het nadeel van laatstgenoemde methode ig dat kennis van T, voorondersteld

0
wordt.

III.3 Coherentie in het frequentiedomein

Parallel aan de in IITI.1 en III.2 beschreven coherentiefuncties in het tijd-
domein kunnen ook coherentiefuncties in het frequentiedomein berekend worden.

We geven eerst het equivalent in het f-domein voor E, volgens relatie 3.1b:

b

max y
' f=fmin
waarin H(ﬁo,é,f) de fouriergetransformeerde van h(@o,é,t) volgens relatie

3.5 voorstelt:

h(h,,6,1) s H(E,6,10), 3.6a
of
L N-1
H(T,s8,2) = F & (F), ~ 3.6b
s 1:0 '
met
g; (%) PELN G, (£), 3.6c

waarvan gi(t) in 3.1b gedefinieerd is.

De filosofie om coherentieberekeningen in het f-domein uit te voeren is als

volgt:

Wanneer de signalen f£(%) een slechte signaal/ruisverhouding hebben, beperken

we de sommatie over f in 3.1f tot dieé frequentieband £ ., f<&°F  waarin de
min -Tmax |

signaal/ruisverhouding maximaal is. De frequentie-selectieve coherentiefunc-

tie E. zal bij juiste keuze van f . en f derhalve een scherper maximum hebben
min max

£
dan Eb' Dit neemt niet weg dat we om onder de in ITI.2b gesignaleerde proble-
matiek {(versmering van het maximum langs de kromme 62§O=02TO) uit te komen

één van de aldaar genoemde oplossingen moeten toepassen.

We zullen hier een voorbeeld bespreken waarbij het symmetriéch cosinuswindow
uit figuur 3.3a gebruikt is ter verscherping van het maximum. We gaan uit van
de configuratie die besproken is bij figuﬁr 32, échter aan de'signalen (spec~-
tram 10 - 60 Hz) is nu witte ruis toegevoegd (reéhtESpectfum). De siénaal/

ruisverhouding S/N, gedefinieerd als het quotient van piekwaarde en RMS (root-
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Figuur 3.6

De coherentie als functie van &, met @O =°TO in het f£-, resp., t-domein.

De in het f-domein berekende coherentiefunctie is iets scherper.




mean-uquare), bedraagt: S/N = 2.5. In figuur 3.5 is het signaal h(TO,c )
resp. H(To,c f) vergeleken met het zero- offset -gignaal go(t) resp. G (f)

Uit de figuur blijkt dat h(T yt) resp. H(To,o f) voor B =7 en &=c over-

B
eenkomt met het zero-offset—sggnaal go(t) resp. Go(f), echtgr ge signaal/
ruisverhouding is verbeterd,(theoretisch een verbetering met een factor:/ﬁ,
voor N=24 betekent dit een verléging van het ruisniveau met 14 dB).

De coherentiefunctie is in het tijddomein berekend met h-h(TO,c t), (dus als
functie van & bij T ) en in het frequentiedomein met H—H(To,o,f),

25 Hz £ £ £ 45 Hz, dus voor maximale S/N, zie figuur 3.5b. Deze functies zijn
weergegeven in figuur 3.6. De in het frequentiedomein berekende coherentie-

functie blijkt een iets scherper maximum te vertonen.

De winst is echter niet spectaculair!

Opmerking 1

Een tweede voordeel van coherentieberekeningen in het f-domein is dat in prin-
cipe dispersie gemeten kan worden: bepaal de snelheid als functie van de fre-
quentievdoor de coherentiefunctie te optimaliseren in verschillende frequentie-

banden. Hier is nog geen onderzoek naar gedaan.

Opmerking 2

In III 2a is uiteengezet dat een nauwkeurige verschuiving in het tijddomein
twee fouriertransformaties vereist. Door de coherentieberekening in het fre-
quentiedomein uit te voeren omzeilen we de tweede (inverse) fouriertransfor-

matie en besparen aldus rekentijd.



f

C: =

4}

Figuur 4.1
In vlak Si is de CMP-dataset bekend.

M.b.v. achterwaartse golfveld-extrapolatie wordt

de CMP-dataset berekend in vlak Si+1°
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IV Golfveldextrapolatie

In hoofdstuk II is reeds gewezen op de noodzaak om een procedure te
ontwikkelen waarmee een CMP-dataset, geregistreerd op een oppervlak
Si’ geextrapoleerd kan worden naar een dieper in het systeem gelegen

oppervilak Si+ dat eventueel een hoek/31+1¥0 maakt met het oppervlak

Si' (Inverse ;f achterwaartse extrapolatie).

Dit betekent dat we m.b.v.:

% de CMP-dataset op opp. Si’

* dQ gegevens van het tussenliggende medium (homogeen, cy bekend,

bekend) en

+1

onderlinge positie Si en Si+1 _
¥ onze kennis van akoestische golfvoortplanting (golfvergelijking)

de CMP-dataset op opp. Si willen berekenen. Figuur 4.1 verduidelijkt

+1
het bovenstaande. (Merk op dat zowel de bronnen als de ontvangers naar

het nieuwe oppervlak worden verplaatst).

In dit hoofdstuk worden eerst algemene beschouwingen aan golfveldex-
trapolatie gewijd. Vervolgens wordt de extrapolatie van een complete
dataset besproken. De extrapolatie van een CMP—dataset_wordt als een
vereenvoudiging van de extrapolatie van een complete dataset afgeleid.
Dit hoofdstuk beocogt geen complete verhandeling over golfveldextrapo-
latie te geven, het is eerder een samenvatting van de hoofdstukken V,
VI en VII van Berkhout (1), waarbij opgemerkt moet worden dat alleen
die onderwerpen behandeld worden die leiden tot het einddoel, te weten;
achterwaartse extrapolatie van een CMP-dataset, een onderwerp dat o-
verigens niet door Berkhout behandeld wordt. Voor afleidingen die hier

achterwege gelaten worden zij verwezen naar Berkhout.

IV. 1 De Rayleigh-II-integraal

Wanneer op een oppervlak S (z=0) de drukverdeling P bekend is kan m.b.v.
de Rayleigh-II-integraal de druk in een punt A (z#0) berekend worden als
aan de volgende voorwaarden is voldaan:
¥ het oppervlak is vlak en onbegrensd, ) 1
# de bronnen die de drukverdeling op S veroorzaken bevinden zich alle
aan één zijde van S (bijv z>0),
¥ het punt A bevindt zich aan de andere zijde van S (z2<0), d.w.z. van-;
uit S gezien bevindt A zich in ﬁet divergerende veld.

De Rayleigh-II~integraal, die we hier niet zullen afleiden, wordt gegeven



S

. Figuur 4.2
De geluiddruk in een punt A boven S kan m.b.ve de Rayleigh-II~integraal

berekend worden uit een drukverdeling met dipoolkarakter op S, mits de-

ze druk veroorzaakt wordt door bronnen beneden S.




w20
door
P(x z, ,f) = e PLx,¥ ¢2=0 f)lii&zcos¢e_jkrds 4.1
A’yA’ A’ ZTL LD AR b r2 ® .
S

Uit deze uitdrukking blijkt dat PA berekend wordt uit een dipoolver-
deling op oppervlak S (zie fig. 4.2).
De twee-dimensionale versie, d.w.z. P onafhankeiijk van y, wordt ge-

geven door

P(xA,zA,'f) = %&[P(x,z=o,f)cos¢ﬁ$2)(kr)dx 4.2
Lx
waarin Hgg) de eerste orde Hankelfunctie van de tweede soort voor-

stelt. Voor kr>»1 kunnen we dit benaderen door

- ~-jkr
k e
P(xA,zA,f) = Lm[P(x,z=O,f)cos¢ —dx. , 4.3
V . \/ )

(V' j ligt in het eerste kwadrant).

De hier beschreven situatie noemen we voorwaartse extrapolatie.

Het inverse of achterwaartse probleem, d.w.z. A bevindt zich aan de

zelfde zijde van S als de bronnen, dus vanuit S gezien in het con-
vergerende veld, is niet met de Rayleigh-IT-integraal op te lossen.

Dit probleem zal in IV.4 aan de orde komen.

IV.2 Voorwaartse extrapolatie als convolutieprodukt

In de volgende beschouwingen gaan we uit van de twee-dimensionale
Rayleigh-II-integraal met kr»1 (relatie 4.3). Deze integraal kan op

eenvoudige wijze worden herschreven als een convolutie. Met

2 2
r —\/(XA—X) + 2z
en

X e—jkr
W(XA-x,f) = /ZE coyﬁvﬁF

schrijven we voor 4.3

P(XA,ZA,f) =\/i W(XA—x,f)P(x,z=O,f)dx 4.4a

X

of

-
[
>
-
H
~r
il

W(x,f) % P(x,z2=0,f) . ' 4.4
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In de praktijk is P(x,z=0,f) slechts voor discrete waarden van x en

f bekend: P = P(xn,z=0,fi). Relatie 4.4a gaat dan over in

P(XA,ZA,fi) = z%:W(XA_Xn’fi)P(Xn’Z=O’fi) 4.5
met
jk —Jk T
W(xA—xn,fi) = 57 cos$ ¢—- Ax
waarin ‘

N

o = V(XA—XH) ZA

en waarin Ax de afstand tussen de verschillende x-posities voorstelt.

Opmerking
Bij discretisatie van de grootheid p(x,t) kan zowel in de tijd als in

de ruimte aliasing optreden. Dit is nliet het geval wanneer

waarin At het temporele bemonsterinterval voorstelt,

Ax het spatieel bemonsterinterval en

¢ de geluidsnelheid.
De frequentie f moet voor golfveld-extrapolatie aan beide voorwaarden
voldoen. (De tweede anti-aliasingvoorwaarde blijkt in de praktijk te
streng. Er is van uitgegaan dat voor het meest extreme geval, n.l.
scherende inval, geen aliasing mag optreden. Wanneer we een geluidveld
ontbinden in vlakke golven blijkt dat in de echo-akoestiek de golven
die scherend invallen in bijna z2lle praktische gevallen een te verwaar-

lozen amplitude bezitten.)

