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PREFACE

The main purpose of the research project which led to this thesis, was to
develop three-dimensional (3-D) seismic migration techniques. From a
theoretical point of view 3-D migration is not much more complicated than 2-D
migration. However, the problems related to the practical implementation of

' just one more dimension' are significant.

In 1982, when this project was initiated, the group of Seismics and Acoustics
did not have the appropriate computer facilities at its disposal, so a seismic
work-station, dedicated to heavy migration tasks, had to be developed. In the
meantime, I had the opportunity to reflect on seismic techniques in general and
on pre-stack migration in particular. The results of these reflections are
presented in the thebretical chapters of this thesis and in two geophysical
journals. By the time that the work-station was operational my promotor and I
decided that the emphasis of the 3-D migration research should be shifted from
post-stack (pseudo zero—offset) towards pre—stack (genuine multi-offset)
applications in order to meet the ever increasing needs of the seismic
industry. Again there was the problem how to implement one more (offset)
dimension.

Therefore, in January 1986, we initiated a new project, sponsored by the
seismic industry, on 3-D target oriented migration (TRITON). With this project
we aim to solve the 3-D pre-stack migration problem. The results of an
extensive feasibility study, carried out with the aid of the seismic
work-station as well as a Cray XMP computer, are presented in the final chapter
of this thesis.

I would like to take the opportunity to thank my family and all my friends and
colleagues for their moral support. In particular I wish to express my sincere
gratitude to my promotor, professor Berkhout, for his ever continuing
enthusiasm, which has been very stimulating throughout my stay in his research
group. Also many thanks are due to Jan Ridder for his professional advice in
hardware affairs and to Edo Bergsma and Rob Verschoor for developing the
seismic work-station.

I am very much obliged to various people in our group who developed much of the
software; in particular I refer to the excellent work of Niels Kinneging and
Gerrit Blacqujdre, who are presently my colleagues in the TRITON project, and
Yann Parrod, who visited our group, sponsored by ELlf Aquitaine.
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'Gebotekst' for preparing the final manuscript. Finally I would like to thank
our secretary Mrs. Hanneke Mulder for her friendly support and all the
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Figure I-1l: In 3-D seismics, data are often gathered along straight lines.

Along each line many seismic experiments are carried out for

different positions of the seismic source. In each seismic

experiment many seismic signals are registered by the seismic

detectors.

a. A typical 3-D marine survey.




CHAPTER 1

GENERAL ASPECTS OF SEISMIC INVERSION

I.1 INTRODUCTION

Exploration seismology is based on analysis of seismic waves reflected from
different layers in the earth's subsurface. Seismic waves, radiated by a

seismic source into the subsurface, encounter discontinuities between the
layers and are partially reflected back to the surface. The returning reflected
waves, which contain indirect information on the elastic parameters of the
subsurface, are detected and stored on magnetic tapes. Generally many seismic
experiments are carried out for different positions of the seismic source. A
typical three-dimensional (3-D) marine survey is visualized in Figure I-la. A

schematic representation of seismic data acquisition is shown in Figure I-lb.

Historically, two diverging approaches to seismic inversion have been
developed: inversion in terms of 'inverse scattering' aims at resolving the
elastic parameters of the earth's subsurface from seismic measurements;
inversion in terms of 'seismic migration' aims at resolving a structural image

of the subsurface from seismic measurements (see Figure I-lc).

The inverse scattering approach is rigorously founded on the principles of wave
theory. However, in many schemes strongly simplifying assumptions are made with
respect to the elastic parameters of the earth's subsurface: in 'Born

inversion' often a homogeneous background medium is assumed.
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b. Schematic representation of seismic data acquisition.
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c. Schematic representation of seismic inversion (in terms of

seismic migration).



The seismic migration approach, on the other hand, accounts for the complex
geology of the earth's subsurface. In post-stack migration, however, strongly

simplifying assumptions are made with respect to the propagation mechanism of
seismic waves through the subsurface: it is assumed that the waves are
generated by secondary sources in the subsurface ('exploding reflectors'), and
that these waves travel with half the actual propagation velocity. In spite of
these simplifications, post—stack migration is widely applied by the o0il
industries because it has proved itself a successful tool in the search for oil

and gas.

In the last decades most of the large obvious oil and gas fields have been
found and new, more sophisticated seismic inversion techniques are required to
explore fields in complex subsurface structures. It is argued by Berkhout
(1986) that major improvements of seismic inversion schemes can only be accom—
plished by thoroughly reconsidering the underlying agsumptions. He discusses a
new approach to seismic inversion in which seismic migration and inverse
scattering converge to two equivalent interchangeable sub-processes. In this
introductory chapter the basics of this approach are outlined and several new
aspects are introduced. It is argued that full pre-stack migration in two or
three dimensions (the subject of this thesis) is a very promising seismic

inversion technique.

I.2 INVERSE SCATTERING VERSUS SEISMIC MIGRATION

Irrespective of the approach to seismic inversion it is always necessary to
make some assumptions concerning the elastic parameters of the subsurface. In
the following we assume that the medium can be described completely in terms of

*
the bulk compression modulus K, the shear modulus p and the mass demnsity p .

%) Actually we should speak of the mechanical parameters, because the mass
density is not an elastic parameter. It is common practice in seismics,
however, to speak of the elastic parameters K, 11 and p of a solid, opposed
to the acoustic parameters K and p of a liquid. An equivalent alternative
set of parameters to describe the medium, which is frequently used in
gseismic practice, consists of the compressional wave velocity ¢p, the shear
wave veloclty Cg and the mass density p for a solid, opposed to cp and
p for a liquid.



No further approximation is made if we define the elastic parameters as a
superposition of background and deviation parameters, according to

K = K + AK,
= U+ Ay,
= p + Ap.

A very natural choice is a geologically oriented background or reference medium
(Berkhout, 1984b), which implies that the deviation parameters can be kept
small. Such a geologically oriented background medium is called the elastic
macro model of the subsurface. An example is given in Figure I-2. Notice that
within each macro layer the background medium parameters K, U and 0 may be
functions of the spatial coordinates x, y and z. (For comparison, many
Born—-type inverse scattering techniques assume a homogeneous background medium
and small deviation parameters, which is far from geologic reality). The

deviation parameters AK, Ay and Ap, which are also functions of the spatial

K,(x,y,2)
[7.1(X.Y.Z) y
Px,y,z)

RQ(X|le)
Pax,y,z)
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Figure I-2: An example of an elastic macro model of the subsurface.

(2]




*
coordinates, define the elastic micro model of the subsurface. With these
assumptions, the properties of the reflected waves are determined by two

properties of the subsurface:

1. The propagation properties, which depend mainly on the elastic macro
parameters of the medium (background parameters).
2. The reflectivity properties, which depend mainly on the elastic micro

parameters of the medium (detailed deviation parameters).
The seismic inversion problem can now be sub-divided into two steps:

1. 1Inversion for the macro parameters of the subsurface (determination of the
propagation properties).

2. Inversion for the detail in the subsurface (elimination of the propagation
properties).

The macro subsurface model and the detailed inversion result define together

the full solution of the seismic inversion problem (see Figure I-3).

The two inversion steps discussed above require completely different

approaches.

Most existing inversion techniques for the parameters of the macro subsurface
model are based on reflection information (in terms of traveltimes) of the main
reflecting boundaries between the macro layers. These so called 'tomographic’
techniques, which use phase information rather than amplizade information,
invert for the propagation velocity only. A discussion is beyond the scope of
this thesis. The reader is referred to Dix (1955), Taner and Koehler (1969),
Hubral (1976), Krey (1976), Gjgystdal and Ursin (1981), Van der Made et al.
(1984) and Wapenaar and Berkhout (1985).

Inversion for the detail can be carried out in two different ways:

a. Inverse scattering (generalized Born inversion).

b. Seismic migration.

*) In this thesis the adjective 'micro' is used to distinguish the detailed
subsurface information (details smaller than the seismic wavelength) from

the background medium.



K(x;,y;.2)
or

Hlxiy; ,z)T
or

px;,y;,2)

macro macro macro macro
layer 1 layer 2 layer 3 layer 4 a

R(x,.y; .Z)T

bg—— L 1 L —al

r e e N -
macro macro macro macro
layer 1 layer 2 layer 3 layer 4 b

Figure I-3: The solution of the seismic inversion problem consists of a macro
subsurface model and a distribution of local deviations ('detail').
a. In the inverse scattering approach, the detail is described in
terms of the elastic parameters.
b. In the seismic migration approach, the detail is described in
terms of the reflectivity.

The relation between these two approaches has been elegantly described by
Berkhout (1984b). Both processes invert propagation operators for the
elimination of propagation effects between the surface and the depth level of
interest. The inversion must be carried out in a band-limited way. Both
inversion processes require a macro subsurface model as input. The inverse
scattering process computes the detailed elastic properties of the medium
(Figure I-3a). On the other hand, the output of the seismic migration process
consists of the detailed reflectivity distribution of the subsurface (Figure
I-3b). In this thesis only the seismic migration approach is discussed. For
discussions on inverse scattering the reader is referred to Cohen and Bleistein
(1979), Clayton and Stolt (1981), Raz (1981), Weglein (1982), Berkhout (1984b),
Cheng and Coen (1984) and Tarantola (1984).
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Figure I-4: Basic elements of the seismic processing scheme, consisting of
pre-processing, stacking and migration (or vice versa), and

interpretive processing.

I.3- CMP VERSUS CDP PROCESSING

In this section we briefly review the basic elements of seismic processing. In
particular we pay attention to the various approaches to seismic migratiom. Our

discussion is based on the scheme, shown in Figure I-4.

Irrespective of the approach to seismic migration it is always necessary to
perform some pre—processing to the seismic data prior to migration. An
important pre-processing step which improves the vertical resolution
significantly is deconvolution. A discussion is beyond the scope of this
thesis. The interested reader is referred to Wiemer (1949), Berkhout (1977),
Treitel and Lines (1982), Robinson (1984) and Ziolkowski (1984).

Seismic migration can be carried out in three different ways:

i. Conventional common-midpoint (CMP) method (post-stack migration).



ii. Common-reflectionpoint (CRP) method (partial pre-stack migration).
iii. Common-depthpoint (CDP) method (full pre-stack migration).

A discussion of the various approaches to migration follows below. Irrespective
of the approach, however, the output is always a band-limited representation of
the reflectivity distribution in the earth's subsurface. Further interpretive
processing is required in order to obtain a high resolution depth model. This
is not further discussed in this thesis. A very promising interpretive
processing technique is described by Van Riel and Berkhout (1985). Their method
is based on parametric inversion for the detail: by involving additional infor-
mation (drilling information, geologic information) in the inversion process, a

depth model with a resolution beyond the seismic bandwidth can be obtained.

We now consider the three approaches to seismic migration in more detail.

In the conventional CMP method data are re-ordered around surface midpoints
into CMP gathers. In each CMP gather the data are normal-moveout (NMO)
corrected (traveltime correction) and stacked in order to perform data
reduction and to improve the signal to noise ratio. Subsequently the stacked
data (pseudo zero-offset (20) data) are migrated (post-stack migration) in
order to collapse diffraction energy (improvement of lateral resolution) and to
correctly position ('migrate') reflection energy. This method, which was
originally designed in the early sixtiles, is computationally manageable with
mini computers. The main drawback, however, are the assumptions underlying the
stacking procedure: it is assumed that CMP gathers are CRP gathers. This
assumption is satisfied when both the macro and the micro subsurface model are
approximately horizontally layered. Conflicting dips and diffraction energy
cannot be properly handled by the NMO correction. Figure I-5a shows a situation
where the CMP principle is approximately valid (small reflectionpoint smear,
hyperbolic traveltimes). Figure I-5b shows a situation where the CMP principle
fails (large reflectionpoint smear, non—hyperbolic traveltimes). A further
discussion on the conventional CMP method is beyond the scope of this thesis.
The interested reader is referred to Robinson and Treitel (1980) and Sheriff
and Geldart (1983).

In the CRP method the NMO correctionm is performed as a function of dip by means
of a partial pre-stack migrationm procedure (dip dependent NMO correction is

also known as dip-moveout (DMO) correction). Next the data are stacked,




common-midpoint

—>offset

- —

commonImidpoint X —» offset

Figure I-5: a. CMP gather with acceptable reflectionpoint smear (hyperbolic
traveltime curve).
b. CMP gather with unacceptable reflectionpoint smear

(non-hyperbolic traveltime curve).

followed by post—-stack migration. This method, which was developed in the
seventies and in the early eighties, has become very popular because of its
efficiency on one hand and its flexibility on the other hand: only the macro
subsurface model is assumed to be approximately horizontally layered (hyper-
bolic traveltime approximation). Conflicting dips and diffraction energy in the
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micro subsurface model are properly handled by the DMO correction. Also the CRP
method is not further discussed in this thesis. The reader is referred to

Yilmaz and Claerbout (1980), Bolondi et al. (1984) and Hale (1984).

In the CDP method the data are collected per source position in common~
shotpoint (CSP) gathers. The data are migrated in the field coordinate system
per CSP gather (pre-stack migration by single-shot record inversion (SSRI),
Berkhout, 1984a, and De Graaff, 1984). Optionally, the migrated data can be
re-ordered into true CDP gathers, where residual NMO corrections can be applied
if the input macro subsurface model was slightly in error. Subsequently, the
migrated data are stacked (true CDP stacking). Conflicting dips and diffraction
energy are properly handled. This method, which was developed in the early
eighties, is a sophisticated multi-experiment, multi-offset seismic inversion
technique with very promising capabilities with respect to the exploration of
0il and gas fields in complex subsurface structures. Geologically oriented
macro subsurface models (see Figure I-2) can be handled because the migration
process is carried out in the field coordinate system. Hence, the hyperbolic
traveltime assumption is released. The CDP method is further discussed in
chapter II and the remainder of this thesis is dedicated to new techniques
based on the CDP method.

Finally we give an example to demonstrate the differences in the resolving
power of the three migration techniques. Figure I-6a shows a single diffractor
in a homogeneous medium. Synthetic shot records were generated at the surface

of this model (not shown in the figure).

Conventional CMP stacking, followed by post-stack migration, yields the depth
section shown in Figure I-6b. The low resolution is due to the fact that the

NMO correction does not properly account for diffraction energy.

CRP stacking yields high quality zero-offset data, because the DMO correction
properly handles diffraction energy in case of a comstant velocity medium. A
migrated zero~offset section is shown in Figure I-6c. Note that the resolution

improved significantly compared to Figure I-6b.

Pre-stack migration of the shot records followed by CDP stacking yields the
depth section shown in Figure I-6d. Note the excellent imaging quality of this

multi-experiment, multi-offset seismic inversion technique.
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depth

lateral distance —»

Figure I-6: a. Single diffractor model.
b. Migration result according to the CMP method.
c. (Simulated) migration result according to the CRP method.
d. Migration result according to the CDP method.
(By courtesy of M.P. de Graaff)



1.4 ONE-WAY VERSUS TWO-WAY WAVE EQUATION MIGRATION

Irrespective of the approach to seismic migration, the two basic ingredients

are always:

1. Wave field extrapolation.
2. Imaging.

Particularly with respect to wave field extrapolation many techniques have been
developed and it is expected that many new techniques will be developed in
future. Wave field extrapolation techniques can be sub-divided into two

classes:

a. One-way extrapolation techniques.

b. Two-way extrapolation techniques.

Most approaches to seismic wave field extrapolation are based on the assumption
that the downgoing source wave field and the upgoing reflected wave field may
be treated independently. This one-way approach has theoretical drawbacks (the
one-way wave equations are not exact) and in practical implementations for
inhomogeneous macro models the solution is highly affected by numerical inaccu-
racy (limited dip-angle performance). The basic concepts of the one-way
approach to wave field extrapolation are reviewed in chapter III, where also a
new method is suggested for the incorporation of critical angle events in
pre-stack migration, assuming a 1-D (vertically) inhomogeneous macro subsurface

model.

A more fundamental approach to wave field extrapolation is based on the

two-way wave equation. This approach does not have the theoretical drawbacks of

the one-way approach because the two-way wave equation is exact (in linear
acoustics) and thus all fundamental wave phenomena are included. Furthermore,
in practical implementations for inhomogeneous macro models the solutions may
be very accurate (high dip~angle performance). In the early eighties there has
been an increasing interest in the development of migration schemes based on
the two-way wave equation. However, up to the present day only the post-stack
approach to two-way wave equation migration has been seriously explored.

Several high dip-angle migration schemes have been developed (Kosloff and
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Baysal, 1983; McMechan, 1983). In most cases these schemes are fit into
CMP-oriented processing techniques, thus degrading the two-way solution to a

one-way approach (exploding reflector assumption). In fact, several tricks must
be done to suppress fundamental wave phenomena, such as multiple reflections,
in order to make these schemes work (Baysal et al., 1984). Therefore we refer
to this CMP oriented solution of the two-way wave equation as the 'pseudo'

two-way approach.

If we want to explore the capabilities of the two-way wave equatioﬂ fully, the
natural way to go is to choose for the CDP oriented processing sequence,
because full pre-stack migration by SSRI and CDP stacking is applied in field
coordinates to individual seismic experiments (CSP gathers), which obey the
two—way wave equation. In chapter IV the principles are discussed of a new
pre-stack migration technique based on the 'true' two-way approach. It is
concluded that all (acoustic) wave phenomena can be properly handled when the
geologically oriented 1-D, 2-D or 3-D inhomogeneous macro subsurface model is

accurately known.
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Finally we give an example to demonstrate the differences with respect to
multiple handling of one~way and two-way wave equation migration schemes.

Figure I-7a shows a two-layer model. A synthetic shot record was generated
using a two-way extrapolation technique (Figure I-7b). Notice that besides the

two primary reflections several multiple reflections are present in these data.

Pre-stack migration by SSRI, based on the one-way wave equations, yields the
depth section shown in Figure I-7c. The two reflectors are properly imaged.
However, many 'ghost-images' occur due to the fact that the one-way wave

equations do not account for multiple reflected energy.

Pre-stack migration by SSRI, based on the two-way wave equation, yields the
depth section shown in Figure I-7d. Notice that this image accurately matches

the subsurface model of Figure I-7a.

1.5 ACOUSTIC VERSUS ELASTIC WAVE EQUATION MIGRATION

On basis of the propagation mechanism, seismic wave types are often sub-divided

into two classes:

a. Dilatational or compressional waves.

b. Distortional or shear waves.

The particle motion associated to dilatational or compressional waves is
rotation—free. In special cases (for instamnce plane waves) this means that the
particle motion is perpendicular to the wave fronts (longitudinal waves). The
particle motion associated to distortional or shear waves is divergence-free.
In special cases (for instance plane waves) this means that the particle motion
is tangential to the wave fronts (transversal waves).

Generally a seismic wave is neither purely a dilatational wave nor a
distortional wave, or in other words, compressional and shear waves are
generally interrelated. The main interaction (wave conversion) takes place at
the major layer interfaces (the boundaries in the macro subsurface model),
particularly for steep incidence angles. Most seismic sources generate mainly
compressional waves (apart from surface waves, which do not propagate into the
earth) and in many seismic data acquisition configurations, waves with steep
propagation angles are not recorded (short offsets). Therefore the contribution

of reflected shear waves may often be neglected in seismic inversion
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techniques. In this case the inversion scheme may be based on the acoustic wave
*
equation which is significantly less complicated than the full elastic wave

equation. Most of the material presented in this thesis is based on the
acoustic wave equation. Hence, it is assumed that the macro subsurface model
may be fully described by the constrained compression modulus i; and the mass
densgity p, or, equivalently, by the compressional wave velocity Cp and the

mass density'E.

In the seventies and in the early eighties there has been an increasing
interest in large offset data acquisition techniques because large offset data
may contain wide-~angle information (angle dependent reflection amplitudes,
refraction arrivals, etc.) which is not recorded by small offset data acquisi-
tion techniques. In large offset data the effects of wave conversion cannot be
neglected any longer and therefore seismic inversion should be based on the
full elastic wave equation. (The full elastic wave equation describes
compressional as well as shear waves in solid media such as rock layers in
which shear stresses may play an important role). Because practically all
operational seismic inversion techniques are based on the CMP principle, in
which converted waves are suppressed by CMP stacking, no full elastic migration
results have been presented sofar in seismic literature. Again, CDP oriented
processing is the way to go, also for full elastic migration, because the
stacking procedure is carried out after migration. Particularly, full pre-stack
migration according to the full elastic two-way approach is very attractive
when both compressional and shear waves must be considered, because wave
conversion is properly described by the full elastic two-way wave equation. In
chapter V the principles of a new full elastic migration technique are

discussed.

Finally we give an example to demonstrate the differences with respect to wave

conversion handling of acoustic and full elastic wave equation migration

*) Actually the acoustic wave equation describes compressional waves in fluid
media such as gasses and liquids in which the shear modulus U is negligible.
However, when we replace the bulk compression modulus K by the constrained
compression modulus K = K + 41/3, then, under some conditious (see also
chapter II1), the acoustic wave equation may be applied for compressional

waves in solid media as well.
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Figure I-8: a. Solid two-layer model.
b. CSP gather.

[

. Acoustic two-way migration result.

e. Full elastic two-way migration result.

schemes. Figure I-8a shows a solid two-layer model. A synthetic shot record was
generated using a full elastic two-way extrapolation technique (Figure I-8b).

Notice that besides the two primary reflections several multiple reflected and

converted waves are present in these data.

Pre-stack migration by SSRI, based on the acoustic wave equation, yields the
depth sections shown in Figure I-8c (acoustic one-way result) and Figure I-8d
(acoustic two-way result). The two reflectors are properly imaged. However,
many 'ghost-images' occur, even in the two-way result, due to the fact that the

acoustic wave equation does not account for converted waves.

Pre-stack migration by SSRI, based on the full elastic two-way wave equation,
yields the depth section shown in Figure I-8e. Notice that this image

accurately matches the subsurface model of Figure I-8a.
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1.6 2-D VERSUS 3-D MIGRATION

In many practical situations seismic data acquisition is carried out along a
straight line. Subsequently, seismic migration is carried out only for a
vertical cross-section of the earth's subsurface below the acquisition line. In
this case seismic inversion becomes a two—dimensional (2-D) technique. This may
be very attractive from a computational point of view, however, the earth is
three-dimensional (3-D). Particularly in areas with complicated structures, 2-D
migration techniques give a poor image of the subsurface. Actually, 2-D
migration techniques may only be used when both the macro and the micro sub-
surface model approximately satisfy the 2-D assumption, that is, when the
elastic parameters depend on two spatial coordinates only. Unfortumately this

assumption is rarely met in practice and therefore the reliability of many 2-D

migration results is questionable.




The need for 3-D migration techniques is illustrated with a simple Z0 data
example. Figure I-9a shows a 3-D multi-diffractor model. A synthetic 3-D Z0

gather was generated at the surface. A 2-D slice of these data (for y=o) is
shown in Figure I-9b. Notice that all diffractors of the 3-D model are present
in this 2-p data slice.

2-D Z0 migration, applied to the 2-D Z0 gather of Figure I-9b, yields the depth
section shown in Figure I-9c. The five 'in—plane' diffractors are properly
imaged. However, also a 'ghost-image' occurs, due to the fact that the 2-D

algorithm does not properly account for 'out-of-plane' events.

3-D ZO migration, applied to the whole 3-D Z0 gather, yields a 3-D depth
section. A 2-D slice of this depth section (for y=o) is shown in Figure I-9d.
Notice that this image accurately matches the 2-D slice (y=o) of the subsurface

model, shown in Figure I-9a.

In the seventies and the early eighties much effort has been spent in the
development of both 3-D data acquisition and 3-D inversion techniques. Up to
the present day, however, only the 3-D extension of the conventional CMP method
has got serious attention. Apart from the drawbacks of the CMP method which
were already mentioned in the previous sections, an additional problem arises
in the 3-D situation: particularly in marine applications one common midpoint
does not exist and some pre-processing is needed to generate artificial
midpoints ('binning'). Hence, in many situations 3-D processing may neither
represent a CDP nor a CMP technique. In addition, 3-D post-stack migration is
generally applied as two separate 2-D migration processes in perpendicular
directions. This is an economic solution but in the seismic application it is
not correct because it assumes a homogeneous macro subsurface model. Most of
above mentioned problems also apply for the 3-D extension of the CRP method
(partial pre-stack migration). However, this approach should certainly be
explored because of its higher accuracy (better dip handling) in comparison
with the conventional CMP method on one hand and because of its higher
efficiency in comparison with the CDP method (full pre-stack migration) on the
other hand. In this thesis the 3-D versions of the CMP and the CRP methods are
not further discussed. The reader is referred to French (1975), Gardner et al.
(1978), Ristow (1980), Gibson et al. (1983), Jakubowicz and Levin (1983), Hale
(1983), and Schultz and Lau (1984).
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Full 3-D pre-stack migration according to the CDP method (pre-stack migration
by SSRI and CDP stacking) appears to be the natural way to perform seismic

inversion because a 3-D geologically oriented macro subsurface model may be
chosen. Also the binning problem is evaded because independent seismic
experiments are migrated in the field coordinate system. However, even with
nowadays fast vector computers full 3-D pre-stack migration is still
unthinkable because of the enormous amount of data to be processed.
For instance, a typical 3-D marine survey (see also Figure I-1) consists of

200 seismic lines,

200 shot records per seismic line,

100 traces per shot record,

2000 samples per trace,

4 bytes per sample,

hence, the total survey contains 32 Gbyte of data. It is obvious that, given
the limitations of computer hardware, a more practical view to 3-D pre-stack
migration is required. In chapter VI an efficient, target oriented, 3-D
pre-stack migration algorithm is discussed and preliminary results on both

synthetic and scale model data are presented.

I.7 OUTLINE OF THIS THESIS

In chapter II the principle of pre-stack migration by SSRI and CDP stacking is
reviewed. As was argued in this introduction, pre-stack migration by SSRI can
be based either on the one-way wave equations or on the acoustic or full
elastic two-way wave equation. Therefore three chapters are dedicated to
various aspects of wave field extrapolation techniques. In chapter III methods
using the acoustic one—way wave equations are discussed. In chapter IV methods
using the acoustic two-way wave equation are discussed and in chapter V methods
using the full elastic two-way wave equation are discussed. The theory in
chapters III to V is set up for the greater part in three dimensions, whereas
the examples demonstrate applications in two dimensions. Practical aspects with
respect to pre-stack migration in three dimensions are discussed in the final
chapter VI. Conclusions are illustrated on a 3-D real data example, the data

being generated in a model tank.
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CHAPTER I

PRINCIPLE OF FULL PRE-STACK MIGRATION BY
SINGLE-SHOT RECORD INVERSION AND
COMMON-DEPTHPOINT STACKING

II.1 INTRODUCTION

It was argued in the introductory chapter that common-depthpoint (CDP) oriented
pre-stack migration, as proposed by Berkhout (1984a), is the most promising
approach to seismic inversion for the detail, particularly for complicated
subsurface geometries.

The main purpose of this chapter is to give the reader who is not familiar with
the CDP method an impression of the mechanism and the underlying principles.
The method is explained on the basis of a matrix formulation of a 2-D model of
seismic records, however, the computational diagrams presented in sections II.3
and II.4 are in principle applicable for 2-D as well as 3-D situations. No
attempt is made to give a rigorous discussion on the matrix formalism itself;
therefore the reader is referred to Berkhout (1982). We adopt this symbolic
notation because it postpones the choice which wave equation to solve, so we
can fully concentrate on the CDP technique itself. In the subsequent chapters
various solutions of different wave equations (one-way acoustic, two-way
acoustic, two-way full elastic) are put forward which fit in with the scheme
discussed in this chapter. The outline of this chapter is as follows. In
section 11.2 the 2-D model of seismic shot records is briefly discussed. In
section II.3 it is argued that, ideally, full pre-stack true amplitude
migration is carried out by multi-experiment, multi-offset inversion. In the
following we refer to this method as multi-shot record inversion (MSRI). The
scheme is based on straightforward inversion of the forward model of all shot

records in a geismic line, but is not very practical for various reasoms. In
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section I1.4 we come to the actual subject of this chapter, namely full
pre-stack migration by single-shot record inversion (SSRI) and CDP stacking. It

is argued that this scheme is very attractive because of its high flexibility.
The data can be migrated per common-shotpoint (CSP) record (single-experiment,
multi-offset inversion), followed by true CDP stacking. Finally, in section
I1.5 the different approaches to full pre-stack migration are compared and it
is investigated under which conditions the proposed SSRI scheme represents true

amplitude migration.

I1.2 TWO-DIMENSIONAL MODEL OF SEISMIC SHOT RECORDS

I1f we make use of the matrix notation an elegant expression can be given for
the measurements of one seismic experiment, that is, the data of one CSP
record. The formulation is a monochromatic one (the circular frequency w is a

parameter) and divides the physical process in four parts.
1. Downward propagation
Stz ) =Wz ,z )$(z ). (11-1)
i i’ o [}

The vector §+(20) describes the downgoing source wave field at the
surface 2,, each element representing one lateral x*position. In case of
a point source at x=x_, the m'th element of vector S+(zo) contains the
source function S{w), while the other elements are zero.

Matrix VV(zi,zo) describes how the source wave field propagates from the
surface to depth level z,, each column representing the spatial impulse
response corresponding to one source position at the surface. Vector

->
S+(Zi) represents the downward traveling source wave field at depth
level z,.

2. Reflection
P (z) =R )$e). (11-2)
i i i

The reflectivity matrix l‘(zi) describes how the downward traveling

source wave field at depth level z; is transformed into the upward
>

traveling reflected wave field P (z,).
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3. Upward propagation
F)= Y W,z ¥ ) (11-3)
%o EZ& ST tal T

Matrix VV(zo,zi) describes how the reflected wave fileld propagates from
-
depth level z; to the surface Zgye Vector P (zo) represents the sum of

the reflected wave fields from all depth levels of interest

(21,22,...z1) at the surface z.

4. Detection

—
z = P . II1-4
Pp) = D ¥ () (11-4)
Matrix ])(Zo) describes how the upgoing wave field F-(zo) is detected
at the surface, each row defining the detector array ('field pattern') at
one lateral position. In case of identical omni-directional single-
detector elements, ])(Zo) represents a unit matrix, weighted by a

e
frequency dependent factor D(w). Vector PCSP(zo) represents the

detected upgoing wave field in a CSP record.

Above expressions can be elegantly combined into one equation

> _ ! >+ _
B (e ) - D(z°>igl[w<z°,zi)n(zi>W(zi,zo)]s (e, )- (11-5)

Figure II-1 gives a schematic illustration.

Because seismic migration aims at determining the reflectivity of the
subsurface, some attention need be paid to the properties of reflectivity
matrix l‘(zi). Each row of this matrix represents an operator which defines
angle dependent reflection at one lateral position. In case of 'locally
reacting' reflectors the operator is represented by a spatial delta functionm,
so l‘(zi) is a diagonal matrix. An example of a locally reacting reflector 1is
an interface between two homogeneous liquids which have a density contrast
only. Here locally reacting is equivalent to angle independent reflecting.
Unfortunately the locally reacting assumption is not valid in many practiecal
situations, so matrix l‘(Zi) generally exhibits a band structure. It is shown
in the following sections that band matrix l‘(zi) can be resolved from the
seismic data both by 'full pre-stack migration by multi-shot record inversion'
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Figure II-1: Basic model for the seismic response from depth level zg (no

field patterns).

as well as by 'full pre-stack migration by single-shot record inversion and
common-depthpoint stacking'. Seismic interpreters are generally satisfied if
the reflectivity information of each subsurface depthpoint i1s represented by
its zero-offset (Z0) reflection coefficient only. This means that after
miration only the diagonal elements of l‘(zi) need be selected, yielding the
wide-angle Z0 reflectivity matrix l‘zo(zi), which summarizes the
reflectivity properties of depth level z;.

11.3 FULL PRE-STACK MIGRATION BY MULTI-SHOT RECORD INVERSION

The forward model for one seismic experiment can be summarized according to

relation (II-5) by

o) =De )X Be), (11-6a)
CSP o o o o

where
X(zo) = [W(zo.zi)R(zi)W(zi,zo)]- (11-6b)

i

e R e i R
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In relation (I1I-6a), $ESP describes the seismic measurements, D and §
represent acquisition parameters, while X describes the medium, that is, each
column of X represents the spatial impulse response of the medium,
corresponding to one source position at the surface. In relation (II-6b), the
matrices W describe the propagation properties of the macro subsurface model,
while R describes the reflectivity properties of both the macro and the micro
subsurface model. The inverse problem in terms of seismic migration can be

formulated as follows:

given the seismic measurements, the acquisition parameters and the macro

subsurface model, determine the reflectivity of the subsurface.

Obviously, inversion of relation (II-6) is an ill-posed problem: the measure—
ments are given by one vector, while the reflectivity is described by many
matrices. First we extend shot record model (II~6) to the model for a multi-
shot record data set. This can be easily done by extending the source vector
_§+(z°) to a source matrix S+(z°). Each column of source matrix S+(z°)
defines one source vector, corresponding to one source (array) at the surface.
Similarly, the response vector §ESP(ZO) is replaced by a response matrix
IDMSP(zO), where the sub-script MSP denotes 'multi-shotpoint record'. Each
column of response matrix l’;sp(zo) defines one response vector due to one
source vector. The seismic data matrix I’;sp(zo) contains the monochromatic
information of all shot records which define one seismic line. Relation (II-6)

may now be rewritten as
- = + _
Pspz,) = D HOXG )87z ). (11-7)

Notice that we have obtained a situation for which the acquisition parameters
can be removed from the data by matrix inversion. A rigorous treatment is
beyond the scope of this thesis. We discuss a simplified situation by
considering identical, equidistantly spaced point sources, characterized by
S(w), and identical, equidistantly spaced omni-directional single-detector
elements, characterized by D(w). In this case both 8% and D represent

weighted unit matrices, so equation (II-7) may be written as
P (z) = [D@wsw]X(z ). (11-8)
MSP" o o

Notice that }((zo) can be resolved from the measured data ]’;SP(ZO) in a
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band-limited way. This deconvolution procedure is actually a pre-processing
step prior to migration (see also Figure I-4). The actual migration objective

is to eliminate the propagation effects from )‘(zo) in order to obtain the
undistorted reflectivity information. Therefore we consider for the moment the

response from one depth level only, that is, we assume that J‘(zo) is given by
X)) = W(zo,zi)R(zi)W(zi,zo)- (11-9)
If we define matrices F(zo,zi) and F(zi,zo) such that

VV(zi,zo) FYzo,zi) , (I11-10a)

F(zi,zo)VV(zo,zi) I, (II-10b)
where I represents the unit matrix, then relation (II-9) can be inverted

according to
Rz )=F(z ,z )Xz )F@E ,z). (11-11)
i i" o o o 1

In practice conditions (II-10a) and (II-10b) can never be satisfied, so
inversion should be carried out in a spatially band-limited way. A practical

solution is found as follows.
1. Define the least-squares inversion of VV(zi,zo) as
* -
F(z ,z) =[W Tz 2z W(z ,z )] 1W*T(z 2Z ), (11-12a)
o i i” o i" o i" o

where T denotes matrix transposition and where * denotes complex
conjugation. This relation, which is exact for square matrices, states
that matrix inversion can be carried out in two steps: first mainly a
phase correction is applied by zero—phasing operator
‘V*T(Zi,zo); next mainly an amplitude correction is applied by inverse
operator [VV*T(Zi'zo)‘v(zi’zo)]-l' Particularly the amplitude
correction is difficult because it requires matrix inversion. This problem
may be partly bypassed, however, as is shown in the next step.