Wanneer we uitgaan van de druk geregistreerd als functie van de tijd op
een aantal equidistante x-posities op het vlak z=0: p = p(xn,z=0;t) kan

de druk éls functie van t en x op het vlak z=z p = p(x_,z=2,,t) bere-

% o L
kend worden m.b.v. de volgende procedure: y § g
1 breng de verschillende registiraties met een fouriertransfor-
matie (t-»f) over in het frequentiedomein: P(xn,zzo,f),
2 herschik de uitkomsten z.d.d. per frequentiecomponent fi de
druk als functie van x beschikbaar is: P(x,z=0 f Y5
3 voer per f?oquentweeom90ﬂ9n+ f. de convolutlenroceuure nit

i
(relatie 4.5), resultaat: P(x,z= £y )y

A’
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Voorwaartse extrapolatie-via het f,x~-domein,

De tussenresultaten zijn geschetst.



o

4 herschik de uitkomsten z.d.d. per x-positie de druk als func-

~tie van f beschikbaar is: P(xn,z=z ,£) en

A
5 breng met een inverse fouriertransformatie (£->%t) de uitkom-
sten terug in het tijddomein: p(xn,z=zA,t).

Figuur 4.3 verduidelijkt een en ander.

In het navolgende zal alleen nog aandacht besteed worden aan de convo-
lutie-procedure en de bijbehorende convolutie-operator W,(Stap 3).

De convolutie-operator W(x of . ) die hidr gebruikt is voert een parallel-
le voorwaartse extrapolatle van een geluidveld uit, d.w.z. de’ ontvangers
in het vlak z=0 worden verplaatst naar een vlak parallel san het cor-
spronkelijke vlak: Z=2 ) . In de volgende paragrafen zal de operator W
voor verschillende andere situaties afgeleid worden met als einddoel het
vinden van een operator voor niet-parallelle achterwaartse extrapolatie
van een CMP-dataset, d.w.z. zowel bronnen als ontvangers worden voor de
CMP-meetsituatie naar een dieper in het systeem 1iggénd niet-parallel
vlak verplaatst. Het behoeft geen betoog dat deze procedure door een an-

dere convolutie-operator wordt beschreven dan de hier behandelde opera-

tor voor parallelle voorwsartse extrapolatie van een geluidveld.

IV.3 Laterale variaties

De in IV.2 beschreven convolutie-operator W(x,f) is x-onafhankelijk,
d.w.z. voor verschillende waarden van XA heeft W(XA~X,f) de zelfde ge-
daante, alleen de positie van de symmetrie-as verandert met X (De
symmetrie-as wordt gegeven door: x:x ). Voorwaarde voor een x—onafhan—
kelijke operator is dat geen laterale variaties optreden, dus:

zA(x, =z, (constant)

c(x) =c¢ (constant).
Wanneer niet aan deze beide voorwaarden voldaan is wordt de convolu-

tie-operator x-afhankelijk. Relatie 4.5 gaat hiermee over in
P(XA,ZA,Ii) = Zn:w(xA;xA-x £y )P (x 12,0 L ) 4,6

(We laten tevens de eis z=0 vallen voor het oorspronkelijke vlak).
In de volgende beschouwingen zullen we alleen de situatie bekijken
waarin niet aan de eerste voorwaarde is voldaan, dus:
EH extrapolatie naar een t.0.v. het ocorspronkelijk oppervlak
scheef oppervlak,

ES geen laterale snelheidvariaties.




Figuur 4.4

De druk van een geluidveld (afkomstig van bronnen beneden Si+1) is

geregistreerd in S . De druk in een relatief scheef liggend opper-

i+1

vlak Si boven Si+1 wordt berekend met relatie 4.7.



In de praktijk is P(xn,zn,fi) slechts voor een eindig aantal (discrete)

waarden x bekend (bijv. X1S Xnﬁng) en willen we P(XA,ZA,fi) voor een ein-
dig aantal waarden (XA,zA) berekenen. Relatie 4.6 is dan te schrijven in
matrixnotatie:
E(X z ; r.W W W, swswsusswn N . ﬂP(x z )
1771 11 12,13 1N 1 &nha
Plxy,5,) Woy Wop Wog eeeeeveess Wopl | P(x,,2,)
....o.....W -
P(XB,ZB) w31 w32 w33 3N P(x ,23)
. = . . 2 . . 4.7
CNER! I 3 RECHER
P(XM,ZM) Wy Wio WM3 ceeenonans W P(XN,ZN) ‘
- 48, L . o4 b & S
1 i+1
met

-jkr . .
[3k e -
Wmn = Eﬁgos¢hniif%;;fﬂs. 4.7a

De eerste index van W heeft betrekking op de positie op het nieuwe vlak
(hier Si), de tweede index van W heeft betrekking op de positie op het

oorspronkelijke vlak (hier Si In figuur 4.4 is de keuze van de. hoek

)
‘ +17°
¢ aangegeven, n.l. de hoek tussen r en’ de normaal op vlak S, ..
mn mn i+
-Door de eindige operatorlengte die direct samenhangt met het eindige aan-
tal registraties P(Xn,zn) zullen afbreekfouten optreden. Hierop komen we

terug in IV.9a.

Opmerking

Wanneer geen laterale variaties optreden (zA,c constant) geldt

mn wm+k,n+k‘

De matrix is dan een Toeplitz-matrix. Relatie 4.7 is dan een alternatie-

ve schrijfwijze voor relatie 4.5.

IV.4 Het inverse probleem: achterwaartse extrapolatie

Zoals in IV.1 reeds is opgemerkt voldoet de Rayleigh-II-integraal niet
wanneer we vanuit S de druk willen berekenen in een punt A dat aan de
zelfde kant van S ligt als de bronnen, dus wanneer A zich vanuit S gezien

in het convergerende veld bevindt. ( . .



Beschouw relatie 4.7

P, = WP : ’ 4.7

' De onbekende Poy te vermenigvuldi-

gen met matrix W. In het inverse probleem is P

wordt berekend door de bekende P_.
. Si+1

Si4+1 de onbekende terwijl

PSi bekend is. Als we PSi+1 willen berekenen betekent dat dat de matrix-

vergelijking 4.7 opgelost moet worden:

=1 .
‘PS. =W PS p 4.8
i+1 1 S

Inverteren van matrix W stuit in de praktijk op grote problemen, waar we

hier niet op in zullen gaan.

Alternatief:
Zoek een matrix F z.d.d. <PS > , gegeven door
i+1
= o]
<?S. > FPS. . 43
i+1 i
een goede benadering is van PS . Dit betekent dat in de relatie
i+l
<P, > = [mile 4.9a
D s S,
i+1 i+1

het matrixproduct [FW] de eenheidsmatrix moet benaderen (binnen een be-
perkt temporeel en spatieel frequentiegebied). Bewezen kan worden dat
voor rulsvrije signalen en een dissipatievrij systeem een goede benade-

ring wordt verkregen met
¥\ T
)

met
Jkr

T -ik e mn
an = an =3 /ZWCOS mn—-\/?—_;—m—AS 4.10a

waarin x betekent dat de complextoegevoegde en T dat de getransponeer-
de matrix bedoeld wordt. Ook hier geldt weer: de eerste index van P
heeft betrekking op het nieuwe vlak (hier Si+1)’ de tweede index van F

heeft betrekking op het oorspronkelijke vlak (hier Si).
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Figuur 4.5
‘De door de ontvangers geregistreerde geluiddruk is afkomstig van

secundaire bronnen beneden S, die ontstaan door reflectie en

+1°
diffractie aan inhomogeniteiten van het geluid veroorzaakt door

de primaire bronnen op S . De ontvangers kunnen m.b.v. relatie

i+1

4,7 naar S, verplaatst worden.

i
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Opmerking
Wanneer Si//si+1 geldt: rmn=rnm’¢ﬁn =?&m en dus F_. =an. Relatie 4.10

kan dan vereenvoudigd worden tot

F = W'

IV.5 Voorwaartse extrapolatie van een "complete dataset"

De extrapolatie-procedure die in de voorgaande'panagrafen beschreven is
heeft betrekking op de voorwaartse extrapolatie van het geluidveld ter
plaatse van het oppervlak S5 41 ( de ontvangers bevinden zich op Si+1)’
veroorzaakt door bronnen beneden dit oppervlak. We zullen deze bronnen
primaire bronnen noemen. Bevinden de primaire bronnen zich evenals de ont-
vangers in het viak Si+

dan zal in het systeem beneden Si t.eg.v. inho-

mogeniteiten reflectie ;n diffractie optreden. Het geluid g;t nu terug
komt bij de ontvangers (in Si+1) is afkomstig van secﬁndaire bronnen be-
neden Si+1' Uiteraard kan m.b.v. de eerder beschreven precedure het ge-
luidveld van deze secundaire bronnen geextrapoleerd worden naar een
(scheef) oppervlak S; boven S, .. Het directe geluid van primaire bron

naar ontvanger laten we buiten beschouwing (zie fig. 4.5).

We gaan nu uit van de situatie dat zich Oop Opp. S,

141 OP equidistante po-

‘'sities N bron/ontvangers bevinden.

Onder een complete dataset zullen we verstaan een dataset waarin van ie-
dere bron afzonderlijk door de verschillende ontvangers N registraties
Zijn opgenomen. Er is dus sprake.van in totaal N2 registraties. Deze da-
taset noteren we in matrixvorm (voor iedere frequentiecomponent fi een’

aparte matrix):

P11 ® e ¢ 9 P1N
PSi+1 = 3 5 4.11
PN1 Wirl PNN
1 s.
i+1

waarin Pmn de druk is, veroorzaakt door bron n, geregistreerd door ont-

vanger m. Kolom n representeert dus de druk, veroorzaakt door bron n op

S geregistreerd door alle ontvangers op 85 41 (zie fig. 4.6a).

i+1?
(Tedere kolom stelt dus een afzonderlijk experiment voor).

Onder de extrapolatie van een complete dataset zullen we verstaan de reken-

procedure die, uitgaande van een complete dataset op S:+ (matrix PS p
ake

1 .
tot resultaat heeft de complete dataset op Si (matrix P_ ). B

S,
k|



£

T 472 727 24

a) kolom n van P b) kolom n van P_ = WP
S. S. 8, S.
i+1 i7i+1 i+1
tevens is ¢ aangegeven situatie na verplaatsing van
e ontvangers :

¢) rij m van P of kolom m van P. ' d) kolom m van B = VPT

5588 1 5355 41 By HySali

situatie na herschikken van de registraties situatie na verplaatsing van de

(= transponeren van de matrix Pg S ) bronnen
TiYie

Ly
e
/\ Figuur 4.6

‘/‘L T Schematische voorstelling van de
'\ ’\ ﬁ q\ betekenis der kolommen en rijen

van de verschillende matrices.

i
e) rij n van PS cf kolom n van PS
i s
situatie na herschikken van de Eegistraties
= transponeren van de matrix P )

8.
¢ ok . 1 !
Merk op dat in analogie met fig. a de matrix PS
de complete dataset op Si‘voorstelta i



Dit impliceert dat in deze procedure behalve de ontvangers 00k de
bronnen naar het nieuwe oppervlak verplaatst worden.

Dit is dus essentigel anders dan de in IV.3 beschreven procedure waar-
bij in een stationair geluidveld (de bronnen die het veld veroorzaken
zijn stationair en blijven dp hun plaats) alleen de ontvangers ver-

plaatst worden.

Eéschouw het matrixproduct

PS.S. = WPS. o 4.12
i 441 i+ 3

‘waarin W de matrix uit relatie 4.7 voorstelt, nu met N rijen en N kolom-

men. Kolom n van PQiSi+1 representeert de druk, veroorzaakt door bron n

Op Opp. Si+1’ geregistreerd door alle ontvangers op opp. S; (fig. 4.6Db).
T :

SiSisl? dus kolom m van PSiSi+1 (de getransponeerde van

PSiSi+1)’ representeert de druk, geregistreerd door ontvanger m op opp.

| , 54 (fig. Lubeds

Onder aanname van de geldigheid van het reciprociteitsbeginsel (het be-

Rij- m van P

813 veroorzaakt door alle bronnen op opp. S

treft hier een passief lineair systeem) kunnen we op. een anologe manier
als bij de ontvanger-extrapolatie (relatie 4.12, fig. 4.6a,b) de extra-

polatie van de bronnen van Si naar Si uitvoeren (fig. 4.6c,d). Dit

+1
gebeurt m.b.v. de relatie

Pgi = vpgisi+1 4.13
waarin V de matrix uit 4.7 voorstelt met als enige verschil datsﬁ;n_in
matrix V (fig. 4.6c) anders gekozen wordt dan#%n in matrix W (fig.4.6a).
De hoek ¢>stelt in de Rayleigh-II-integraal immers de hoek tussen X en
de normaal giop het ontvanger-opperviak voor. (Verondersteld is dat de
afstand As' tussen de bron/ontvangers op Si gelijk is aan de afstand

As op Si+1' Wanneer niet aan deze voorwaarde 1s voldaan moeten we in
rel. 4.7a voor V  A4s vervangen door ds').,

Wanneer we matrix PSi op een analoge manier interpreteren als matrix
PSiSi+1 na de ontvanger-extrapolatie komen we tot de conclusie dat ko-
lom m van PSi de druk representeert, geregistreerd door ontvanger m op
S, , vercorzaakt door alle bronnen op Si ing} 4.64). Rij n van Pgi,
dus kolom n van PSi representeert de druk, veroorzaakt door bron n op

geregistreerd door alle ontvangers op S5 (fig. 4.6e).

_ Merk op dat de beschrijving van PSi analoog is aan de beschrijving van
us:
Pgipqr 90
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IIPS is de complete dataset op vlak Si'
i

Het resultaat ig als volgt verkregen:

T m
P s VPL &
Si Sisi+1
of
T
P =' P v
Si Sisi+1 )
dus
Al
PS = _WPS V. 4.14
R ‘ i+1

Opmerking 1
Wanneer we voor W schrijven: WSi+1-*Si’ dat wil zeggen (ontvanger-)extra-

polatie van Si naar Si,,dan is eenvoudig in te zien dat voor VT geschre-~

+1

ven mag worden: W Hiermee gaat relatie 4.14 over in

Si— Si+1’

2 = W 12 W . 4.14a
o 8412835 S141 5175549
Opmerking 2 : : .

/S ldt-75' -4 -¢ -¢ . Relatie 4.14 is dan te -
Wanneer Si/- 141 E© R W I A ie 4. i an veree
vodigen tot

P =" Wp W 4.15
i i+

Opmerking 3
Bij extrapolatie van zowel bronnen als ontvangers, waarvan hier sprake is,

gaat de tweede anti-aliasingvoorwaarde uit IV.2 over in

IV.6 Achterwaartse extrapolatie van een complete dataset

Wanneer we de voorwaartse extrapolatie van de complete dataset met 4.14a

beschrijven dan is het inverse probleem te schrijven als

¥g > = By 55 Fg ¥y _ag 4416
i+1 i i+1 i i+ i
waarin
* i
Py s, = Wy -——as.)
g | i+1 i+1 i
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en

<'PS ) is een goede benadering van PS omdat din de relatie
i+1 1+1

<Py > = [Py 45 W5 55 |Ps. IWs. s Fs. —ss.| 410
i+1 i i+1 i+ 1 i+1 il i+1 Ti+1 1.

Si-35i+1"si+1—si P Wsissit1Fsivissi
de eenheidsmatrix benaderen (binnen een beperkt spatieel en temporeel fre-

geldt dat de matrixproducten F
quentiegebied).

Opmerking
Wanneer Si//si+1 geldt:

F =F =W3€ =Wx .
N TS By g8, o B Ry

IV.7 Voorwaartse extrapolatie van een CMP-dataset

In de registratiematrix Pg. . (rel. 4.11) stellen de elementen op de zgn.

"anti-diagonaal" de CMP-dataset voor:

= -
P,k
o _=K+1,K-1 .
(Poypls, . = - 4.17
i+1 o
Pr_1,-K+1 0
P
"k, -k 18

i+1

Merk op dat de elementnummering is aangepast op CMP-data door in relatie

4.11 Pmn (=P voor antidiagonaalelementen) te vergaﬁgen door

m,N+1-m

Poe (ke 1) W0 1om=(K41) = Fmo (Ke1) ,-ma (K41) BOF 2K#T = No Element P ', uit
4.17 representeert de druk, veroorzaakt door bron -n, geregistreerd door

ontvanger n. Zie ook hoofdstuk II.1, met name figuur 2.1.

De meest nauwkeurige manier om de geextrapoleerde CMP-dataset te bepalen

is door de complete dataset op Si+1 te extrapoleren naar Si volgens 4.14

P. = Wp. V% ' 4.14
s, s,
i i+1

dus



Figuur 4.7 \
Schematische voorstelling van het voorwaartse CMP-data-
extrapoiatieproces. ]

De stippellijnen symboliseren een of andere overdracht

in het systeem.




K K )
S = Z 5—, wmn(Pn1>S Vrl' 4.14b

i n=-K 1=-K i+1

De antidiagonaalelementen van PS vormen de gegxtrapoleerde CMP-dataset :

i,
K K
Bl = BB (e, g 4.14c
m,-m Si he-k =% n nl Si+1 m,1
Deze methode vereist echter dat we een complete dataset op S to+ onze

%1
beschikking hebben en kost door de dubbelsom in 4.14c¢ aan21en113k meer

rekenwerk dan nodlg zal blijken te Yl e

Een veel snellere methode wordt verkregen door in de reglstratlematrlx

PSl+1 alle elementen die niet tot de antidiagonaal behoren nul te maken

(“Odls in 4.17, dus (Pnl)Si+1 = 0 als 1#-n), zodat 4.14c herleid kan wor-
den tot
X ;
(Pm,-m)S. Z Wmn(Pn,_n)S‘ V-m,—n 4-188.
1 n=-K i+1

hetgeen één matrixvermenigvuldiging voorstelt:

- U 1.

"'K’K —K,"K 00000 U‘K,K —K,K
. = ; p e 4.18p
LT I " TR % ,x | Pk, k|
: q i+1
met
Umn = WmnV‘m’_n . 4,18¢
ad -jk(rmn+r—m —n)
= .J_k ] e v i v2
Umn 2ncos¢mncos¢_m’_n — (as)”. 4,184
mn- -m,-n

Het is duidelijk dat door het nul maken van het grootste deel van matrix
PSi+1 fouten geintroduceerd worden. De belangrijkste fout in deze benade-

ringsmethode wordt besproken in IV.9b.

Cpmerking

Voor S S geldt: W =W = =V =V U wordt hiermee ver-
// i1+ & mn -m,-n -m,-n mn® “ypp WOTAt hiermee ver

eenvoudlgd tot




/

i

Figuur 4.8

deel van matrix U, voor S.//S. . ..
i i+1

imaginaire

.

a) Schets van het

.U is een Toeplitzmatrix .

b) Het reele deel van XU = v™u.

.
.