2. Assume that the amplitude effects of upward propagation are inversely
proportional to the amplitude effects of downward propagation, according
to
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T *T -1
w (2,,2,) & [w<z1,z°>w (zi.zo)] Wz, .z ), (11-12b)

or

*
w*T(z »2Z )N[W*T(z »2 )W(Z »2 )]W (z 22 ). (11-120)
i o i" o i o o i
3. Substitute relation (II-12¢) into (II-12a), yielding
*
F(zo,zi) & W (z,2,) (I11~13a)
A similar relation can be found for matrix F(zi,zo):
*
FGz .z ) s W (z ,z). (11-13b)
) i’ o

Relation (II-13) describes the "matched filter' approach to inverse wave field
extrapolation. It is shown by Berkhout (1982) for a homogeneous macro model
that these very simple inverse operators are exact within the spatial bandwidth
of propagating waves. In addition, as is shown in sections III.5 and III.7 of
this thesis, the matched filter approach is also exact (within the spatial
bandwidth of .propagating waves) both in amplitude and phase, in case of a 1-D
inhomogeneous macro model, assuming the medium parameters vary smoothly with
depth. In case of 2-D and 3-D inhomogeneous macro subsurface models assumption
(I1-12b) breaks down, so inversion should preferably be carried out according
to (II-12a) in some stable sense. However, the matched filter approach to
inverse wave field extrapolation represents an interesting compromise of
accuracy and efficiency and is therefore often applied in seismic practice,
also for 2-D and 3-D inhomogeneous macro models. A further discussion of the
matched filter approach is beyond the scope of this thesis. In the following we
use the symbol F for general band-limited inverse extrapolation operators.
Whenever the matched filter approach is assumed this is explicitly stated.

In conclusion, inversion result l‘(zi), as defined by relation (II-1l1), is
correct in amplitude as well as in phase within the limitations imposed by the
temporal and spatial seismic bandwidth. Hence, the angle dependent reflection
operators, represented by the rows of matrix l‘(zi), can be properly
determined from the surface data.
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If we now consider again the response from many depth levels, that is, if we
assume that )‘(zo) is given by

X(z) = %[w<zo,zj>ll<zj)W(zj,zo>], (11-14)

then inversion algorithm (II-11) should be replaced by
X(z) = Fz;,2 )Xz ) F(z ,2)). (11-15)

Substituting (II-14) into (II-15) yields

X@) = % [F(zi,zo)wuo,zj)n(zj)wuj,z°> F(zo,zi)],ux-wa)
or
X@z) =Rz + Dileeels (1I-16b)
i

According to relation (II-16b) the total response }‘(zi) at depth level z;
consists of two parts: the undistorted reflectivity l‘(zi),~from which all
propagation effects have been properly removed by zero—phasing inverse
operators f(zo,zi) and szi,zo), and an extra term which contains

amplitude and phase distorted reflectivity information from all other depth
levels. Apparently additional information is required to resolve the
reflectivity l‘(zi) from the total response )‘(zi) at the current depth

level. If we keep in mind that above mentioned zero-phasing property for
l‘(zi) holds for all frequencies, while the phase distortion in the extra term
is different for different frequencies, then it is clear that a summation over

all frequencies within the seismic bandwidth, according to
R(z,)> =X > X(z), (11-17)
i 2m o i

yields a good estimate of the reflectivity, because all terms l‘(zi) add up
coherently while the extra terms interfere destructively (Aw denotes the
circular frequency sampling interval). The process described by (I1I-17), is

called imaging.

Notice that relation (II-17) may also be interpreted as a (discrete) inverse
Fourier transform from frequency to time, where the inverse transformed
function is calculated for zero-time only (see also relation (II1-3b), for

t=o0). This can be physically well understood: matrix }‘(zi) describes the
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general relation between downgoing and upgoing waves at depth z;, while
reflectivity matrix l‘(zi) describes the time-coincidence of downgoing and
upgoing waves at depth z.
Summarizing, in this section we have shown that a good estimate of the
subsurface reflectivity can be obtained from many monochromatic MSP records at
different frequencies. Practical seismic measurements always contain broad-band
information, so the required monochromatic MSP records can be easily obtained
by Fourier transform., The scheme for full pre-stack migration by multi-shot

record inversion (MSRI) can be summarized as follows.

1. Partly compensation for the acquisition limitations at the surface z,
by inverting relation (II-8)

l’gsp(zo) = [D(w)S(w)])‘(zo) (1I-18)
in a band-limited way (deconvolution).

2. Inverse wave field extrapolation to all depth levels z;. Non-recursive
inverse wave field extrapolation is described by relation (II-15).

Recursive inverse wave field extrapolation can be formally described by

X(zi) = F(zi,zi_l)X(zi_l) F(z,_,z). (11-19)

3. Imaging by summing over all frequencies, according to relation (II-17),

yielding the reflectivity matrix at depth level z5:
Rz, ) =2 Y X ). (11-20)
i 2m © i

As we stated in the previous section, for seismic interpretation it is
often sufficient if we select the diagonal elements of matrix <l{(zi)>,
yielding the wide-angle Z0 reflection matrix <llzo(zi)>, to summarize
the reflectivity at depth level z,.

Step 1 is a pre-processing step; steps 2 and 3 describe the actual migration
procedure.

A computational diagram of this multi-experiment, multi-offset seismic
migration scheme is presented in Figure II-2. Because the procedure is carried

out in field coordinates, the inverse wave field extrapolation operators can be
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Figure II-2: Computational diagram for full pre-stack migration by multi shot

record inversion (MSRI).

optimumly designed for a geologically oriented macro subsurface model. Hence,
assuming that the proper operators are used, non-hyperbolic traveltimes are
allowed and true amplitude migration is accomplished. The main disadvantage of
the scheme is the cumbersome data management: all shot records must be
available at the same time to carry out inverse wave field extrapolation.
Furthermore the scheme does not cope with errors in the description of the
macro subsurface model. Finally we remark that the scheme is essentially based
on the one-way equations. In the next section we discuss an alternative true

amplitude migration scheme which does not suffer from these practical
drawbacks.

i S
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II.4 FULL PRE-STACK MIGRATION BY SINGLE-SHOT RECORD INVERSION AND COMMON-
DEPTHPOINT STACKING

We consider again the forward model for one seismic experiment
) =D )X ¥ @), (11-21a)
CSP o o o o

where

X@,) - ;[W(zo,zi)mzi)wui,zo)]. (11-21b)

Unlike in the previous section, where we extended this model to a multi-record
data set, here we discuss migration by single-shot record inversion (SSRI) and
CDP stacking. If we assume the same source and detector properties as in the

previous section then relation (II-2la) can be rewritten as

- _ -+ -
Popl) = [D(w)S(w)]X(zo)so(zo)- _ (11-22)

>+
Here So(zo) represents a unit source vector. Acquisition parameters and

medium parameters can be separately described as follows:
S -
P = [D P I1-2
CSP(zo) [D(w)S(w)] o(zo)’ ( 3a)

where

i) = Xz )Xe). (11-23b)
(o] [o] o o [o]

Notice that according to (II-23a), g;(zo) can be resolved from the measured
data 3ESP(20) in a band-limited way (deconvolution). Apparently the
acquisition parameters cannot be fully eliminated because the source wave field
is characterized by a unit vector rather than a unit matrix. In the following
we discuss inversion of relation (II~23b). The sub—-script 'o', which denotes
that the response is due to a unit source, is deleted for notational
convenience. Similarly as in the previous section we counsider for the moment
the response from one depth level only, that is, we assume that ﬁh(zo) =

-
}‘(ZO)S+(ZO) is given by

Pz ) =W,z )Rz )Wz, ,z )3 (z ). (11-24)
[} o i i i o ]
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Compensation for the propagation effects between the surface and depth level
2, 1is described by

Yz =Wz ,z )@= ), (11-25a)
i 1" o )
if'(zi) = F(zi,zo)ia’"(zo). (11-25b)

Relation (II-25a) describes forward extrapolation of the downgoing source wave
field and relation (II-25b) describes inverse extrapolation of the upgoing
detected wave field. Given the downgoing source wave field §+(zi) and the
upgoing reflected wave field ?_(zi) at depth level z4, then reflection

matrix ]‘(zi) should be resolved from relation (II-2):

Fz,) = R(zi)g’%zi). (11-26)

Notice that for arbitrary l‘(zi), (generally l{(zi) has a band-structure),
this problem is ill-posed. One particular solution is given by

<Rz, » = F G 1)[(%*@ i))"r ?(zi)]_l<§*<zi))*‘“, (11-27a)
or

<Rz ) = ??'(zi)@*(zi))*’r, (11-27b)
with

s’ = 18 @11, (11-27¢)

which can be easily verified by substituting this solution into (II-26). It
should be kept in mind that this solution is non-unique. In the following
section, however, it is shown that the inversion approach, as described by
(11-27), is a good choice.

Notice that this inversion is stable because §+(zi) describes the response of
a unit source. In case of a homogeneous macro model the scaling factor s2
approaches unity.

As ve mentioned before, it i1s often sufficient 1f the reflectivity information
of each subsurface depthpoint is represented by its zero-offset reflection
coefficient only. This means that only the diagonal of <]‘(zi)> need be
calculated. According to (II-27) each diagonal element of <]K(zi)> is obtained

by multiplying one element of vector Fh(zi) by the complex conjugated of the

B P E s Y ¥ oI Lo |
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Figure II-3: Migration of a single seismic response from depth level z;. The
20 reflectivity matrix at depth z5 follows from the downward
extrapolated source and detector vectors at z;.
corresponding element of (scaled) vector §+(zi). The results can be placed in
a diagonal ZO reflection matrix <]‘Zo(zi)>. Figure II-3 gives a schematic
illustration.
To formulate the computation of the Z0 reflectivity, a scalar notation is more
appropriate. If we drop the matrix notation, then the wave vectors ?‘(zi) and
§+(zi) should be replaced by the wave functions P"(x,zi,w) and S+(X,Zi,w),
respectively, while the diagonal matrix <l‘zo(zi)> should be replaced by the
Z0 reflectivity function <Ryo(x,24,w)>. According to relation (II-27) we may
write for this Z0 reflectivity function
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| I + %
<Rzo(x,zi,w)> = ;E'P (x,zi,w)(s (x,zi,W)) . (11‘28)
Notice that relation (II-28) represents the frequency domain formulation for a
scaled correlation of the downgoing source wave and the reflected upgoing waves

at depth level z5.

We now consider again the response from many depth levels, that is, we assume

>
that P (zo) is given by

F )= 3 [We, .2 Re W, 2 g, (11-29)
[ i o i i i o o )
where §+(z°) represents a unit source vector. Again, elimination of the p
propagation effects between the surface and depth level z; is described by §
relation (I1I-25), yielding §+(zi) and ;_(zi), however, because many depth ﬁ

levels are involved now, reflection matrix l‘(zi) should not be resolved from
(11-26) but from

F i) - Xe 8@, (11-30a)
with
Xez)=Rae)+ Y (..., (1I-30b)
J#H

see also relation (II-16). Notice that the inverse problem is ill-posed for two

reasons:

1. Response matrix )‘(Zi) cannot be resolved from relation (II-30a) because
X(z,) 1s a full matrix.

2. Reflection matrix l‘(zi) cannot be resolved from relation (II-30b)
because this relation describes the response from all depth levels.

In accordance with (II-27), one particular solution of (II-30a) is given by

_ 1 > x+ *T -
<X(zi)> = ? P (zi)(s (zi)> . (11-31)

with s2 given by (II-27c). Optionally, the ZO response matrix <]lzo(z1)> is i

obtained by selecting the diagonal elements from the full response matrix

<}‘(21)>. If we drop the matrix notation, then the Z0 response
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Figure II-4: Example showing the mechanism of pre-stack migration of one
seismic experiment.
a. Subsurface configuration

b. Extrapolation, correlation and imaging for various depths.
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<xzo(x,zi,m)> may be expressed as
1 - + *
<xzo(x,zi,m)> = ? P (x,zi,m) (S (x,zi,w)> . (I11-32)

Relation (II-30b) can be inverted similarly as in the previous section by
imaging, that is, by summing over all frequencies within the seismic bandwidth

according to
Rez,» =2 Y X, ). (11-33a)
i 27 @ i
If we are interested in the Z0 reflectivity function, imaging is described by
R, (x,20> =2 T % (x,z_,0)> (11-33b)
Zz0 i 2m S Z0 i

Notice that relation (I11I-33) represents an inverse Fourier transform for zero

time (t=o) only.

In order to discuss some aspects related to the mechanism of the SSRI method,
we consider the configuration shown in Figure II-4a, that is, we consider the
seismic response from one strongly dipping reflector. A superposition of the
downgoing source wave s* and the upgoing detected wave P~ is presented in the
space-time (x,t) domain in the upper left frame of Figure II-4b. The downward
extrapolated results at depths Az,‘ZAz and 3Az, respectively, are shown in the
uppér frames of Figure II-4b, while the correlated data <Xzo> are shown in
the corresponding lower frames. Obviously these single-fold Z0 data are not
exact: the dipping plane reflector appears slightly curved in the lower
X,t-panels. Imaging involves computing the zero-time component of the Z0
impulse response in order to resolve the ZO reflectivity of the current depth
level. The ZO reflectivity “Ryn> for all depths is shown in the lower left
frame of Figure II-4b. This single-fold Z0 reflectivity function in the X,2Z

domain clearly represents the dipping plane reflector.

One important remark need be made with respect to spatial aliasing. In
conventional CMP oriented processing the spatial sampling interval of the
stacked data (pseudo Z0 data) is half the detector spacing. This sampling
interval reduction (spatial interpolation) is necessary because the stacked
data are migrated using half the propagation velocity (exploding reflector

model), which means that the apparent wavelength is also reduced by a factor
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two. In the CDP oriented processing method, as described in this sectiom, the
source and detector data are extrapolated using the true propagation velocity.

However, after correlating the extrapolated source and detector data in order
to obtain Z0 data, the apparent dips are roughly doubled. This can be clearly
seen in Figure II-4b, particularly by comparing the dips of P~ and <xzo> at
depth 2Az. If the migrated data must be further processed them spatial aliasing
should be avoided by spatially interpolating the extrapolated source and
detector data before correlation. In this case the spatial sampling interval of
the migrated data is the same for both CMP as well as CDP oriented processing

techniques.

Sofar we discussed migration of one single shot record only. Because we solved
an ill-posed problem the result depends highly on the input data. Generally
many shot records are available which may be individually migrated, using above
described procedure. The resulting zero-offset reflectivity functions
<Rzo(x,z)>m may be summed, yielding a wide~angle zero—offset reflectivity

function, according to

CbP
<R X,2)> = <R_ (x,z)> I11-34
20 (502 % N CHOLA ( )
where the super-script CDP denotes that the data have been stacked per common-
depthpoint after migration. The principle of this procedure, which we call 'CDP
stacking', is shown in Figure II-5.
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Figure II-5: Principle of CDP stacking after migration.
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Sofar we discussed migration in two dimensions only. The scheme can be easily
extended to three dimensions. Therefore a symbolic convolutional notation is

more appropriate: we replace wave vectors by two-dimensional wave functions of
the x and y coordinates, while matrix multiplications are replaced by two-

dimensional, space-variant, spatial convolutions along the x and y coordinates
(Berkhout, 1982), denoted by the symbol *. Full 3-D pre-stack migration by SSRI

and CDP stacking can now be summarized as follows.

1. Partly compensation for the acquisition limitations at the surface

z,+ The boundary condition P;£(x,y,z°,w) follows by inverting

Posp,an %7700 = D(OS(DIE (x,5,2 ,0) (11-35a)
in a band-limited way. Here PEEP mn Fepresents the measured upgoing

’
pressure wave in CSP gather mn. The boundary condition S;Q(X;Y.ZO,UD,

which describes a unit source at (xm,yn,zo), is simply given by
+
Smn(x,y,zo.m) G(x—xm)ﬁ(y Yn)- (11-35b)

2. Downward wave field extrapolation to all depth levels z;. Non-recursive
2-D wave field extrapolation is described by relation (II-25). Recursive
3-D wave field extrapolation can be formally described by
+
_13(1)) * Sm(x’y’z

+
smn(x;Y:ziyw) = W(X’Y9zisz 1;0))’ (11-36a)

i i-

P;n(X,Y.Zi,w) = F(X,y,zi,z 1’(1)) * P;n(x’Y’z l,w)o (11-36b)

i- i-

3. Correlation of the downgoing source wave and the upgoing reflected waves,
yielding the single-fold ZO impulse response at depth level zy
X (65,2 ,0)> = B (x,y,2,0)[5" (xy,z 01", (11-37a)
20777 L ' mn i
mn

where
g = f‘{s (x,y,z,,w)[8 (x,¥,z ,0)] dxdy (I1-37b)
mn mn 771’ mn >7°7%° .

4. Imaging by summing over all frequencies, yielding the single-fold ZO
reflectivity at depth level z;
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5. CDP stacking by summing all single-fold Z0 reflectivity functions,
yielding the multi-fold wide—angle ZO reflectivity at depth level z;

C
<Rng(x,y,zi)> = % % <Rzo(x,y,zi)>mn- (I1-39)

Step 1 is a pre-processing step; steps 2, 3, 4 and 5 describe the actual

migration procedure. A computational diagram of this migration scheme is

39

presented in Figure II-6. Notice that, similar as in full pre-stack migration

by MSRI, migration by SSRI is carried out in field coordinates, so the wave
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field extrapolation operators can be optimumly designed for a geologically
oriented macro subsurface model, hence, non-hyperbolic traveltimes are allowed.

In addition, it is shown in the next section that under certain conditions the

result of the scheme presented in this section equals the result of full
pre-stack migration by MSRI. Hence, under certain conditioms, full pre-stack
migration by SSRI and CDP stacking represents true amplitude migration.
Furthermore the scheme has many attractive features.

Because shot records are migrated independently, any data acquisition configu-
ration can be handled. This is particularly advantageous for 3-D applications
because 3-D data are generally not gathered on a regular 2-D grid. The method
is not restricted to surface data acquisition. Also vertical seismic profile
(VSP) migration can be carried out by SSRI and CDP stacking. Another attractive
feature i1s that the scheme easily copes with errors in the description of the
macro subsurface model, because the data are stacked per CDP after migration.
1f the individual shot records are migrated erroneously due to errors in the

macro subsurface model, then the data in a (2-D) CDP gather,
<R__(x,,2)> , (j is fixed, m is a variable)
Zo" j m

are not properly aligned, so a residual NMO correction may be applied before
the CDP stack is carried out. Of course this approach is only valid for limited
errors in the macro subsurface model. When these limits are exceeded, the macro
model must be updated and the migration procedure should be repeated.

Another advantage of the scheme is that downward wave field extrapolation may
be based on all types of wave equations. Sofar we considered independent
forward extrapolation of the primary downgoing source wave and inverse
extrapolation of the primary upgoing reflected waves, based on the one-way wave
equations. Various aspects of the one-way approach are discussed in

chapter III. Alternatively, downward extrapolation may also be based on the
two-way wave equation, which describes the propagation of all primary

and multiple reflected downgoing and upgoing waves simultaneously. Downward
extrapolation can even be based on the full elastic two-way wave equation,
which describes the propagation of all primary, multiple reflected

and converted downgoing and upgoing waves simultaneously. Various aspects of
the two-way approach are discussed in chapter IV for the acoustic case, and in
chapter V for the full elastic case.

Finally, it should be noted that the sequence of the five processing steps, as

described above, is not unique. Various alternative processing sequences can be
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designed, depending on the migration objective. Generality can be gained for

the cost of loss of efficiency, when the following (2-D) procedure is followed:

1. Partly compensation for the acquisition limitations (as above).

2. Downward wave field extrapolation (as above).

3. Correlation, according to relation (II-31), yielding the single-fold full
response matrix <X(zi) >

4. CDP stacking, by summing all single-fold full response matrices, yielding
the wide~angle multi-fold full response matrix }‘FDP(zi).

5. Imaging, by summing all frequency components of the multi-fold full
response matrix, yielding the multi-fold wide—angle reflectivity matrix
<l‘CDP(Zi)>, optionally followed by selecting the diagonal elements,
yielding the multi-fold wide-angle Z0 reflectivity matrix <l‘22f(zi)>,
or, dropping the matrix motation, <R§%P(x,zi)>,

It is obvious that the final result <R§£F(x,zi)> is the same as the one
obtained by (II-34). However, as is shown in the next section, under certain
conditions also the intermediate result }KCDP(zi) is the same as the one
obtained by (II-19) in the MSRI scheme. Hence, by means of SSRI and CDP
stacking, true amplitude multi-fold full response data sets )KCDP(zi) can be
generated for arbitrary depth levels. Particularly for 3-D applications it is
very attractive from a computational point of view to generate (parts of) these
full response data sets for the macro layer boundaries only and to apply
computationally cheaper procedures inside (some of) the macro layers. This is

discussed in more detail in chapter VI.

Summarizing, full pre-stack migration by SSRI and CDP stacking is a promising
technique with the following characteristic properties

- non-hyperbolic traveltimes are allowed,
- true amplitude migration may be accomplished,

- any data acquisition configuration is allowed (3-D, VSP, etc.),

- small errors in the macro subsurface model can be compensated,
- any type of wave equation can be used (one-way, two-way, full elastic,
etc.),

- many variants can be designed, depending of the migration objective (angle
dependent reflectivity, full response data sets at the major interfaces,

etc.).
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II.5 A COMPARISON OF THE DIFFERENT APPROACHES TO FULL PRE-STACK MIGRATION

Full pre-stack migration by SSRI and CDP stacking in its general form can be
summarized by the following steps (we consider the 2-D scheme).

1, Partly compensation for the acquisition limitationms.

2. Downward wave field extrapolation.

3. Correlation, yielding <)‘(zi)>m,

4, CDP stacking, yielding }‘cDP(zi).

5. Imaging, yielding <I‘CDP(21)> or <]‘%%P(zi)>.

On the other hand, full pre-stack migration by MSRI may be summarized by
1. Partly compensation for the acquisition limitationms.

2. Inverse wave field extrapolation, yielding }K(zi).

3. Imaging, yielding <]‘(zi)> or <l‘zo(zi)>,

In this section we analyse both procedures step by step and compare the
results. Since the final step is the same in both procedures it is sufficient
to compare the full response matrices J‘CDP(zi) and }‘(zi). First we

analyse pre-stack migration by SSRI and CDP stacking, and adapt the notation to

make the comparison possible.

We consider non-recursive relations (II-25a) and (II-25b):

§ ¢z ) = Wz, ,z 85z ), (1I-40a)
m i i"o" m o
P(z)=F(z ,z )8 (z), (11-40b)
m i i o m o

where m denotes the shot record number. Remember that Sm(z ) represents
a unit source vector, while B, (z ) is related to the measured data
CSP m(Z,) according to relation (II-23a):
P (z) = [D(w)S(wIF (z )- (11-40c )
CSP,m o m o
+ -
We now define matrices Sm and P with zero~columns except for both columns

>4+ >—
m, which contain Vvectors S and P ,respectively, and rewrite relations
(I11-40a) and (II-40b) as
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Figure II-7: A comparison

a.

b

of two approaches to pre-stack migration.

Pre-stack migration by SSRI (relation (LI-43b) for various shot

records).

b. Full pre-stack migration by MSRI (relation (II-48b)).

+
Sm(zi)

P;(zi)

W, ,z )8z ),
i o mn o

F(z ,Z )P—(z )‘
i o m o

(11-4la)

(I1-41b)
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Following solution (II-27), we define a matrix (;m(zi) according to
+ *T o+
= . I1I-4
G, (=) (smui)) 8@, (11-42a)

Notice that (;m(zi) contains zero-elements except for the m'th diagonal
element, which represents the scaling factor séa so

N

G (z) = s , (11-42b)
m i m.
with )
e
o2 - (§+(z >)T §,) = 185 1% (11-42¢)
m m 1 m i m i
Finally we define a matrix (jm(zi) which contains zero-elements except for

the m'th diagonal element, which represents the reciprocal of the scaling

factor snzp SO
C (z)-= ‘s . (11-42d)
m i R

With these definitions relation (II-31)

<X(z,)> = —l_zﬁ:‘(zi)(g:-(zi)) *T (1I-43a)
S
m

can be rewritten as
<X(z,)> = P (z)C ¢z )(S+(z ) *T. (11-43b)
i m m i m 1 m i
Relation (II-43b) is schematically shown for various m in Figure II-7a. The

multi~fold full response matrix ]KCDP(zi) is obtained by CDP stacking,

according to

CcDP _
X (z) % <X(zi)>m, (11-44a)
or
CDP i - + *T _
Xz - % [Pm(zi)cm(zi) (sm(z1>) ] (1I-44b)
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Sofar we considered full pre-stack migration by SSRI and CDP stacking. Let us
now consider again full pre-stack migration by MSRI. First we define downgoing

source wave fields and upgoing reflected wave fields according to
$'z) =W ,2)8%:), (11-45a)
i i’ o [}
P = - -
(z,) F(zi,zo)l’ (2 (11-45b)

+ —
where 8 (Zo) represents a unit source matrix and where P (zo) is related
to the measured data IPMSP(ZO) by

P;SP(zo) = [D(w)S(w)]P'<z°>. (11-45¢)

According to relation (II-8) matrix P—(zo) equals the spatial impulse

response matrix X(Zo). We may now rewrite relations (II-45a) and (II-45b) as
8%z ) =Wz ,2), (11-46a)
i i’ o
P(z)=F@ ,z2)Xz). (11-46b)
i i’ o o

In addition we define matrices G(zi) and C(zi) according to

G(z,) = (S"(zi))*TS*(zi), (11-47a)

Cez)) = <C(zi)>_l, (I1-47b)
hence

(S+(zi)> 1. C(zi) (S+(zi)>*? (11-47c)

With these definitions, keeping in mind that F(zo,zi) is defined as the

+
inverse of § (z)) = W(zi,zo), we may rewrite relation (II-15), given by

X(z,) = F(z ,z )Xz )F(z ,z)
i i’ o [} o i

as

Xz )= PG )(S+(z.>>'1, (11-48a)
i i i

or
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X(z)) = P’(zi)C<zi> (S‘“(zi))*T. (11-48b)

Relation (11-48b) is schematically shown in Figure 1I-7b, assuming (](zi) may

be represented by a diagonal matrix.

Our aim is to investigate under which conditions matrix ]‘CDP(zi), obtained
by SSRI and CDP stacking according to relation (II-44b), equals matrix X(z
obtained by MSRI according to relation (II-48b).

i))

Assuming a regular acquisition grid, the matrices at the surface z, are

related by
$tzHr= 3 8%, (11-49a)
o o m o
PGz)=> P(z). (11-49b)
o]} o m o

Straightforward application of relations (11-41) and (I1-45) yields similar

relations for the matrices at depth level z;

S (zi) = % Sm(zi), (1I-49c) 3
Pz - Z P (z). (11-49d)

Assuming matrix (;(Zi) represents a diagonal matrix we find the following

relation between (;m(zi)’ as defined by (II-42a), and (;(zi), as defined by
(I1-47a):

G(zi) = %Cm(zi), (11-50a)

GG = 'si , (11-50b)

(see also appendix A). Consequently, for matrix (:(zi)’ which is defined as
the inverse of G(z,), we may write
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C(z)) = > C.z), (11-50c)
m

or S

C(zi) = “s (1I-50d)

With relations (II-49) and (II-50) the full response matrix X(z,), given by
(II-48b), can be written as

- ) + *T _
X(zi) [% Pm(zi)] [% Cm<zi)] [% <Sm(zi)) ] (11-51a)
In Figure II-7 it is made plausible that this relation may also be written as
_ - + *T _
X(z,) = % [Pm(zi)Cm(zi)(Sm(zi)> ] (11-51b)

The proof is given in appendix A. Comparing (II-51b) with the definition of
)‘CDP(zi) in (II-44b) yields

X(z,) = XCDP(zi). (11-52)

Hence, we have shown that full pre-stack migration by SSRI and CDP stacking is
equivalent with true amplitude full pre-stack migration by MSRI if we may make
some particular assumptions on

- the data acquisition configuration at the surface,

- the illuminating source wave field in the subsurface.

With respect to the first assumption we remark that in full pre-stack migration
by MSRI it is assumed that the data are gathered on a regular grid. On the
other hand, in full pre-stack migration by SSRI and CDP stacking, seismic
records are migrated independently so they may have random positions at the
surface, which is very attractive from a practical point of view, particularly
for 3-D applications. However, the classification 'true amplitude migration' is
correct only when the individually migrated seismic records are gathered on a
regular grid as in full pre-stack migration by MSRI. With respect to the second

assumption we remark that in full pre-stack migratiom by MSRI the matrix
product
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Gez,) = (S‘“(z 1’) 8%,

is inverted (see relation (II-47b)), which means that generally all
illuminating source wave fields must be available simultaneously. Only when

(;(zi) is a diagonal matrix, inversion can be carried out per diagonal element
2 _
o=
pre-stack migration by SSRI and CDP stacking.

s ||§;(zi)||2, so per illuminating source wave field as in full

The character of matrix (;(zi) depends on the properties of the macro
subsurface model between the surface and depth level zg. We consider three
cases,

1. The macro subsurface model is homogeneous. In this case matrix (;(zi) is
a unit matrix, within the limitations imposed by the spatial bandwidth of
propagating waves (matched filter approach). Hence, for a homogeneous
macro subsurface model the two approaches to full pre-stack migration are

;2 in SSRI need not be

equivalent. Notice that the scaling factor s
applied because it approaches unity.

ii. The macro subsurface model is 1-D inhomogeneous, that is, the medium
parameters are a function of depth only. In this case the character of the
illuminating source wave field in the subsurface is independent of the
source position at the surface, hence, the elements of (;(zi) are

~ constant along the diagonal. However, matrix (;(zi) is not purely a
diagonal matrix, hence, the two approaches to full pre-stack migration are
not fully equivalent. In SSRI the effect of the scaling factor s;z
(which is constant for all m) is an energy correction for the illuminating
wave fields.

iii. The macro subsurface model is arbitrarily inhomogeneous. In.this case
matrix (;(zi) may deviate significantly from a diagonal matrix, hence,
the two approaches to full pre-stack migration are no longer equivalent.
Ideally, true inversion (mot the matched filter approach) should be
applied in pre-stack migration by MSRI. Amplitude errors (mo positioning
errors) are made in pre-stack migration by SSRI and CDP stacking. However,
compared with practical pre-stack migration schemes known in seismic
literature, the (source dependent) energy correction factor s;z, as
suggested in this chapter, means an improvement with respect to the
amplitude handling of migration schemes for arbitrarily inhomogeneous

macro subsurface models.
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Finally, we give an example to demonstrate the mechanism of SSRI and CDP
stacking. We consider the configuration shown in Figure II-8a, that is, we

consider the seismic response from four point-diffractors. Three 'split~spread'
CSP records for different source positions are presented in the space-~time
(x,t) domain in Figure II-8b. After downward extrapolation to the level of the
upper diffractors, the source and detector data are correlated, yielding

single-fold ZO responses <X, >. These responses are presented with a floating

time reference in the spaceEgime domain in Figure II-8c. To enhance several
artefacts, the amplitudes in this display were clipped at -20 dB (relative to
the maximum amplitude). Obviously these single-fold Z0 gathers are not exact:
the three diffractors at the current extrapolation level are focussed but not
well resolved, while the lower diffractor is represented by three different
time-reversed hyperbolae. This was expected because single-shot records were
inverted.

We now consider the effect of CDP stacking after SSRI. The upper left frame of
Figure II-8d shows the 8-fold CDP stacked Z0 response XSDP

0
individual inversion results can be clearly distinguished in this figure (the

. Notice that all

amplitudes were clipped at ~32 dB). This effect is also known as spatial
aliasing: the source spacing at the surface is significantly larger than half
the dominant wavelength. The effect of reducing the source spacing is shown in
the other frames of Figure II-8d for, respectively, 16-fold, 32-fold and
64-fold CDP stacked ZO data XSOT

Z0
frame shows high quality ZO data: the three diffractors at the current

. Notice that particularly the lower right

extrapolation level are properly focussed and well resolved, and the lower

diffractor is clearly represented by a hyperbola, confirming that the CDP
CDP
Z0

which are visible because the amplitudes are clipped in this display, are due

stacked data X represent wide-angle Z0 data. The remaining artefacts,

to the limited temporal and spatial bandwidth.
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1000m/s

Figure II-8: Example showing the mechanism of SSRI and CDP stacking.
a. Subsurface configuration
b. Three CSP gathers.
c. Corresponding downward extrapolated single-fold Z0 responses

(the source positions at the surface are indicated by arrows).
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d. Multi-fold CDP stacked ZO data.
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CHAPTER Il

WAVE FIELD EXTRAPOLATION TECHNIQUES,
INCLUDING CRITICAL ANGLE EVENTS, BASED ON THE
ACOUSTIC ONE-WAY WAVE EQUATIONS

III.1 INTRODUCTION

Both in modeling and migration schemes, wave field extrapolation operators play
an important role. In depth extrapolation techniques these operators describe
the propagation effects of the wave field from one depth level to another. For
this purpose a horizontally layered computational model is often chosen, as
shown in Figure III-1. Notice that we consider the acoustic case. It should be

stressed that the depth levels zo,zl,zz...zi_l,zi,...zI generally do not

20
¢, {x,y,2) , py(x.y.2)
: z,
calx,y,z) , pyx.y.2)
T Zy
Zi-1

ci(x,y,z) , pi{x,y,z)

/N

N ——
_N

Z

Figure III-1l: Computationally convenient acoustic subsurface model for depth

extrapolation techniques.
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Figure III-2: In the one-way approach to wave field extrapolation downgoing and
upgoing waves are treated independently.
a. Forward extrapolation of downgoing waves
b. Forward extrapolation of upgoing waves
c. Inverse extrapolation of downgoing waves

d. Inverse extrapolation of upgoing waves

coincide with the reflecting boundaries in the macro subsurface model. As a
consequence, the medium parameters c and p (compressional wave velocity and
mass density; for notational convenience we delete the bars above symbols which
describe the macro subsurface model) between two depth levels may be arbitrary
functions of the spatial coordinates (X,y,z). Most approaches to wave field
extrapolation are based on the assumption that the downgoing source wave field
and the upgoing reflected wave field may be treated independently. This one-way
approach is extensively discussed by Berkhout (1982). In the frequency domain
the one-way operations can be formulated in terms of spatial convolutions.
We consider four cases.
i. Forward extrapolation of downgoing waves pt (the positive z-axis is
pointing downward) is symbolically described by

+ + +
P =W *p I1I-1
(z,) (z52, ) (z,_ 1) ( a)
see also Figure III-2a. (For notational convenience we abbreviate wave
functions P(x,y,z,w) as P(z) or P; the symbol * denotes spatial

convolutions along the x .and y coordinates).
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ii. Forward extrapolation of upgoing waves P~ is symbolically described by
= =W * P -
Pz ) =Wz, ,,2) %P (z)), (11I-1b)

see also Figure III-2b.
iii. Inverse extrapolation of downgoing waves Pt is symbolically described by

+ I % pt _
P (zi-l) F (zi-l’zi) P (zi), (1II-1c)

see also Figure III-2c.
iv. 1Inverse extrapolation of upgoing waves P~ is symbolically described by

P(z,)=F(z,z, ) *P (z ), (111-1d)

see also Figure II1I-2d.

Various expressions for the one-way operators w+, W

, ' and F are
discussed further on in this chapter.

In case of arbitrarily inhomogeneous media, the one-way approach is only
justified for waves traveling with limited propagation angles, in seismic
literature referred to as sub~critical angle events. The wave equations which
govern these sub-critical angle events are commonly known as the one-way wave
equations for downgoing and upgoing waves. In this chapter we briefly review
the one-way wave equations, the underlying assumptions and the solutionms.

Furthermore a discussion of the physical interpretation is presented.

The treatment of waves with large propagation angles is significantly different
from the treatment of sub-critical events. In literature much attention has
been paid to the behaviour of the wave field in the vicinity of so called
turning points. An extensive historical survey is presented by McHugh (1971).
At a turning point the propagation direction of the energy flow of an incident
wave field is fully changed from downwards into upwards or vice versa, due to a
vertical gradient in the propagation velocity. In the following, such events
are referred to as 'critical'. Unlike sub—-critical angle data, the treatment of
seismic data including critical angle events is rather complicated, because
propagating downgoing and upgoing waves are coupled near the turning point.
This implies that modeling and wigration schemes for sub-critical angle data

‘ cannot simply be extended for the incorporation of critical angle events if the

o
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coupling of propagating downgoing and upgoing waves is neglected. Several
alternative modeling approaches have been proposed, based on the WKBJ-

technique, which give an adequate treatment of critical angle events. Although
satisfactory for modeling, these approaches are not suitable for migration
applications. In this chapter we discuss an alternative subdivision of the
total wave field near the turning point into downgoing and upgoing waves. Based
on this approach, we define one-way forward and inverse wave field extra-
polation operators which include critical angle events for 1-D (vertically)
inhomogeneous media. Applications of these operators in modeling and migration
schemes are also discussed in this chapter. In chapter IV we compare the
one-way results with two-way wave field extrapolation operators which include

critical events for arbitrarily inhomogeneous media.

III1.2 GENERAL ASPECTS OF THE ACOUSTIC WAVE EQUATION

For loss-less inhomogeneous fluids the linearized equation of motion reads, for

the source-free situation,

1 oV
= = - I1I-2a
5 vp e’ ( )
and the linearized stress—strain relation reads
> ap -
KV.v = = 22, III-2b
5 ( )

Here p=p(x,y,z,t) represents the acoustic pressure as a function of the spatial
coordinates (x,y,z) and time t, and 3=;(x,y,z,t) represents the particle
velocity, also as a function of space and time. Furthermore, p=p(x,y,z)
describes the space dependent mass density in equilibrium and K=K(x,y,z)
describes the space dependent bulk compression modulus. The temporal Fourier

transformation of a function f(x,y,z,t) from time to frequency we define as

o]
= jwt
F(x,¥,2,w) = f f(x,y,z,t)e dt, (I11-3a)
)
and its inverse as
(o)
f(x,y,z,t) = E%' [ F(x,y,z,w)e+jwtdw. (III-3b)

-0
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Here w represents the radial frequency. With these definitions the equation of
motion in the frequency domain reads

%VP = -ju¥, (I11-4a)

and the stress-strain relation in the frequency domain reads
T .

KV.V = -juP, (III-4b)
where P=P(Xx,y,z,w) represents the temporal Fourier transform of the acoustic
pressure p=p(x,y,z,t) and where G;ka,y,z,uo represents the temporal Fourier
transform of the particle velocity ;;3kx,y,z,t). Relations (III-4a) and

(III-4b) can be combined into the well-known frequency domain representation of

the acoustic wave equation

pV(-:; W) + %P = o, (111-5a)
where

k = we (I11-5b)
with

¢ = ~/§75. (I1I-5¢c)

Here c=c(x,y,z) describes the space dependent propagation velocity. Wave
equation (III-5) is valid for inhomogeneous liquids in which shear stresses
cannot exist (the shear modulus U equals zero). It‘is shown, however, in
chapter V that similar wave equations hold for (independent) compressional and
shear waves in homogeneous solids. For instance, P in relation (III-5) may
represent the (scalar) potential for the particle velocity of dilatational or
compressional waves in homogeneous solids when the propagation velocity c is

replaced by Cp, given by

cP = J(x +2wW/p. (I11-6a)

Here the Lamé constants A and y are related to K and Poisson's ratio

o according to

~
L}

A+ 21/3, (II1-6b)

Q
]

V(A + . (I11-6c)
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(Notice that in liquids the shear modulus U vanishes (U=0), so K=\ and o=k). If
we define a constrained compression modulus Kc, according to

Kc =K + 4p/3, (I11-7a)

then it follows that the velocity c, of compressional waves in solids canm be

written in a similar form as the velocity ¢ in liquids, according to

cp = ~/Kc/p. (I11~-7b)

Hence, assuming that wave conversion may be neglected, all the results obtained
from the acoustic wave equation in chapters III and IV can be directly trans—
lated to compressional waves in solids when the bulk compression modulus K is
replaced by the constrained compression modulus K.. This constrained acoustic
approach is exact for homogeneous solids, where wave conversion cannot occur,
while it is approximately valid for weakly inhomogeneous solids. The
constrained acoustic approach breaks down in strongly inhomogeneous solids,
where wave conversion cannot be neglected any longer. In this case the full

elastic approach, as discussed in chapter V, must be followed.

We consider again acoustic wave equation (III-5). In order to describe wave
field extrapolation along the depth coordinate we separate z-derivatives from x

and y-derivatives according to

9,1 3P 2 3,1 aP 2,1 3P
2= = —k“P - Gl - 5 2= . 11-8
e 9z p 0z P P 3 p Bx) o y p By) a )

Because seismic data are always band-limited, the z-derivatives can be
expressed as a lateral convolution operator working on P at depth level z,

according to

9,1 o3P, _
~ 9y ==-g *p, 111-9
e 32(0 az) 2 ( 2)
where
H (X,7,2,0) = |K2d (x,y)+d_(x)3H_(y) - 220 (x) - 2204 (y)] . (111-9b)
2 o 2 2 ax 1 dy 1 z

Relation (III-9) represents a space variant spatial convolution along the x and

y coordinates. The operators d (x) and d (y) represent space invariant
band-limited spatial differentiation operators with respect to x and y
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respectively, where m represents the order of differentiation; operator
d (x,y) represents a spatial delta function:

do<x,y) = 8§(x)5(y)- (III-9¢)

The parameters kz, 91np/3x and 3lnp/dy represent space variant weighting
factors which should be applied after the differentiations have been carried
out. The spatially band-limited operators dm(x) and d (y) can be designed via
the wavenumber domain. Therefore we define the double spatial Fourier transform

of a function F(x,y,z,w) as

j(kxx+kyy)

F(x,y,z,w)e dxdy (III-10a)

S—— 8

Flk_k ,z,0) = f
Xy

b

and its inverse as

3t y)

F(X,¥,2,w) - (El—)2 j[ Tk Lk ,z,m)e- dk dk . (III-10b)
m Xy Xy

Here the wavenumbers k_ and k, Tepresent the horizontal compoments of the

wave vector k. With these definitions the differentiationms

Jm ..

— F(x,y,2,w) (111-11a)
m

9x

and
o
— F(x,y,2z,w) (I11-11b)
3ym

in the space-frequency domain correspond to the following multiplications in

the wavenumber-frequency domain

(-ik )™ Fk ,k ,z,w0) (III-11lc)
X Xy

and

=3k O™ F(k_,k ,z,0) (111-11d)
y xy

respectively. The band-limited versions of (-jkx)m and (-jky)m for m=2 are
schematically presented in Figure III-3a. The corresponding band-limited

\
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Figure III-3: Spatially band-limited differentiation operators.
a. Representation in the wavenumber domain.

b. Representation in the space domain.

differentiation operators d(x) and d (y) for m=2 (which are obtained after a

double inverse Fourier transformation) are shown in Figure III-3b. Note that
dm(x) and dm(y) represent one-dimensional convolution operators. For a

rigorous discussion on the effects of band-limitation the reader is referred to
Berkhout (1982). In the following, whenever appropriate, band-limitation is

assumed without notification.

In its present formulation, wave equation (III-9) is not yet suitable for wave

field extrapolation because it is a second order differential equation. In
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principle there are two ways to transform this wave equation into easily
manageable first order differential equatioas:

i. Decomposition of the total wave field into "downgoing” and "upgoing" waves

Pt and P”:
p=p"+p

such that
%5; = _'HI * p+, (I1I-12a)
% R (11I-12b)

ii. Reformulation of the scalar wave equation into a matrix equation

P 0 od * P
3
= = (I1I-13)
1oae| |-, 1 9P
o 3z 7?“2 0 p 3z

In (I1I-12) we symbolically formulated one—-way wave equations. The definition
of operators H{ and HI depends on the approach to decomposition. In section
1T11.4 we discuss the conventional approach where HI and HI cannot be

decoupled for critical angle events. In section III.7 we introduce an
alternative approach where HI and HI decouple for sub-critical as well as
critical angle events in 1-D inhomogeneous media.

In (III-13) we formulated the matrix representation of the two-way wave
equation. This equation is exact; hence it is valid for sub-critical as well as
critical angle events in arbitrarily inhomogeneous fluid-like media. Solutions

are discussed in chapter 1IV.

I11.3 ACOUSTIC ONE-WAY WAVE EQUATIONS FOR A HOMOGENEOUS MEDIUM

In a homogeneous medium, equation (II1I-9) can be simplified to

oP
S a4 * -
32 jHl P, (I1I-14a)

where the square-root operator H, is implicitly defined according to
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Hy * H) = H2. (III-14b)

We now study the propagation direction of P. Therefore we choose j=++/-1. With
definition (III-10), in the wavenumber-frequency domain equation (III-14) reads

=+ P, (111-15a)
oz
where the transformed square-root operator ﬁl is explicitly defined according

to
H = H , (III-15b)

o / 2 2 2
= - - - _1
H1 kz k k ky’ (I11-15¢c)

or, in spherical coordinates

or

ﬁl = k cosf, (111-154d)

where 6 is the angle between the propagation direction and the z-axis

(Berkhout, 1982). The solution of wave equation (III-15a) is given by

P(z) = W(z,z )P(z ), (I1I-16a)
[+] o]
with
ﬁ(Z.zo) = exv(j:j?i'lAz), (IIT-16b)
Az = z-zo. . (I11-16c)

~2 ~
When we consider propagating waves (Hlip), it follows that -jﬂl refers to
downgolng waves, because the argument of W decreases with depth. Similarly,

+jH1 refers to upgoing waves. For forward one-way wave field extrapolatiom,
operator W is generally rewritten as

Wiz,z ) = exp(-3H lazl). (111-16d)
Notice that this formulation applies for forward extrapolation of downgoing

waves (Az>0), as well as for upgoing waves (Az<o). The operator ﬁ, as defined
by (II1-16d), is commonly known as the phase-shift operator (Gazdag, 1978). The
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inverse double spatial Fourier transform of relation (III-16a) is given by
P(z) = W(z,zo) * P(zo), (I11-17)

where W represents the well-known Rayleigh II operator (Schneider, 1978). Note
that relation (III-17) describes wave field extrapolation in the z-direction;
the convolution is carried out in the x and y~directions. The operators W and W
are extensively discussed for both propagating and evanescent waves by Berkhout
(1982). Furthermore it is shown by Berkhout that the spatially band-limited
inverse one-way wave field extrapolation operators can be well approximated by

the complex conjugated of the forward operators W and ﬁ.

Summarizing, conformable to (III-12a,b) in a homogeneous medium the one-way

wave equations for downgoing and upgoing waves PY and P~ read

%5;.= -jHI x pt, (I11I-18a)

3_;’;_ - E (111-18b)
respectively, with

HI = HI = Hl’ (III-18c)

where Hl is the squaré-root operator as defined by (III-14b). Notice that

these relations are exact. Furthermore, conformable to (III-1), solutions of

(I1I-18a) and (III-18b) for forward extrapolation are given by

+ + +
P = * -
(z,) =W (z,z, ) *P(z, ) (111-19a)

Pz, ) =W (2, ,z)*P(2), (11I-19b)

1

respectively, with

where W is the Rayleigh II operator. Finally, relations (III-19a) and (III-19b)
can be inverted in a spatially band-limited way according to
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+ + +
P (zi-l) F (zi-l’zi) * p (zi), (I11-19c)

P(z)=F (z,,z, )*P (z ) (111~194)

respectively, with

- E
Fr=f =v,

where the superscript * denotes complex conjugation.

IIX.4 ACOUSTIC ONE-WAY WAVE EQUATIONS FOR AN ARBITRARILY INHOMOGENEOUS
MEDIDM

In an arbitrarily inhomogeneous medium one-way wave equations (I1I-18a) and
(I1I-18b) do not hold. It has been shown by Brekhovskikh (1980), amongst
others, that decomposition into downgoing and upgoing waves is not uniquely
defined. Here we extend the approach which is usually followed for 1-D
(vertically) inhomogeneous media to arbitrarily inhomogeneous media. In section
I1I.7 we discuss an alternative decoupling approach which properly incorporates

critical angle events in 1-D inhomogeneous media.

In the following we choose the decomposition such that the particle velocity of
our choice of the downgoing wave is related to the pressure of this downgoing
wave only. A similar choice is taken for the upgoing wave. For the total wave

field we have the following relations between particle velocity and pressure

— g_z - jmpvz’ (III_ZOa)
v
Hy, * P = jup —a—zi (I11-20b)

where relation (III-20a) describes the z-component of the equation of motion
(11I-4a) (V,: z-component of particle velocity ;), and where relation

(I11-20b) is obtained after substituting the X and y-components of the equation
of motion into the stress—-strain relation (III-4b). Notice that relations
(I1I-20a) and (III-20b) are consistent with wave equation (III-9).

Now we define “downgoing” and "upgoing" waves such that (according to the

homogeneous situation)
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Jwp V+ def + jH1 * P+, (I111-21la)
z
juwp v &£ _ H xR, (11I-21b)
z
where
HOYH = H, (111-21c)

with l-l2 defined by relation (III-9b). If we also demand that
+ -
P=P +P, (111-22a)
+ -
vV =V +V, (III-22b)
z z z
then substitution into the modified equation of motion (III-20a) yields

33241’)' +PT) =g+ @t -y, (111-23a)

while substitution into the modified stress—strain relation (III-20b) yields

* ++'='_?_[1_ *P+—P':| -23
B * (BT +P) Jpazpﬁl ( ), (111-23b)
or
@t -py=-m * @+ - * [p 2y )] * (2" - P7), (11I-23¢)
oz 1 -1 zp 1 ?
where
H | *H = 8(x)60). (111-23d)

Addition of relations (III-23a) and (I11I-23c) yields

+
9P _ _y % pt - * [ 9,1 ] * ot - p” -24
v JHl P %H_l o 5;(0 Hl) (P P ). (I11-24a)

Substraction of relations (III-23a) and (I1I-23c) yields

22: = * P + * [ ] 1 ] * + _ 5 -
ne jHl P ’m_l o EZ(p Hl) (43 P ). (I1I-24b)

Notice that these relations are exact, but our choice of downgoing and upgoing

waves are coupled by the reflectivity properties of the medium. The relations
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(III-24a,b) can be written conformable to (III-12a,b), when we define

P=p +p = [S(x)8(y) + 1‘+] x pt (III-25a)

for downward propagation, and

P=p +P = [8(x)S(y) + ] % p~ (111-25b)

for upward propagation. Now the one-way wave equations read

+

OF - gt xpt -

= ,1111 P, (111-26a)
3P - -

2 =+ * -

N2 JH1 P, (111~26b)

where the operators HI and HI are defined as

M= B HE K Lo G ED] X [5G0 - TY],  (111-26c)

- - 3,1 I -
) o=, -8 % [p 326 B X [8(8G) - T7). (111-26d)

Notice that the coupling of these one-way wave equations is described by the

operators F+ and T”. In the following we consider three cases in which the

one-way wave equations decouple.

A.

The medium parameters are functions of the lateral coordinates only, that
is, c=c(x,y), p=p(x,y). For this situation relations (III-26a) and
(III-26b) decouple since HI and HI both simplify to H;. Notice that

this decoupling is exact. A special case was already found in section
II1.3 for a homogeneous medium.

Only primary waves are considered, that is, I't and I~ are neglected in
relations (III-25a) and (III-25b). The one-way wave equations (III-26a)
and (III-26b) decouple because the coupling operators F+ and T” in
relations (III-26c) and (III-26d) are absent. This approach is valid for
sub-critical angle events only, as is shown in sectiom III.S5.

Multiple reflections are incorporated in the primary waves, as described
by relations (II1-25a) and (III-25b). Now a general solution cannot be
given. In section III.7 we discuss a special case which is based on the

WKBJ approach with a particular choice of downgoing and upgoing waves,
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which, well away from the critical region, reduce to the P+ and P~ terms
as defined above, for rt=r" = o. This approach enables decoupled
one-way wave equations to be constructed for sub-critical as well as

critical angle events in 1-D (vertically) inhomogeneous media.

SOLUTION OF THE ACOUSTIC ONE-WAY WAVE EQUATIONS FOR SUB-CRITICAL
ANGLE EVENTS

The least complicated case of decoupled downgoing and upgoing waves in

inhomogeneous media occurs when the medium parameters are functions of the

horizontal coordinates only, as was shown in the previous section (case A). For

this situation the decoupled one-way wave equations read

and

+
B,aiz - - * P, (111-27a)
3p . -
5o W *P. (111-27b)

. . . +,. 0 . .
Assuming that the derivatives 3"pZ/32" exist and are continuous between

Zi-1

and z, we can define forward one-way wave field extrapolation of

downgoing waves by means of the following Taylor series summation

© o n[.n_+
ptz) = 3 22 [ﬂ] , (111-28)
z. 1

n
n=o n! dz

with Az=z-zi—ti°’ or, with one-way wave equation (III-27a),

where

+ + +
P =W R * p s -
(=) (2,52, ) (z, ) (111-29a)
+ < Azn
Wiz ,z, )= = ", (111-29b)
i 1-1 n=o0 n! n

with Az=z,-z; .20 and with H, defined recursively by

etc.

H =H *H _, (III-29c)
=H * -29
H L H 5 (111-29d)

and
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Figure III-4: Computationally convenient acoustic subsurface model for

recursive wave field extrapolation based on the one-way wave

equations.
Ho = do(x,y) = §(x)8(y). (I1I-29%e)

Similarly, forward one-way wave field extrapolation of upgoing waves is
described by

- =W *x p~ -
P (zi-l) W (zi-l’zi) P (zi), (I1I-29f)
wﬁere © n
LECHNERED) iﬂé)— M (111-29g)
n=o0 n.

Notice that for this situation W+(zi,zi_1) equals w—(zi—l’zi)' In
practical implementation the scheme should be applied recursively for small
steps Az. The total error per extrapolation step depends on two different
sub-errors:

1. The error in the estimates of the derivatives with respect to z. This
error is due to the implicit character of the square-root operator Hl:
which should be expanded for practical implementation.

2. The error due to the truncation of the Taylor series.

For a detailed discussion the reader is referred to Berkhout (1982). For

two-way extrapolation the Taylor series summation approach is extensively

discussed in chapter IV. Above operators can be elegantly used for recursive

one-way wave field extrapolation in arbitrarily inhomogeneous macro subsurface
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models. Therefore we choose a computational model, as shown in Figure III-4,
that is, we assume that in the i'th layer, with zi-1§!<zi’ the medium

parameters may be approximated by
c, = ci(X.y), (111-30a)
= . I1II-30b
Py pi(X.y) ( )

This assumption is justified when the layers are chosen sufficiently thin.

Recursive extrapolation of primary data can now be defined according to
PPz ) =wz ,2)* @), (111-31a)
m m o o
P(z)=W(z ,z) *P (z ), (111-31b)
o o m m
where the operators W+(zm,zo) and w-(zo,zm) are given by

Wz ,2) =Wz ,z )*T(
m o m’ m=-1 m

D ...T+(zl) * W+(zl,z°), (I1II-31c)

W (zo,zm) =W (zo,zl) * T (zl) * ...T (zm-l) * W (zm_ ,zm). (I11-31d)

1
Here T' and T~ represent transmission operators, which account for the
discontinuity of the medium parameters at the (computational) layer interfaces.
A discussion of these operators, which are often neglected in practical
implementation, is beyond the scope of this thesis. The basic relation for

modeling of primary data reads (see also section II.2)

P(z) = > [w'(z ,2 ) *R(z ) * W (z ,Z )] * P+(z ), (I11-3le)
[o] m [o] m m m [e] [+)

where R(Zm) represents the reflectivity operator at depth z=z . Since

m
multiple reflections are neglected, relations (III-31la) and (III-31b) are not

exact. In order to quantify the approximation, we consider the relations in the
wavenumber-frequency domain, assuming a 1-D inhomogeneous medium:

vz ) = T ,z @), ' (111-32a)
m m (o] [o]

Pz )=Wt(z ,z )F(z), (I1I-32b)
[o] o m m
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with
e ,z2)=we .2 e ).'e We.,z), (111-32¢)
m o m m-l m-1 1 1" o

Tz ,2)=W(,2)TE).Fe W ,z). (1I1-32d)
o m o 1 1 m-1 m- m

1

Assuming the 1-D inhomogeneous medium is continuously layered, then,

according to appendix B, these operators can be written as

(2 M, (z ) Zn
Wiz ,z )= —(fm-el(z—" exp [ -3 (z)dz, (I1I-33a)
n P(2 )8, (zp) 1
o]
(2, ), (2..) Zs
= [0l 1 "m] g -
¥,z ) TR A [ + i (2)dz, (111-33b)
zm
with
ﬁz(z) = Quzlcz(z)) - k2 - k2 >o0 for z <z <z. (I1I-33¢c)
1 X y [ m

Notice that, by definition, relations (I1II-32a) and (III-32b), with operators
w*(zm,zo) and $f¥z°,zm) given by relations (III-33a) and (II1-33b),

describe wave field extrapolation of primary propagating waves in continuously
layered media. From these relations it follows that primary downgoing and
upgoing waves in continuously layered media may be defined for variable z

according to

s+ -~-+(ﬁ1(z))'i (O aa

P (z) =C ?(—;‘-)-— exp f —jHl(z )dz', (111-34a)
z
o

N A N .

P (z) =C (7;(;T> exp ]- +jH1(z')dz', (111-34b)

|

where ??} T, 2,,2; are arbitrary constants. Differentiation with respect
to z yields

%’; - [—jﬁl - s(ﬁ.‘;'.) -1 aiz@)]?*, (111-35a)



F .l - Nl'la(ﬁxm _
v [+jH1 k(%) E—p—) P. (I11-35b)

Notice that these relations represent the spatial Fourier transforms of one-way
wave equations (III-26a) and (III-26b), without the coupling operators ™ and
™ (case B).

Multiplication by 1/p and again differentiation with respect to z yields

ot
9 {1 9P ~ ~ ~+
pa—z<a *3;) [HZ Ec Ep]P > (I111-36a)
with 5 l 32?112 s, .a'ﬁz 2
E =~— + T3 boulirad BB (I11-36b)
¢ 4H% dz H,
=1L 3% _3(123p)2 -
Ep 70 322 4<P Bz) . (I11-36¢)

Notice that this relation represents the spatial Fourier transform of two-way

wave equation (11I1-9), assuming
IE +E | << IH_|. (I1I-36d)
c P 2

We may conclude that recursive wave field extrapolation of primary waves, as
described by (I1I~31), is not justified when conditiom (III-36d) is violated.
Notice that this occurs when ﬁéﬁo (E;+w), Since ﬁ; = ﬁf = kzcosze,

recursive relations (III-31a) and (III-31lb) are invalid for critical angle
events (6+90°).

Relations (III-34a) and (III-34b) can be found directly from the two-way wave
equation following the approach suggested by Liouville (1837) and Green (1837).
They assumed a solution exp[®(z)] and solved a non-linear differential equation
in ¢(z) assuming IB:¢|<<|32¢|2. Various other authors solved the two-way

wave equation iteratively. Amongst others, Bremmer (1951) and Brekhovskikh
(1980) showed that relations (III-34a) and (III-34b) represent the zeroth order
solution of an iterative procedure, the so-called geometrical optics approach.
For a seismological application the reader is referred to Chapman (1976). In
the following, relations (III-34a) and (III-34b) are called the "LG approxi-
mation" (for "Liouville-Green") for subcritical angle events. In seismic

literature, these relations are commonly known as the WKB or WKBJ
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approximation, referring to papers by Wentzel (1926), Kramers (1926), Brillouin
(1926) and Jeffreys (1924). However, the extra important item introduced by

these authors is a technique to connect LG approximations for §2>0 with LG
approximations for H,<0 by means of an approximation which is valid for H,”0.
Therefore, following Olver (1974), we reserve the name WKBJ approach for
methods which properly handle sub-critical as well as critical angle events.
This is discussed in section III.6.

Finally, we present closed expressions for the LG-operators a+(zi,zi_1) and
w—(zi-l'zi)' Assuming that the operator H, may be linearized according to
H(z) = B(2) = Bz, ) + (z-z, )X, for z,  <z<z (111-37)
2 1 1'7i-1 i-1774? i-1 i?

then the LG-operators for sub-critical angle events are given by

AATEY ~3/2, =312
p(zi_l)ﬂ,l(z]l)exp =3 W (z ) H (zi_l)} (I11-38a)

Py y) 2 fa/2 3/2
o AT i IR = f (111-38b)

The inverse operators for propagating waves are given by

-1

Tz 2, W (z,_ .2, N>, (111-39a)

~
-1 Wz,z )]

i-1

-1

[W(zi,z )]*- (I11-39b)

Fzoz, )= W (z,_,2)] -

i-1

For small x. the complex exponential function in both (I1I-38a) and (III-38b)
can be written as

[1-’sz1 Azz’ﬁil(zi_l)]exp[-j'ﬁ'l(zi_l)Az] ) (111-40)

with Az = 2421+ For Xi = 0 this expression corresponds to the phase-
shift operator for homogeneous media, as discussed in section III.3.

Summarizing, in this section we discussed a wave field extrapolation algorithm
for propagating waves. Lateral variations of c and 0 can be properly incorpo-

rated because the algorithm is based on exact one-way wave equations. Vertical



73

variations of ¢ and p can be incorporated by applying the scheme recursively.
By taking the stepsize sufficiently small, this approach is correct for

primary waves within the seismic bandwidth. The solution is not valid for
critical angle events since multiple reflections are neglected. For 1-D
inhomogeneous media the recursive approach complies with the LG approximation.

The condition for this approximation is quantified by inequality (III-36d).

In the seismic literature several approaches have been suggested for the
incorporation of multiple reflections. Berkhout (1982) discussed a recursive
scheme for discretely layered 3-D inhomogeneous media. A feed-back system at
each layer interface generates an infinite number of multiple reflections. On
the other hand, Chapman (1976) discussed an iterative scheme for continuously
layered 1-D inhomogeneous media. In each successive iteration step a new order
of multiple reflections is generated. The WKBJ technique, discussed in the next
section, takes automatically into account all multiple reflections within the

critical region (ﬁé"O).

III.6 THE WKBJ TECHNIQUE FOR CRITICAL ANGLE EVENTS

In the previous section we have seen that the conventional approach to wave
field extrapolation fails for critical angle events because multiple
reflections are neglected. In order to satisfy the two~way wave equation, an
infinite number of multiple reflections should be incorporated, which is not
very attractive from a practical point of view. In this section we discuss an
alternative solution for 1-D inhomogeneous media, suggested by Wentzel (1926),

Kramers (1926), Brillouin (1926) and Jeffreys (1924).

In the wavenumber-frequency domain wave equation (III-9) reads

2

2 ()
e H(— (111-41a)
AW A WY
with 2
B =8 ()= 2= -, (111-41b)
2 2 c“(2) x y

assuming IEp|<<k2, with Ep defined by relation (III-36c). For large iﬁzl,

solutions are given by the LG-approximations (III-34a) and (III~-34b). Problems
occur for lﬁél’*o, where the LG solutions grow out of bounds. An acceptable
solution for all ﬁ; can be found with the WKBJ technique, which involves the
following steps (see also McHugh, 1971).
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1. Assume'ﬁz(z) may be linearized for small Iz—ztl, where z, is the
turning point of equation (III-4la):

B (2) » (=2 )X, (11I-42a)
with
o 2
- 2 - W ac(z) _
X =551, 2(——3 )——az . (111-42b)
t c (zt) t

2. Expand the LG approximations (III-34a) and (III-34b) under assumption

(111-42).
3. Replace equation (III-4la) under assumption (III-42) by the Airy equation
2
. S (111-43a)
14
where
¥ =%/ : (111-43b)

is the scaled pressure and

/3 (11I-43c)

1
g = —(z-zt)X
is the scaled depth. Solutions are given by the Airy functions A1(ZL),
Bi(Z), see Appendix C.
4, Choose linear combinations of LG-solutions and Airy functions such that
the LG-expansions match the asymptotic Airy expansions at both sides of

the turning point z,.

We discuss this method with the aid of an example. Consider a 1-D inhomogeneous
medium, with velocity c(z) constant for z<z° and increasing monotonously with
depth for 2>z . Assume a downgoing plane-vave F+(z°) incident at z=z, with
propagation angle 84, 80 ﬁé(zo) = mzc-z(zo)coszeo. According to

relation (I1I-41b) ﬁz(z) decreases monotonously with depth for z>z . We

assume that the condition IE; + Epl <<|ﬁé| is violated in the region

z1<z<z2 and that in this region a turning point is present at z=z,, that 1is,
ﬁz(zt) = 0. Furthermore we assume that ﬁé(z) may be linearized in the region
Z)%zlz,, according to Hy(z) = (z-zt)x. Notice that X is negative. The
0peratot‘§2(z) is shown in Figure III-5a.
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Hy(z) P(z)
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N4 IO S - B VA
a b c
Figure III-5: Critical angle events in a 1-D inhomogeneous macro subsurface
model.
a. The operator ﬁ;(z), including a turning point at z=z .
b. Ray representation.
c. The total wave field ﬁkz).

We assume that for z <z<z, the total wave field is given by the superposition

of a downgoing and an upgoing wave (see Figure III-5b), so

P(z)

=M (2) + 5 (2),

(I11I-44a)

where ?*(z) and P (z) are given by the LG-solutions (III-34a) and (II1I-34b):

. (z)

?*(2) = ﬁ*( !

H, (2)\-
8 (z) = ﬁp< 17

4

J* exo [

z
o

p(z)

z

p(z)

|

—jﬁll (z')dz',

) . exp f +jﬁ1(z')dz'.

(III-44b)

(I11-44c)
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The amplitudes T and T are given by

T = @ (z VoG NEY ), (I11I-45a)
1o o o
- i -
c (Hl(zl)/p(zl)) P (z), (111-45b)

where ?+(z°) is the incident wave. Our aim is to determine ?h(zl) and to
study the total wave field near the turning point z=z .

Around 2y the LG-solutions can be approximated by

~

H (2)\-%

ot = TH 1 _: 2 ~3/2 _

P (z) =D (5?;7> exp[ EY'HZ (zﬂ , (III-46a)
H (z)\-%

P L 2 ~3/2 -

P (z) =D (F(?)"> exp[+j 3 H2 (z)] R (II1-46b)

with

D = ('fl'l(zl)/p(zl))!i exp[+] é%gzlz(zl)]P (zl), (I11-46c)

~— - ~e i - 2~3/2 =5 -

) (Hl(zl)/p(zl)) expl-3 282G ¥ (), (11I-46d)

where 3+(21) and $h(zl) satisfy LG-solutions (III-44b) and (III-44c).
Around z,, expansions (III-46a) and (III-46b) should match a linear
combination of the asymptotic expansions (f + —») of the Airy functions Ai(Z)

and Bi(g), according to
..!5 ~t ~— ~ ~ |
p 2)[P (z) +P (2)] = QAAi(g) + QBBi(g), for z » zl. (111-47) !

At the other side of the turning point, around Zy, the same linear combination
of Airy functions, expanded for {»», should again match LG-solutions. We shall
not discuss this in detail. We only remark that the radiation condition !

requires that 53 is zero, since Bi(%Z) is exponentially growing for positive
¢ (see relation (C-5c)). We may conclude that for z>zt the wave field is

proportional to the exponentially decaying function Ai(z) and its corresponding :

LG-solution away from the turning point. In the following we leave the

evanescent field for z>zt out of consideration.
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With the asymptotic expansion of Ai(Z), (see relatiom (C-6a)), it follows from
relation (II11-47), with 6% = 0, that D and EA are given by

5= i (11I-48a)
5’A = (1+j)\/27r|xl_1/6'f- (I11-48b)

From relations (III-46a), (III-46b) and (III-48a) it follows that
~— . 2 ~3/2 ~t
= 3 +23 = . -49
P (zl) j exp[+2] 3 H) (zl)]P (zl) (III-49)

In the next section we present a more elegant representation of this relation.
Apparently total reflection occurs from the region around the turning point.
Since D~ = j3+, the conclusion is sometimes drawn that a phase shift of m/2

occurs at the turning point. Since expressions (I1II~46a) and (III-46b) are not

valid at the turning point, this conclusion is premature, as is seen in the

next section.

Finally, we conclude that the total wave field in the region z1<z<z2 is given
by ‘

B(2) = vo(z) Qa1(0). (I111-50)

The total wave field for all z is shown schematically in Figure III-5c. We
observe a standing wave before the turning point (z:gt), and an evanescent
wave beyond the turning point (z>2z ). In the above example we assumed a
simplified earth model with a for all depths monotonous continuous velocity
function c¢(z), which means that there are no reflecting interfaces, and that
only one turning point is present in the whole depth range. For seismic
applications we assume that the above described WKBJ-technique may be
applied locally when the velocity function c(z) is monotonous continuous at

least in the critical region around the turning point.