‘Merk op

Merk op dat hier inderdaad de eenheldsmatrix benaderd wordt.

¢) Idem, maar nu met 40 dB dynamiek. De versmering aan het begin en

-

het eind van de diagonaal is het gevolg van de eindige grootte

van matrix U,




. , o 5
-ZJkrmn
R 2 : |
Umn = Wmn = 5RCoS ¢mn r (as)”, 4.18e

hetgeen tevens de extrapolatie-operator voor een zero-offset~dataset voor-
stelt.

(Voor een zero-offset-dataset geldt dat de druk, veroorzaakt door bfon n,
alleen geregistreerd wordt door 6ntvanger B )e

Hierop wordt in IV.9a nog teruggekomen.

Het CMP-data-extrapolatieproces is schematisch voor te stellen volgens fi-

guur 4.7. Als voorbeeld is aangegeven op welke manier (P2 '2)S verkregen
. T .
wordt volgens 4
(PZ,—Z)S. = W2,—K(P-K,K)S. V—Z,K F ogaieg WZ,K—2<PK—2,—K+2)S. V—2,—K+2
3. i+1 i+1
3
* W k1P, cken?s, Veo,-ke1 * Yo xCk, ks, Yoo,k
i+1 _ i+1

(zie relatie 4.18a).

IV.8 Achterwaartse extrapolatie van een CMP-dataset

In analogie met IV.4 en IV.6 is eenvoudig in te zien dat achterwaartse

CMP+~data-extrapolatie wordt uitgevoerd volgens

Slamls > = XlRgole 4.19
i+ i
waarin
. ‘o
X = (U9)7. 4.20
<KPCMP)S. >_ is een goede benadering van (PCMP)S. omdat in de relatie
i+1 i+1
€5 I TR NS £ 1] o T 4.19a
i+1 i+1

geldt dat het matrixproduct XU de eenheidsmatrix benadert (binnen een be-
perkt spatieel en temporeel frequentiegebied). Dit wordt aan de hand van

een voorbeeld aangetoond in figuur 4.8.

Dus X = XT wordt gegeven door
nm mn

cos cosp!
. 5,m . 4.20a

y—-1




X(x,az)

,N\/fx\uf\ = = ”_____>>(

P(x,z=2, )
a)
X(x,52)
D v
b) i | ~ B(x,z=2,)
Figuur 4.9

Parellelle ektrapolatie van CMP-data als convoclutieproces.

a) De convolutieoperator wordt verschoven langs de oneindig
uitgestrekte dataset P(X,Z=Zi).

b) In praktische situaties is de dataset P(x,z:zi) begrensd.,
Aan het begin (en aan het eind) van het convolutieproces

valt een deel van de operator buiten de dataset.

P(x,z=23)

x\/

Figuur 4.10

Bij extrapolatie van de dataset P(x,z:zi) zal aan beide zijden
‘van de gegxtrapoleerde dataset P<X’Z=Zi+1) een gebied bdestaan

waarbinnen geen nauwkeurige resultaten verwacht mogen worden,

De breedte van dit (gearceerde)gebied)neemt toe met de extra-

polatiestapgrootte Az = Ziyq T %y

-




Opmerking
Wanneer Si//si+1 geldt

Ook hier geldt dat deze operator identiek is met de operator voor parallelle

achterwaartse extrapolatie van een Z0-(zero-~offset-)dataset.

IV.9 Enige beschouwingen over de operator X

Alvorens we het theoretische gedeelte van dit verslag afsluiten zullen we nog
enige kwalitatieve beschouwingen wijden aan de operator voor achterwaartse
extrapolatie van CMP—data; te weten de matrix X, gegeven door 4.20.
Achtereenvolgens worden behandeld:

a) De operatorbreedte en het focusseringseffect

b) De hoekparadox
IV.%a De operatorbreedté en het focusseringseffect

We beperken ons hier tot de operator voor parallelle achterwaartse extrapola-
tie van CMP-data, dus Si//si+1' (We stellen voor Si’ Tresp. Si+1: z=7;, Tesp.
7z=%. .). De matrix wordt hierdoor een Toeplitzmatrix (zie opmerking aan het

i+1
einde van IV.3). Relatie 4.19 is nu analoog aan relatie 4.4 te schrijven als
een x-onafhankelijke (d.w.z. de operator X is x-onafhankelijk) convolutie:

P(xn,z=zi

+1) s X(xm,Az) ® P(xm,z=zi) " 4.21a

Uit relatie 4.21a blijkt dat P(X,z:zi+1) verkregen wordt door de (symmetrische)
operator X langs de dataset P(xm,z=zi) te schuiven, hetgeen schematisch wordt
uitgebeeld in figuur 4.9a. In praktische situaties echter is de dataset
Plx,z=0. ) begrensd. Hierdoor zal aan het begin en aan het eind van de conve-
lutﬂeprocedure een deel van de operator buiten de datauet vallen (zie fig.
4,9b), hetgeen betekent dat het begin en het eind van de te bepalen dataset
P(x,z:zi+1), die nu bepaald wordt m.b.v. relatie 4.21b: :

K
P(xn,z=z. ) = 2 X(xn-xm,dz)P(xm,z=zi) 4.21b

i+1
m=-K
onnauwkeurigheden t.g.v. het eindige sommatie-interval zal vertonen,
Kwalitatief kunnen we beredeneren dat de breedte van de randgebieden in
P\x,z:zi+1} waarbinnen de afbreekfout een rol speelt toeneemt met toenemende
stapgrootte Az, immers de breedte van de operator X neemt toe met toenemende

Az, zie figuur 4.10,



b)

Figuur 4.11
- a) configuratie voor CMP-metingen

b) configuratie voor ZO-metingen




s 1

Met deze kwalitatieve beschouwing over de operatorbreedte hebben we het

randeffect nog niet volledig beschreven.

We zullen aan de hand van een voorbeeld aantonen dat t.g.v. de achterwaartse
extrapolatie een tweede type randeffect optreedt, n.l. een relatief'sterke
amﬁlitude onderdrukking asn weerszijden van de middelste (zer-offset-) regi-
stratie van de CMP-dataset (focusseringseffect).

We beperken ons weer tot parallelle achterwaartse extrapolatie. Zoals in IV.8
is opgemerkt is de operator in dit geval identiek met de operator voor paraiu
lelle achterwaartse extrapolatie van een ZO-dataset. We zullen daarom tegelijk

twee situaties behandelen,

We gaan uit van de volgende twee configuraties:

CMP Eén horizontale reflector met z1=375 m; ¢=1500 m/s (fig. 4.11a)

Z0  Eén puntdiffractor met x=0, Z1=375 m; ¢=1500 m/sA (fig. 4.12b).
Voor beide situaties geldt:

aantal bron/ontvangers: 99 (z=0),

onderlinge afstand Ax=12.5 m, dus -612.5m¢ x ¢ 612,5m,

signaalspectrum: 10 Hz £ f €30 Hz,

samplefrequentie fS: 100 Hz,.
Wanneer we alleen op de looptijden letten is voor deze situaties de Z0-data-
set identiek met de CMP-dataset. De dataset als functie van x en t is gegeven

in figuur 4.12a.

Omdat de extrapolatieoperator voor de CMP-dataset identiek is met de extrapo-
latieoperator voor de ZO-dataset (Si//si+1) zullen de geextrapoleerde datasets

voor beide situaties eveneens identiek zijn,

Er zijn vier achterwaartse extrapolaties Qanuit de beginsituatie uitgevoerd
met stapgrootte Az resp.: %zq, %z1, 321, Zas De resultaten als functie van x
en t zijn voor Az:%z1, resp. Az:z1 gegeven in figuur 4.12a. De amplitude als
functie van x is voor de beginsituatie en voor de vier extrapolatieresultaten

gegeven in figuur 4.12b.

We kunnen de figuren op twee manieren interpreteren:

CMP De energie wordt door de extrapolatie in de richting van de zero-
~offset-registratie (x=0) verschoven (amplitudeonderdrukking aan
weerszijden van de zero-offset-registratie). De asymptoten in het -
X,t-domein worden voor alle "(tussen-)resultaten in overeenstemming
met relatie 2,2c gegeven door t = 3 2%/ e

Z0 De energie wordt door de extrapolatie in de richting van de x-coordi-
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a) CMP-data (ZO-data) als functie van x en t. Beginsituatie (4z=0) en resul-
taten na achterwaartse extrapolatie met &z = 3z7 resp. Az = 21,

b) De amplitude als functie van x. Beginsituatie (bz=0) en resultaten na
achterwaartse extrapolatie met A4z = (1/4)21, %21, (3/4)21 resp. Z,.




naat van de diffractor (x=0) verschoven. Bij een stapgrootte

Az = 2z, (= de z-coordinaat ven de diffractor) is de diffractor

1
“"gefocusseerd".

Dat de amplitude-onderdrukking een andere oorzaak heeft dan het eerder ge-
gignaleerde randeffect t.g.v. afbreekfouten is met de volgende redenering
aan te tonen: ‘
Aan de uiterste randen van de dataset (hier: x = -612.5 m en x = 612.5 m)
valt tijdens de convolutieprocedure precies de helft wvan dé operator bui-
ten de dataset. De amplitude—onderdrukking't.g.v. deze afbreekfout is dus
-6 dB. Uit figﬁur 4.12b blijkt dat de amplitude—onderdrukking veel sterker
is dan ~6 dB en dus praktisch geheel veroorzaakt wordi door hef focusserings-
effect.
We zien dﬁs‘twee effecten optreden:
1 Afbreekfouten t.g.v. de eindige afmetingen van de détaset P(x,z=zi).
De aard van deze afbreekfouten uit zich, behalve in een geringe ampli-
tude-onderdrukking van max -6 dB, in foutieve looptijden in het x,t-
domein. Dit is waarneembaar in figuur 4.12a in de resultaten vooraz =
%21: de'hyperbool'snijdt de asymptoten voor grote |x|.
2 Het focusseringseffect als gevolg van de achterwaartse extrapolatie.
De aard van dit effect is een aanzienlijke amplitudeonderdrukking aan

weerszijden van de zero-offset-registratie.

Het_résﬁltaat is dat de onder 1 genoemde fout (foutieve looptijden) onder-
drukt wordt door het onder 2 genoemde focusseringseffect. Voor onze doel-
einden heeft het focusseringseffect dus een gunstige invloed, immers de
foutieve looptijden in de gesxtrapoleerde dataset zouden leiden tot een
onjuiste schatting van de asymptoten en dus van c¢ (verschuiving van het
maximum in de coherentiefunctie), echter door de amplitudeonderdrukking

van dié signalen waarin de foutieve looptijden voorkomen éullen deze sig-
nalen weliswaar invloed hebben op de grootte van het maximum in de coheren-
tiefunctie Qverlaging van het maximum t.g.v."energieverlies") maar zij zul-
len door hdn lage amplitude weinig tot geen invloed hebben op de plaats van

dit'maximum, dus op de schatting van de geluidsnelheid c.

Opmerking 1
Een kwantitatieve beschouwing over de looptijdfouten die het gevolg zijn
van de eindige afmetingen van de dataset is thecretisch zeer moeilijk,

echter op grond van rekenexperimenten valt hier wel iets over te zeggen.



a) b)

Figuur 4.13

a) Scheef gelaagd systeem

b) Gespiegelde situatie '
De CMP-dataset is voor beide gevallen identiek, dus extrapolatie van

S, naar S, (stippellijn in b) moet in beide gevallen de zelfde resul-

taten leveren.




o Fhom

In hoofdstuk III.2c is de door Prinzen (6) ontwikkelde methode ter bepa-
1iﬁg van looptijdverschillen m.b.v. kruiscorrelatiefuncties beschreven.

Met deze methode zijn we in staat om de looptijden in een geextrapoleerde
CMP-dataset te bepalen en deze te vergelijken met de theoretisch te ver-
wachten loopfijden. Een grafisch interessante methode zou zijn het kwadraat
van de gemeten looptijd als functie van het kwadraat van de offset uit te
zetten (zie III.2c). Theoretisch verwachten we hier n.l. een lineair ver-

band.bIn de toekomst zal hier aan gewerkt worden,

Cpmerking 2

De in deze paragraaf gemaakte beperking Si//si+1 is slechts terwille van de
duidelijkheid gemaakt. Een analoog verhaal kan gehouden worden voor niet-
parallelle extrapolatie (alleen de exacte overeenkomst tussen CMP- en ZO-

extrapolatie wordt dan niet aan voldaan).
IvV.9b De.hoekparadox

Beschouw het scheef gelaagd systeem uit figuur 4.13a en bedenk dat in cover-

eenstemming met de opmerking in II.1 voor de CMP-dataset geldt

(P = (P

m,-m)S —m,m)S

0 o °

Dit betekent dat voor een tweede denkbeeldig scheef gelaagd systeem, dat ver-

kregen wordt door het eerste t.o0.v. x=x. te spiegelen (zie fig. 4.13b) de

0
CMP-dataset niet te onderscheiden is van de eerder genoemde!

Dit heeft een nare consequentie voor de niet-parallelle extrapolatie van een

CMP-dataset.

Veronderstel dat we de CMP-dataset in het systeem uit figuur 4.13a extrapole-

ren naar vlak 81. We verwachten dan dat we m.b.v. de in III besproken cohe-

rentietechnieken voor de schijnbare snelheid cs vinden
2
¢ = cz/coszﬂ2 s 2:5b

S

waarin pq de relatieve hoek tussen S1 en S, voorstelt:
<

2

«X1 is negatief).



Echter:
indien we in het gespiegelde systeem (ué = -v%, N% = -u1) de identieke CMP-~
dataset extrapoleren naar het zelfde (niet gespiegelde) vlak S1, mesa.w. wan-
neer we exact de zelfde procedure uitvoeren, maar er een andere interpreta-

tie aan toekennen, dan verwachten we voor de schijnbare geluidsnelheid g
2

= '
cs2 = cz/cos[L2 # cz/cosﬁz,
waarinlaé de relatieve hoek tussen S1 en het gespiegeldé vlak S! voorstelt:

2
e ke Sl ko bt i

Hier is sprake van de zgn. “hoekpéradox", die een direct gevolg is van de
in IV.7 geintroduceerde benadering, n.l. het nul stellen van alle elemehten
in de registratie-matrix PS (complete dataset) die niet tot de "anti-diago-
naal" (CMP-dataset) behoren?

(Dat de paradox niet optreedt wanneer we deze benadering niet maken , dus
wanneer we de complete dataset extrapoleren, volgt uit het feit dat de com-
plete dataset voor het gespiegelde systeem niet identiek is met de comple-

te dataset voor het niet-gespiegelde systeem).

Wanneer‘we nu in 2.5b de absolute hoek.(><.2 van de reflector 82 (dew.z. de
hoek t.o.v. SO) substitueren i.p.v. de relatieve hoek /% (dew.z. de hoek
te0.v. het bovenliggende vlak, hier S1) dan vinden we voor de originele
situatie (fig. 4.13a) en voor de gespiegelde situatie (fig. 4.13b) de zelf-

de waarde voor de schijnbare snelheid:
= - ?
052 = cz/cosd2 = c2/cos0(2 . 4.22a

Rekenexperimenten hebben inderdaad aangetoond dat algemeen geldt:

c = ./fcos¥, = c./cosw! , 2
=H cl/ il 1/ i 4+220

Hiermee is de paradox opgeheven,

Relatie 4.22 is echter nog niet theoretisch bewezen!
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a) Plan-parallel gelaagd systeem. De golfpaden van bron via reflector
naar ontvanger zijn geschetst,

b) De bijbehorende CMP-registraties



V Experimentele resultaten

In dit Hoofdstuk wordt de reconstructie van de geluidsnelheidverdeling van
computer-gesimuleerde modellen besproken. De data zijn gegenereerd met het
software-package AIMS (5). (AIMS: Advanced Interpretive Modeling System).
De reconstructie is ultgevoerd ﬁ.b.v. het in appendix D beschreven soft-
ware~-package.
Achtereenvolgens zijn de volgende situaties gemodeleerd en gereconstrueefd:

1 Parallel gelaagd systeem

2 FEen systeem bestaande uit één niet-plan-parallelle laag

3 Eeh”niét—plan-parallel gelaagd systeem ,

a Reconstructie volgens conventionele methode (Taner & Koehler (2))

b Reconstructie m.b.v. achterwaartse golfveldextrapolatie.

Merk op dat de volgorde van hoofdstuk II is aangehouden. Experimentele re-
sultaten»voor het systeem bestaande uit één plan-parallelle laag is reeds
ter sprake gekomen in hoofdstuk III en zal vanwege de eenvoud niet in dit

hoofdstuk behandeld worden.

Voor alle besproken situaties is het volgende aangenomen:
# reflecties aan de laaggrenzen zijn alleen het gevolg van snelheidver—
schillen (geen dichtheidverschillen), '
# de reflectoren zijn "locally reacting" (Berkhout (1), IV.6) en vlak,
# multiple reflections worden buiten beschouwing gelaten (IT53)
# de directe overdracht tussen bron en ontvanger wordt buiten beschouwing
gelaten (IV.5), '
% het systeem is per laag homogeen, isotroop en lineair,
¥ het systeem is absorptie- en dispersievrij,

%¥ de registraties zijn ruisvrij.

V.1 Recongstructie van een parallel gelaagd systeem

We zullen beginnen met de beschrijving van het in figuur 5.1 geschetste pa-
rallel gelaagde systeem.

Voor de z-posities van de reflectoren en de geluidsnslheden boven de reflec-

toren geldt E
i zi(m) ci(m/s)
i 500 1000
Z 1500 1500
3 2250 2000
4 3200 3000
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Het aantal bron/ontvangers op het oppervlak bedraagt 59 (-29 €n €29), met
onderlinge afstand Ax=50m. De signalen zijn in de tijd verschoven nulfase-
pulsen. Deze signalen zijn verkregen door een recht spectrum (dirac-puls in
t—domein) te filteren met een symmetrisch cosinuswindow met fmin ='1O Hz en
fmax = 30 Hz. Het temporele bemosterinterval bedrasgt 0.01 s, dus de bemon-
ster frequentie fS = 100 Hz.

Merk op dat aan de eerste anti-aliasingvoorwaarde (IV.2) f<€1/24t = 50 Hz
voldaan wordt over het gehele cosinusspectrum (fmax<:50 Hz ). Aan de tweede
anti-aliasingvoorwaarde (IV.5) f £c/4ax = (1000 m/s)/(4%50 m) = 5 Hz wordt
niet voldaan, hetgeen geen bezwaar is zolang geen golfveldextrapolatie wordt
uitgeVoerd. In'hoofdstuk IT.3 is afgeleid dat voor een parallel gelaagd
systeem een goede reconstructie kan worden verkregen zonder dat golfveld-

extrapolatle noodzakelijk is,.

We zullen dit aan de hand van het hier beschreven voorbeeld santonen.