Summarizing, the WKBJ approach is suitable for modeling applications of
critical angle events in 1-D inhomogeneous media. In its present formulation,
the WKBJ approach is not suitable for migrationm applications of critical angle
events since in the critical region the total wave field is considered.
Therefore we propose a different way of decomposition in the critical region

which properly includes critical angle events.
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I11.7 THE WKBJ ONE-WAY WAVE EQUATIONS FOR CRITICAL ANGLE EVENTS

In the previous section we have seen that in the vicinity of a turning point
the total wave field may be described in terms of the Airy function A1(Z). For
propagating waves, £ <0, we formally define a choice of downgoing and upgoing

waves according to

P - 3/ qato + 3 K s, | (111-51a)
T (z) = 5/0(2) E'Auu(c) -3 T% Bi(2)]. (111-51b)

These wave functions have also been used by Kennett and Illingworth (1981) for
modeling applications. In this section we discuss wave field extrapolation
operators, based on above wave functions, which can be used for modeling as

well as migration applications. Notice that the total wave field, given by
~ ~af ~~— ~
P(z) =P (2) + P (2) = 4/p(2) QAAi(C), (I11~52)

satisfies the wave equation, so critical angle events are properly incorporated
in P and P~. In the following, italic type symbols refer to the incorpora- '
tion of critical angle events in primary waves. We now prove that Pt and P~
represent suitable choices for downgoing and upgoing waves, respectively. For a
wave in the positive z direction, the phase should decrease with increasing z,
that is, the derivative with respect to z of the‘ argument of B+ should be
negative. Using relation (C-3) we find
-——[Imag@*)/ReaI@*)] [.X_ Bi(g)/Ai(g)] = '|X|1/3 —-Ez—l— <0. (I11-53)
AiT(T)
We may conclude that '13'+ indeed represents a downgoing wave for all { <o, where
z=0 repregsents the turning point. In a similar way it can be shown that -
represents an upgoing wave. Substitution of the asymptotic expansions of Ai(C)
and Bi(g) for g+~ (see relations (C-6a) and (C-6¢)) in relations (I1II-5la) and
(II1I-51b) with y<0, yields LG-approximations (III-46a2) and (III-46b).

Differentiation of B' and ¥ with respect to z yields

aai ﬁl"p“ r (11I-54a)
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F - ¥, (I1I-54b)

with

s X 4 micomd -
o i {X1/3\{ ot JAi(C)Ai(?;)“'JBi(C)Bi(E)}’(IH_SAC)
: / i’ (@) + Bi2(D)

, , (I11-54d)

__X -1 - H _ 1
_(Xn/a\{ &t - smiosi@-mrosio)
/ ai%@) + B2(D)

where the primes denote differentiation with respect to f. Notice that, unlike
Pt and 7, ﬁ+ and P satisfy decoupled one-way wave equations, conformable
to relation (II1I-12), without any further approximation. Consequently, all
multiple reflections of the conventional approach are incorporated in the

primary waves BY and ™. The underlying assumption is that the medium

parameters are specified in a given depth interval around the turning point.

At the turning point, z=zt (or'gao), the ratio of T and ?& is given by (see
also relation (C-4a)):

(z,) A1(0) - j T—;‘(-I- B1(0)
(z.) A1(0) + j T)%l‘ Bi(0)

Iz
= i X 21 -
'13"" exp( Jm 3>. (I11-55)

Notice that total reflection occurs at the turning point with a phase-shift of

21/3.

From expressions (III-5la) and (I1I-51lb) wave field extrapolation operators for
P and B~ can be defined according to

Bz ) -?/’*(z »2, # (a )s (I111-56a)
P (zi_l) =W (Zi_l,zi)P (zi), (II1-56b)

with

p(zs) Ai(C + 3j IXT Bi(Zy)
e,z )= i 4 X 1 ], (111-56¢)
17711 Plzg ) | AL(E ) + j-&T Bi(Zy_ )
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— p(zi-l) Ai(;i-l) -] ﬁ'r Bi(ci—l)
W) N Tap | TRep 3 RN (111-364)

X

- M3 -2, (111-56e)

i-1 i-1 t

s —,1/3 - -
[ X (z1 zt), (I1I-56£)

where both z, , and z; are in the vicinity of the turning point z., with

z2;>2z4 1.+ Operators (III~56c) and (I1II-56d) we call the WKBJ operators.

The inverse operators are given by

it ~t
Fz,_»2) = [W (=2

-1 ~ *
PR B CACRRFLID) I (111~57a)

F (zinzi_l) W (zi—l’zi)] [w (zi’z ). (I11-57b)

i-1

12 ;
0.8 K

0.4

-0.4

Figure ITI-6: a. Graphical representation of the Airy functioms Ai(r) and

Bi(z). Notice that  represents scaled depth:

¢ = X132

torg = 0.

-Zt). The turning point depth z=z corresponds

b. For comparison, graphical representation of the goniometric

functions cos(ﬂlz) and sin(ﬁiz).
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Away from the turning point, the WKBJ-operators 'F\J+(zi,zi_l) and

W_(zi_l,zi) reduce to the LG-operators ﬁ+(zi,zi_l) and ar(zi_l,zi),

given by relations (III-38a) and (III-38b). With linearization assumption
(III-37), these LG-operators are approximate solutions of the Airy equation as
well. In fact they represent the leading term of an asymptotic expansion of the
WKBJ-operators. A method which uses Airy's equation close to as well as away
from the turning point is sometimes called a uniform asymptotic approach to the
turning point problem. A rigorous mathematical treatment of the uniform

solution is given by a.o. Wasow (1965).

Notice that for X = 0 critical angle events do not occur; the WKBJ operators
W (zi’zi-l) and ¥ (zi—l’zi) then reduce to the phase-shift operators

for homogeneous layers, as can be seen from relations (III-38a), (III-38b) and
(I11-40). For comparison, the phase-shift operators can be written in a similar

way as relations (III-56c) and (II11I-56d), according to

cos(ﬁlzi) -3 sin(ﬁlzi)

r\+
W = ool d I1I-58
02100 7 cos(Ryzg,) - J siatiyz, )’ ¢ 2)
T .y - cos(lei_l) + j sin(ﬂlzi_l) (1T1-58b)
i-1’"1 cos(lei) + 3 sin(lei)

Notice that §+(zi,zi_1) equals ah(zi—l’zi)' The strong resemblance
between the WKBJ operators Wt and the phase shift operators W is visualized
in Figure I1I-6, where the Airy functions Ai and Bi are compared with the

goniometric functions cos and sin respectively.

Summarizing, in this section we introduced an alternative approach to the
decomposition of the total wave field near a turning point into downgoing and

upgoing waves Pt and D

In the conventional approach P* and P are coupled for all z, according to
relations (11I-24a) and (III-24b). Particularly in the vicinity of the turning
point this coupling may not be neglected. The exact solution requires the

incorporation of an infinite number of multiple reflections.

In our alternative approach P* and 7~ are coupled at the turning point z,

only. This coupling is described by relation (III-55). The exact solution in
the critical region is simply given by P=Pr+ 7.
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All multiple reflections of the conventional approach are incorporated im the
primary waves ?& and f?, or in other words, critical angle events are

incorporated in Pt and 7.

Finally we consider again the example which was discussed in the previous
section. With the decomposition introduced in this section we may replace
relation (III-49) by

P - 'i/"(zl,zt)'ﬁ(zt)"ﬁ*(zt,zl)ﬁ*(zl) (111-59a)

with
'ﬁ(zt) = exp(j27/3), (11I-59b)

where we made use of the fact that around z,, ;*(z) and ;-(z) match the
asymptotic expansions of ?*(z) and ??(z), respectively. Relation (III-59) is
fully equivalent with relation (III-49). However, the formulation of (III-59)
allows a physical interpretation which links up with the conception of one-way
wave propagation. For modeling applications this means that primary waves
including critical angle events can be treated independently from interface
related multiples ('long period multiples'). For migration purposes one-way
formulation (III-59) can be easily inverted. With the aid of inverse operators
(I1I-57a) and (III-57b) the reflectivity at the turning point can be determined
from the downward extrapolated pressure data. Modeling and migration schemes
based on the one-way formulation of critical angle events are discussed in

sections III.8 and III.9, respectively.

The operators derived in this section are valid in 1-D inhomogeneous media
only. In multi-dimensional linearized inversion schemes, as well as in
migration schemes, they may describe the propagation of the reference wave
field in a 1-D inhomogeneous macro subsurface model. Furthermore it is assumed
that no reflecting interfaces are present in the critical region around the
turning point. Due to this assumption the applicability of the WKBJ operators
is restricted to simplified earth models with vanishing velocity gradients at

macro layer interfaces.

In chapter 1V we discuss another approach to wave field extrapolation of
sub-critical as well as critical angle events, which is based on the two-way
wave equation. In the two-way approach arbitrary depth models can be handled,

while lateral variations can be incorporated as well.
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III.8 PRE-STACK MODELING SCHEME BASED ON THE WKBJ ONE-WAY WAVE EQUATIONS

It has been shown in chapter II that a seismic experiment can be elegantly
described by a sequence of independent one-way processes, which is

schematically represented by

S+ - W+ *>R>W =D *’PCSP- (I11-60)
A wave field, generated by sources st at the surface, propagates downward into
the earth, which is described by one-way wave field extrapolation operator W+.
In the subsurface this wave field is reflected, described by R, and propagates
upward to the surface again, described by one-way operator W . At the surface
the wave field is registered by detectors D, resulting in a seismic section
P;SP (one common-shotpoint gather). This simplified model is valid for sub-
critical angle events only, because interaction between downgoing and upgoing
waves is neglected in the one-way wave field extrapolation operators W and
W . Various expressions for these one-~way operators have been discussed in
section 1II1.5. Based on model (III-60), Berkhout (1982) discussed modeling as
well as migration schemes for sub-critical data in 1-D, 2-D and 3-D
inhomogeneous media. In section II1.7 we modified this model such that critical
angle events may be included in 1-D inhomogeneous media. This is schematically

represented by

ST W R W DB (111-61)
Here W' and W~ represent WKBJ one-way wave field extrapolation operators
which include sub-critical as well as critical angle events, while R describes
the reflectivity at the turning point. In this section we discuss a recursive
modeling scheme based on the WKBJ one-way equations for 1-D inhowmogeneous
media. We consider a horizontally layered wedium consisting of M (vertically
inhomogeneous) macro layers, as is shown in Figure III-7. We assume homogeneous
half spaces for z<z and z2z,. In macro layer m+l, with z,<z<z .., the
propagation velocity and the density are given by cm+1(z) and pm+1(z),
respectively. These are continuous monotonous functions of depth, with
vanishing gradients in the vicinity of the interfaces. Notice that the concept
'vicinity of an interface' is related to the seismic frequency content. This
means that the assumed gradient free area around the interfaces is proportional

to the largest local wave length under consideration.
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Figure III-7: Acoustic model of the subsurface for the one-way wave equation

modeling scheme which includes critical angle events.

In the wavenumber-frequency domain (kx,ky,w), modeling consists of the
following steps

Given the plane-wave (PW) impulse response glzm+1) for the lower half

space z>z .., then the primary waves including critical angle events in
macro layer mtl can be modeled according to

ot

(o) - - 3 - X _
X (zm) =W (zm,zm_',l)[x(zm_1 e) + R(znﬁ_l)]w (I11-62)

(zm-i-l :zm):
with ¢»0. The extrapolation operators W and W as well as the
reflection operator R are discussed below.

Given X(o)(zm), then the (long period) multiples related to macro layer

interface 2=z can be optionally included according to
Xz ) =1 -G R )Xz ). (111-63)
m m m m

Multiple generation, as described by relation (I1I-63), is schematically
shown in Figure III-8. Notice that the reflection operator
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S (0) v
1 Xz — X(z,,)

R_(z,,.)

Figure III-8: Feed~back system for multiple generation at macro layer
interface m.

ﬁh(zm) = ;i(zm) describes reflection at the lower side of interface

z

Steps 1 and 2, which describe the total modeling procedure for macro layer mtl,

should be applied recursively.

3. The procedure (for each kx’ ky and w-value) starts at the shallowest
level 2z, where total reflection occurs, or at the maximum depth z=z) if
total reflection does not occur.

4. When the surface 2=z has been reached, then the source and detector

properties can be included, according to

Btz = Bz )iz Bz ), (111-64)
where §+(zo) represents the downgoing source pressure wave, Bkzo)
represents the detector transfer function and ?ESP(ZO) represents the
detected upgoing pressure wave in a common-shotpoint gather in the
wavenumber—frequency domain.

5. When this modeling procedure has been applied for all wavenumbers and
frequencies, then the space-time data (one shot record) are obtained after
inverse temporal and spatial Fourier transforms (see relations (IITI-3b)

and (III-10b)).

Discussion.
The extrapolation operators W in relation (111-62) are composed of N

sub-operators, according to
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N

Ve ,z)= 1 W +16,z + (1-1)6), (111-65a)
mt+l” m i=1 m m
[and N
= + (i- + -
W (zm,le) 1111 W (z (1-1)6, z ig), (I11-65b)

with 5'(Zm+1-z )/N. Assuming that in each micro layer (z +(i-1)8%<% oti®
the operator Hz(z)=m /c (z)-k -kz may be linearized in z, then the
sub-operators represent LG—operators for sub-critical angle events, given by
relations (III-38a,b), if ﬁ;(z) is sufficiently large positive, while they
represent WKBJ operators W and W for critical angle events, given by

relations (I1I-56¢,d), if ﬁé(z) is small positive. Notice that we assume

propagating waves for zm;z<zm+l.

An expression for i(zm+l—€), €%o0, in relation (III-62), is given by

lim ~ _ ~— o~ ~af -

>0 X(zm+1 €) =T (zm+1)x(zm+1)T (zm+1), . (I11-66a)

™z  )=1+Rz ) (111-66b)
2o+l = M2p1

where ?+, TL and R describe the transmission and reflection properties of the

interface, with R given by relation (B-3b).

The shallowest level z, where total reflection occurs, as introduced in

step 3, can represent either an interface or a turning point. In the latter
case, z  generally lays inside a macro layer (zm<zt<zm+1), with

ﬂz(zt)=o. Now the recursive procedure starts with

i(°)(zm) = 'ﬁ"(zm,zt)ﬁ(zt)ﬁ*(zt,zm), (111-67)

where ﬁ(zt) describes the reflectivity at the turning point, given by relation

{(I1I-5%9b), while the operators W and W are again composed of LG and WKBJ
operators, similar as in relation (III-65).

Notice that in the critical angle modeling scheme as introduced in this
section, evanescent waves are neglected. This is justified because

— macro layers are considered,

- the velocity gradients vanish in the vicinity of the interfaces, so no

turning points are present in this area,
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- the velocity functions are continuous monotonous, so not more than one
turning point is present in each macro-layer.

A similar modeling scheme for piece-wise smooth models is presented by Kennett
and Illingworth (198l). The main difference of both approaches lies in the
formulation. It was not our intention to present an improved modeling approach.
However, because our approach is basically founded on model (III-61):
+ + - -
s+W + R > W D+PCSP
it provides an excellent starting point for the critical angle migration
scheme, as discussed in the next section.
For more complicated 1-D inhomogeneous velocity models, a two-way wave equation

modeling scheme is preferred. This is discussed in chapter IV, where also a

numerical example is given for the more general case.

II1.9 PRE-STACK MIGRATION SCHEME BASED ON THE WKBJ ONE-WAY WAVE EQUATIONS

It has been shown in chapter II that full pre-stack migration by single-shot
record inversion (SSRI) and common-depthpoint (CDP) stacking is in principle

based on inversion of one-way model (III-60). The reflectivity R should be
estimated from the downward extrapolated source and detector data, which is
schematically represented by

sto>wr> @ «r «ptep . (111-68)

CSP
Here operator W+ simulates the downward propagation effects of the source wave
field from the surface into the subsurface, while F* eliminates the upward
propagation effects of the reflected waves from the subsurface to the surface.
This pre-stack migration scheme is valid for sub-critical data in 1-D, 2~D and
3-D inhomogeneous macro subsurface models. Practical results on 2-D synthetic
and real data are presented by De Graaff (1984). Practical aspects with respect
to 3-D applications are discussed in chapter VI of this thesis.
In this section we discuss a pre-stack migration scheme, based on modified
one-way model (III-61), which is valid for sub-critical as well as critical
angle events in 1-D inhomogeneous macro subsurface models. This is
schematically represented by
1

+ oo -
S > W > <R><«F <D= <« Pegpe (II1-69)




88

As opposed to the procedure discussed in section II.4, we follow a somewhat
different procedure, because we are particularly interested in angle dependent

turning point problems. The whole procedure is carried out per angle of
incidence in the wavenumber-frequency domain, while the zero-offset (Z0)
imaging step is replaced by a plane-wave (PW) imaging step, as discussed below.
Furthermore, because we consider 1-D inhomogeneous media, the procedure need be

applied for one CSP gather only, so the CDP stacking procedure is deleted.

When interface related (long period) multiples as well as transmission effects
are neglected, then the modeling scheme, as discussed in the previous section,

can be summarized by

~— ~ ~ ~t

PCSP(zo) = D(zo)X(zo)S (zo), (111-70a)
where

~ — ~ ~t

Rzg) = 2 WGz R W (a2 ) (I11-70b)

The non-recursive operators ﬁ+(zm,z°) and Eh(zo,zm) are composed of many
sub-operators i?(zm+16,zm+(1-1)6) and ﬁh(zﬁ+(i-1)5,zm+15) for micro
layers (see Figure III-7), which may represent either LG operators W and §°
or WKBJ operators ﬁﬁ'and W . The reflection operator E(zm) can either
describe reflection at an interface z, between two macro layers, or total
reflection ﬁ(zt) at a turning point z_ inside a macro layer. According to

this model, the forward extrapolated source wave follows from
§(z +16) = Wz +18,2 )81z ) (111-71a)
m m o o

while the inverse extrapolated detected wave follows from

2

a— ~ ~ -1
= +
P (zm+16) [D(zo)w (zo,zm 18)] csP

(z ). (I1I-71b)
o

From relations (III-70) and (III-71) it follows that the PW impulse response at

z=z_+i0 may be written as

X(z +18) & T (z +16)/5T(z +16)
m m m

= ['ﬁ”(zo,zm+1c)1“':?(20)(ﬁ*(zm+15,z0)]", (111-72a)
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where E(zo) is implicitely defined by relation (I11I-70a). Relation (I1I-72a)
describes non-recursive downward extrapolation of the PW impulse response. On
the other hand, recursive downward extrapolation of the PW impulse response is
described by

X = W -1)8 817Kz +(1-1)8) (" 8 -1)81 L (a1I-
x(zm+16) (W (zm+(i 1) bz H )] X(zm (1-1)8)[W (zm+i ,2ﬁ+(i 1)8)] *.(I1I-72b)
Using these results, we propose the following single-shot record pre-stack
migration scheme, which includes critical angle events, based on the WKBJ

one-way wave equations.

1. Given the PW impulse response §kzm+(i-l)5), then downward extrapolation
can be applied, according to

R(z +18) = T (z +18,z +(i-1)8) K(z +(i-1)8) F'(z +(1-1)8,2z +i6),
m m m m m m

with (111-73a)
o~ ~F -1 o~ . Loy ¥
F (zm+(i-1)6,zm+16) = [W'] (W (zm+(1—l)6,zm+16)] , (III-73b)

Il

F (2 +18,2 +(1-1)8) = (7 1° [ﬁ*(zm+ia,zm+(i-1)5)]*. (11I-73¢)

2. PW imaging can be applied, according to
<R(p_,p_,z +i8)> = Lo Zl X(k_,k ,z +i8,w) (111-74)
xy’'m 2m & %yt )

1
where the symbol 2: denotes that the summation is carried out for

constant px=kx/w and py=ky/w, and where Aw represents the circular

frequency sampling interval.

Steps 1 and 2, which describe the total migration procedure for one

micro-layer, should be applied recursively.

3. The procedure starts at the surface 2., where Ekzo) is estimated froam
the CSP gather EESP(ZO) by inverting relation (III-70a) in a
band-limited way (deconvolution). Notice that, although only one seismic
record is considered, this inversion problem is well-posed because the

spatial impulse response of a 1-D inhomogeneous medium is space-invariant.
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“min

-
-
—_— - ——

/ <mnx wmax
a !

b

Figure III-9: Two approaches to the same plane wave imaging principle.
a. Summation along lines of constant kx/w in the k. ,w-domain.

b. Summation along lines of constant p in the p,w-domain.

4. The procedure stops at the shallowest level where total reflection occurs,

or at the maximum depth 2=z, if total reflection does not occur.

Discussion.

In the procedure described above it is assumed that the CSP gather has been
transformed to the wavenumber-frequency domain. Both the extrapolation (step 1)
and imaging (step 2) take place in the wavenumber-frequency domain. Assuming a
2-D situation, imaging for constant p=kx/m is visualized in Figure III-9a.
Alternatively, the original CSP gather can be slant-stacked (p, T—-transfor—
mation; see Diebold and Stoffa, 1981), followed by a temporal Fourier trans-
form, yielding the CSP-gather in the ray parameter-frequency domain (p,w). Now,
in the operators for downward extrapolation (step 1), kx should be replaced by
pw. Imaging for constant p (step 2) is visualized in Figure III-9b. In both
approaches the final migration output should be identical and represent the

reflectivity distribution in the ray parameter-depth domain (p,z).

Example.

We consider the 1-D inhomogeneous subsurface configuration shown in Figure
I11-10a. A CSP-gather was modeled, using a modeling scheme based on the two-way
wave equation (see also the next chapter, Figure IV-13). A ray-representation
of the main events is shown in Figure III-10b. Figure III-10c shows the
slant-stacked data in the p,T domain, while Figure III-10d shows the migrated
data in the p,z domain. The horizontal events (2,4) represent the reflecting

interfaces between the macro layers, while the curved events (1,3) represent
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the angle dependent turning point effects. (Notice that the multiple reflected
critical angle event (5) is not present in the migrated data because the
migration procedure stops at the shallowest turning point; see step 4). A

further interpretation of Figure III-10d is presented in the next section.

Finally we remark that we derived this migration scheme from the simplified
modeling scheme (I11~70), where it is assumed that velocity gradients vanish in
the vicinity of interfaces and where interface related multiple reflections are
neglected. For migration applications sufficient accuracy is obtained also when
the velocity gradients do not vanish, like in Figure II1I-10a. A correct
handling of interface related multiple reflections in migration can in
principle be accomplished by an iterative scheme, which should be based on
inversion of the modeling scheme as discussed in the previous section. A
discussion is beyond the scope of this thesis. Berkhout (1982) gives an
iterative migration scheme which properly handles multiple reflections of
sub-critical angle events in 2-D and 3-D inhomogeneous media. An interesting
alternative approach to the multiple problem, based on the two-way wave

equation, is discussed in chapter 1IV.

III.10 INVERSION SCHEME FOR THE MACRO SUBSURFACE MODEL BASED ON THE WKBJ
ONE-WAY WAVE EQUATIONS

AAtypical property of many inversion techniques for the macro subsurface model
is that the abrupt changes of the medium parameters may be well retrieved from
the data while inversion of the gradual changes is highly inaccurate. The
reason for this is that most inversion techniques make use of sub~critical
angle data only, which contain only average propagation information of the
gradual transition zones: waves reflected by a major boundary below a gradual
transition zone are transmitted through this zone. Local reflection information
of a gradual transition zone may be obtained by involving critical angle events
in the inversion process: critical angle waves are reflected at turning points
inside a gradual transition zone. In this section we discuss a simple inversion
scheme, based on the WKBJ one-way wave equations, for the velocity of a 1-D

inhomogeneous macro subsurface model.

Consider again the migrated data of Figure III-10d. As we mentioned in section
I1I-9, the curved lines in the rayparameter-depth domain (p,z) represent the

angle dependent turning point effects. For the ray parameter we may write
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P = k/w = (k /k(z,))/c(z,) = 8inb(z )/c(z), (I11-75a)
or, with Snell's law,
p = sinf(z)/c(z), (I1I-75b)

where 6(z) represents the depth dependent propagation angle. At a turning point
the propagation angle e(zt) equals 90 degrees, so

P = 1/c(zt). (II1-75¢c)

This means that the turning point reflection curves in the migrated data of
Figure II1I-10d may be interpreted as (reciprocal) velocity profiles in the
slowness—depth domain (c_l,z), see also Figure III-llc. In other words,
velocity information of a gradual transition zone may be obtained directly from
migrated data which contain critical angle events. Unfortunately this velocity
information should be available beforehand in order to perform the migration
properly. Using an incorrect input velocity profile for migration yields an
incorrect (reciprocal) output velocity profile in the slowness—depth domain.
The velocity inversion procedure described in this section aims at deriving
the true velocity profile from the input and output velocity profiles in a
non-iterative way. Clayton and McMechan (198l) proposed an inversion scheme,
based on iterative migration, where the migration input velocity profile in
each iteration step equals the average of the input and output velocity
profiles of the previous step. In their migration algorithm use is made of the
one-way phase-shift operator. The inversion scheme is terminated when the

output velocity profile matches the input velocity profile.

Based on the migration scheme presented in section III.9, we propose the

following recursive velocity inversion scheme.

1. Given the downward extrapolated data at macro layer interface z, then
migration can be applied for macro layer mtl, according to the algorithm
described in section III.9, using an estimated migration input velocity
profile ¢ ., (z).

2. The output velocity profile c;+1(z) can be measured from the migrated

data, for instance by means of coherence calculations. From c&+1(z) and

C;+1(z) the true velocity c(z) may be estimated. We consider two cases:
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i. Similar as in the nom-recursive procedure of Clayton and McMechan we
may write for our recursive inversion procedure

e = ' " . -
€42 = Ble) (@) + e (2)] (I11-76a)
Notice that this relation is blased (see Appendix D). Steps 1 and 2i
should be applied iteratively, with [c;+1(z)]new=[£m+1(z)]old'
The iterative procedure stops when

Ic;+1(z) - c;+1(z)| <eg, (I1I-76b)
where € represents a threshold level.
1i. Assuming c;il(z) is linear inside the macro layer, then the unbiased
true velocity follows directly from c;+1(z) and c;+1(z), as is
shown in Appendix D. Here it is assumed that ¢t (Zp) 1s known.
This value can be obtained directly from the downward extrapolated
data at interface Zp.
3. Having determined the velocity profile €n+1(2), then the data can be
downward extrapolated to interface Zy11> using either a one-way or a
two-way wave field extrapolation operator which includes critical angle

events.

Steps 1, 2 and 3, which describe the total inversion procedure for macro layer

m+l, should be applied recursively.

4. The procedure starts at the surface z=z , assuming an initial estimate
c'(z) is available for all z.
5. The procedure stops at 2=2y.
Discussion.
Compared to the scheme proposed by Clayton and McMechan, notice the following
refinements
- Sub-critical as well as critical ahgle events are properly incorporated
both in the migration step (step 1) and in the downward extrapolation step
(step 3).
- Because the scheme is applied recursively for macro layers, less iteration
steps are required, because biased relation (III-76a) is not applied for
the entire medium, but for macro layers only (step 2i). Under a special

assumption convergence already occurs after one iteration step (step 2ii).
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Example.

Figure III~1la shows the first macro layer of the migrated CSP gather. Because
the migration velocity was too low, the input and output velocity profiles do
not match. Following the procedure described in Appendix D the true velocity
profile for the first macro layer can be found directly. In Figure III-11b, the
first macro layer was migrated, using the correct velocity profile, while the
second macro layer was under-migrated. Again the true velocity can be found
directly from the input and output velocity profiles. Finally, Figure III-llc
shows the correctly migrated data for both macro layers. Notice that the
migrated sub-critically reflected energy is perfectly aligned, which accounts
for the correctness of the average velocity of the macro layers. In addition,
notice that the output velocity profile, represented by the migrated critically
reflected energy, matches the input velocity profile for the entire depth
range. This accounts for the correctness of the local velocity inside the macro

layers as well.

III.11 CONCLUDING REMARKS

In principle there are two approaches to modify the acoustic wave equation such
that wave field extrapolation operators along the depth coordinate can be
derived:

i. Decomposition into two first order one-way wave equations for P+ and P~
respectively.

ii. Reformulation into a first order two-way matrix wave equation for
(2,07 op/ 32) 7.

In this chapter we discussed methods using the one-way wave equations. We have

derived two coupled equations for Pt and P~ which are exact for all propa—

gation angles. We discussed three decoupling approaches:

A. The medium is approximated by a sequence of layers where in each layer the
medium parameters are functions of the lateral coordinates only. In this
case the one-way wave equations decouple exactly in each layer. The formal
solution per layer can be formulated in terms of wave field extrapolation
operators based on Taylor series expansion. If the layer thickness is
chosen sufficiently small, then a continuously layered medium can be
simulated. Recursive one-way wave field extrapolation of primary waves in
a finely discretized medium is valid for sub-critical angle events only.

B. The one-way wave equations are approximated by neglecting the coupling

operators Tt and ™. This decoupling approach is valid for sub-critical
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angle events only. For continuously layered media approaches A and B yield
identical solutions. For 1-D inhomogeneous continuously layered media

solutions are given by the Liouville-Green approximations.

C. For critical angle events the operator Hz is linearized in depth. Based
on the WKBJ approach the total wave field can be decomposed into a new
choice of downgoing and upgoing primary waves P+ and P which correctly
include critical angle events in 1-D inhomogeneous continuously layered

media.

Pre-stack migration based on the acoustic one-way wave equations is in
principle founded on the following simplified inversion of a seismic
experiment:

1

-+ - — -—
+W > <R><«F <D +-PCSP. (111-77)

+

S
The theory is extensively discussed by Berkhout (1982, 1984a) and in chapter II
of this thesis. For sub-critical angle events the techmique is applicable for
1-D, 2-D and 3-D inhomogeneous macro subsurface models (De Graaff, 1984, and

chapter VI of this thesis).

Pre-stack migration based on the acoustic WKBJ one-way wave equations is in
principle founded on the following modified inversion of a seismic experiment

S+ > W+ > <> <« Er 4—D-1 <

PESP s (1II-78)
where the italic type symbols refer to the incorporation of critical angle
events. The theory is extensively discussed in this chapter. The technique is
applicable for sub-critical as well as critical angle events in 1-D
inhomogeneous macro subsurface models and can be advantageously used in a
velocity inversion scheme for the macro subsurface model. A pre-stack migration
technique which is applicable for sub-critical as well as critical angle events
in 1-D, 2-D and 3-D inhomogeneous macro subsurface models is discussed in the

next chapter.







99

CHAPTER IV

WAVE FIELD EXTRAPOLATION TECHNIQUES,
INCLUDING CRITICAL ANGLE EVENTS, BASED ON THE
ACOUSTIC TWO-WAY WAVE EQUATION

Iv.l INTRODUCTION

In chapter III1 acoustic one-way wave field extrapolation techniques were
discussed, assuming a computationally convenient acoustic macro subsurface
model, as shown in Figure IV-1. It was shown that the conventional one-way
approach breaks down for strong vertical velocity gradients and large
propagation angles (critical angle events). Interestingly, lateral gradients do

not introduce any theoretical complications. Also we discussed an extension to

Zo
¢, (x,y,2) , py(x,y.2)
Z4
calx,v.2) , pylx,y,z)
; Zy
: Zj-1
ci(x,y,z2) , pilx,y,z)
T zZ;
: 2

Figure IV-1: Computationally convenient acoustic macro subsurface model for

depth extrapolation techniques (one-way and two-way).
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the one-way approach which is suitable for critical angle events as well.
However, for this extension we had to assume that the medium parameters are a

function of depth only.

In this chapter we discuss a wore fundamental approach to wave field extra—
polation which evades many of the problems typical for the one-way approach. We
consider extrapolation of the total wave field, described in terms of P and
p-lazP, again assuming the computational model of Figure IV-1l. Because the
total wave field is a superposition of downgoing and upgoing waves we may also
speak of two-way wave field extrapolation. As opposed to one-way techniques it
is important to realize that no assumptions need be made on the separability of
downgoing and upgoing waves. In the frequency domain the two-way operations can

be formulated in terms of spatial convolutions. We consider two cases

i. Upward extrapolation of the total wave field [P,p-lazP]T is
symbolically described in matrix notation by
Pz ) I L PO Lo [ RIS
1 3P - 10p -
6'5E'zi_ P dz|z, > (Iv-la)
*
Mrpr @m0z Yy (EpeEy)
or, in abbreviated form, by
> >
Az, ) = Wz, _ .2z )8z, (1v-1b)

see also Figure IV-2a.

I
4~.~w 1 W

I z;

. 1
Figure IV-2: In the two-way approach to wave field extrapolation downgoing and

<->

ssessess

<->

a b

upgoing waves are treated simultaneously
a. Upward extrapolation of the total wave field

b. Downward extrapolation of the total wave field
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ii. Downward extrapolation of the total wave field [P,p_lazP]T is
symbolically described in matrix notation by

P(zy) Wp(zgozg 0F Wpp(Eghzg 0] (B(zyp)
= , (@Iv-lc)

1 oP 1 9P
D 9z|z, Winn(zg,2g-0% Wpy(zgezi0)*) 155, 2,

i -

or, in abbreviated form, by
<>

Az = Wez,z, )8z, _)), (1v-1d)

see also Figure IV-2b.

Various expressions for the two-way operator W are presented further on in
this chapter. Notice that upward and downward two-way wave field extrapolation
are fundamentally equivalent: in both cases downgoing and upgoing waves are
extrapolated simultaneocusly.

In this chapter the two-way wave equation and its solutions are extensively
reviewed and compared with the one-way solutions. It is shown that multiple
reflections, critical angle events and transmission effects may all be included
in the two-way wave field extrapolation operators for arbitrarily inhomogeneous
acoustic macro subsurface models. Applications of these operators in modeling
and migration schemes are also discussed in this chapter. In chapter V we
discuss the extension of this approach for the incorporation of wave conversion

in inhomogeneous full elastic macro subsurface models.

Iv.2 A COMPARISON OF THE ONE-WAY AND THE TWO—-WAY APPROACH

In the frequency domain, the matrix formulation of the two-way wave equation

for inhomogeneous liquids reads

>
NQ . _
5 Ag, (1v-2a)
where
(<] pd *
A = , (1V-2b)
_1
EHZ* o]

and
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with

(IV=2c)

= [2 Bln aln _
B, (%,9,2,0) [k 4 (xy) + 4,0 + 4,6) - 820 (x) - <y)] ,(1v-2d)

and
d (x,5) = 8(x)8(),

(Iv-2e)

see also section III.2. Notice that two-way wave equation (IV-2) requires one

boundary condition for the wave vector 6 only.

If we define operators Hl and H_; such that

H_ * Hl = §(x)8(y),

then operator A can be expressed as

A - LAL,
with
do* d* -jH* o ax
L- , A= , L'l =3
-3 i .
Sgx Ja o B d*

Furthermore we define P' and P~ such that
p=p"+p,

1 3P h! + -
2l = -2 * (P -P
p 9z p1l ( )

or, in matrix notation,
-
¢=-L?

or, equivalently,

JH_

-jH_l

l*pdo*

*pdo*

(Iv-3a)

(IV-3b)

(IV-4a)

(Iv-4b,c,d)

(IvV-5a)

(IV-5b)

(1IV-5c)



with

$-LR
P

P = .
-
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(Iv=-5d)

(IV=5e)

Substitution of relation (IV-5c) into two-way equation (IV-2a), using property
(IV-4a), yields

with

or

and

oy

oF
oz

-B?

B = A- L—l oL
3z °’

+

3P = - % + _ * 9,1 * + _ 5
G = T K- E K (o H)] * BT - ),
3P . - 3,1 + -
9 -+ *p + * x - )
3% JHl P %—1 [QE(BHI )] 164 P )

(Iv-6a)

(IV-6b)

(IV-6c)

(Iv-6d)

Apparently P and P~ satisfy the coupled one-way wave equations for downgoing

and upgoing waves, which were derived on physical grounds in section III.4.

Recall that in the conventional one-way approach it is assumed that

IP7 1< [P*] 1n (Iv-6c) and [PT|<<|P”| in (IV-6d), which weans that multiple

reflections, or critical angle events (in continuously layered media), are not

considered, hence

ap*
9z

-+

S —jHI * p

3P - %o
Tz—w+jH1 P,

where the operators H; and HI are defined as

o n % i
JH; = jH o+ 4H_ [035(5H )1,

(Iv-7a)

(IV-7b)

(Iv-T7c)
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. * [033—(1}1 )] (1v-74)

jH, = jH, - }H ATl

1 -1

Finally, recall that equations (IV-6c) and (IV-6d) fully decouple for media

which are homogeneous along the z-coordinate, that is, when 'c)z(p°1

H,) = o.

1
Summarizing, by decomposing operatot‘}‘ we showed that two-way wave equation
(1Iv-2a) .

>

Q. Ad -
B AQ (1v-8)

can be transformed into coupled one-way wave equations (IV-6¢,d), or, assuming
that critical angle events may be neglected, into decoupled one-way wave
equations (IV-7a,b), in matrix notation given by

3B 3

— jﬂ P, (IV—9a)

dz 1
with

H, = . (Iv-9b)

For downward extrapolation, a solution of one-way wave equation (IV-9) is
symbolically described by (see also relations (III-la) and (III-1d))

+ + +
P (zi) W (zi,zi_l)* [¢] P (zi_l)
= , (Iv-10a)
P_(zi) o Fu(zi,zi_l)* P-(zi_l)
or, in abbreviated form, by
P A\ 4 )B( 1V-10b
(z,) = Vz,,2,_ )z, ). (1v-10b)

A similar relation holds for upward extrapolation.
With respect to these independent one-way solutions, notice the following:
= Critical angle events are not included because the underlying wave
equation (IV-9) is a decoupled approximated version of (IV-6).
- In practical implementations for inhomogeneous media the solution is

highly affected by numerical inaccuracy (limited dip angle performance)
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because the underlying wave equation is based on the implicitly defined
one-way square-root operator Hl (see relation (IV-3a)).

- In recursive applications additional effort is required with respect to
the boundary conditions between the consecutive extrapolation steps,
because downgoing and upgoing waves are not continuous at layer
interfaces. In practical implementations these boundary conditions are
often neglected, which means that transmission effects and multiple

reflections are not incorporated.

On the other hand, a solution of two-way wave equation (IV-8) is symbolically
described by (see also relation (IV-1d))

dz) = Wiz ,z, )8 ). (1v-11)

Notice that for media which are homogeneous along the z-coordinate, as well as
for small dip amgle applications in arbitrarily inhomogeneous media, two—way
wave field extrapolation, as described by (IV-11), could be replaced by three

sub-processes as follows:

i. Decomposition of the total wave field 6>= [P,p—lazp]T into downgoing
and upgoing waves B = [P+,P-]T, according to (IV-5d):

3 = -1 ht -
P(zy )= L 7(z,_az, ). (1v-12a)

ii. Independent onme-way wave field extrapolation of downgoing and upgoing

waves, according to (IV-10b):

B(z)) =V (z ,z,_ ¥z (1v-12b)

1)'

iii. Composition of the total wave field from its downgoing and upgoing

constituents, according to (IV-5c):
>
z = P(z ). IV-12c
Qz) = L (z )B(z)) ( )
Combination of these three steps yields

qz)) = [L @)V 2, ) L‘l<zi_1>]6(zi_l). (1v-13)
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Figure IV-3: Diagram showing the relationship between two-way and one-way wave

This

field extrapolation.

total process is visualized in Figure IV-3. It is important to realize,

however, that direct two-way wave field extrapolation, as described by (IV-11),

is preferred above forementioned one-way processes for the following reasomns:

Iv.3

Critical angle events are included in (IV-11) because the underlying wave
equation (IV-8) 1is exact.

In practical implementations for inhomogeneous media the solution may be
very accurate (90 degrees dip angle performance, see section IV,6) because
the underlying wave equation is based on the explicitly defined two—way
operator H, (see relation IV-2d).

In recursive applications no additional effort is required with respect to
the boundary conditions, because the total wave field 6'= [P,p_'lazP]'r

1s continuous at layer interfaces. Hence, transmission effects and

multiple reflections are automatically incorporated.

TWO-WAY SOLUTION FOR 1-D INHOMOGENEOUS MEDIA, INCLUDING CRITICAL
ANGLE EVENTS

In this section we start with a review of the two-way wave equation in the

wavenumber-frequency domain, following Ursin (1983). Next, we give the solution

for a homogeneous layer. Finally, we present two solutions for piece-wise

continuously layered media.

Applying a double spatial Fourier transform, as defined by (III-10a), to

relation (IV-2), yields the two-way wave equation in the wavenumber-frequency

domain

[

13

- A3, (Iv-14a)

Q|

z
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where
o 0 P
~ ¥
A = , Q= e (Iv-14b,c)
o~ 1 9P
H2/p ° 0 9z
and
(& ,k ,z,w) = Ere? -k - K2 (Iv-14d)
2 x'y X y

Here it is assumed that the medium parameters ¢ and p are functions of the

depth coordinate only, that is, ¢ = ¢(z) and p = p(z). When we define ﬁl such
that

H 1V-15
1 97 ( )

~

then the eigenvalue decomposition of operator A reads

A-LAL" (1v-16a)
with
1 -, o 1 3e/H)
L- LA = , L= . (1v-16b,c,d)
-3H o S fo o 1 -jofi

Notice that this relation represents the wavenumber domain equivalent of
relation (IV-4). Similar as in (IV-5), we define downgoing waves Pt and

upgoing waves P~ according to

g = i? (Iv-17a)
or
7= 113, (IV-17b)
with
P
7 - ) (1v-17¢)
5

Notice that decomposition (IV-17b) breaks down for critical angle events, that

is, when H; * o, This phenomenon was already discussed in chapter III. Later
in this section we present an alternative decomposition which is also valid for
critical angle events.
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Figure IV-4: Subsurface model with homogeneous layers.

We now consider the case that both c¢ and p are constant within a given depth

interval (see Figure IV-4). Then the solution of equation (IV-14) is given by

5 ~ ¥
Q(z) =W(Z,Z )Q(z ),
[ o
where, symbolically,

W(z,zo) = exp[KAz].

(Iv-18a)

(IV-18b)

with Az=z-z . Using property (IV-16), relation (IV-18b) can be written as

W,z )= I+ LAML + LAL T LAM L™ + ...,
or'

W(z,zo) =L [0+ (Arz) + (Ad)? + .. JL7L,

or

W(z,z ) = L(2)V(z,z YLz ),
o [o] (o]

with
V(z,zo) = exp[AAz],

or
exP(‘jﬁlAz) o
V(z,zo) = . .
o exp(jH,4z)

(IV-19a)

(IV-19b)

(1vV-20a)

(IV-20b)

(Iv-20c)

Relation (IV-20) shows that for this special case of a homogeneous layer,

two-way operator W (z ,zo) can be written in terms of one~way



sub-processes. This phenomenon was already discussed in the previous section
(see relations (IV-12) and (IV-13)) and is visualized in Figure IV-3. On the

other hand, if we define two-way operator VV(z,zo) as

_ Wi(z,z,)  Wip(z,z,)
W(Z,zo) = , (Iv-21a)
Vir(z,2,) Wpy(z,z,)

then expressions for the sub-operators ﬁi ...ﬁiv follow directly from
relation (IV-20):

’ﬁl(z,zo) = cos[ﬁlAz], (IV-21b)
2 il v-21
WII(z,zo) = ﬁi S1n[H1Az], (1 c)
W (eez) = Z 11212 (1v-21d)
va(z,zo) = WI(z,zo), (IV-21le)
with

~ 1o

= - . IV-21f
Z pz 2 ( )

Notice that the limit for H1 + 0 exists. For evanescent waves

(k +k >w2/c ) the operator Hl becomes imaginary. The goniometric functions
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should then preferably be replaced by hyperbolic functions of the real argument

H 1Bz.

For propagating waves (k +k2<w2/c2) sub-operator W describes the real
part of the phase-shift 0perator exp(-3H 18z), which represents the spatial
Fourier transform of the Rayleigh II operator. In a similar way, operators
ﬁII and GIII are related to the imaginary part of the transformed
Rayleigh I and Rayleigh III operators. Hence, the spatially band-limited
inverse Fourier transform of relation (IV-18a) is given by the following

relation in the space-frequency domain

Q(Z) W(z,z )Q(z ), (1v-22a)

where
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c(z)
or

p(z) \ﬂ/-\
[}
It
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—>z

: | Az

Figure IV-5: Piece-wise continuously layered subsurface model.

WI(Z»ZO)* WII(Z’ZO)*
VV(z,zo) = , (IV-22b)
Wir1(z,20)* Wyy(z,z,)*

with
WI(z,zo) = Real (Rayleigh II), (Iv-22¢c)
| 1 5 .
§ WII(z,zo) = S Imag (Rayleigh I), (Iv-224)
WIII(z,zo) = -, Imag (Rayleigh III), (1v=-22e)
- . -22
WIv(z,zo) WI(z,zo) (IV f)

The three Rayleigh operators are extensively discussed by Berkhout (1982).
Notice that relation (IV-22) describes stable two-way wave field extrapolation
in the z-direction (the convolutions are carried out in the x- and

y-directions).

When c(z) and p(z) are arbitrary continuous functions within a given depth
interval (see Figure IV-5), then two-way wave equation (IV-14) cannot be solved

as above. Suppose a solution is given by
AUz) = VV(z,zo)a(zo), (Iv-23a)
then operator W(z,z ) should satisfy the wave equation

QW(z,zo) ~ ~
— " A@E)W(z,z ). (1v-23b)
z (]



Furthermore, when the gradients of ¢ and p vanish, then 6V(z,zo) should be

equal to operator (IV-21). Assuming that the medium parameters may be

linearized within a sufficiently thin layer, according to

and

with

while

and

c(z) = c0[1 + qAz]
p(z) = po[l + rAz],
Az =z -z ,

o
lgazl << 1

IrAzl << 1,

(IV-24a)

(1V-24b)

(IV-24c)

(IV-24d)

then it can be verified by substitution that operator QV(z,zo) is given by

with

For propagating waves, ﬁz > o, the operators $1,$5,$3 are given by

WI(Z,ZO) WII(Z ,Zo)

W(z,z,) = ,

Witr(z,25) Wiy(z,z,)

WI(z,zo) = (1+R)1p1 + (S‘R)lp2 + Swa,

WII(z,zo) = ooA2[(1+R)¢2 - Sw3],

W -7¥
III(z’zo) 2w11 "o

WIV(Z,ZO) = (1'R)lb1 + (S+R)W2 Y

2
Z 5 [(1 rAz)HZ(zo) qAz 2],

C
pO [s]

zZ 3
s = 77, R =3 bz

'17;1 = COSE;,

mZ = (sind)/3,

(IvV=-25a)

(IV-25b)

(IV-25¢c)

(1v-25d)

(IV-25e)

(Iv=-25f£)

(Iv~25g,h)

(Iv=-251)

(IV~253)
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$3 = (co§$)/32 - (sinib/53, (1v-25k)
with
7 = 'ﬁ'l(zo)Az. (1v-251)

Notice that the limit for ﬁi(zo)'*o exists. For evanescent waves the operator

ﬁl(zo) becomes imaginary. The goniometric functions should then preferably be
replaced by hyperbolic functions of the real argument jﬁl(zo)Az. Notice that

the only approximation is thin layer assumption (IV-24). This means that
critical angle events are properly incorporated in operator 67(2,20), given by
relation (IV-25). For large extrapolation distances this operator must be
applied recursively, such that in each recursion step thin layer assumption
(IV-24) is satisfied.

In chapter III we have shown that decomposition of the total wave field into
downgoing and upgoing waves is not uniquely defined. Based on the WKBJ approach
for 1-D inhomogeneous media, we discussed an alternative choice of decoupled
downgoing and upgoing propagating waves P* and 7™ in the vicinity of a

turning point, which include critical angle events. In the following, italic
type symbols refer to the incorporation of critical angle events in the one-way
approach. The superposition of ?* and ?#, given by

2

'ﬁ'=

+7 (IV-26a)

satisfies the wave equation

2 ~ ~
L(L) - (.2.) ) (1v-26b)

322 \/p 2\V/o.

whereas P’ and B satisfy the following decoupled one-way wave equations

35t bt
= _jHIP s (1v-26c)
B e
5 +]H1P . (1v-26d)

Wave equation (IV-26b) represents the spatial Fourier transform of wave
equation (I11-9), assuming IE | = l(ZD)_l'c)‘:p - (3/4)(p‘1szp)2|<<k2.
Furthermore it was assumed in chapter III that the operator ﬁé is linearized

in depth in the vicinity of the turning point Zy, according to
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ﬁé(z) = (z-zt)X. (IV-26e)

Hence, it is assumed that in the vicinity of z, the propagation velocity c(z)

satisfies
@) = TP + ez w7 (1v-26£)
or, if z is close to z,
- 2 -2
(z) c [1+c w “xAz], (IV-26g)

with c°=c(z°) and Az=z—z°. In one-way wave equations (IV-26c) and (IV-26d)
the operators ﬁ{ and ﬁ; are based on Airy functions, according to relations
(I1I-54c,d). We may now construct a matrix formalism, based on relations
(Iv-26a,b,c,d). The total wave field 3;(?,p_laz?)T can be composed from the

wave functions §+ and B~ according to

12

i-L

’ (IV—27&)

where

s P = s (Iv-27b,c)
-0 $H/e i
and where 6 satisfies two-way wave equation (IV-l4a), assuming |Ep|<<k2.

Similarly, decomposition is described by

? = L1, (1v-27d)
where
1 Ho e
S
L= & . (1V-27e)
T d
1 o~
H] -Jp

Notice that L 1 defines a decomposition operator which is valid for
sub-critical as well as critical angle events. Finally, the one-way wave
equations (IV~26c) and (IV-26d) can be combined into the following matrix

equation
ry ¥
= iH 7, (1v-28a)

with
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_ [ e
H [ = (1V-28b)
A

For downward extrapolation, a solution of one-way wave equation (IV-28) is

described by (see also relations (III-56) and (III-57))

?’q-(z)- iﬂ-(z,zo) o ?*(zo)
= s (1v-29a)
P (@) o F(z,z )| | 7 (zy)
or, in abbreviated form, by
¥ ~ ¥
P(z) = V(z,2 )Pz ). (Iv-29b)

A similar relation holds for upward extrapolation. Notice that relations
(Iv-27) and (IV-29) can be elegantly combined into ome relation for downward
oy

extrapolation of the total wave field Q:

8(z) = [i. (z)ff(z,zo)i‘lczo)]3‘<zo). (1v-30)

Under thin layer assumption (IV-24), with q=—%c§w'zx, this solution is
equivalent to

q

() = W(z,z )iz ), (1v-31)
with two-way operator W(z,z ) given by relation (IV-25).

Hence, relation (IV-30) shows that also in the special case of a 1-D inhomo-~
geneous medium, two-way wave field extrapolation can be written in terms of

one-way sub—processes which include critical angle events. For practical
implementations, however, two-way algorithm (IV-31) is preferred because it
avoids the use of Airy functions. Two—way operator QV(z,zo), as defined by
(Iv-25), is fully based on simple goniometric functions, which provide the
basis for recursive finite-difference schemes that include critical angle

events, as is shown in section IV.5.

Summarizing, in this section we derived two-way wave field extrapolation
operators for media with depth dependent properties c(z) and p(z), as shown in
Figures IV-4 and IV-5. Both in modeling and migration schemes, the operators
should be applied recursively, which is allowed because the extrapolated total
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oy
wave field Q is continuous for all depths. This means that transmission effects
as well as multiple reflections are automatically incorporated when applying

operator (IV-21) or (IV-22). In addition, critical angle events are
incorporated when applying operator (IV-25). Modeling and migration schemes,
based on the extrapolation operators (IV-21) and (IV-25), are discussed in
sections IV.7 and IV.8. In addition, it is shown in these sections that the
composition and decomposition algorithms (IV-17) and (IV-27) play an important

role in two—way modeling and migration schemes.

IV.4 TWO-WAY SOLUTION FOR ARBITRARILY INHOMOGENEOUS MEDIA, INCLUDING
CRITICAL ANGLE EVENTS

In this section we discuss two-way wave field extrapolation in arbitrarily
inhomogeneous media. It is shown that in principle lateral derivatives of the
medium parameters can be incorporated. In addition, the operator may include

all propagation angles as well as evanescent waves.

Our starting point is two-way wave equation (IV-2a)

%g - AG, (1v-32)
where A and a'are defined by relations (IV-2b,c). Assuming that the deriva-
tives amayazm exist and are continuous between z, and z, we can define two-

way wave field extrapolation by means of the following Taylor series summation

had m
qz) = Y 2z [ﬁm—a] , (1V-33)
m=0 @m! L3z™ z°

with Az=z—z0. In practice the scheme should be applied recursively for small
laz]. A similar approach for one-way wave field extrapolation was discussed by
Berkhout (1982) and in chapter III. Notice that the total error per extra-—

polation step depends on two different sub-errors:

1. The error in the estimates of the derivatives with respect to z.

2. The error due to truncation of the Taylor series.

In one-way wave field extrapolation, the z-derivatives are based on the
implicit square~root operator Hl’ defined by relation (IV-3a). On the other
hand, in two-way wave field extrapolation, the z-derivatives are based on the

explicit operator H,, defined by relation (IV-2d). They can be calculated
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exactly within the seismic bandwidth, which means that sub-error 1 vanishes in
case of two-way wave field extrapolation. In the next section we show that by

assuming the lateral derivatives of the medium parameters may be neglected also
sub—error 2 can be held to a minimum.

From equation (IV-32), the z-derivatives follow directly by recursively
applying

24, i[ﬂ] , (1V-34a)
m dz m-1
3z oz
80 N
% = Ag, (IV-34b)
2
34 . dA -
Fea [AA+ Ti'w’ (IV-34c)
cqy(x,y) , py(x,y) c(z) or p(2)
—_
OQ(X.Y’ [} pz(xty)
!
I
I -
cil(x,y) , p,(x,y)
|
: 1 .
c,(x,y,2) , p,(x,y,2) c(z) or p(z)
—_—
ca(x,y,2) , pylx,y,z)
!
!
!
1
ci(x,y,z) , pix,y,z)
: )
: z b

Figure IV-6: Computationally convenient acoustic subsurface models with thin
inhomogeneous layers.
a. ¢ and p constant in depth per layer.

b. ¢ and p linearized in depth per layer.
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3> >
0. (ppAA+23RA A2 2Ag, (1v-34d)
9z

Z

etc.

As in the previous section, we assume linearized medium parameters in the
z-direction. This means that sufficiently small layers should be taken (see
Figure IV-6b). For this situation the scheme is worked out in Appendix E. In
this section we only show the principle, assuming the medium parameters are
constant in depth, that is, e=c(x,y) and 0=p(x,y) within each layer (see Figure
IV-6a). In this case all derivatives of operator A with respect to z vanish,

so relation (IV-33) can be written as

3y = 3 A2 qm az,)- (1v-35)

m=o m!

This relation can be rewritten as

- Az2n 2n Azzm1 2o+l |2
Q(z) = =— AT+ —=— A z ), (1v-36a)
(2n)! (2n+1)!
where
H, * o
AR = (-t | , (1V-36b)
1
° EHZn*pHo*
o H, *OH *
AL o )n Zn "o (IV-36c)
1 b
«6H2n+2* °
with H2n+2 recursively defined by
= * —
By b =By X H, (Iv-36d)
H =H *H -
2n 2 2n=2" (1V-36e)
etc. and
B =d (x,y) = 5(x)8(y). (1V-36£)

Notice that relation (IV-36) can be written as
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P(z,)

Figure IV-7:

P(z)

Wi | W
[+ 5k,
W * \ Wy *
[+ 2], a
—> Hyx

a,

a. Two-way wave field extrapolation scheme.

b. Detailed diagram of the second order approximation of
sub-operator Wy. For operators Wrrs Wipp» Wpy» operator
Ho should be replaced by plly> Hy, pH, respectively, while

coefficients a, should be replaced by b, =b,/ps a /p
respectively.
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-> >
Q(Z) = W(Z’ZO)Q(ZO); (Iv-37a)
where
WI(z,zo)* wII(z’zO)*
W(z,z ) = , (IV-37b)
Wirr(z,2o)* Wpy(z,z)*
with -
X n
W (zz)= Y alb, a =282 (1), (1v-37c,d)
o a=o 0 2n n (20)!
L) A 2n+1
W (z,z)= 2 bH *pH,b =22 (-1)°, (1v-37e,£)
I1 o a0 0 2n o n (2n+1) !
-3 p ! _
(%2, néo Py onk2? (1v-37g)
wIV(z,zo) néo a Eﬂzn pH_ (IV-37h)

For two-dimensional as well as three-dimensional applications, relation (IV-37)
describes an explicit finite-difference two-way wave field extrapolation
operator in the space-frequency domain, based on one-dimensional convolutions.

The extrapolation scheme is shown in diagram in Figure IV-7.

In the special situation that ¢ and p are constant in one layer, extrapolation

may be carried out in the wavenumber-frequency domain, so H2n may be replaced
by HJ, with'ﬁ2 given by relation (IV-14d). Now the infinite series in (IV-37)

can be summed to closed expressions, yielding operators (IV-21b,c,d,e).

Summarizing, in this section we derived a two-way wave field extrapolation
operator for inhomogeneous media, assuming that in each layer the medium
properties are constant in depth (see Figure IV-6a). Since no approximations
were made, the operator (IV-37b) is exact. Of course, for practical appli-
cations this formal operator should be truncated. This is discussed in the
following sections. In Appendix E we generalized the operator assuming that in
each layer the medium properties may be linearized in depth (see Figure IV-6b)
as described by (E-2). Operator (E-5b) takes properly into account sub-critical

as well as critical angle events.
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Iv.5 A FAST CONVERGING TWO-WAY EXTRAPOLATION SCHEME FOR ARBITRARILY
INHOMOGENEOUS MEDIA

In the previous section we have seen that one of the sub-errors in wave field
extrapolation by means of Taylor series summation vanishes when the scheme is
based on the two-way wave equation, since the z-derivatives of the total wave
field can be calculated exactly within the seismic bandwidth. However, signifi-
cant errors may arise in practice due to the truncation of the Taylor series,
particularly for horizontal plane waves. For one-way wave field extrapolation,
Claerbout (1976) introduced a floating time reference in order to improve the
convergence speed. This actually means that the horizontal plane-wave phase-
shift operator exp(-jklz) is kept out of the Taylor series expansion (Berkhout,
1982). In two-way wave field extrapolation the floating time reference concept
cannot be followed, because downgoing and upgoing waves are considered simul-
taneously (see Figure IV-2). Instead we rearrange the Taylor series expansion
such that the two-way horizontal plane-wave extrapolation operator can be kept
out of the Taylor series expansion. In this section we only show the principle,
assuming that c and 0 are constant in depth within each layer (see Figure
IV-6a). In Appendix F we consider the case that ¢ and p are linear functions of

depth within each layer (see Figure IV-6b).

Assuming that the lateral derivatives of the medium parameters may be

neglected, operator (IV-37b) can be written as

W(z,z ) ='HZO [(En + Al-“n)ll;], (1v-38a)
where
a, o bn o HZn* o
E - , F_ = , H = . (Iv-38b,c,d)
o a, o bn o th*

and A defined by (IV-2b). Applying a binomial expansion for ll; we may write

H; - (K+ DZ)“ = 2'1: [_‘_(_Eﬁ K“) D‘z"] (I1V-39a)

w=o|m! ‘3™

where
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K o DZ* o
R-= R I)2 = (IV-39b,¢)
(o] K o DZ*
2
= = +d . 1V-39d
K=k", D, dz(x) 2(y) (I1V-39d,e)

Substituting (IV-39a) in (IV~-38a), changing the order of summations, and using
the property 3?'(‘50 for m>n, ylelds

> 1 i 3™ m
W(z,z ) = Z — —_mM"’ A‘—EN D2 s (IV-40a)
" p=ofm! (¥ 3K
where © o
M- E K"|, N= . 1V~40Db,
£ [ex) - 5 [ o

Sofar we did nothing but rewriting operator W(z,zo), assuming the lateral
derivatives of the medium parameters may be neglected. In our next step,
however, we replace the infinite series (IV-40b,c) by closed expressions,

according to

Wio © | ¥11,0 °©
M- , N= , (1v-41a,b)
° ¥io ° Wire
where
o .
- =2 Az). Iv-4lc,d
WI,o cos(kAz), wII,o x sin(kdz) (IV-4lc,d)

Notice that W and W equal the operators W, and W , respectively,
1,0 11,0 1 11
given by relations (IV-21b,c), for a horizontal plame-wave, that is, for

2.2
kx==ky=o .

By substituting relation (IV-41) in relation (Iv-40), it follows that operator
W(z,z ) is given by

WI(z,zo)* WII(Z’ZO)*
W(z,z ) = , (1v-42a)
[o]
Wiprr(2,2g)* Wpy(z,25)*
where
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0
Wp(z,z)) = D, oDy, (1V-42b)
m=0
(]
W (z,z)= ) gD , (1v-42¢)
II o oo D 2m
= * R -42d
WIII(z,zo) 22 WII(z zo), av )
5
W (z,z ) = D , (IV-42e)
Iv o = Yo 2m
with
m
o = -l-(-é-— W ). (Iv-42f)
Toom Vo™ Lo
am
g =L (-— WH ) ’ (1v-42g)
n m! ‘o™ »9,
Yo = O? (1v-42h)
_ 1
z =_1xn IV-42i
) pz x ( )

and DZm defined recursively by

= * -
Dzm D2 Dzm_zg (1v 42:])
= * -
D2m—2 D2 D2m—4’ (Iv-42k)
etc. and
D = do(x,y) = §(x)s5(y)- (1Iv-421)

For two-dimensional as well as three-dimensional applications, relation (IV-42)
describes an explicit finite-~difference two-way wave field extrapolation scheme
based on one-dimensional convolutions. Operator D2m represents space

invariant spatial convolutions for all m, while Oys By and Yp Tepresent

space dependent coefficients:

_ Az

= = = = _ 3 k . -
a = Y, cos(kAz), a =Y, T sin(kAz), etc., (Iv-43a,b)
8 =2 sin(kaz), B, = - -2 [sin(kAz) - (kAz)cos(kAz)], (IV-43c,d)
etc., with

k = U.\/c(x:Y): p= D(x9Y)' (Iv-43e,f)
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In practice only a finite number of terms can be used. We define the M'th order
approximation of VV(z,zo) by

Wy m(zazg)*  Wyp (2,200

Wy (z,2 ) = , (IV-44a)
Wi, m(Z:20)*  Wpy y(2,200%
where
M
W ,M(z,zo) = méo @D, (IV-44Db)
M
WII,M(Z’ZO) = ;;é BmDZm’ (IV-44c)
wIII,M(z’Zo) = Z2 * WII,M(z’zo)’ (1V-444d)
M
WIV,M(z,zo) = mz;o YD, (IV-bbe)

Notice that for a horizontal plane-wave all lateral derivatives are zero, which
means that the zeroth order scheme (M=o) already converges for this situation.
We may conclude that the zeroth order terms represent the 'floating time

reference for the two-way wave equation’.

Accuracy and stability properties for various orders are studied in the next
section. The first order extrapolation scheme is shown in diagram in

Figure IV-8. Notice that the operator D2 is used efficiently in two
sub-operators.

Summarizing, in this section we derived a fast converging two-way wave field
extrapolation operator for inhomogeneous media, assuming that the medium
parameters are constant in depth for each layer (see Figure IV—-6a). In the
derivation we assumed that the lateral derivatives of the medium parameters may
be neglected. In Appendix F we generalized the operator, assuming that the
medium parameters for each layer may be linearized in depth (see Figure IV-6b),
as described by (E-2). Operator (F-5) is comparable to operator (IV=42); only

ZZ and the coefficients O Bm and Yo are defined differently. These

m’
coefficients are ba;edzon operators El, wZ and $3, given by relations
(Iv-251, j,k), for kx=ky=o, and their derivatives with respect to K. Operator
(F-5) takes properly into account sub-critical as well as critical angle
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[+ %,

Figure IV-8: First order approximation of the fast comverging two-way wave

field extrapolation scheme for sub-critical as well as critical

angle events.

events. Hence, the diagram in Figure IV-8 represents the first order
approximation of the two-way wave field extrapolation scheme for sub-critical

as well as critical angle events.

Finally, we present a two-term operator VV&Z)(Z,ZO). Therefore we define a
computational model as shown in Figure IV-9. In each layer the medium para—

i meters c(x,y,z) and p(x,y,z) are written as the sum of homogeneous reference

Ty+Ac(x,,2) , B+Ap,(x.y,2) c(2) °’_3_(,Z) Ac(z) or 4p(2)
Cp+4c,(x,y,2) , BaAp,(x,y,2)

!

[ +

1
C+4ac,(x,y,2) , Bi+apx,y,2) l
z

|
|
|
Figure IV-9: Computationally convenient subsurface model with inhomogeneous

layers, used for the two-term operator.
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parameters ¢ and 5, and inhomogeneous deviation parameters Ac(x,y,z) and
Ap(x,y,z). Notice that for migration applications the reference parameters and

the deviation parameters together define the acoustic macro subsurface model.
For this computational model, the two-term operator VVSE)(z,zo) is defined

as follows

W&)i(z,zo)* Wﬁfw:zo)*
WD (z,2) = , (1V-45a)

" ° (2) )

wIII,M(z’zo)* wIV,M(z’zo)*
where

2) _ :
WI’M(z.zo) WI(z,zo) + AWI,M(Z’ZO), (IV-45b)
W2 (2,2 ) =T (2,2 ) + MW (2,2 ) (1V-45¢c)

II,M ’o 11770 LM 70’

(2) - 2) )
wIII,M(Z ,Zo) Z2 * WII’M(Z,ZO), v 45d)
w? (z,2 ) =W__(z,z )+ MW (z,z ). (1V-45e)

IvV,M o v 0 Iv,M o

Operator Z, is defined by (F-11%). The operators Wi, ﬁil and ﬁiv describe
two-way wave field extrapolation in the homogeneous reference layer. They
should preferably be applied in the wavenumber-frequency domain. The double
spatial Fourier transforms of these operators are given by relations
(IV-21b,c,e), where ¢ and p should be replaced by ¢ and p. The operators

AWI,M’ AWII,M and AWIV,M take into account the two-way propagation
effects due to the deviation parameters. They are defined as follows

AWI’M(Z,ZO) = ;g; AumDZm, Aam =a - 5;, (IvV-46a,b)
M —

AWII,M(Z’ZO) = mgo 88D, » AB =8 B (1v-46c,d)
M —_

AWIV’M(Z,ZO) = u;o Ay D, s BYL =Y T Yo (IV-46e,£)

where o, B and Y, are defined by (F-5f,g,h) and where &5, B, and ;ﬁ are
defined by (IV-42f,g,h), with c and p replaced by ¢ and p.

A Born—~type two-term wave field extrapolation operator was discussed by Kennett
(1972). In his approach the deviation term describes the effects of a moderate

inhomogeneity (10 per cent contrast with the surrounding medium) of small
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lateral and vertical extent. For comparison, in two—term operator (IV-45) no
assumptions are made with respect to the dimensions of the contrast. It is

shown in the next section that the first oder scheme (M=1) converges for
sub-critical as well as critical angle events, even when the contrast Ac/c is

in the order of 25 per cent in the whole layer.

Iv.6 ACCURACY AND STABILITY OF TWO~WAY EXTRAPOLATION

In this section we discuss the accuracy and stability properties of the M'th
order finite-difference operators VVM(z,zo) and‘wﬁz)(z,zo), given by

relations (IV-44) and (IV-45), respectively, as a function of the propagation
angle. Therefore it is convenient if we assume that ¢ and p are functions of z
only. First we consider operator VVM(z,zo), in the wavenumber~frequency

domain given by
W m(z,20) Wrr,m(2524)

W, (2.2 ) = N , (1V-47a)
Wirr,u(z,20) Wiv,m(z:2,)
where '
W S o B
I’M(z.zo) = mgo oD, (IV-47b)
W 3 )b
II’M(z,zo) = mZo emvz, (IV-47¢)
W = -47
III,M(z’zo) 'Zzwn,M(z’zo)’ (1v-47d)
% Sy m
Iv’M(z,zo) = mgo YDy (IV-47e)
P o= (k2 - k2D, (1V-47£)
2 X y

witha , By and Y, 8iven by (F-5f,g,h) and ?2 given by (IV-25f).
Notice that

Lin & 2) = W(z,zo), (1v-48)

with VV(Z,ZO) given by (IV-25). In the following analysis, we compare the
eigenvalues ﬁM of cvh(z,zo) with the eigenvalues ﬁ of operator ‘V(z,zo):
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2
= (i 1, Y v, M) + J«ﬂlet(W ) - &0 1, u v, M) > (1v-49a)

~+ ~ ~ - ~ ~ 2
— = W. + + jv/1 - + W . V-49b
W 5( I wIV) 3 k(wI IV) . (1 )

Notice that Wi = det(W,) and PR

The angle dependent amplitude and phase errors we define as

KR = o/ de:(WM) -1, (1V-50a)
A% = ilarg@%) - arg(i™)]). (1IV-50b)

In order to specify the threshold values for these errors, we consider a
homogeneous medium. Notice that in this case the eigenvalues of the exact

operator, given by relation (IV-49b), simplify to

ﬁi = expf;jﬁlAz], (Iv-51)
which is equivalent to the phase-shift operator for one-way wave field extra-
polation. In recursive extrapolation, the total amplitude and phase errors
after N extrapolation steps in a homogeneous medium read

KK, . = AN - 1~ WX, (1v-52a)

A% = M3, (1V-52b)

We define the following (arbitrary) accuracy criteria:
At an extrapolation depth of NAz = 50\ the absolute amplitude error NAA
should be smaller than 3 dB and the absolute phase error MA% should be
smaller than m/10.