We maken gebruik van de in IIT.2bi beschreven coherentiefunctie Ec(60’8)
ter bepaling van de effectieve geluidsnelheden Ci en de zero-offset loop-
tijden Ti(O), zie ook hoofdstuk II.3.
Dit betekent dus dat de coherentie-berekeningen in het tijddomein uitgevoerd
worden en dat ter verscherping van het maximum een symmetrisch cosinuswindow
wordt toegepast. .
Om de invloed van de"afbreekfout" O(x4), (rel. 2.3a) te bestuderen wordt de
coherentiefunctie opAtwee manieren bepaald:
1 de berekeningen worden uitgevoerd op de registraties 0&n 14, dus
. 2x14xax = 1400 m,
2 de berekeningen worden uitgevoerd op de registraties 0¢n £28, n even,
dus B b ™ 2¥%28%Ax = 2800 m.
M.bev. de recursieformule 2.4 worden de snelheden ¢; per laag berekend,

Hier volgen de resultaten

Boonne = 1400 m Xoax = 2800 m model

; 2 2
i Ti(O) ATi(O) \/Ci c, Az; 7y \/Ci c, 4z; z; || o, z

all 1.

(s) (s) | (m/s) (m/s) (m) (m) |(m/s) (m/s) (m) (m) {m/s) (m)

1 1.00 1.00 1000 1000 500 500/1000 1000 500 50041000 500
2 2.33 1.33 1313 1506 1002 15021324 1523 1013 1513{{1500 1500 .
37 13.08 0.75 1512 2008 753 2255(1522 2017 756 2269|2000 2250
4 3.72 0.64 1860 3018’ 966 322011868 3022 967 3236|| 3000 3200
Conclusie ) P

Uit het bovenstaande blijkt dat voor een parallel gelaagd systeem inderdaad

de in II.3 beschreven methode voldoet om de geluidsnelheden in de verschil-
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lende lagen te bepalen.
Tevens blijkt dat voor relatief kleine X ox de resultaten het meest nauw-
keurig zijn hetgeen theoretisch te verklaren is uit de relatief kleine af-
breekfout O(x4) in relatie 2.3a.
Merk op dat zelfs voor x_ /

max’ “max
niet groter zijn dan ca. 1.5%.

&1 de feouten in de geschatte snelheden

V.2 Reconstructie van een systeem bestaande uit één niet-plan-parallelle

laag

Beschouw de situatie uit figuur 2.5b. Voor deze situatie zijn twee CMP-da-
tasets gemodeleerd, met de volgende gegevens:

¢ = 1500 m/s, T,(0) = 0.591 s, T,(0) = 0.394 s, &= 0.3.

De afstand §x tussen de middelpunten van de datasets bedraagt 500 m.

Er is weer gekozen voor de coherentiefunctie EC(%O,S) ter bepaling van de
schijnbare geluidsnelheid c, en de zero-offset looptijden T1(O) en TZ(O)'

Hier volgen de resultaten:

| CMP-data model reconstructie
set i c c Ti(o) c c Ti(O)
(m/s) (m/s) (s) (m/s) (m/s) (s)
1 1500 1570.1 9.591 1503 1572 0.590
2 1500 1570.1 0.394 | 1499 1568 ©.3595

De genormeerde coherentiefuncties Ez(T1(O),3) en Ef(TZ(O),e), dus E als
functie van € bij de juiste waarde van @i(O) = Ti(O), zijn weergegeven in
figuur 5.2, Uit deze figuur en uit bovenstaande resultaten blijkt duidelijk
dat het maximum van de coherentiefunctie t.g.v. de hoek X wan de reflector
naar een hogere waarde verschoven is (csa=1570 m/s i.p.v. ¢ = 1500 m/s).
M.b.v. o, en relatie 2.6 is de werkelijke geluidsnelheid en de hoek o te
bepalen. Er volgt

1501 m/s (gemiddelde waarde) (model: ¢
o = 0,297 rad (model:

Het gereconstrueecrde model is geschetst in fdguur 5.3,

c

it
1l

1500 m/s)
0.3 rad)

[

Conclusie ,
De in hoofdstuk II.4 beschreven methode voor de bepaling van de geluid-
snelheid in een systeem bestaande uit één'niet~plan—parallelle laag blijkt

uistekend te voldoen.

(In IT.4 is reeds opgemerkt dat de methode in principe exact is!).
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V.3 Gelaagd systeem bestaande uit meerdere niet-plan-parallelle lagen:

Beschouw‘heffin figuur 5.4 gegeven model. Voor de z-posities (x%o) van
de_reflecforén, de hoeken ™® en de geluidsnelheden c¢c boven de reflectoren
geldt: 2

i v_zi(m) Ni(rad) ci(m/s)

1 750  -.08314 2500
2 2250 .24498 3000
'3 3750 -.08314 2000
4 4500 -.16515 3000

Het aéntal bron/ontvangers op het oppervlak bedraagt 143 (-71<¢n ¢71), met
onderlingejafstand Ax = 25 m., Het signaalspectrum is het. reeds in V.l be-
schreven>COsinusspectrum van 10 Hz ¢f €30 Hz. Voor de bemonsterfrequentie
geldt fs = 100 Hz.

Merk op dat aan de eerste anti-aliasingvoorwaarde f £ 1/24t = 50 Hz voldaan
wordt over het gehele cosinusspectrum (fmaX = 30 Hz). Aan de tweede anti-
aliasingvoorwaarde f€c/4ax = 25 Hz wordt bijna geheel voldaan, hetgeen ge:
Zien.de obmerking in IV.2 voldoende is. Bij beide hieronder te beschrijven
reconstructiemethoden wordt weer gebruik gegaakt van de coherentiefunctie

EC(TO,G).(De registraties zijn weergegeven in figuur 5.6a).

Omdat slechts één CMP-dataset gemodeleerd is worden de hoeken ui bekend ver-

ondersteld omdat anders de reconstructie niet mogelijk is.
V.3a Reconstructie volgens conventionele methode

In het eerste deel van II.5 is de reconstructie volgens de conventionele me-
thode beschreven (bepaling van de effectieve geluidsnelheden en toepassing
van de recursieformule 2.9 ter bepaling van de geluidsnelheden per laag).

De methode toegepast op boven beschreven CMP-dataset (coherentie berekening

vindt plaats over de registraties 0&¢ n ¢23) levert:

2‘ model:
i T.(0) AT,(0) cS X c. c.
1 iz 1} 2 i ik !

(s) (s) (m/s) (red) (m/s) | (m/s)

1 «5975 «5975 2508 ~-,0831 2499 2500
2 1.5595 +9620 2896 « 2450 2985 3000
3 3.0456 1.4861 2552 -.0831 2229 2000
4 3.4909 <4453 2640 -.1652 2987 3000
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De genormeerde coherentiefuncties zijn weergegeven in figuur 5.7a.
Merk ép dat voor lagen tussen reflectoren die onderling een grote hoek ma-
ken . ({33 = NB - “2 = -,3281) deze methode tot onnauwkeurige resultaten leidt

(fout in ¢.: 11.5%). De verklaring hiervoor is duidelijk geillustreerd in

3 , :
figuur 2‘6, waar blijkt dat de golfpaden behorende bij de zero-offset-regi-
straties naar de tweede en derde reflector een totaal verschillende weg
volgen. Aan de in de recursieformule gemaakte veronderstelling a&T (O)

T (O) - T, (0) wordt hier duidelijk niet voldaan. ; v "%

Conclusie :
Zoals reeds in II.5 was afgeleid voldoet de conventionele methode, beschre-
ven door Taner & Koehler (2), niet om de geluidsnelheidverdeling in een

niet-plan-parallel gelaagd systeem te reconstrueren,

V.3b Reconstructie m.b.v. achterwaartse golfveldextrapolatie

In het tweede deél van II.5 is een reconstructiemethode beschreven die af-
wisselend gebruik maakt van coherentietechnieken en achterwaartse extrapo-
latie van een CMP-dataset. We zullen voor de hier beschreven situatie degze
methode volgen om het in figuur 5.4 geschetste model te reconstrueren,
Toepassing van de coherentietechnieken op de bovenste hyperbool in figuur
5.6a leveft cgq = 2508 m/s, T1(O) = 45975 s. De genormeerde coherentiefunc-
tie wvoor T1(O) = T1(O) is gegeven in figuur 5.7b. M.b.v. relatie 4.22 (N1
bekend) volgt 01 = 2499 m/s. Nu kan de positie van de eerste reflector bere-
kend worden. De CMP-dataset wordt nu geextrapoleerd naar deze reflector.
Het geextrapoleerde resultaat is gegeven in figuur 5.6b. Toepassing van

de coherentietechnieken levert voor de bovenste hyperbool Cgp = 3108 m/s,
ATE(O) = .9625 s. (Omdat het over geextrapoleerde resultaten gaat spieken
we van.ATi(O) Lipavs Ti(O)). De genormeerde coherentiefunctie voor Ag;o) =
5 13815 n/s.

Na berekening van de positie van de tweede reflector wordt de dataset naar

A@§O) is gegeven in figuur 5.7b. M.b.v. relatie 4.22 volgt ¢

deze reflector geextrapoleerd. Het resultaat is gegeven in figuur 5.6¢.

Uit de eerste hyperbool volgt Cgy = 2064 m/s,AT (ﬁ) = 14875 &8s & cqy = 2057
m/s. De coherentiefunctie is gegeven in figuur b.7b. De volgende extrapo-
latiestap levert het resultaat van figuur 5.6d4. Er volgt Csy = 3116 m/s,
AT4(O) = sA4T5 g4 Cy = 3074 m/s. De coherentiefunctie is gegeven in fig. 57b,

Deze resultaten, samen met de resultaten verkregen met de conventionele me-

thode zijn hieronder overzichtelijk weergegeven,
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1Y Eerste hyperbool in originele CMP-data (figs 5.6a)
2) Tweede hyperbool in originele CMP-data (fig. 5.62)
3) Derde hyperbool in originele CMP-data (fig. 5.6a)
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De genormeerde coherentie als functie van &, metAﬁi(O) = ATi(O)

1) Eerste hyperbool in criginele CMP-data (fig. 5.6a)

2) Eerste hyperbool in data na één extrapolatiestap (fig. 5.6b) .
3) Eerste hyperbool in data na twee extrapolatiestappen (fig. 5.68)

4) Eerste hyperbool in data na drie extrapolatiestappen (fig. 5.6d)
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model CoONVe nieuwe model conv. nieuwe

: methe meth. meth. meth,
i oy cy ci aT, (0) al, (0) al, (0)

(m/s)  (m/s) (w/s) (s) (s) (s)
1 2500 2499 2499 .598 «598 «598
2 3000 - 2985 3015 . 984 962 .963
3 2000 ; 2229 2057 1.593 1.486 1.488
4 3000 2987 3074 502,445 .448

Het gereconstrugerde model is geschetst in figuur 5.5.