Here Az = z-z_ > o, while A represents the wave length. Since N = 1007/(kAz),
the accuracy criteria read

|8K] / (kAz) < 0.001, (1v-53a)

|43 / (kAz)

A

0.001. (Iv-53b)
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Figure IV-10: Error curves for the zeroth, first and second order finite
difference two-way wave field extrapolation operator, with

k Az = /2, qAz = 0.01, rAz = 0.

These requirements cannot always be met for all propagation angles. To avoid

that the solution grows out of bounds, our stability criterion reads
AK/(kAz) < 0.00} for all propagation angles. (IV-53c)

We adopt these criteria for the inhomogeneous situation. In this case k should
be replaced by ko = k(zo).

In Figure IV-10 the scaled amplitude and phase errors are shown as a function
of 9, with

sin% = (k% + k2)/k2(z ). (1V-54)
x y [

Notice that O represents the propagation angle at depth z,, SO 6=6(zo). The
extrapolation stepsize Az equals A/4, so koAz=w/2. The parameter q (see
relation (IV-24)) is chosen such that qAz=.01, which means that the velocity at
extrapolation depth zo+25k equals twice the velocity at depth z, (assuming

the velocity function is linear also outside the considered depth interval Az),
The density is chosen constant, so r=o. Notice that thin layer condition
(IV-24c,d) is satisfied. From Figure IV-10 we observe that the first order
operator (Wi is accurate upto 20° and that the second order operator 6&2 is
accurate upto 45°. Notice that all operators are stable. For a proper incorpo-
ration of critical angle events (6290°), higher order schemes are required,
which is not very attractive from a computational point of view. Therefore we
consider also the two—~term operator fV&Z). Similarly as above we can define

the eigenvalues gﬁZ) of the two-term operator in the wavenumber-frequency

domain. The amplitude and phase errors for one extrapolation step we define as
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Figure IV-11: Error curves for the zeroth, first and second order finite

difference two—term two-way wave field extrapolation operator,
with kAz = 7/2, olz ) = 0 and rdz = o.
a. [e(z) - cl/c = .05, qlz

b. [e(zy) - €]/ =

d. As in b,

.25,
c. [ez)) - cl/ec = .25,

qlz
qAz

= .01.
= .01.
= -.01.

improved first order scheme, el(zo) = 60°.
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&2 . ,/det(ﬁVéz)) -1, (1V-55a)

A2 - t.[arg(ﬁﬁz)i‘) - arg(iH)]. (IV-55b)

In Figure IV-1l the scaled amplitude and phase errors are shown as a function
of e(zo). In all examples Az is chosen such that kAz=T/2, where k=w/c.’
Furthermore, p(zo)sﬁ'and r=o0. In Figure IV-lla the true velocity is chosen
close to the reference velocity, according to {c(zo)—c]/c=.05 and qAz=.01.
Notice that the first order two-term operator is accurate upto 55° and that the
second order operator is accurate upto 90°. All operators are stable. For
angles higher than 82° a turning point is present within the considered depth
interval Az. This accounts for the phase behaviour at high angles (8+90°),
where the eigenvalues become purely real. (For comparison, the phase-shift
operator for one-way wave field extrapolation becomes real for evanescent
waves). In Figure IV-11b the true velocity differs significantly from the
reference velocity, according to [c(z )-c]/c=.25, qlz=.01. Notice that the
first order operator is accurate upto 45° and that the second order operator is
accurate upto 90°. All operators are stable. In Figure IV-1lc, a decreasing
velocity is chosen, according to [c(zo)-E]/E¥.25 and qAz=-.01. The error
curves are comparable with Figure IV-11b. Notice that no turning point is
present within the considered depth interval Az. In Figure IV-11d the same
example is chosen as in Figure IV-11b, however, the operator D4 is approxi-
mated by -[kz(zo)sinzel(zo)]Dz with el(zo)=60°. This means that the

second order scheme has been simplified to a first order scheme, without loss
of accuracy at 60°. Notice that this improved first order scheme is accurate

and stable upto 90°.

Summarizing, we formulated accuracy and stability conditions for the finite-
difference approximation of the eigenvalues of the two-way wave field extra-
polation operator. In the examples we studied the error curves for various
orders, assuming a depth dependent velocity function. Since density variations
do not account for critical angle events, the density was kept constant in all
examples. From the examples it may be concluded that the finite-difference
approximations are stable and that critical angle events are properly taken
into account. Particularly the improved first order two-term operator is very

attractive from a computational point of view. Notice that the analysis has
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been performed in the wavenumber-frequency domain. It is assumed that the
investigated accuracy and stability properties apply locally in a laterally
varying medium.

Iv.7 PRE-STACK MODELING SCHEME BASED ON THE ACOUSTIC TWO-WAY WAVE EQUATION

In chapter I1I we have seen that one-way wave equation modeling schemes are

based on the simplified model

st>wt>r>w >p~ P;SP- (1V-56)

Also we discussed an extension of this model for the incorporation of critical

angle events, according to
S++W++R+W_'*D"P_ . (1V-57)
CSP

In this chapter (chapter IV) we discussed the two-way approach to wave field

extrapolation, which is schematically represented by

P P
> W~ . (I1V-58)

vl
3%
w'g

1
z, o) z.

1
P i i-1

Here [P,D-lazp]T describes the total wave field (downgoing and upgoing
waves), while W describes the two-way propagation effects between two depth

levels. Relation (IV~58) holds for sub-critical as well as critical angle

events in 1-D, 2-D and 3-D inhomogeneous media. Because migration is the main
subject of this thesis, we discuss two-way modeling only for simple subsurface
geometries. It is obvious that relation (IV-58) is not particularly suited for
modeling purposes because it requires knowledge of the total wave field at a
specific depth before modeling. In this section we show how this paradox can be
solved for 1-D inhomogeneous media. Therefore we consider a horizontally
layered computational model consisting of I (1-D inhomogeneous) thin layers, as
is shown in Figure IV-12. We assume homogeneous half spaces for z<z° and

aizl. In layer i, with z1_1§z<zi, the propagation velocity and density are

given by ¢4(z) and P;(2), respectively. Because we consider thin layers we
assume that these functions may be linearized in z.
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—»c(z) or p(2)
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Figure IV-12: Acoustic model of the subsurface for the two-way wave equation

modeling scheme which includes critical angle events.

In the wavenumber-frequency domain (kx,ky,w), modeling consists of the

following steps

1. Given the total field gkzi), then all propagation effects for layer i can
be modeled according to

%(zi_l) - W(zi_l,ziﬁ(zi), (1V-59)

with 3=[?,p_1az$]T=[?,—juﬁ;]T, and W being given by relation
(1v-25).

Step 1, which describes the total modeling procedure for layer i, should be

applied recursively, which is allowed because 6 is continuous for all depths.

2. The procedure (for each kx, ky and w-value) starts at z=z; by
specifying 3(21), according to :



Q(zp) = Lz

with %=['F",'§_]T
lower half space
?-(ZI) should be
arbitrarily.

3. When the surface
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#(zp), (1v-60)

, and i;being given by relation (IV-16b). Since the

ziZI is homogeneous and source free, the upgoing wave

taken zero. The downgoing wave §+(zl) is chosen

2=z has been reached then the plane—wave (PW) impulse

response can be calculated from Q(z o) [P(z ), Jwv (z, )] + We consider

two cases:

i. Similar as in

section III.8, we can define the impulse response Y(zo)

which describes the detected upgoing pressure wave due to an impulsive

downgoing pressure source wave, according to

Bz ) = 7@ )7 @ )1" = L7 %Gz, (1v-61a)
o [a] [o]

')\(-(o) (z)=T7
o

(z )P (), (IV-61b)
o (o]

Xz ) = (1 - X Wz )%, (1v-61c)
[¢] (o] o] [o]

where we assumed thin layer 1 to be homogeneous. Here operator 171

is given by relation (IV-16d); operator ﬁh(zo)=-ﬁkz°) describes the

reflectivity at the lower side of the surface z,.

ii. If z, is a (pressure) free surface, we prefer an admittance impulse

response Y(zo) which describes the detected total particle velocity

due to an impulsive pressure source. We may simply write

?(zo) = Vz(zo)/ﬁ(zo>, (1V-62)

since at a free surface the total pressure is given by the source

pressure only.

4. Next the source and detector properties can be included. Again we consider

two cases.

i. Similar as in section II1.8 we may write for the detected upgoing

pressure wave PCSP(ZO) in a common-shotpoint (CSP) gather in the

wavenumber—-frequency domain
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=% (2 Yz )5 -
P SP(zo) = DP(zo)X(zo)S (zo), (Iv-63)

where §+(zo) represents the downgoing source pressure wave and where
ﬁ}(zo) represents the pressure detector transfer function. Ideally,
(z ) is a function of w only: D (k ky,zo,m) = DP(w).
ii. For the detected particle veloc1ty V CSP(zo) in a CSP gather at a

pressure free surface we may write

v =D ¥(z )S 1V-64
vz,CSP(zo) v(zo) (zo)S(zo), ( )
where g(zo) represents the pressure source and where Sv(zo)
represents the particle velocity detector transfer function. Ideally,

By Gegrkys2,,0) = Dy ().

5. When this modeling procedure has been applied for all wavenumbers and
frequencies, then the space-time data (one shot record) are obtained after
inverse temporal and spatial Fourier transforms (see relations (III-3b)
and (III-10b)).

Notice that in step 2 the downgoing wave P (z ) can be chosen arbitrarily,

for example P(zI) [P (z ) P (zI)] —[1 0] because in step 3 the ratios
A or ¥ /P are considered.

Example.

A 2-D common—-shotpoint gather was modeled for the 1-D inhomogeneous subsurface
configuration shown in Figure IV-13a. Figure IV-13b shows the ray representa-
tion, while Figure IV-13c represents the CSP gather in the space-time domain
(x,t). Notice that sub-critical angle events (2,4), as well as critical angle
events (1,3) and multiple reflection (5) are clearly visible in Figure IV-13c.
0Of course more multiples are present. However, these are not visible due to

their very low amplitudes.

The advantage of the scheme, introduced in this section, over the scheme intro-
duced in section I1I.8, is that critical angle events, multiple reflections,
transmission effects as well as evanescent energy are all included in the
simple recursion algorithm (IV-59) and that arbitrary 1-D piece-wise
continuously layered media can be handled (compare Figures III-7 and IV-12).
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Based on the same concept, a two-way wave equation modeling scheme for full
elastic media is presented in chapter V.

For 2-D and 3-D inhomogeneous media, modeling techniques based on two-way depth
extrapolation become very complicated and two-way time extrapolation techniques
are preferred (Kosloff and Baysal, 1982). An extensive discussion of modeling
algorithms is beyond the scope of this thesis.

1V.8 PRE-STACK MIGRATION SCHEME BASED ON THE ACOUSTIC TWO-WAY WAVE
EQUATION

Two-way wave equation migration is in principle based on inverting relation
(Iv-58), which is schematically represented by
P P

« W+ . (IV-65)

Q)‘g
.
La-]

1
p 3z]z,
It was argued already in section IV.l that in two-way wave field extrapolation
techniques upward and downward extrapolation are fundamentally equivalent.
i. In upward extrapolation (modeling), downgoing waves are inverse extra-
polated, while upgoing waves are forward extrapolated simultaneously.
ii. In downward extrapolation (migration), downgoing waves are forward
extrapolated, while upgoing waves are inverse extrapolated simultaneously.
This means that the two-way wave field extrapolation operators, which were
discussed in this chapter, can be applied both for modeling and migration
applications. Of course care must be taken with respect to evanescent energy.
For migration in the presence of noise, spatially band-limited operators should
be used. The two-way operators in the space-frequency domain, which were
discussed in this chapter, are all band-limited operators. When applying the
two-way operators in the wavenumber-frequency domain, then the evanescent
energy should be suppressed for stability reasons.
It was argued in chapter I that for two-way wave equation migration a common-
depthpoint (CDP) oriented technique should be chosen. In chapter II we have
extensively discussed the principle of full pre-stack migration by single-shot
record inversion (SSRI) and CDP stacking. The procedure can be summarized as

follows

1. Partly compensation for the acquisition limitations at the surface z,-
The boundary condition Pmn(x,y,zo,w) follows by inverting
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Posp,an(® 22000 = [D, (SR (x,7,2 ,0) (1V-66a)

CSP,mn
measured upgoing pressure wave in CSP gather mn. The boundary condition

in a band-limited way (deconvolution). Here P represents the

+
Smn(x,y,zo,w) is simply given by
+
= §(x- - . 1V-66b
S (¥s Y22 W) (x=x )d(y-y ) ( )

2. Recursive downward wave field extrapolation of the downgoing source wave

and the upgoing reflected waves, according to

+ + . ot
= -67
Spal®) = W 2z ) S0 (1v-67a)
- - Y - . )
Pmn(zi) F (zi,zi_l) Pmn<zi—1) (IV-67b)

3. Correlation of the downgoing source wave and the upgoing reflected waves,

yielding the single—-fold Z0O impulse response

I - + *
<XZO<X’y’Zi’w)>mn = ’ST Pmn(x'y’zi’w) [Smn(x’y’zi’w)] ’ (1Iv-68a)
mn

where

2

*
s = /f S+ (x,y,2_,w) [S+ (x,y,z,,w)] dxdy. (1Iv-68b)
mn mn 1 mn 1

4, Imaging by summing over all frequencies, yielding the single-fold Z0
reflectivity

Aw
> = < > . -
Ryo(y524070, = 3y & Ko (Ka¥s2,007 (1V-69)

5. CDP stacking by summing all single-fold ZO reflectivity functions,
yielding the multi-fold wide-angle Z0O reflectivity

CDP
= > -
Ry (%,5,2,)> 2; Z; Ry (5,7,2,)7 (1V-70)

The computational diagram is shown in Figure IV-l4a. Notice that the scheme is

based on one-way wave field extrapolation (relations IV-67a,b). However, the
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scheme can be easily adapted for two-way wave field extrapolation. Therefore
steps 1 and 2 must be modified as follows.

1. Partly compensation for the acquisition limitations and composition of the
total wave field at the surface z . We consider two cases.

i. At a reflection free surface the total wave field follows from

Qatz) = Lz )% (2, (1v-T1a)
where
P;n(zo) S(x=x)8(y-y,)
P (z)= = . (Iv-71b)
m o - _
Pmn(zo) Pmn(x)y’zopw)

The operator L is discussed below. P;n follows from the measured
data by inverting relation (IV-66a) in a band-limited way.

ii. At a pressure free surface we may write for the total wave field

Pon(zg) S (x=x)8(y-y )
4.z o = , (1v-72a)
o oz z -Jsz’m“(x,y,zo,w)

where Vz mn(x,y,zo,m) follows from the detected particle velocity
’

Vs,csp,mn i0 CSP gather mn by inverting
vz,csp,mn(x,y,zo,w) = [Dv(w)S(w)]Vz,mn(x,y,zo,w) (1v-72b)

in a band-limited way.

2a. Recursive downward extrapolation of the total wave field, according to

Pan(zy) Wplegzg % Wpegezg M [P Pi-r)
= 5p , (IV-73a)
1 aPmn . . 1 mn
1 W W 35
p Bz |z, 111$%10%-10% V@) o o Iy

or, in abbreviated form
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N
3mn(zi) = W(zi’zi-l)an(zi—l)' (Iv-73b)
The operator W is discussed below.

2b

Decomposition of the total wave field into downgoing and upgoing waves,
according to

-> L_l -> 74
Pmn(zi) - (zi)an(zi)’ (1v-74a)
where
+
Pon(zi) = | . (IV-74b)
Pon(®:¥,24,0)

The operator I;l is discussed below. The downgoing and upgoing waves at
the current depth level are related to each other via a spatial convolution,

according to

- +
Pmn(x,y,zi,m) = X(x,y,zi,w) * Pmm(x,y,zi,w), (Iv-74c)

where X(x,y,z,,w) describes the impulse response of the subsurface.

+
Pmn(x,y,zi,w) contains primary and multiple reflected downgoing
waves, hence the spectrum may contain many dips, so inversion of (IV-74c)
is unstable in the presence of noise. Instead we propose an inversion
procedure analogous to the one-way procedure. Therefore, we first need to
extract the downgoing source wave from the total downgoing wave field by
means of a 'first arrival time window', yielding S;n(x,y,zi,w). The
procedure can now be continued by steps 3, 4 and 5 of the one-way scheme,

described above.

The composition operator L in step 1i is given by relation (IV-4b). For many
practical applications, operation (IV-71a) may be applied in the wavenumber-
frequency domain, with.i,given by relation (IV-16b). Notice that at a pressure
free surface the composition algorithm is not required (step 1ii).

For the computational macro subsurface model of Figure IV-9, operator Win step
2a represents the first order finite-difference two—term operator VV?Z) in

the space-frequency domain, given by relation (IV-45). For the special
situation that lateral variations of the medium parameters may be neglected,
step 2a should preferably be applied in the wavenumber-frequency domain, with
operator GVgiven by relation (IV-25).
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Figure TV-14: Computational diagrams for shot record oriented pre-stack
migration. a. Scheme based on the one-way wave equations.

b. Scheme based on the two-way wave equation.

The decomposition operator L ia step 2b is given by relation (IV-4d).
Unfortunately this operator converges slowly and critical angle events are not
incorporated. However, in practice it is often sufficient to apply the
decomposition in the wavenumber-frequency domain for a reference medium only,
with operator i?i given by relation (IV-16d). When critical angle events
must be incorporated in the decomposition as well, then operator ji—l, given
by relation (IV-27e) should be used. It should be noted that errors in the
decomposed wave field ; do not contribute to deeper depth levels, because the
total field'a is downward extrapolated independently in step 2a.
In step 2b the downgoing source wave is resolved from the total downgoing wave
in order to avoid imaging of multiple reflections. This is demonstrated in an

example below.
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With these modifications the total two-way scheme for full pre-stack migratiom
by SSRI and CDP stacking can be summarized as follows:

1. Partly compensation for the acquisition limitations (deconvolution) and
composition of the total wave field at the surface z,-

2a. Recursive downward extrapolation of the total wave field.

2b. Decomposition of the total wave field into downgoing and upgoing waves and
extraction of the downgoing source wave from the total downgoing wave
field.

3. Correlation of the downgoing source wave and the upgoing reflected waves,
yielding the single~fold Z0O impulse response.

4. Imaging, yielding the single-fold Z0 reflectivity.

5. CDP stacking, yielding the multi-fold wide-angle Z0O reflectivity.

The computational diagram is shown in Figure IV-1l4b.

Examples.

The performance of the algorithm is demonstrated with two simple two-dimensio-
nal numerical examples. We consider horizontally layered 1-D inhomogeneous
media. In this case the whole procedure can be applied in the wavenumber-—
frequency domain. As an alternative we replace the Z0 imaging step by a PW

imaging step, that is, we calculate

~ Aw '~
<R(p,z,)> = 5 % X(k 2 ,u0), (1v-75a)
with
Xk w) = B (k w) /st w 75b
X’zi’ X’zi’ S ( X’zi’ )) (IV- )

'
in sowe stable sense. The symbol ZE denotes that the summation is carried out

for constant ray-parameter p=k_/w (constant propagation angle, see also
section III.9).

Consider the medium shown in Figure IV-15a, which is bounded by a pressure free
oy ~ ~

surface at z,. The boundary condition Q(zo)=[P(zo),-jsz(zo)]T is shown

in Figure IV-15b for one constant p-value (constant kx/m), such that

Sine(zo)=pc(zo)=.5, that is, for one oblique plane-wave with incidence angle

e(Zo)=30°. For clarity the data are shown as a function of the intercept time
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Figure IV-15: Example of pre-stack two-way wave equation migration.
a. Horizontally layered medium below a free surface.
b. Boundary condition.
c. Downward extrapolated data.
d. Downgoing source wave.
e. Upgoing reflected waves.

f. PW-imaged result.

T, hence all reflection events related to this single plane-wave are visible.
Notice that besides the primary reflections many multiples are present, which
makes the trace difficult to interpret, even for this simple two-layer model.
However, the interpretability improves significantly when the data are downward
extrapolated, using a two-way wave field extrapolation operator. The downward
extrapolated pressure data are shown 1n>Figure IV-15c as a function of depth
and intercept time, again for one p-value. A similar picture could be shown for
the vertical component of the particle velocity. Notice that, similarly as in a
vertical seismic profile (VSP) recorded in a vertical bore hole, all primary
and multiple reflections can be clearly recognized. The decomposed data are

shown in Figures IV-15d (downgoing source wave) and IV-15e (upgoing reflected
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waves), again as a function of depth and intercept time for one p-value. Notice
that the downward extrapolated upgoing waves are terminated at the reflectors;

no upgoing waves are present in the lower (homogeneous and source free) half
space. This is a typical property of the two~way approach. Figure IV-15f shows
the PW image as a function of depth. Notice that this PW image shows the two
reflectors only, in spite of the complex nature of the input trace (Figure
IV-15b). Multiple energy is not imaged because the downgoing source wave and

the upgoing multiple reflected waves do not correlate at zero intercept time.

Consider the continuously layered medium shown in Figures IV-16a,b with a
reflection free surface at z,. For one oblique plane-wave with incidence angle
6(z°)=45°, the downward extrapolated pressure data are shown in Figure IV-l6c.
The decomposed data ﬁ* and P are shown in Figures IV-16d,e, respectively.
Finaily the PW imaged result is shown in Figure IV-16f. Notice that the image

shows the turning point for the critical angle event under consideration.

Notice that in both examples the imaged results (Figures IV-15f and IV-16f)
represent one angle of incidence only. If the procedure would be repeated for
all angles of incidence then image representations similar to Figure III-10d
would be obtained. Images for all angles of incidence are also shown in the
next chapter for the more interesting case of full elastic two-way wave
equation migration.

Finally notice that in both examples for 1-D inhomogeneous media PW imaging was
carried out outside the depth extrapolation loop and that one shot record was
considered only. For 2-D and 3-D inhomogeneous media Z0 imaging should be
carried out inside the depth extrapolation loop and the procedure should be
repeated for all shot records, conformably to the computational diagram shown
in Figure IV-l4b.

Summarizing, in this section we proposed a CDP oriented pre-stack migration
scheme based on the acoustic two-way wave equation. Notice the following

advantages of this scheme in comparison with conventional one-way schemes

- use of the square-root operator is avoided,
— transmission effects are automatically included,
- critical angle events may be properly handled,

= multiple reflected waves may be properly handled.
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Figure IV-~16: Example of pre-stack two-way wave equation migration, including

critical angle events.

a. Depth dependent velocity function c(z).

b. Continuously layered medium with ray representation of a

critical angle event.

c. Downward extrapolated data.

d. Downgoing wave.

e. Upgoing wave.

f. PW-imaged result.

For a proper handling of multiple reflected waves, accurate knowledge of the
macro subsurface model is required. Similar as in conventional multiple
elimination schemes, a small mis-positioning of the major reflecting boundaries
may result in an increase of undesired reflection events, so the scheme should
preferably be applied iteratively. Alternatively, the generation of undesired
reflection events may be avoided by spatially filtering (smoothing) the abrupt
changes in the macro subsurface model before migration. Of course multiple

reflected waves will then not be properly handled anymore.
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CONCLUDING REMARKS

In principle there are two approaches to modify the acoustic wave equation such

that wave field extrapolation operators along the depth coordinate can be

derived:

i.

ii.

Decomposition into two first order one-way wave equations for P+ and P_,
respectively.

Reformulation into a first order two-way matrix wave equation for

(p,p top/az)T.

In this chapter we discussed methods using the two-way wave equation. We have

shown the close relationship with the one-way wave equations which were

discussed in chapter III. We have discussed several two-way solutions for

increasing complexity of the medium:

A.

The medium consists of a sequence of homogeneous layers. An exact solution
for each layer can be formulated in the wavenumber—frequency domain. The
recursive scheme is very simple because the total field is continuous for
all depths. This means that the boundary conditions (reflection, trans-—
mission) for downgoing and upgoing waves are automatically fulfilled at
the layer interfaces. This is advantageous with respect to a proper
treatment of multiple reflections in modeling as well as migration
schemes.

The medium consists of a sequence of layers where in each layer the medium
parameters are functions of the depth coordinate only. An approximate
solution can be formulated in the wavenumber-frequency domain, assuming
the medium parameters may be linearized in depth within each thin layer.
Critical angle events are properly incorporated. The solution is closely
related to that of the decoupled WKBJ one-way wave equations, as discussed
in chapter III. Again the recursive scheme is very simple.

The medium is arbitrarily inhomogeneous. A formal solutiom can be
formulated in the space-frequency domain in terms of wave field
extrapolation operators based on Taylor series summation, assuming that
within each layer the medium parameters may be linearized in depth.
Critical angle events are incorporated.

This formal solution can be reformulated as a fast converging explicit

finite-difference scheme, i1f the lateral derivatives of the medium
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parameters may be neglected. This two-way finite difference scheme is
stable and converges already in the first order approximation, also for

critical angle events.

Pre-stack migration based on the acoustic two-way wave equation is in principle

founded on two-way downward extrapolation, schematically represented by

P P
« W=+ , (1vV-76a)
13 1
p 9z]z; p 9z Z: 1
followed by decomposition
s pt P
window -1
—_— « L7 <« s (IV-76b)
- - 1 9P
P P g
dz, z. p dozdz,
i i i
and imaging
s+(zi) > <R(z;)> * P-(zi). (1V-76c)

This CDP-oriented scheme is applicable for 1-D, 2-D and 3-D inhomogeneous macro
subsurface models. It properly handles critical angle events and multiple
reflections if the macro subsurface model is accurately known. For smoothed
macro subsurface models a high dip angle performance for primary waves may be

expected.

Note that we have addressed depth techniques only, that is, those algorithms
which are based on extrapolating along the depth coordinate. An interesting
alternative approach to two-way wave field extrapolation is discussed by Baysal
et al. (1984). They present CMP oriented post-stack modeling and migration
schemes, for 2-D inhomogeneous media, which make use of recursive traveltime
steps rather than depth steps. The principle of time extrapolation can easily
be used for pre-stack modeling in 1-D, 2-D and 3-D inhomogeneous media. A
discussion is beyond the scope of this thesis. The reader is referred to
Kosloff and Baysal (1982). However, for CDP oriented pre-stack migratiom in
1-D, 2-D and 3-D inhomogeneous macro subsurface models we prefer to make use of
the depth extrapolation scheme, as discussed in this chapter, because it allows
simultaneous forward and inverse extrapolation of downgoing and upgoing waves,
respectively (primaries as well as multiples), which is essential for a proper

imaging principle.
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CHAPTER V

WAVE FIELD EXTRAPOLATION TECHNIQUES,
INCLUDING WAVE CONVERSION, BASED ON THE FULL
ELASTIC TWO-WAY WAVE EQUATION

V.l INTRODUCTION

In chapter IV we discussed the acoustic approach to two-way wave field extra-
polation. We discussed operators \V& which describe extrapolation of the total

wave field from one depth level to another, according to
-> _ -> v 1
Ql(zi"l) - wl(zi-l'zi)QQ(zi)’ ( a)
for upward extrapolation (see Figure IV-2a), and
q =W q 1b
Qp(z,) = Wiz hz, 0z, ), (V-1b)

for downward extrapolation (see Figure IV-2b). In this chapter we use the
sub~script £ when the extrapolation takes place in a liquid. In relation (V-1),
the wave vector 61 contains the total pressure and its first derivative with

respect to z, divided by the mass density, according to

P
>
Ql = . (V-1c)
1328
p oz

It was shown that operator \Nk may include all fundamental wave phenomena
(primary waves, multiple reflected waves, critical angle events) in arbitrarily

inhomogeneous liquids. The acoustic approach breaks down, however, in
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arbitrarily inhomogeneous solids, where wave conversion may not be neglected.
Therefore, in this chapter we generalize two-way algorithms (V-1a) and (V-1b)

for wave field extrapolation in 2-D inhomogeneous solids, according to

Q) = WGz, 2 0 (2)), (V-2a)

for upward extrapolation, and
> > b
Q(z,) = W(z.,z, 00 (z,_)), (v-2b)

for downward extrapolation. Here the sub-script s denotes that the extra-

polation takes place in a solid. The wave vector 6;, given by

(V=2¢)

>
describes the total wave field in terms of the stress vector Z and the particle

velocity vector 3, with
- ->
7 = , V= . (V-Zd,E)

Various expressions for the operator VVS are derived further on in this
chapter. It is shown that primary as well as multiple reflected dilatational

P waves and distortional SV waves in inhomogeneous solids are all included.
Applications in modeling and CDP-oriented migration schemes are also discussed

in this chapter.

V.2 THE FULL ELASTIC TWO-WAY WAVE EQUATION

In this section we introduce the matrix formulation of the full elastic wave
equation for P and SV waves in solids. A rigorous discussion on wave phenomena
in inhomogeneous anisotropic solids is given in several textbooks. Amongst
others we mention Aki and Richards (1980) and Pilant (1979). For most seismic

applications anisotropy is a second order effect in comparison with
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inhomogeneity. Therefore we start our discussion with the equation of motion
for inhomogeneous isotropic solids, in the frequency domain given by

V[(A+2u)V.3] - VX(UVXG) + Dwzv = (V=3)

= =2[(V.V)V - (M)V.V + (Vu) X (V)]

>
where V=[vx’vy’vz]T represents the particle velocity. The Lamé
coefficients A and 1 are related to the bulk compression modulus K and

Poisson's ratio 0 according to
=X+ /3, (V-ha)
= ¥/(H). (V=-4b)

In the following we consider 2-D inhomogeneous media, that is, we assume that
the medium parameters are given by A=A(x,z), u=u(x,z) and p=p(x,z); the
modifications required for the 3-D inhomogeneous case are briefly outlined in
section V.6. Furthermore we assume that the normals to the wave fronts lie in
the x,z-plane. Under these assumptions, shear waves with horizontal polari-
zation (SH waves, with Vx=Vz=o), prgpagate independently from compressional
waves and shear waves with vertical polarization (P and SV waves, with

Vy=o). In the following we only consider waves with vertical polarization (the
solution for waves with horizontal polarization is very similar to the solution
for acoustic waves in liquids and is therefore not handled here). With these

assumptions, the x and z-component of equation (V-3) read
3 (SV BVZ> (911 (3V2>
o (Mo ‘2‘5)3—2
b -] -2 (B

T M T e * oo’

(V-5a)

o!
and
B [ (av avz>] (Bu) ('avx)
Qt2i\ 5= + z/ 2 9z/ \9x
(V-5b)
V. v )] ( )<8V)
£} X z Ul __x 2
“a}[“(‘a‘;‘&' *2\m N\ TV T

*) In this thesis "vertical” polarization means: polarization in the vertical

(x,z) plane.
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Relations (V-3a) and (V-5b) represent two coupled second order differential
equations which require four boundary conditions. Similar as in the acoustic

case, we want to arrive at a first order matrix differential equation, from
which wave field extrapolation operators can be derived. Therefore we also

consider the following two stress—-strain relations
jwzy = u(BVx/Bz + avz/ax), (v—-6a)
Jwz, = AV /ox + BVzlaz) + zu(avzlaz), (v-6b)

where Zx and Zz represent two components of the stress iensor. We use the
same notation as Brekhovskikh (1980), so stress vector Z refers to the stress
on a plane normal to the z—axis, whereas its components Zx and Zz represent
the shear stress and the normal stress respectively. (Notice that in liquids
the shear modulus j vanishes, so Zx=°’ Zz--P). Equations (V-5) and (V-6) can
be rearranged such that the derivatives with respect to depth z are expressed

in terms of lateral convolution operators (see also section IIL.2), according

to

som <o .- o ,

‘9‘?(11) z) }\_'_2.“ d (x) * Z m dl(x) (jwvx)’ (V-7a)

%zx = (Hf‘zll)d (x) *z_+ [pd x) + 22 w2 (;_‘é“u)d (x)] * (juv), (V-7b)

22, = pd (1) * (V) - d (x) * Z, (v-7c)
2

(V) = =4 G0 % (Jov,) - Sa ) *z (v-74)

Here (V-7a) and (V-7d) represent the stress—strain relations (V-6b) and (V-6a),
respeétively, while (V-7b) and (V-7c) are obtained after substituting the
stress—strain relations into equations (V-5a) and (V-5b), respectively. Notice
that we neglected the lateral derivatives of the medium parameters. Relations
(V-7a,b,c,d) can be elegantly combined into one matrix differential equation,
according to

BQ
— = A s’ (V-8a)

with
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=%, (v-8b)

and where 4x4 matrix operator I\S is given by relation (G-1) in Appendix G.
(Notice that equation (V-8) cannot be applied in liquids because operator 1\s
is singular for y=o0. In liquids the quantities Zz and jwvz may be replaced by
=P and —p 3 ZF» respectively, which represent the two components of the wave
vector QQ. This explains our choice of the factor jw in the wave vector Q ).

The operator I‘S can be decomposed according to
A =L AL’ (v-9)
s s™ss ?

with operators I; 1\ and 1,1 given by relations (G-2b,c,d). Let us now
define the Lamé potentials ¢ and w for the particle velocity:

= Vb +V X7, (v-10)

where & represents the scalar potential for dilatational or compressional waves
and where $ represents the vector potential for distortional or shear waves. In
the general inhomogeneous case the potentials ¢ and 5 are coupled, which can be
easily seen when relation (V-10) is substituted into the equation of motion
(v-3).

>
With the assumptions made before, the vector potential ¢=[W w ¥ ] can be

chosen such that wx=wz=o. We define W=¢y. Furthermore we define ¢ , &,
w+ and Y~ such that

& = ¢+ + (I>-, (V-11a)

%% = _jHiP) * [¢+ - (I)_], (V‘llb)

vy, (V=t1e)

—3% = -juis") * -y, (v-11d)
(p)

with Hl and HfSV) defined by relations (G-2%2,p). These definitions can be
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combined with (V-6) and (V-10) in the following matrix equations

> >
Q = Lsrs (V-12a)
and
> -1
P Ls o’ (V-12b)
with
¢+
+
;s = w_ . (V-12¢)
=%
w_

Substitution of relation (V-12a) into two-way wave equation (V-8), using

property (V-9), yields a set of coupled one-way wave equationms, according to

oF_ R

5= BE,, (V-13a)
with -1 BLS

B =-A -L  —— (V-13b)

Notice that these equations fully decouple for media which are homogeneous
along the z-coordinate (al,s/az = 0):

+

d

S - -jufﬂ x ot (V-14a)
oy’ (sV) , .+

% = ~3H * Yt (V-14b)
o - Jﬂl( D, (V-lde)
W _ SV, -

W = JHl * q) ) (V—lﬁd)

where " and & represent the potentials for downgoing and upgoing P waves,
respectively, while w+ and Y represent the potentials for downgoing and
upgoing SV waves,respectively. Notice also that for this situation ¢ and

¥ satisfy the following wave equations

2o

= -g®) x o (V-15a)
52 2
Z
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where ( @)
() - 4(B) 4 4(®) _ 2 -
H2 Hl Hl kpdo(x) + dz(x), (V-15b)
with
2 2,2
kP =W /cP, (V-15c)
2
e = (A+2u)/p, (v-15d)
and 2
W _ gV y, (V-16a)
2 2
9z
where
(SV) _ o(SV) 4 . (sV) _ .2 _
H, H) H) kg, 4 (0) + dy(x), (V-16b)
with
2 2,2
= -1
kSV w /CSV' (V-16¢)
- wpe (V-16d)
sV :

Above equations, which are well known among geophysicists, exhibit a strong
resemblance with the acoustic wave equation. Notice that cp and Cqy
represent the P and SV wave propagation velocity,respectively, with cP>c

sv*
Summarizing, the full elastic two-way wave equation for inhomogeneous solids
can be elegantly described by the first order matrix differential equation
(V-8). By decomposing operator 1\5, given by (G-1), we showed the close
relationship between the full elastic two-way wave equation (V-8) and the full
elastic one-way wave equations (V-13). According to relation (V-12b) the total
wave field as is decomposed into coupled downgoing and upgoing P and SV waves
by means of decomposition operator ],;1, given by (G-2d). This operator plays
an important role in full elastic pre—-stack modeling and migration schemes.

Equation (V-8) is solved in the next section.

v.3 FULL ELASTIC TWO-WAY WAVE FIELD EXTRAPOLATION

In this section we discuss the solution of the full elastic two-way wave
equation. For convenience we consider 2-D waves in a homogeneous medium. We

also discuss the extension of the solution for inhomogeneous media.
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For homogeneous media we may consider the full elastic two-way wave equation in
the wavenumber-frequency domain

3Q
S . -
5= - A% (F-172)
where
ju¥,
¥ 7
Q =1 x (V-17b)
YA
2
J(L)Vx

and where operator Ks represents the spatial Fourier transform of operator
As’ given By relation (G-1). The eigenvalue decomposition of operator Ks
reads

(v-18)

where operators Ls, A and L;l represent the spatial Fourier transforms

8
of operators Ls’ As and L;l, given by relations (G-2b,c,d). Notice that

this decomposition breaks down for 'ﬁ'ﬁP)-ro and for 'ﬁ'gsv)w. Following Ursin
(1983), a solution of (V-17) can be given by

¢ (2 = ii;(z,zo)g;(zo), (v-19a)
where, symbolically,

Ws(z.zo) - eXP[KSAz] s (V-19b)
with Az=z-z . Using property (V-18), relation (V-19b) can be written as
ACERENS B8 VW) Sl O] Al O WD) TR,

or

Ws(z,zo) = is [l + (XsAz) + (KsAz)2 + ]'f,'sl, (V-20b)

or

W (zz) = L@V (2,2 )L ), (v-21a)
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with
V (z,z ) = explA Az], (v-21b)
S [¢] -3
or
expl~3H{F)z] 0 0 0
V (z,z ) = 0 exp[-jH) Az] 0 0 . (V-21c)
s’ o 0 0 expl jﬁ‘ip)Az] 0
0 0 0 expl jﬁ'ssv)Az]

Relation (V-21) shows that for this special case of a homogeneous medium, full
elastic two—way operator Ws(z,zo) can be written in terms of one-way
sub-processes. This phenomenon was already discussed for the acoustic case in
chapter IV and is visualized in Figure IV-3. On the other hand, if we define

full-elastic two—way operator Ws(z,zo) as

Witz,z)  Wig(z,z))
W (z,2) = _ _ (v-22a)
Wii1(z,2,) Wey(z,2,)

then expressions for the sub-matrices WI"'WIV follow directly from
relation (V-21) and Appendix G:

W (2,2 ) = illcoshf(zsz] it WH = il[sinhKAz]izl, (V-22b,¢)
~ ~ ~ ~ _ ~ ~ ~ ~—1
Wy (eez,) - LZ[sinhAAz]Lll, W, = L,cosnKazi L', (v-224,¢)

where operators T‘l’ L;l, LZ’ L;l and A are given by the spatial
Fourier transforms of operators Ll’ L;l, LZ’ L;l and A, given by
relations (G-2e,f,g,h,i). Finally, if we define operator Ws(z,zo) as

D

11(252,) EIZ(Z’ZO) 213(2’20) Elln(z’zo)
21(2:25) Wp;(2,2,) Wa3(2,2,) Wy, (2,2,)
31(252,) W35(2,2,) Way(2,2,) Wyy(z,2,)
41(2525) Wyp(2,2,) Wy3(2,25) Wy (z,2,)

=

WS(Z’ZO) = , (V-23a)

2, ER

=

then expressions for the sub-operators ﬁll'“ﬁlﬂt follow directly from
relation (V-22) and Appendix G:
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W, (2,2) = (- 22 /k )W(P)(z z,) + (2 /ksv)wisv)(z z.), (V-23b)
Wz = Gl o Gz + ko @,z ), (v-230)
?.1'13(2,z0) = g;(z z) - (k /o )w(sv)( ,zo), (v-23d)
W,z = (2% /ksv)WS)(z 2 )+ (1-2ki/k§v)ﬁ§5")(z,zo), (V-23e)
where
ﬁI(P)(z,zo) - cos[ff{P)Az], (V-23£)
;SV)(z z )= cos[H(sv)Az], (v-23g)
(P) (z,2,) = sin[fPaz], (V-23h)
ﬁfP) 1
#(8V) - ~(8V) _
II (z,z ) ﬁ(SV) sin[H1 Az}, (V-231)
1
() L1 @)l L
IH (2,2 ) p2 H2 WH (z,zo). (v-233)
S(SV) - L EERE 3
III (Z 2 ) = pz 2 ( ’ZO)’ (V 23k)
and
=(P) _ /~(P) _ 2 _ .2 _
N /HZ /kP K2, (V-231)
(V) | oV U [2 2 _ _
) /HZ /ksv K. (V-23m)

Operator ‘vs’ given by relation (V-23), describes full elastic two-way wave
field extrapolation in the wavenumber-frequency domain. Notice that the limits
for'ﬁfp)+o and for ﬁ§SV)+o exist.

It can be easily verified that all sub-operators W -++W,, can be written
@) i 3 R
III III ?
given by relatiomns (V-23f,g,h,i,j,k). Notice that these operators represent the

as linear combinations of operators WiP).. an

acoustic two-way sub-operators w}"'ﬁrxx’ given by relations (IV-2lb,c,d),

with H replaced by H?P) or H$SV , respectively.

1
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The band-limited inverse spatial Fourier transform of relation (V-19a) we

define as
Q) = W (2,2 )8 (=), (V-24)
where
W1 (25200% Wy p(2,2,0% Wy 3(2,2,)% W, (2,2 )%
W (2,2 ) = | ¥21(®:20)% Wy (m,20)% Wys(z,2 )% Wy, (2,25 | (V-25a)

W31(2:2)% W3p(2,2,)* Wa3(z,2,)% Wyy(z,2,)*
V41(2520)* Wyp(2,2)% Wy3(z,2,)% W,y (2,2,)*

where the sub-operators wll...w44 follow directly from the sub-operators

~

wll":ﬁ44’ given above, according to

W) (2,2 ) = (4 (x)+2k d NESE W(P)(z z)) - 12K 23 (x)] * wgsv)(z,zo), (V-25b)

sV 2
W,z = 071 @1 * w2y - 107 01 0V, ), (v=25¢)
Mi3(Eazg) = W 2y + 167%4,001 * 0V e, ), (v-254)

(x)] * W(P)(z 2,) + [d_(x)+2k 24_(x)] * W(SV)(z z ). (V-25¢)

Wi (2020 = '[2ksv 2 sv2

Here the sub~operators w(P)...W(P) nd W(SV)...W(SV) represent the

1 111 111
acoustic sub-operators Wg...w g, given by relations (IV-42b,c,d), with o -
Bm replaced by G(P) B(P { V), B(SV) respectively:
(P) .S LB
Wiz, ) = ;ZL od, (x), (V-25£)
W (2,2 ) = 5 o{a, (), (V-25g)
m=0
(®) v @
Wil (zaz) = mgo By dy (%), (V-25h)
(Sv)(z z) = ZE B(sv)d LX), (V-251)
m=0
ill(z z) = - —%-HéP) * w229, (V-253)

p
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(sv) = L (8V) 4 ,(SV) _
wIII (z,zo) 7 H2 WII (z,zo), (V-25k)
with
P P A .
aé ) - cos kPAz, af ) o - Eﬁi sin kPAz, etc., (v-251,m)
(sv) _ (sv) _ _ Az _
N = cos kstz, a stv sin kstz, etc., (V-25n,0)
B(P) =2 gink Az, B(P) - P [sin k _Az-k Az cos k_Az], ete., (V-25p,q)
o k P 1 3 P P P
P 2kP
(sv) _ o v ___p - -
Bo % —sin kstz, Bl 3 [sin kstz kSVAz cos kstz], etc.,(V-25r,s)
SV ZkSV )

If the medium parameters are written as the sum of reference parameters and
(P) (sv) (sv)

wIII and WI "'wIII s

given by (V-25f,g,h,i, j,k) can be rewritten as rapidly converging two-term

deviation parameters then sub-operators wéP)...

operators, conformable to relations (IV-45b,c,d). The excellent dip—angle
performance of the acoustic two-way wave field extrapolation operators has been
discussed in chapter IV (see also Figure IV-11). Because operator (V-25)
contains the same sub-operators, as is shown above, full elastic two-way

extrapolation algorithm (V-24) also exhibits a very good dip—-angle performance.

Zo

M(x) , p#i(x) , p1(x)

MO k) a0
i z2
|
|

Ni(x) , pi(x) , p,(x) -
T Z;
|
|
| 2,

Figure V-~1: A computationally convenient subsurface model for recursive full
elastic two—way wave field extrapolation in 2-D inhomogeneous
solids, based on algorithm (V-24). The pre-stack migration scheme,
described in section V.5, is based on this model.
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Notice that operator (V-25) has been derived via the wavenumber-frequency
domain, hence it may be applied in homogeneous media. Let us now consider the

computationally convenient subsurface model, as is shown in Figure V-1. This
model consists of a sequence of thin layers, where the medium parameters in the
i'th layer (zi-liz<zi) are given by Xi(x), ui(x) and pi(x). For this
subsurface model a full elastic two-way wave field extrapolation operator
should be derived in the space-frequency domain, based on Taylor series
summation, in a similar way as was discussed for the acoustic case in sections
IV.4 and IV.5. A discussion of the derivation for the full elastic case is
beyond the scope of this thesis. The result of the derivation, assuming that
the lateral derivatives of the medium parameters may be neglected, is given by,
not surprisingly, operator (V-25), with space dependent coefficients a( )(x)
(SV)(x) B(P)(x) and B(Sv)(x) based on A (x), U, (x) and p, (x).
Hence, full elastic two-way extrapolation algorithm (V-24) may be applied
recursively in inhomogeneous media, as shown in Figure V-1. Notice that at the
layer boundaries the boundary conditions are automatically fulfilled, because
the extrapolated total wave field 65 is continuous for all depths. This means
that transmission effects, multiple reflections and wave conversion are
properly incorporated. Finally we remark that critical angle events (related to
vertical variations of the medium parameters within the layers) were not
considered in this section. The matrix formulation (V-8) of the full elastic
two—way wave equation properly includes vertical variations of the medium
parameters A, U and p, hence, full elastic two-way extrapolation operators
which include critical angle events can be derived in a similar way as
discussed in chapter IV for the acoustic case. A further discussion of critical

angle events in solids is beyond the scope of this thesis.

V. PRE-STACK MODELING SCHEME BASED ON THE FULL ELASTIC TWO-WAY WAVE
EQUATION

An elegant analytical derivation of the exact seismic response of a plane
fluid-solid interface to an impulsive monopole line source is given by De Hoop
and Van der Hijden (1983). Their approach is very well suited for full elastic
modeling applications. In the pteceding sections we discussed a relatively easy
manageable matrix formalism which describes the full elastic wave propagation

effects between two depth levels. This is schematically represented by
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Zo
A, ’ ”1 ’ p1
Z,
Xg b ”’2 ’ p2
| Z;
|
|
]
Z,
)\l s By s P
T Z;
|
|
]
2.

)\m y Mre1s  Prs

Figure V-2: Subsurface model for the modeling scheme based on the full elastic
two-way wave equation. The shear modulus U, may be zero for

arbitrary 1i.

jsz JuV
z
x| W - Zx . (V-26)
Z 8 Z
k4 z
JwV JuV.
Xz, xlz,_;

This approach is.Suited for modeling as well as migration applications.
Because migration is the main subject of this thesis, we discuss full elastic
modeling only for simple subsurface geometries. Therefore we consider a
horizontally layered medium consisting of I homogeneous layers, as is shown in
Figure V-2. We assume homogeneous half spaces for z<z and z2z;. In layer i,
with z;_152<z, the medium parameters are given by the Lamé constants Ai
and Uy and the mass density pj+ We consider an arbitrary sequence of liquid
layers and solid layers, which means that the shear modulus Yy may be zero for
arbitrary i. We have seen that operator }\s is singular when i=o. Therefore
special attention must be paid to the behaviour of the total wave field within
the different type of layers and particularly at liquid-solid interfaces.
As long as no boundary conditions are specified, then
- within a liquid layer the total wave field 62=[P,p—1azP]T=-[Zz,jsz]T
can be expressed as a linear combination of two arbitrary linearly
independent basic wave fields 6;‘) and 6;2),
- within a solid layer the total wave field 38=[jwvz,zx,zz,jmvx]T can
be expressed as a linear combination of four arbitrary linearly
independent basic wave fields 621), 6&2), 323) and 6§4).



Due to the radiation condition at z=z, the number of linearly independent
basic wave fields reduces to one in liquid layers (61), and to two in solid

layers (621) and aiz)), see also step 3.
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In the wavenumber-frequency domain (kx,m), modeling of P and SV waves consists

of the following steps.

i.
ii.
iii.

iv.

Solution of the Boundary Conditioms

Given the basic wave fields at z;, then the basic wave fields at z;-€,
€0, follow easily from the boundary conditions. We consider four cases.
At liquid-liquid interfaces, 3 is continuous.

At solid-solid interfaces, 3£1§ and 322) are continuous.

Going from solid to fluid, the shear stress E;(zi) vanishes. A linear

combination of 321) and aﬁZ) should be chosen such that

o~ o ~ o T = :;'(1) '-;-'(2) -
[ijz,Zx=o,Zz,jwa]zi vlqs + vZQs . (Vv-27a)

Now the basic wave field at Z4~€,€70, reads

lim ¥ _ 5 oo T -
€0 Qz(zi €) = [Zz.Jsz]zi° (V=27b)

Going from fluid to solid, the tangential particle velocity V;(zi—e),

g+0, can be chosen freely. The basic wave fields at z.,-¢,c%, can be

i
specified according to

lim 3(1),  _ S - § -
0 QS (zi S) [Jwvz’zx o,zz:Jwa O]zi, (V 283)
1im ¥(2) ey 2o [ T e T s 11T _
evo Y (2ym€) = [V ,2 =0,Z ,juV 1]zi, (V-28b)

where juﬁ;(zi) and 2;(21) follow from the basic wave field 6&ﬁ21)°

Wave Field Extrapolation

Given the basic wave fields at z,~€,€%0, then the basic wave fields at
z;_, can be found by applying a two-way wave field extrapolation
operator for layer i. We consider two cases.

In liquid layers the extrapolation algorithm reads
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oy ~ 4
Qo(z3-1) = Wy(z4_1,21)Q(24-9), €0, (v-29)

with extrapolation operator ‘W& given by relatiom (IV-21).
ii. 1In solid layers the extrapolation algorithm reads

EPy ) = Wi, 2 8@ -6, 60, (v-30a)
P, )= W, 2 08P -0, e, (v-30b)

with extrapolation operator (ﬁ; given by relation (V-23).

Above two steps (solution of the boundary conditions and wave field extra-
polation), which describe the total modeling procedure for layer i, should be
applied recursively.

3. Specification of the Radiation Condition
The procedure (for each kx and w-value) starts at z=zy by specifying the
basic wave fields, assuming only downgoing waves are present in the
homogeneous lower half space 222y, We consider two cases.

i. For a liquid lower half space we define

Gz) = LD ), (V-31a)
with
?z(zl) = [F*=1, B~ =0] T, (v-31b)

and ill being given by relation (IV-16b).

ii. For a solid lower half space we define

e = L@ Ve, (v-32a)

{P6p = Le )PP, (V-32b)
with

B Gy = (81, o, ¥, =017, (V=32¢) -

?’éz)(zl) = [T*=0, T=1, -F =0, J~o]T, (V-32d)

~

and ];s being the spatial Fourier transform of l‘s’ given by (G-2b).
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Computation of the Impulse Response

When the surface z=z has been reached, then the plane-wave (PW) impulse
response of the subsurface can be calculated. We consider six cases.

Layer 1 is a liquid, surface z, is reflection free (so the homogeneous
upper half space is a liquid as well, with the same properties as

layer 1). Because at a reflection free surface the total downgoing wave is
given by the downgoing source wave only, an impulse response i(o)(zo)

may be defined according to
'f((°)(z°) = ¥ )G, (v-33a)
N*. ~N—
where P (zo) and P (zo) follow from
o ~— ¥ - ¥
Py(z)) = [F (20,5 01" = LMz )4,z ), (v-33b)

i:;l being given by relatiom (IV-16d).
Layer 1 is a liquid, surface z, is characterized by E_(zo), which
describes the pressure reflectivity at the lower side of surface L An

impulse response i(zo) may be defined according to
% - S P ~1(0) -~
Xz)) = (1 - X% R (2 )17 X (), (v-34)

withli(o)(zo) given by (V-33). Surface related multiple generation, as
described by (V-34), is schematically represented by the feed-back system
in Figure V-3.

Layer 1 is a liquid, surface z, is pressure free (the upper half space is
vacuum). This situation can be handled as above, with R (zo)--l. As an

alternative we may define an admittance impulse response ?kzo) which

S (0) v
1 | X (z0) — X(z,)

R_(zo)

Figure V-3: Feed-back system for surface related multiple generation.
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iv.

describes the detected total particle velocity due to an impulsive
pressure source. Because at a 'pressure free' surface the total pressure

is given by the source pressure only, we may write

Y(z,) =V, (2 ) /(2 ), (v-35a)
where 'i"(zo) and ?l‘z(zo) follow from

E3 -3 ~ T

QR'(ZO) [P(Zo),'iDVz(Zo)] . (v-35b)

Layer 1 is a solid, surface z, is reflection free (the homogeneous upper
half space is a solid as well, with the same properties as layer 1).
Because at a reflection free surface the total downgoing waves are given
by the source waves only, an impulse response i(o)(zo) may be defined

according to

w(0) (o - oot ot |-
X ) - e | ENE (V-36a)
R e
where '5%’2(20) and "I’*T,z(zo) follow from
Ky« AT, Lo APe o
K00y - ERATE - Dl e

t;l being the spatial Fourier transform of L;l, given by (G-2d).

The sub-scripts in matrix X(°) should be read from right to left. For

(0)

SV,P N

Notice that when the shear modulus Yy tends to zero, then Xéog(zo)
b

tends to i(o)(zo) as defined by (V-33a).

instance, X denotes the P-SV impulse response.

Layer 1 is a solid, surface z, is characterized by R-(zo), which
represents the reflectivity matrix (Aki and Richards, 1980) for the lower
side of surface z,+ An impulse response X(zo) may be defined according
to

Xz = 11 - XK 07 K6, (v-37)
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with ji(o)(zo) given by (V-36) and where I represents a 2x2 identity
matrix.

Layer 1 is a solid, surface z, is stress free (the upper half space is
vacuum). This situation can be handled as above. Note that in this case
det[ii-(293]=1. As an alternative we may define an admittance impulse
response 1{(20) which describes the detected total particle velocities
due to impulsive stress sources. Because at a 'stress free' surface the

total stresses are given by the source stresses only, we may write

5 ¥ 7 @) [y @)}
~ X,X X,2 X X X X
Y(zo) = = - . (V-38a)
v 7 7 @ |z @
Z,Xx z,z])z z z Jz z z Jz
o o o

~(1,2) %(1,2)
where Vx,z (zo) and Zx,z (zo) follow from

(1) T

(1) = 147(1) (1) =(1) v
800y - Ll DD WD) (v-38b)
(2 ~(2) ¥ . 3(2),T
8P ) = 130D, 72 7D 57 ;- (v-38c)
Notice that when the shear modulus y, tends to zero, then ¥, (o)
’

tends to ¥(z ) as defined by (V-35a).

Specification of the Source and Detector Properties

Next the source and detector properties can be included. Again we consider
six cases.

Layer 1 is a liquid, surface z, is reflection free. We may write for the
detected upgoing pressure wave ?Esp(zo) in a common-shotpoint gather

(CSP) in the wavenumber-frequency domain

Fop(ey) = B, XV ¥ ), (v-39)
where'§+(zo) represents the downgoing source pressure wave, i(o)(zo)
represents the PW impulse response, given by (V-33) and 3}(20)
represents the pressure detector transfer function. (Ideally 3}(z0) is a
function of  only: 3P(zo)=DP(w))

Layer 1 is a liquid, surface z, is characterized by R (z ) Again we
may apply (V-39), with Y(o)(z ) replaced by X(z ), given by (V-34).

iii. Layer 1 is a liquid, surface z, is pressure free. For the detected
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Figure V-4: Marine data modeled with the full elastic two-way wave equation.

a

a. Subsurface model

’ b. CSP gather in x,t-domain
particle velocity v (z_) in a CSP gather we may write
z,CSP*"o

'\TZ ,Csp(zo) = Ev(zo)?(zo)g(zo), (V=40)

where '§(zo) represents the pressure source, ?(zo) represents the
admittance impulse response, given by (V-35) and 'f)'v(zo) represents the
particle velocity detector transfer function. (Ideally, B‘v(zo)=Dv(m)).
iv. Layer 1 is a solid, surface z, is reflectlon free. For the upgoing
o
reflected P and SV waves Prefl [<I>m'\i r fl] due to downgoing

incident P and SV waves P -[?ﬁ*

inc’ u)inc] we may write

} qLttefl(z )= x(0)(20 inc(zo) (v-41)
where X(o)(zo) represents the impulse response, given by (V-36).
Notice that, unlike in (V-39), we did not introduce source functions and
detector transfer functions because sources and detectors for individual P
and SV waves do not exist.
V. Layer 1 is a solid, surface z, is characterized by R (z ). Again we
may apply (V-41), with X(o)(z ) replaced by X(z ), given by (V-37).
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vi. Layer 1 gg a solid, surface z, is stress free. For the detected particle

_ ~ ~ T
velocity VcsP(zo)_[vx,CSP’vz,CSPl in a CSP gather we may write
q
Voap(zy) = "Dy ¥ (i gpez ) (V-42)

whereifSRc(z )= [Zx SRC’ z, SRC] represents the stress source,
]{(z ) represents the impulse response, given by (V-38), and I)v(z )
represents the particle velocity detector transfer function. (Ideally,

l)v(zo) is a function of w only: l)v(z°)=Dv(w) I).

6. Inverse Fourier transforms
When this modeling procedure has been applied for all wavenumbers and
frequencies, then the space-time data (one shot record) are obtained after

inverse temporal and spatial Fourier transforms.

Examples

A CSP gather was modeled for the marine subsurface configuration shown in
Figure V-4a. The surface is assumed reflection free, the first layer is a
liquid (sea water), while the lower half space is a solid. Figure V-4b shows
the CSP gather in the space-time domain (x,t). Notice that an ordinary

reflected P wave, as well as P and SV head-waves are clearly visible.

Also a CSP gather was modeled for the land subsurface configuration shown in
Figure V-5a. A vertical stress 1s imposed in one point at the free surface. The
resulting particle velocity at the surface is shown in the X,t domain in
Figures V-5b (vertical component) and V-5c¢ (horizontal component). Notice that
primary P and SV waves, as well as many multiple reflected and converted waves
are visible in these figures. Also notice the opposite polarities of the

horizontal component of the particle velocity at both sides of the vertical

stress source.

The advantage of the modeling scheme, introduced in this section, is that all
primary and multiple P as well as SV waves are included in the simple recursion
algorithms (V-29) and (V-30), while the boundary conditions at the layer
interfaces are solved very easy. For 2-D and 3-D inhomogeneous media, modeling
techniques based on full elastic two-way depth extrapolation become very
complicated and two~way time extrapolation technmiques are preferred. A 2-D
application is presented by Reshef and Kosloff (1985). An extensive discussion

of modeling algorithms, however, is beyond the scope of this thesis.
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cp=1800 m/s
€, =1000 m/s
P =1000 kg/m*

€,=3000 m/s
C,=1600 m/s
P 21000 kg/m?

©,= 1600 m/s
Cy= 1000 m/s
p =1000 kg/m*

Figure V-5: Land data, modeled with the full elastic two-way wave equation.
a. Subsurface model
b. Vertical component of the particle velocity in the x,t-domain

c. Horizontal component of the particle velocity in the x,t-domain

V.5 PRE-STACK MIGRATION SCHEME BASED ON THE FULL ELASTIC TWO-WAY WAVE
EQUATION

It was argued in chapter I that for full elastic two-way wave equation
migration a common-depthpoint (CDP) oriented techmique should be chosen. In
chapter II we have extensively discussed the principle of full pre-stack
migration by single-shot record inversion (SSRI) and CDP stacking and in
chapter IV we have discussed the acoustic two-way approach to full pre~-stack
migration by SSRI and CDP stacking. It was shown that the scheme is in
Principle based on inverting relation (IV-58), which is schematically

represented by

+>VV2 + . (v=43)
1 3P

zi p 3z Z.

o;l Q-
g

B
P

In this section we discuss the full elastic approach to full pre-stack
migration by SSRI and CDP stacking. The scheme is in principle based on
inverting relation (V~26), which is schematically represented by
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WV
3wV, J
Zx | «w. < % , (V-44)
z s z
z z
Jwv jwv
*1zy *zi-1

and is very similar to the acoustic scheme. The total scheme consists of the

following steps:

1. Partly compensation for the acquisition limitations and composition of the
total wave vector 68 at the surface z,-
We consider a stress free surface and assume that the detected particle

velocity vector GCSP n in the m'th CSP gather is related to the m'th
»

B
source stress vector zSRC,m according to
> >
VCSP,m(zo) = _l)v(zo)‘Y(zo)ZSRC,m(zo)’ (V-45a)
or
vx,CSP,m(x’zo’w)
= (V-45b)
Va2, csp,m¥r %500

[% (w)S(x)* {] [Y (x,z ,w)* Y (x,z ,w)f]
~I'v X, X o X,2 0

o DV(N)G(X)* Yz’x(x)zosw)* Yz’z(x;zo’m)*

[8(x—x ¥IS(w)Z (z )]
m x o' ].
6(x—xm)s(w)Zz(zo)

Acquisition parameters and medium parameters can be separately described

as follows

Vx,CSP,m(x’zo’w) Vx,m(x’zo’w)
= [D,(w)s(w)] s (V-46a)
Vz,CSP,m(x’zo’m) Vz,m(x’zo’m)
where
vx’m(x)zonw) 6(x-xm)zx(zo)
=-Y@) . (V~46b)

Vz,m(x’zo’w) 6(x—xm)Zz(z°)
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2a,

2b.

Notice that vx’m(x,zo,w) and Vz’m(x,zo,w) can be resolved from the
measured data by inverting (V-46a) in a band-limited way (deconvolution).
Relation (V-46b) describes the m'th seismic experiment, corrected for the
source and detector spectra S(w) and Dv(m), respectively. According to

this relation the total wave field at the surface reads

jmvz’m(xrzonw)
3z = [0OEIZGE D (v-47)
B0 stxx )z (2,)

jwa ’m(x, zovm)
Recursive downward extrapolation of the total wave field, according to
Qg pleg) = Wz oz, 0, (2 ). (v-48)

For the computationally convenient macro subsurface model of Figure v-i,
operator VV; represents a truncated version of the fast converging finite
difference operator (V-25) in the space-frequency domain, optionally
rewritten as a two—term operator. For the special situation that lateral
variations of the medium parameters may be neglected, this step should
preferably be applied in the wavenumber-frequency domain, with operator

(vs given by relation (V-23).

Decomposition of the total wave field into downgoing and upgoing P and SV

waves, according to

- Ll 38 _
Pyon) = LUGOY (=), (V-49a)
with
¢;(x,zi,w)
+
B (z.) =| Yaozpw)| (V-49b)
s,m 1

—Qll_&(x’ zi »W)

w;(xszi)w)

and where decomposition operator l;q'is given by relation (G-2d).

s
Unfortunately this operator converges slowly. However, in practice it is
often sufficient to apply the decomposition in the wavenumber-frequency

domain for a reference medium only, by means of operator i?l. It should
s
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be noted that errors in the decomposed wave field P do not contribute

" to deeper depth levels, because the total wave field Q is downward

extrapolated independently in step 2a. The downgoing and upgoing waves at

the current depth level are related to each other according to

P
LI CY X(zi)P nZi)s (v-50a)
or
oz, | X p(xz 0 Xp gy(xizy 0% [0k, ,0)
= (V-50b)
a0 | Xy przg ot Xgy gu(xz o) lVnx,z,0)

where }l(zi) describes the impulse response of the subsurface. Inversion
of this relation requires at least one more independent seismic experiment
being carried out at the same source location Xo» such that the vectors
F:,m and 3;’m can be extended to matrices. This is not very attractive
from a practical point of view and therefore we propose an inversion
procedure analogous to the one-way procedure described in chapter II.
Therefore we first need to extract the downgoing source wave from the
total downgoing wave field. Because cP>cSv we may extract the
dilatational part (P wave) of the downgoing source wave from the downgoing
wave ¢;(x,zi,m) by means of a first arrival time window, yielding
@;Rc’m(x,zi,m). This actually means that multiple reflected waves are
excluded from the imaging procedure, as is demonstrated in an example
below.

Correlation of the downgoing source P wave and the upgoing reflected P and
SV waves, yielding the single-fold ZO P-P and P-SV impulse responses

(x)zisw)]*r (V—Sla)

1
XZO P, P(x z,0) _f (x zi’w)[QSRc
m

1 *
<XZ0;SV,P(x’zi’M)>m 's—z wm(x’zi’m)[QSRC,m(x’zi’w)] ’ (V 51b)
m

where

2 + "
®m = / src,n(®s z1"")[‘1’5Rc (% 2go0)] dx. (v-51c)




Notice that we cannot define the SV-P and the SV-SV impulse responses

because we do not have an expression for the downgoing SV source wave. The

fact that only two out of four impulse responses can be resolved is in

agreement with an observation we made before: proper inversion requires

additional information obtained from an extra independent seismic

experiment, carried out at the same source location.

Notice that, with definition (V-5la), <X, . > may still contain

ZO;P,P m

multiple reflected and converted waves. These are eliminated by the

imaging step. A similar remark holds for <X > , given by relation
ZO;SV,P m

(V-51b).

Imaging by summing over all frequencies, yielding the single-fold Z0 P-P
and P-SV reflectivities:

composition of
total wave field

'Y

fult elastic two-way
d d extrapolation
macro of total wave field
subsurface — 4
model

decomposition of
total wave field

next lrgquency

I extraction of source wavel

L correlation ]

I imaging for current depth I
. I ]
next depth level

residual NMO CDP stacking
(optional)

Figure V-6: Computational diagram of the shot record oriented pre-stack

migration scheme, based on the full elastic two-way wave equation.
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M’ —
<RZO;P,P(X’ T %: ZO;P,P(x’zi‘“’)>m’ (v-52a)

(x,2,)> = 2_‘*’ (x,2,,0)>, - (V-52b)

Rz0;5v,P % Z0; SV, P

5. CDP stacking by summing all single-fold ZO reflectivity functions,
yielding the multi-fold wide-angle ZO P-P and P-SV reflectivities

CDP
= -
<RZO;P,P(X’Z )> %; <RZO;P,P(X’21)>m’ (V-53a)
CDP . i
«ZO;SV,P(x’zi)> % <RZO;SV,P(x’zi)>m' (V-53b)

The computational diagram is shown in Figure V-6.

Example

The performance of the algorithm is demonstrated with a simple numerical
example. We consider a horizontally layered 1-D inhomogeneous medium. In this
case the whole procedure can be applied in the wavenumber—-frequency domain. As
an alternative we replace the Z0 imaging step by a plane-wave (PW) imaging

step, according to

~ M ooy -
Rp p(pyz;)> = 50 wz Xp pleyszg,0), (v-54a)
Ko (hz,> =22 Y X (k,z,,0) (V-54b)
SV,P 0% 2r 4o TSV,RU XTI
where
oy A O i~ -
XP,P(kX’zi,w) = ¢ (kx)zi:m)/QSRc(kx)zi,w)) (V 54c)
Ys (ko2 w) 27 (k ,zi,w)/QSRc(kx,zi,w) (V-54d)

in some stable sense. The symbol }E’ denotes that the summation is carried out
for constant ray-parameter p=kx/w (constant propagation direction, see also
section III.9).

Figure V-7a shows again the subsurface configuration of the second modeling
example (Figure V-5a). The top frame of Figure V-7b shows one trace of a t-p
map of the vertical component of the particle velocity data (Figure V~5b) for

one constant p-value (comstant kx/w), such that sine(z°)=pcp(zo)=.47, that
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a b
Figure V-7: Results of full elastic two-way wave equation migration for a
horizontally layered medium.
a. Subsurface model.
b. Vertical component of the particle velocity as a function of
intercept time registered at the surface (top frame) and

downward extrapolated (bottom frame).

is, for one oblique plane-wave with incidence angle 6(z°)=28°. Because the
data are presented as a function of the intercept time T, all reflection events
related to this single plane-wave are visible. Notice that besides primary P
waves many multiple reflected and converted waves are present, which makes the
trace difficult to interpret, even for this simple two-layer model. However,
the interpretability improves significantly when the data are downward extra-
polated, using the full elastic two-way wave field extrapolation operator. The
downward extrapolated vertical component of the particle velocity 1s shown in
the bottom frame of Figure V-7b as a function of depth and intercept time,
again for one p-value. Similar pictures could be shown for the horizontal
component of the particle velocity and for the two components of the stress
tensor. Notice that, similarly as in a vertical seismic profile (VSP) recorded
in a vertical bore hole, all wave types can be clearly recognized. The
decomposed data are shown in Figure V-7c¢, again as a function of depth and

intercept time for one p-value. Notice that the downward extrapolated upgoing
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—>T

Figure V-7: (continued) c. Decomposed data: from top to bottom: downgoing
compressional waves, downgoing shear waves, upgoing compressional

waves, upgoing shear waves.
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Panc

Figure V-7: (continued) d. Downgoing compressional source wave (left frame), PW
imaged P-P reflectivity (middle frame) and PW imaged P-SV
reflectivity (right frame).