Het meest opvallend is de verbetering in 03. De fout van'11.5% verkregen
volgens de conventionele methode is teruggebracht tot 3% verkregen met de

nieuwe methode.

Merk op dat in de geextrapoleerde datasets het focusseringseffect optreedt.
Dit is het duidelijkst waarneembaar in figuur 5.6d. Zoals reeds in IV.%a

is opgemerkt heeft dit invloed op de grootte van het maximum van de coheren-
tiefunctie., Uit figuur 5.7b blijkt inderdaad het maximum van de vierde ge-
normeerde coherentiefunctie tot ongeveer de helft te zijn gereduceerd t.o.v.
het maximum van de vierde coherentiefunctie in figuur 5.7a. Merk tevens op
dat de maxima van de coherentiefunctiesin figuur 5.7b t.g.v. de ‘extrapola-
tie verschoven zijn t.o.v. de maxima in fig 5.7a (immérs de schijnbare snel-
heden per laag (b) zijn niet gelijk aan de effectieve snelheden tussen z=0
en de betreffende reflector (a)).

De coherentiefunctie is iedere keer bepaald over de registraties 0¢ n {23.

Een nadere beschouwing van de zero-offset-looptijden brengt een verschijnsel
aan het licht dat een typisch gevolg is van gmg—dataextrapolatie (en dus niet
optreedt bij extrapolatie van de complete dataset). Er blijkt n.l. dat de ze-
ro-offset-looptijden ATi(O) van de geextrapoleerde datasets i.p.ve met de te
verwachten waarden (op eenvoudige wijze uit de configuratie te berekenen, zie
fig. 5.8) overeenkomen met de ATi(O) van de niet geextrapoleerde dataset (be-
ginsituatie). Dit verschijnsel is geillustreerd in figuur 5.9 waar de zero-
offset-registraties van de geextrapoleerde resultaten vergeleken worden met

de zero-offset-registratie van de oorspronkelijke dataset,
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Figuur 5.8
Uit de configuratie zijn de looptijdenaTi(O) te berekenen die we ver-

wachten wanneer we de extrapolaties via de gestippelde paden uitvoeren.
Duidelijk blijkt ATB(O) # TB(O) - T2(O).
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Het in IV.8 beschreven algorithme voor achterwaartse CMP-extrapolatie blijkt
dus niet in staat de looptijden van de zero-offset-registraties op de juiste
wijze»aan te pasgssen, de looptijden ATi(O) in de geextrapoleerde resultaten
voldoen n.l. aan ATi(O) = Ti(O) - Ti~1(0)’ hetgeen blijkens figuur 5.8 fout
is.

We zullen nu een alternatieve procedure beschrijven waarvan we verwachten

dat daarmee bovenstaand gesignaleerd probleem omzeild wordt. Deze procedure

maakt gebruik van andere (meer realistische) extrapolatiepaden. (Onder een
extrapolatiepad verstaan we het pad waarlangs de bron/ontvanger-positie van
de zef—offset—registratie verplaatst wordt t.g.v. de extrapolatieprocedure).
Voor het hierboven beschreven rekenexperiment zijn de extrapolatiepaden d.m.v.
stippellijnen aangegeven in figuur 5.8. Deze paden staan steeds loodrecht op
de onderliggende reflector en representeren dus de golfpaden van de ggéﬁﬁ;g:

poleerde zero-offset-registraties.

Wanneer we nu de golfpaden van de oorspronkelijke, dus niet—geéxtrapoleerde,
zero-offset-registratie 'als extrapolatiepad gebruiker zijn we op een meer re-
alistische manier bezig. Het probleem is hierbij echter dat we voor iedere te
reconstrueren laag vanuit de beginsituatie moeten extrapoleren (immers de
golfpaden van de zero-offset-registratie starten voor iedere reflector onder
0° Bl ) o .

Stel we hebben de eerste twee lagen van het systeem gereconstrueerd via het

een andere hoek vanuit x

extrapolatiepad AB'C' (fig. 5.8). Vanuit de twee maal gegxtrapoleerde data-
set,waarvan de bron/ontvangers zich rondom C' bevinden, bepalen we c3 en
ATB(O)' Om bovenstaande redenen maken we hier een fout (val. in TB(O))’ we
beschouwen deze resultaten daarom als schatting. We hebben nu n.l. de gegevens
waarmee we de configuratie van het pad AB''C''D'' kunnen bepalen (schatten).
Vanuit de beginsituatie extrapoleren we nu via het pad AB''C''., De bron/ont-

vangers bevinden zich nu rondom C''. We kunnen nu c. en ATB(O) opnieuw bepa-

len, Voor ATB(O) zal nu gelden: AT3(O) = 20"D"/c.? hetgeen nu wel overeen-
komt met de uit de configuratie te bepalen waarde,

Tevens zal 03 nauwkeuriger bepaald worden. )

Deze procedure kunnen we herhalen voor de reconstructie van de volgende lagen
van het systeem. De hier beschreven oplossing is nog niet uitgevoerd. De
schatting van de configuratie van de zero-offset-golfpaden vereist nieuw te

ontwikkelen software.

Toepassing van de hier beschreven methode leidt ongetwijfeld tot meer

nauwkeurige schattingen van de geluidsnelheden per laag,
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Conclusie ‘

Toepassing van de methode die gebruik maaktlvan cpheyentietechniekeﬁ‘
én achterwaartse extrapolatie van CMP-data ter bepaling van de geiuidt
snelheidverdeling in een niet-plan-parallel gelaagd sysﬁeem leidt tot .
aanzienlijk nauwkeuriger resulﬁaten dan toepassing vén de door
Taner & Koehler (g) beschreven methode die alleen gebruik maakt Van
coherentietechnieken.

Een verdere verbetering wordt verwacht wanneer we de extrapolafiq—

paden laten samenvallen met de zero-offset-golfpaden.
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Appendix A

Bewgs van relatie 2.3.a

12(x) = 7500) + & + o(x*) 2.3.a
C
N

voor een parallel gelaagd systeem (zie fig. 2.4.a).

Voor Ax is af te leiden:

sinf
n
- Ax = 2Az_tanf) = 2Az ) A
n n n

“n e OB
\/1 - sin en

met:
sin9n sinan~1 sin91
c = c = eeee — c A.2
n n-1 1
(wet van Snellius) wordt dit:
v e .2
2¢ Az sinb c AT (O)s1n9 .
n n 1 n n .
Axn = 2 2 2 - = 26- A.3
CTV/1_<®n/CT)Sln 61 c1v/1 (c-/c1)31n L

Hieruit volgt voor x:

N -
31n9 c AT (0) .
X = Z'Axn = 12 \ _ A4

1

Evenzo is voor TN(X) af te leiden:

24
T (x) = e U AT_(0) ) aT, (0) s
A-Ild ¢y 088, cosf ) 1—(02/c2)si 29 |
n n’ 1 n-Uq
’ N N
aT (0)
T\q(:{) ZAT Z E Al ) 'A"6
. - \/1 (c /c )81n201
Voor kleine sin’ 6 kan de noemer in A.4 en A.6 ontwikkeld worden:
1 2,00 L 2 3,4, 4, . 4
= 5 =1 + % (¢5/c)sin 9 + =(c'/c7)sin @ AT
‘) e
b/1"(c /c yeinh n’ 71 1 8% 'n’ 71 1

1 1

=
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Hiermee zijn A.4 resp. A.6 te herschrijven als:

siné1 sin§91 3 siﬁ%1
>, I + %’—_—_ I + I - 4+ secee A.B
c 2 03 4 2 c5 6
1 1 ]
resp. :
4
sin?ﬁ1 3 sin 91
TN(X) = I + % =L, 4+ 2 7 14 + Sabee A9
G c :
1 1
met:
N K )
I, = ng{c,TN(O)cn A.10

X hangt éénduidig samen met sin91/c,l (A.8), dus omgekeerd kunnen we

schrijven:

sin@1 i 3

1

" Substitutie van A.711 in A.8 levert:

X2 e ) I, + 3(ATx” 4+ s... ) I

3 2 F oo Ao12

X = (A1x + A "

Links en rechts gelijkstellen van de coefficienten van x, x3 ;..

levert:
A, = 1/1 AL = -3 T /I4 . A.13
1 2 ,-3 4‘ 2 ’ ® 60 * e e
Dus:
inf 1 I 3
81n1 = -I-x—%— + cecces As14—
: 4 .
01 2 12

Substitutie van A.14 in A.9 levert:

I I
T (x) = I. + :l— x2 + (—%—i +é - )x4 t eaes =
N 0 412 4 '8 _4
“'2 12 A015
) I
.21 Tq 4
—-IO"“QI X 8"‘—4'-]( + L Y ®
2 12
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Kwadrateren levert:

I I.T
Tz(x) = 12 + = x2 + (—l .4 + 4 —l—) x4 F Ny bwe
N e B 4 L4 4 2
2 2 2
of:
2 2 i 4 '
TI\'I(X) = Ty(0) + —==—+ 0(x ) A.16
Oy
medt:
N
TN(O) = IO = ATn(O) A1T
n=1
en: N,
— 7 2 c AT (0)
0F = 5. 221 - A.18
N o TN(O)

Q.E.D.
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Figuur B.1

Als figuur 2.5, horizontaal oppervlak

gespiegeld in de reflector.

Figuur B.Z2

\ / Als Tiguur 2.5.




Appendix B

B.1 Bewijs van relatie 2.5

X200820<

2
c

1 (x) = 1°(0) 2.5
Om de looptijd T(x) te berekenen wordt de in fig. 2.5 geschetste si-
tuatie gespiegeld t.o.v. de reflector (zie fig. B1). We berekenen nu
de looptijd van een puls, uitgezonden door een bron op het gespie-
gelde vlak en geregistreerd door een ontvanger op het vlak z=0. De
offset tussen brdn en ontvanger op het vlak z=0 bedraagt x. Toepas-

sing van de cosinusregel levert:

02T2(X) = (x. + %X)2 + (x. - %x)2 - 2(x. + Ix)(x, - *x)cos2& =
0] 0 0] 0
= 2xg + %xz - (ZXg = %X2)cos2d B.1
met:
c¢T(0)

*0 T Zsind By 2

wordt dit:
2.2 02£§O) | 2
e (x) = 5 (2 - 2cos2¢) + 3x"(1 + cos2x) B.3
4sin X
Substitutie wvan:
- . 2

1 - cos2& = 2gin X

1 + cos2 = ZCOS%X Budt
levert:

2 2
¥(x) = 1°(0) 4 2025 B.5
c
QQ.E.D:
B.2 Bewli]s van relatie 2.7
_ xzsindcosd. -
4 % TTEem(0) o

re

Zie Tiguur B.Z2




A EFG O ADFC %

EF/DF = EG/DC
of

q = (DE + q)EG/DC =>

q = DE.EG/(DC-EG)
met

EG = %sinm ,

c1T (0)

DC=AD="'—§'-—-‘

en
X

DE = 2coso<

wordt dit:
B X‘sinucosd
97 T501m(0)

Q.E.D.
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B.9
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Appendix C

Te bewijzen:

Il

N-1 5 N-1 . .
zt‘[ i{_O gi(t)] Z[Z £, it +’Ei)]

t i=0
is maximaal voor 1& =T..
Gegeven:
fi(£+Ti) = kijfj(t+Tj), immers op een constante factor na zijn de over Ti

verschoven signalen f, identiek (wanneer we ruis buiten beschouwing laten).
i

Definitie:

Rij(zs~2;) = EE fi(t)fj(t+13—7i) = §; fi(t+7£)fj(t+23).

Stelling:

R, (7.7 % & & (O, (0)
b 0y | ] 1 11 JJ

(zie Bendat & Piersol (Z)).

Bewijs:
5 rN—l Nfl N-1 N-1
> 2: NE S A1 DA f.(t+’Z’.)f.(t+‘Z’.)] - S R (T.-T)
t[l =0 * oo = Wver L A S J i=0 =0 4 J %
¢, 1
N-1 N-1 , ) N—l N 1
garisss ZlR..(T.—T.) Ry; (01RO
S is0 j0o! 4 3 Py 7 o 3= o VRis
Met de definitie volgt vcor T}=Ti:
R (T.-T,) = 5 £ (t4T )tef (£4T.) = ——R&..(0) .~
ij j i i ik, . 7i i kK, ii
t ij ij
Tevens:
R, (T.-T) = ¥ k £ (t4T ) (£+T.) = k, R, (0) ,
133 4 T 1373 33 3 i3733
Dus:
[ | (7,1, )] ——»R {0k R, (0) = R _(0)R, (0).
i3733 id 33

Wanneer we dit substitueren in C.1 volgt

‘Z[}: f(t-ﬂ')]g }_D: fi(t+Ti)]

t i=0 t i=0

Q.E.D.




Hoofdprogramma 4

subprogramma's ' gsubprogramma’s subprogramma's

(4,5) (2,6,3) (3)

CMP-datafile A
(x,t-domein)
I reflectoren ———> Invoer
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140
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ja creeer x~f-file
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start creeer- ——Ystart transponeer ——> transponeer.
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I resultaat:
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szﬁrt tranzformatie o sl tant
RRES A x-f-file B
! vf
transformeer naar
1¢-i +1 t-domein,
resultaat
| , x-t-file B
. J
AN

Figuur D.1
Blokschema van het software-package.

Om het schema overzichtelijk te houden is verondersteld dat slechts

een CMP-datafile beschikbaar is, wat betekent dat de hoeken 0% o D&

van de I reflectoren bekend moeten zijn.
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Appendix D Beschrijving van de software

Voor de in de hoofdstukken II,III en IV beschreven theorie is een
software-package voor de HP-1000 computer ontwikkeld. Deze software

bestaat uit een hoofdprogramma en een aantal subprogramma's:

Hoofdprogramms (Subsurface-reconstruction)
File-creatie-programma

Transponeerprogramma (ontwikkeld door Mesdag (4))

Coherentieprogramma
Extrapolatieprogramma voor CMP-data

File-transformatieprogramma

e R 4 B e O S

"Subsurface-reconstruction"-plotprogramma

De complete listing van de programma's is gegeven in een losse bij-
lage bij dit verslag. »
Hieronder volgt een korte bespreking van de verschillende programma’'s.

Een blokschema is gegeven in figuur D.1.
D,1 Hoofdprogramma (Subsurface-reconstruction)

Het hoofdprogramma voert zelf nauwelijks® berekeningen uit. De voor-
naamste functie is het starten van de subprogramma's en aan de hand
van de resultaten van deze subprogramma's het systeem (subsurface)
stap voor stap te reconstrueren. Dit gebeurt volgens de in het twee-
de deel van II.5 beschreven procedure. De communicatie tussen het
hoofdprogramma en de subprogramma's vindt plaats via de zgn, file-

headers van de te bewerken datafiles.
0.2 Filecreatie-programma

In IV.2 is de golfveld-extrapolatie beschreven als een convolutie in
de x-richting in het frequentiedomein. Dit betekent dat per frequen-
tiecomponent de data als functie van x gesorteerd moeten zijn,
Ultgaande van de originele CMP-datafile A waar de data per x als
functie van t gesorteerd zijn worden de data per Xn getransformeerd
naar het frequentiedomein en overgezet in een door dit programma te
creeren file B. De originele file A blijft+ zodanig ongewijzigd be-
waard. De in II.1 gesignaleerde noodzaak de data te spiegelen t.o.v,

de zero-offset-registratie betekent dat file B ongeveer een factor

twee groter is dan file A, In file B zijn de data dus per x als
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fuctie van f gesortéerd. Vervolgens wordt het transponeerprogramma
(3) gestart waarmee file B getransponeerd overgezet wordt in een
door dit programma (2) te creeren file C. Het resultaat is dat in
file C de data inderdaad per frequentiecomponent fi als functie van

x gesorteerd zijn.
D.3 Transponeerprogramma

Het transponeerprogramma transponeert een file B (C) en zet deze

over in file C (B), waarbij B (C) ongewijzigd blijft. Het wordt be-

schreven door Mesdag (4).
D.4 Coherentieprogramma

Het coherentieprogramma berekent m.b.v. naar keuze één van de in
hoofdstuk III beschreven coherentiefuncties de geluidsnelheid cq
en de looptijd van de puls in de zero-offset-registratie TO ult een

gegeven CMP-datafile A (of B na programma 6) waar de data per x als

. e ~ n >
functie van t gesorteerd zijn. De grenzen c . g € s T.-AT _ en
¢ 05 min max 0 0
TO+ATO (zie III.1) worden door het hoofdprogramma (1) vastgesteld

alvorens het coherentieprogramma gestart wordt. Het coherentiepro-
gramma maakt geen onderscheid tussen horizontale en scheve reflec-
toren, zodat de werkelijke geluidsnelheid uit de gevonden %, (schijn-
bare geluidsnelheid) en eventueel de hoek A m.b.v. relatie 2.5b of
2.6a en 2.6b bepaald moeten worden. Dit gebeurt in het hoofdprogram-
ma (1).

D.5 Extrapolatieprogramma voor CMP-data

Het extrapolatieprogramma berekent per frequentiecomponent m.b.v. de
matrixvermenigvuldiging gegeven door relatie 4.19, uitgaande van de
CMP-dataset PCMD-Si (file C), de achterwaarts geextrapoleerde CMP-da-
L |

taset PCMP;Si+1 en zet het resultaat in file C((C wordt dus over-
schreven). De geluidsnelheid van het tussenliggende medium evenals

de onderlinge posities van de vlakken S. en S. (hoek/3. en af-

i i+1 i+l

stand ¢ (0)/2, zie fig 4.1) zijn door het hoofdprogramma bepaald

i+1Ti+1
alvorens het extrapolatieprogramma gestart wordt.

0.6 Filetransformatie-programma

Dit programma start eerst het transponeerprogramma (3) waarmee de door

het extrapolatieprogramma (5) geextrapoleerde file C wordt getranspo-
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neerd en overgezet in file B, Het resultaat is dat in file B de data
per Xn als functie van de frequentie gesorteerd zijn. Vervolgens wor-
den met een inverse féuriertransformatie de signalen per Xn naar het
tijddomein teruggebracht. In file B bevinden zich nu de achterwaarts
geextrapoleerde CMP-data in het X,t-domein, dus file B is geschikt

als invoer voor het coherentieprogramma (4),
B.7 "Subsurfacereconstructiof-plotprogramma

Wanneer het gehele systeem doorlopen is bevat het hoofdprogramma (1)
informatie over de configuratie van en de geluidsnelheden in het sy-

steem, M.b.v. dit plotprogramma wordt de"subsurfacereconstruction”

uitgeplot.
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