33535 35 3

s?sgggg%sg%}%ﬁ%%$é B T e e R ==

P-P P-SV

Figure V~7: (continued) e. PW imaged results for all incidence angles; P-P
reflectivity (left frame) and P-SV reflectivity (right frame).
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waves are terminated at the reflectors, which is a typical property of the
two-way approach. The left frame of Figure V-7d shows the compressional down-

going source wave which has been retrieved from the upper frame of Figure V-Jc
by means of a first arrival time window. Also in Figure V-7d the PW imaged P-P
and P-SV reflectivities are presented as a function of depth. Notice that these
PW images show the two reflectors only, in spite of the complex nature of the
input trace (top frame of Figure V-7b). Sofar we showed the migration procedure
for one plane-wave only. The procedure can be repeated for all angles of
incidence. In Figure V-7e the PW imaged P-P and P-SV reflectivities are shown
as a function of depth for various ray-parameters. Notice that the angle
dependent reflection behaviour is clearly visible in these data.

For this 1-D inhomogeneous medium PW imaging was carried out outside the depth
extrapolation loop and one shot record was considered only. For 2-D
inhomogeneous media Z0 imaging should be carried out inside the depth
extrapolation loop and the procedure should be repeated for all shot records,

conformably to the computational diagram shown in Figure V-6.

Summarizing, in this section we introduced a CDP oriented pre—stack migration
scheme based on the full elastic two-way wave equation. Notice the following
advantages of this scheme in comparison with conventional acoustic one-way
schemes

- use of the square-root operator is avoided,

- transmission effects are automatically included,

- multiple reflected waves may be properly handled,

- converted waves may be properly handled.

The transmission effects, multiple reflected and converted waves are properly
handled because the extrapolated total wave field 65 is continuous for all
depths as long as ounly solid layers are considered. Problems occur if the macro
subsurface model consists of liquid as well as solid layers because the
horizontal component Vx of the particle velocity may be discontinuous at
liquid-solid interfaces. Of course, given the source configuration as well as a
complete description of the subsurface, Vx just below a liquid-solid interface
is uniquely defined. However, it cannot be obtained from Vx just above the
liquid-solid interface. For this reason full elastic migration of, for

instance, marine data is impracticable.
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For a proper handling of multiple reflected and converted waves (in case of
land data), accurate knowledge of the macro subsurface model is required.

Similar as in conventional multiple elimination schemes, a small mis-position—
ing of the major reflecting boundaries may result in an increase of undesired
reflection events, so the migration scheme should preferably be applied
iteratively. On the other hand, the generation of undesired reflection events
may be avoided by spatially filtering (smoothing) the abrupt changes in the
macro subsurface model before migration. Of course multiple reflected and

converted waves will then not be properly handled anymore.

Another approach to full elastic mfgration is proposed by Kennet (1984). In his
approach all CSP gathers must be handled simultaneously. In addition,

two independent seismic experiments are required for each source location. For
comparison, the full elastic two-way pre-stack migration scheme, as proposed in
this chapter, including multiple elimination, is carried out on single-shot
records, similar as the acoustic one-way pre-stack primary migration scheme, as

discussed in chapter II.

V.6 CONCLUDING REMARKS

In chapter IV we have discussed the following matrix representation of the

acoustic wave equation

> .
0Q
_a?l - A,ﬁz (v-55a)
and >
8%, R

where the sub-script { refers to liquids. Expression (V-55a) represents the
two—-way wave equation for the total wave field 6£=[P,p_1BZP]T. Expression
(V-55b) represents the one-way wave equations for the decomposed wave field
§£=[P+,P-]T. This decomposition is described by

B, - LEIZEQ. : (V-55¢)

In this chapter we discussed the following matrix representation of the full

elastic wave equation



>
3Q
s _ 3 -
w2 - A% (V-56a)
and 3-1;
S=B ? . (V-56b)
9z s s

where the sub—script s refers to solids. Expression (V-56a) represents the
two—way wave equation for the total wave field 63=[jwvz,zx,zz,jmvx]T-
Expression (V-56b) represents the ome—way wave equations for the decomposed

wave field -l;s=[¢+,¢+,-¢-,w-]r. This decomposition is described by
P = L. (V-56¢)

Because the square-root operator is avoided in the two-way wave equations
(V-55a) and (V-56a), explicit finite-difference two-way wave field extra-
polation operators w!t and ws for 32 and as, respectively, converge rapidly.
These operators can be used recursively in inhomogeneous media, assuming that

the lateral derivatives of the medium parameters may be neglected.

Pre-stack migration based on the full elastic two—way wave equation is in
principle founded on two-way downward extrapolation, which is schematically

represented by

Jwv jmvz
zx « W + Zx 4 (V-57a)
z s z
z z
JwVv v
i i-1

+ + .
§Rc ®+ ¥
P window | ¢ 0 zZ, , (V-57b)
&~ T {7 | " l‘s |z
z
w Z w Zz. jwv z
1 1 b 3

and imaging
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+ -

(DSRC(zi) > <RP’P(11)> ¢ (zi)‘ (Vv=57¢)
+ -

QSRC(zi) > <RSV,P(21)> +« Y (zi). (v-57d)

This CDP oriented scheme assumes 2-D wave propagation in 1-D or 2-D inhomoge-
neous macro subsurface models. It properly handles multiple reflections and
wave conversion if the macro subsurface model is accurately known. For smoothed
macro subsurface models a high dip angle performance for primary waves may be
expected. For 3-D wave propagation in 1-D, 2-D and 3-D inhomogeneous macro
subsurface models the scheme is not valid because the conversion between P and
SV waves on one hand and SH waves on the other hand cannot be longer neglected.
Hence, for the 3-D case the scheme should be based on a modified full elastic
two-way wave equation which describes all wave types (P, SV and SH)
simultaneously. Therefore the wave vector 68 should also contain the
y-components of the particle velocity vector V and the stress vector Z.
Analogous to the derivation in section V.2 it can be shown that for this

extended wave vector the following full elastic two-way wave equation holds:

30 N
—BES_ = Ast’ (V=582)
Z,
-11(er) ’ﬂ1(xly) 'p‘l(x'y)
Z,
A0%,y) ,ufx,y) ,px,y)
I Z2
|
|
1
|
Z,
Ai(x,Y) .,“i(X.Y) lpl(xay)
I Z|
1
I
|
I
Zy

Figure V~8: A computationally convenient subsurface model for recursive full
elastic two-way wave field extrapolation in 3-D inhomogeneous
solids.



181

with

s y N (v-58b)
Z

2z
v

wV
vy

L. -

and 6x6 matrix operator }\S given in Appendix H. The solution for 1-D inhomoge-
neous media is given by Ursin (1983), assuming constant medium parameters in a
certain depth interval. The solution for 2-D and 3-D inhomogeneous media can be
found in a similar way as described in section V.3, assuming the computatio-
nally convenient macro subsurface model, as shown in Figure V-8. Based on this
solution, a full elastic pre-stack migration scheme for 3-D inhomogeneous macro
subsurface models can be designed in a similar way as described in section V.5.

A further discussion is beyond the scope of this thesis.
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CHAPTER Vi

PRACTICAL ASPECTS OF 3-D PRE-STACK MIGRATION

VI.1 INTRODUCTION

In the preceding chapters theoretical aspects of pre-stack migration have been
discussed. It may be concluded that the ideal pre-stack migration scheme should
be based on 3-D single-shot record inversion (SSRI), followed by common-depth-
point (CDP) stacking. Furthermore, in the ideal scheme it should be assumed
that all wave propagation effects, including multiple reflections and wave
conversions, are governed by the full elastic two-way wave equation for a 3-D
geologically oriented elastic macro model of the subsurface. By properly
eliminating these propagation effects per common—shotpoint (CSP) gather, the
reflectivity properties of the elastic micro and macro subsurface model can be
optimumly resolved. It is obvious that the practical implementation of this
ideal pre-stack migration scheme is far beyond reach of nowadays vector
computers. This is easily appreciated if one considers the 3-D version of the
full elastic two-way wave equation, as described by relation (V-58). The
solution of this equation is given by a full elastic two-way wave field extra-—
polation matrix consisting of 36 sub—operators. However, even in the acoustic
one-way approach, where the number of operators reduces to two (one operator
for forward extrapolation of the downgoing source wave and one operator for
inverse extrapolation of the reflected upgoing waves), full 3-D pre-stack
migration still requires a computational power much stronger than what is
available today. Finally, the ideal 3-D pre-stack migration scheme assumes an
extensive areal data acquisition configuration, which is seldom realized in

practice. For instance, a 3-D marine survey merely consists of a number of 2-D
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Figure VI-1: Principle of target oriented 3-D pre-stack migration.

surveys (seismic lines), as is visualized in Figure I~la. Particularly for the
(acoustic or full elastic) two-way approach to 3-D pre-stack migration these

incomplete 'boundary conditions' represent a serious drawback.

It is obvious that, given the limitations of nowadays computational power, a
more practical approach to 3-D pre-stack migration is required. In many
practical situations seismic interpreters are mainly interested in a high
resolution image of a pre-specified target zone. Hence, much work can be saved
by applying 'target-oriented' 3-D pre-stack migration without the need to
simplify the underlying principles of the algorithm. The details of target
oriented 3-D processing are discussed in thisg chapter. It is shown with the aid
of a synthetic data example as well as a scale-model data example that high
quality images can be obtained in realistic processing times. Furthermore it ig
shown that the method can cope with pseudo 3-D acquisition techniques when use

is made of the acoustic one-way wave equations.
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VI.2 PRINCIPLE OF TARGET ORIENTED 3-D PRE-STACK MIGRATION

In this section we discuss the three basic steps of target oriemted 3-D

pre-stack migration (see also Figure VI-1):

1. Pre-stack redatuming
Target-related CSP gathers at the surface are downward extrapolated in a
3-D sense via the boundaries of the macro subsurface model to the upper
boundary of the target zone.

2, Wide—angle CDP stacking
At the macro layer boundaries and at the upper boundary of the target zone
single-fold Z0 gathers are formed by correlating the downgoing source wave
and the upgoing reflected waves. Genuine multi-fold Z0 gathers are
obtained by combining the individual results (wide—angle CDP stacking).
Optionally, these data can be used for velocity analysis based on model
verification. A further discussion of velocity analysis i{s beyond the
scope of this thesis.

3. ZO0 migration
Full 3-D wide~angle ZO migration is applied within the target zone.

The computational diagram is shown in Figure VI-2. In the following we discuss
the different steps in more detail.

Pre-stack redatuming (step 1) may be based on the acoustic one-way wave

equations, the acoustic two-way wave equation, or the full elastic two-way wave

equation. We briefly consider all cases.

i. Acoustic one~way downward extrapolation of a CSP gather is formally
described by

+ + +
8 (x,¥,0,,0) = W (X,y,0,,0, ,,w) * S (x,y,0,_,,0), (Vi-la)
P-(X:Yaoiaw) = F—(X)Y)Oi’ci_lsw) * p (X’Y:Oi_l)w)' (VI-1b)
Relation (VI-la) describes forward extrapolation of the downgoing source wave,
relation (VI-1b) describes inverse extrapolation of the upgoing reflected

waves. The symbol * denotes a two—dimensional space dependent gemneralized

spatial convolution along the x and y coordinates. The symbols 01_1 and O,




186

A A

3- D pre- stack
subSUI 'ace > y t i ll A
model 9

next frequency

Lcorrelation —I
Il

next shot record

i y
residual NMO
(optional) _’I CDP stacking ]

macro model 3-D ZO migration
—P
of target zone (target zone only)

Figure VI-2: Computational diagram for target oriented 3-D pre~stack migration.

refer to arbitrarily curved macro layer boundaries. Explicit expressions
for the operators w+ and F cannot be generally given. Assuming that the
medium parameters of macro layer i are homogeneous and that this macro
layer is bounded by plane, horizontal surfaces 041 and oy (Figure
VI-3a), then relations (VI~la) and (VI-lb) are identical to relations
(III-19a) and (III-19d), respectively, hence operator w+ represents the
Rayleigh II operator, while operator F represents the complex conjugated
of the Rayleigh II operator. In case of an inhomogeneous macro layer

recursive finite-difference operators should be used, as described by
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Figure VI-3: Acoustic one-way wave field extrapolation by means of the

Rayleigh II operator merely consists of a weighted summation of

input samples for each output sample.

a. Theoretically, plane interfaces and homogeneous medium
parameters are assumed.

b. Practically, the operator may be modified for curved interfaces
and slightly inhomogeneous medium parameters.

c. For non-recursive extrapolation the operator can be generated

by ray-tracing or finite-difference modeling.

relations (I1I-29) to (III-31). However, in the 3-D pre~stack scheme,
application of these operators is too computationally intensive. Instead
we prefer to apply a modified Rayleigh II operator which accounts for the

curvature of surfaces 04 and o, as well as for slight inhomogeneities




188

ii.

of the medium parameters of the macro layer. The principle is visualized
in Figure VI-3b. It is important to realize that amplitudes are not

accurately handled by the modified Rayleigh II operator. However, the
operator properly handles non-hyperbolic traveltimes. Notice that
application of the modified Rayleigh II operator is significantly less
computationally intensive than above mentioned finite-difference
operators, because it extrapolates the wave field from macro layer
boundary 0.1 to macro layer boundary o, in one single step. An ideal
combination of accuracy and efficiency can be obtained by optimumly
designing the geologically oriented macro subsurface model: smaller macro
layers yield a higher accuracy for the cost of a lower efficiency; on the
other hand, if the total overburden is considered as one macro layer
(Figure VI-3c), then a high efficiency is obtained for the cost of a
degradation of the amplitude accuracy. A further discussion of the
modified Rayleigh II operator is beyond the scope of this thesis.
Acoustic two~way downward extrapolation of a CSP gather is formally
described by

* *
Plog) (045041 RSSO | LICHY
= . (V1I-2)
1 3P % «||1 9
S Wrr(9y05-y) W1y(05505) 3
n o, on O

The symbol B/BZ denotes differentiation in the direction of the normal to
the surface. For notational convenience the arguments X, y and ( are
W

deleted. Explicit expressions for the operators WI’ W and

II* "III
wIV cannot be generally given. Assuming that the medium parameters of
macro layer i are homogeneous and that this macro layer is bounded by
plane, horizontal surfaces 01_1 and Oi’ then relation (VI-2) is

identical to relation (IV-22), hence operators W ...va are given by

I
WI = Real (Rayleigh II), (Vi-3a)
=1 -
wII = 5 Imag (Rayleigh 1), (VI-3b)
WIII = -w Imag (Rayleigh III), (VI-3c)
W = Real (Rayleigh II). (VI-3d)

v
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In case of an inhomogeneous macro layer recursive finite—-difference
operators should be used, as described by relation (IV-45). However, for
reasons of efficiency we prefer to apply operators WpeeoWpy, as defined
by (Vi-3), based on modified Rayleigh operators which account for the
curvature of surfaces 0;_; and 0, as well as for slight inhomogeneities
of the medium parameters of the macro layer. If the macro layer is
accurately defined, then these operators properly handle 'long period'
multiples between the main reflecting boundaries 951 and o

iii. Full elastic two-way downward extrapolation of a CSP gather is formally
described by

- . - G
jJJVn Wll(oi,oi_l)* oo-"l6(0’i,01_1)* EmVnT
z . . Z
tl : . t1
2, I : Z, . (VI-4)
z : ; z
1 . . 3 z
Wl ; I o [t
Jwvtz Oi wsl(oi’oi_l) "'w66(01’01_1)J Jw £2 LO'].-_l
e - - — -

Here V = [th, Vt2’ Vn]T represents the particle velocity and

Z= [Ztl’ th’ Zn] represents the stress at the macro layer boundary.
The normal components of V and Z are denoted by the sub~script 5, whereas
the two orthogonal tangential components are denoted by the sub-scripts
tl and tye Explicit expressions for the operators wll...w66 cannot

be generally given. Again for reasons of efficiency, these operators
should be based on modified Rayleigh operators. If the macro layer is
accurately defined, then these operators properly handle 'long period'
multiples as well as wave conversions at the main reflecting boundaries
O4_q and O,.

Wide-angle CDP stacking (step 2) takes place at the macro layer boundaries Oi
and at the upper boundary OI of the target zone. Notice that a plane
'reference' boundary OI may be chosen which does not necessarily coincide with
one of the macro layer boundaries. Again we consider three cases based on the
acoustic one-way wave equatioms, the acoustic two-way wave equation and the
full elastic two—way wave equation, respectively.
i. In the acoustic one-way case the downgoing source waves S;;(x,y,Oi,w)

and the upgoing reflected waves Pmn(x,y,ci,w) are available at the

macro layer boundaries 9 and at the upper boundary oy of the target

zone. Here the sub-scripts mn denote that the wave fields are related to
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ii.

CSP gather mn, generated by a (unit) source located at (xm,yn;zo) at
the surface. According to relation (II-37), the single-fold Z0 impulse
response at boundary o, is obtained by correlating the downgoing and
upgoing waves at 0; as follows

1 - + *
> B -
<xZ0(x’y’oi’m) on 52 Pmn(x;y’oi:w)[sm(x)Y’oi’m)] s (VIi-5a)
mn

where
= s (x,y,0,,w)(S8 (x,y,0, ,w)] dxdy (VI-5b)
Smn mn Y i’ [ mn i i’ )

According to relations (II-38) and (II-39) the multi-fold ZO reflectivity
at 9 could now be obtained by imaging (summing over all frequencies) and
CDP stacking (summing over all shots). In the present procedure the
imaging step is deleted, hence the multi-fold Z0 impulse response is
obtained by CDP stacking, according to

CcDP _
Xp0 (%3,0,0) = 3 3 <X, (x,y,0,,0)>, - (VI-6)

m n
Notice that high quality Z0 traces can be obtained by applying an inverse
Fourier transform from the frequency domain to the time domain. If the
inverse Fourier transform is carried out before CDP stacking, then
residual NMO corrections can be applied when the macro subsurface model,
used in the pre-stack redatuming step, was slightly in error.

In the acoustic two~way case the total wave fields Pmn(x,y,oi,w) and

p_l BﬁPmn(x,y,oi,m) are available at the macro layer boundaries o,

and at the upper boundary oy of the target zone. According to relation
(IV-74) the total wave fields can be decomposed into downgoing and upgoing
waves P;n(x,y,ci,w) and P;n(x,y,oi,w), respectively. (Strictly speaking
this decomposition is correct only at the plane upper boundary or of

the target zone; at the curved macro layer boundaries oi errors are

made) .

The downgoing source wave S;n(x,y,ci,w) can be extracted from the total
downgoing wave field P;n(x,y,oi,w) by means of a 'first arrival time
window'. Having determined the downgoing source waves and the upgoing
reflected wave fields the procedure can now be continued as described
above for the acoustic one-way case. Again the final result (after
correlation and CDP stacking) is a set of high quality ZO gathers at all

01. In addition, when an accurate macro subsurface model was used in the
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(acoustic two-way) pre-stack redatuming step, all 'long period' multiples
of the overburden have been properly eliminated. Finally, if no major
reflecting interfaces occur in the target zone, that is, if the target
zone completely lies inside a macro layer, then the constructed Z0 data
(related to the target zone) at oy are free from 'long period' multiples.
iii. In the full elastic two—way case the total wave fields z;n(x,y,al,w)
and an(x,y,ol,m) are available at the macro layer boundaries o and
at the upper boundary o1 of the target zone. The total wave fields can be
decomposed into Lamé potentials for downgoing and upgoing P, SV and SH
waves. The Lamé potentials for downgoing and upgoing P waves are
represented by ¢;n(x,y,oi,w) and Q;n(x,y,oi,w),respectively. The
dilatational part (P wave) of the downgoing source wave can be extracted
from the downgoing wave ¢;n(x,y,ai,m) by means of a first arrival time
window, yielding QgRC’mn(x,y,oi,m). The procedure can now be continued
as described above for the acoustic one-way case, with S;n and P;n
replaced by Q;RC,mn and ¢;n, respectively. Again the final result
(after correlation and CDP stacking) is a set of high quality ZO gathers
at all o4- In addition, when an accurate macro subsurface model was used
in the (full elastic two-way) pre-stack redatuming step, all 'long period'
multiples as well as 'major' converted waves at the main reflecting
boundaries in the overburden have been properly eliminated. Finally, if no
major reflecting interfaces occur in the target zone, then the constructed
Z0 data (related to the target zone) at oy are free from 'long period’'

multiples and 'major' converted waves.

Z0 migration (step 3)

In all above described cases (acoustic one-way, acoustic two-way, full elastic
two-way), high quality Z0 data are constructed at the upper boundary o1 of the
target zone. Because true CDP stacking was applied after downward extra-
polation, these ZO data contain diffraction energy as well as wide—angle
information related to the target zone. Therefore it is important to apply

a full 3-D wide—angle Z0 migration algorithm in order to obtain a high
resolution image of the target zone. If the medium parameters of the macro
subsurface model in the target zone are arbitrarily 3-D inhomogeneous functions
of the spatial coordinates, then preferably use should be made of a full 3-D
'local operator' ZO migration algorithm: band-limited 3-D Rayleigh II operators
are generated in advance for a wide range of (w/c)~values; next, for each

extrapolation step the proper operator is chosen in accordance with the local i

N
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propagation velocity. Because generally small depth-steps are made, the
operators should be designed with utmost care via the wavenumber-frequency

domain in order to avoid 'operator aliasing'. A further discussion of this

wide-angle 3-D ZO migration algorithm is beyond the scope of this thesis.

V1.3 PRACTICAL ASPECTS OF TARGET ORIENTED 3-D PRE-STACK MIGRATION

In the previous section we discussed the principle of target oriented 3-D
pre—stack migration. The computational diagram, shown in Figure VI-2, can be
seen as a modification of the computational diagram for full pre-stack
migration by SSRI and CDP stacking (Figures II-6, IV-14 or V-6). The target
oriented scheme, however, is much less computationally intensive, while the
CDP-principle is fully preserved. Therefore, for practical implementation,
target oriented 3-D pre-stack migration is preferred above full 3-D pre-stack
migration by SSRI and CDP stacking. No attention has been paid sofar to the

practical aspects of data management during processing.

Shnx.yZow)

AN Fnbvizge)

Pan(x,y, 0,0)

UPPER BOUNDARY OF TARGET ZONE

Figure VI-4: Downward extrapolation of one single-shot record to the upper
boundary of the target zone and generation of single~fold Z0O-data

in the overlap area.
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Therefore we consider the data flow for a pre-stack marine dataset (see also
Figure I-1), which typically consists of

200 seismic lines,

200 seismic experiments (shot records) per seismic line,

100 traces (detectors) per seismic experiment,
2000 samples per trace,
4 bytes per sample,
hence, the total survey contains 32 Gbyte of data. According to the computatio—
nal diagram of Figure VI-2, each shot record is downward extrapolated to the
upper boundary of the target zone, where per shot record a single-fold Z0
gather is generated by correlating the downgoing and upgoing waves. For one
monochromatic shot record this procedure is visualized in Figure VI-4. Notice
that the source and detector data, which are represented at the acquisition
surface by one (complex) scalar and one (complex) 1-D array, respectively, are
both spread out over a 2-D area at the upper boundary of the target zone.
Consequently, the monochromatic single~fold ZO-data, which are constructed in
the overlap area with the aid of relation (VI-5), are represented by a
(complex) 2-D array. Hence, the amount of single-fold Z0 output data after
redatuming is much larger than the amount of single-shot record input data.
Typically, for one broad-band single-shot input record, which contains 0.8
Mbyte of data (see above), the broad-band single-fold Z0O output gather consists
of
200x200 traces,

500 samples per trace (target zone only),

4 bytes per sample,
or 80 Mbyte in total, so the amount of data increases by a factor one hundred.
Assuming that all shot records are involved in the process, then the total
amount of data just before CDP stacking equals hundred times the amount of
input data, hence 100x32 Gbyte = 3200 Gbyte! 0f course the next step in the
process (CDP stacking) involves again an enormous data reduction. However, the
huge amount of tape I/0 that would be required makes the computational diagram
of Figure VI-2 impracticable. If CDP stacking would be carried out inside the
'shot record loop', then the tape I/0 problem would be evaded. However, for the
residual NMO correction, which is required when the macro subsurface model was
slightly in error, it is essential that CDP stacking is carried out outside the
shot record loop. An attractive compromise of efficiency (with respect to tape
I/0) on one hand and flexibility (with respect to CDP stacking) on the other
hand is outlined by the modified computational diagram of Figure VI-5. Notice
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Figure VI-5: Modified computational diagram for target oriented 3-D pre-stack

migration.

that according to this diagram, the processing is carried out per cluster of
shot records. A cluster consists of, typically, one hundred shot records (for
instance all shot records on one tape). CDP stacking for all shot records in
one cluster is carried out efficiently inside the shot record loop (without the
possibility for residual NMO corrections). Hence, the amount of data just
before the final CDP stacking for all clusters is of the same order as the
amount of input data (typically 32 Gbyte). This means a significant improvement
compared with the scheme discussed before (Figure VI-2).
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Figure VI-6: The data-flow for one cluster of shot records in target oriented
3-D pre-stack migration.
a. Transformation from time to frequency domain.
b. The actual processing (only the output data at the upper
boundary of the target zone are shown; similar broad-band data
sets may be generated at various macro layer boundaries).

c. Transformation from frequency to time domain.
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Notice that the final CDP stacking (for all clusters) takes place outside the
"cluster loop'. Hence, in this stage residual NMO corrections can be applied if
the macro subsurface model was slightly in error.

Another important practical aspect, which has not been discussed sofar, is the
amount of required disc I/0. A cluster of shot records typically contains

80 Mbyte of data (see above). Processing of these data requires a memory
overhead of typically 400 Mbyte, which is much larger than the internal
computer memory; Hence, the required memory space should be reserved on disc
and the algorithm should be designed efficiently with respect to disc 1/0.
Since in target oriented 3-D pre-stack migration no imaging (summing over all
frequencies) is performed, there is no longer any reason to choose the
'frequency loop' as the inner loop (see Figures II-6, IV-14, V-6 and VI-2).
Much disc I/0 can be avoided if (for each cluster of shot records) the
processing (redatuming and CDP stacking) is carried out per frequency component
(see Figure VI-5). For one cluster of shot records the data—flow is visualized
in Figure VI-6. As shown in Figure VI-6a, the data are first prepared by
transforming from the time domain to the frequency domain (this step is not
shown in the computational diagram of Figure VI-5). The actual processing (per
frequency component) is visualized in Figure VI-6b. Notice the optimum
efficiency with respect to disc I/0: each frequency component is transported
from disc to memory (and vice'versa) only once. Finally, as is shown in Figure
VI-6c, the output data are transformed back from the frequency domain to the
time_domain (this step is not shown in the computational diagram of

Figure VI-5).

VI.4 AN EFFICIENT SIMPLIFIED TARGET ORIENTED 3-D PRE-STACK MIGRATION
SCHEME

In the previous sections the principle as well as the practical aspects of a
target oriented 3-D pre-stack migration scheme have been discussed. The
practical implementation of the scheme can be realized on nowadays vector
computers. However, at this moment still much software development is required
before large real datasets can be processed, particularly in case of

complicated acoustic or full elastic macro subsurface models.

To demonstrate that the principle of target oriented 3-D pre-stack migration is
correct, we implemented a simplified version on a powerful seismic work-station

as well as on a Cray XMP vector computer. The computational diagram and the
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data-flow for the version we implemented is in principle shown in Figures VI-5
and VI-6 in the previous section. The main simplification concerns the 3-D
pre-stack downward extrapolation step (redatuming). We replaced the recursive
procedure, in which the data are downward extrapolated via the boundaries of
the macro subsurface model, by a non-recursive procedure. In this non-recursive
procedure a CSP gather is downward extrapolated from the acquisition surface to
the upper boundary of the target zone in one single step. In this section we
discuss the non-recursive extrapolation operators and show that they can be
implemented very efficiently. In the following sections we discuss results of

the method obtained with synthetic data as well as scale model data.

Consider the acoustic macro subsurface model, shown in Figure VI-7. This model
consists of a homogeneous overburden (propagation velocity c¢, mass density p)
between the acquisition surface z, and depth level Z1s and a target zone
below depth level zg- Because the overburden is homogeneous, a CSP gather can
be downward extrapolated by means of the Rayleigh II operator. Forward extra-

polation of the downgoing source wave is described by

+ + +
Smn(X,y,ZI,w) =W (x,y,zI,zo,w) * Sm(x:y’zoyw)y (Vi-7a)

or

Figure VI-7: Simplified acoustic macro subsurface model.
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[ ]
oo

+ + +
Smn(x,y,zl,w) = JI w (x—x',y—y’,zI,zo,m)Smn(x’,y',zo,w)dx'dy'. (VI-7b)
-0

Here the 3-D Rayleigh II operator W+ is given by (Berkhout, 1982)

+ 1 1+jk -jk:

W (x,y,zI,zo,w) =5 —:ifzcos¢ e 3 r’ (Vi-7¢)
with

r = Jfx% + % + 822, (VI-7d)

Az = 2T 2, (VI-7e)

cosp = Az/r, (VI-7f)

k = w/c. (Vi-7g)

Assuming that S;n(x,y,zo,w) represents a unit source at (xm,yn,zo)

according to
+
Spn(X¥245w0) = §(x—x )8 (y-y ), (VI-8a)

we may write

(o]

+ +

Spn(Xs¥s2psw) = ﬂ W (x-X'.y-y',zI,zo.m)d(x'ﬂm)a(y'-yn)dx'dy'. (VI-8b)
=00

or

+ +

Sun(HYsZw) = W (XX ,y-y .2,z ,0). (VI-8c)

Hence, the downward extrapolated source wave is simply given by the Rayleigh II
operator. Notice that the scaling factor sin, defined according to relation
(VI-5b) by

®

2 . st st )] dxd (VI-8d)
smn = mn(x)Y)zI:w)[ mn(x3YszI,w ] dxdy,

~—c0

approaches unity. Hence, in the correlation step scaling need not be applied.



Extrapolation of the detected upgoing wave P (X,¥,z,,w) can be carried out
most efficiently in the mixed wavenumber-space-frequency domain. We comsider

the wave equation in the kx,y,z,m domain

32P+32;+K2F=0,

ay 3z

(VI-9a)

where

2=t -l (VI-9b)

Notice that, for each k_, relation (VI-9) represents a 2-D wave equation,

which is solved by the following 2-D Rayleigh II integral

[+

~t+ ~t ~t

P (kx,y,zI,w) = ‘[ W (kx,y-y',zl,zo,w)P (kx,y',zo,w)dy', (VI-10a)
-CO

where
~+ K 2
W (kx,y,zI,zo,w) = - %T cos¢o HE )(Kro), (VI-10b)
with .
ro = ,/ 2 + Azz, (VI-10c)
cosp = Az/r0 (VI-104)

and k being given by (VI-9b). Hfz) represents the first order Hankel function
of the second kind. (Operator ﬁ+, given by relation (VI-10b), represents the
single spatial Fourier transform of operator w+, given by relation (VI-7c)).
Notice that relation (VI-10) describes forward extrapolation of downgoing
waves. For inverse extrapolation of upgoing waves the matched filter approach

may be applied, according to
(e <]

Flkorzp0) = [ Flury'szpzg,of G,y z,wdy', (vI-11a)

-0
where operator T is the complex conjugated of W+:

~— ~F *
F (kx,y,zl,zo.w) = [W (kx,y.zI,zo,w)] . (VI-11b)
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Assuming that the reflected upgoing wave P;n(x,y,zo,m) is detected for b
only, then the spatially Fourier transformed CSP gather cam be written as a

scaled delta function, according to
B akovoz ) = T (k y .z ,w0)6(y-y ), (VI-12a)
so relation (VI-1l) may be written as

L

Foaloo¥s2po0) = T Geynz o) [F 0 uyy' sz 0080y ddy", (VI-128)
-00

or
Pmn(kx’y:zl’w) =F (kx;y-yn)zl9z°,w)Pm(kxpyn’z°»m)' (VI-12¢)

Hence, downward extrapolation of the detected upgoing wave to the upper
boundary of the target zonme involves 1-D spatial Fourier transforms and

vectorized multiplications (along the kx coordinate) only.

Finally, notice that the implemented operators, as discussed above, are
approximately valid for 1-D inhomogeneous macro subsurface models if the
velocity ¢ is replaced by the root-mean-square velocity (Az should then be
replaced by the apparent depth).

VI.5 RESULTS OF TARGET ORIENTED 3-D PRE-STACK MIGRATION ON SYNTHETIC DATA

In this section we demonstrate the mechanism of the target oriented 3-D
pre~stack migration scheme. In section VI.3 we argued that the practical
implementation of this scheme requires that the processing is carried out

per cluster of shot records. Here we discuss some results obtained per cluster
of synthetic shot records and show the CDP stack of these results, being a
multi-fold ZO gather at the upper boundary of the target zone. Finally we show
the migrated data in the target zone. The main steps are summarized in the

computational diagram of Figure VI-8.

We consider again the 2-D example which was given in the final section of
chapter 1I. The subsurface configuration i1s given in Figure VI-9a. It consists

of a homogeneous overburden (c1 = 1000 m/s), overlying a target zone
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ZO gather (related to
one cluster) at the

upper boundary of the
target zone

next cluster of shot records

3-D ZO migration
(target zone only)

Figure VI-8: Computational diagram for the main steps in target oriented 3-D

pre-stack migration.

(CZ = 2000 m/s). Three diffractors are present at the upper boundary of the
target zone; one diffractor is present at the lower boundary. At the
acquisition surface 64 CSP experiments are simulated, which form together one
seismic line. These CSP gathers are downward extrapolated to the upper boundary
of the target zone, where Z0 data are generated. Some single~fold Z0O gathers
are shown in section II.5. The final 2-D result, that is, a 64-fold Z0 gather

at the upper boundary of the target zone, is shown in the left frame of
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Figure VI-9: Example of target oriented 3-D pre-stack downward extrapolation

and CDP stacking.

a. 2-D subsurface configuration, used for the example in
chapter II.

b. 3-D subsurface configuration, containing the 2~D slice of
Figure a.

c. Three 2-D slices of a 3-D multi-fold Z0 section (related to one
seismic line) at different lines (indicated by arrows in b) at

the upper boundary of the target zone).

Figure VI-9c. Notice that the diffractors at the upper boundary of the target
zone are well resolved, while the diffractor at the lower boundary is properly
represented by a hyperbola. (The artefacts, which are visible because the
amplitudes are clipped at -32 dB relative to the maximum amplitude, are due to
the limited temporal and spatial bandwidth). Notice that this 2-D experiment
can also be seen as one step in a target oriented 3-D pre-stack migration
procedure. In the latter case, the 2-D seismic line represents one cluster of
shot records in a 3-D seismic survey, while the subsurface configuration of

Figure VI-9a represents one 2-D slice of a 3-D subsurface, as shown in
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Figure VI-9: (continued)

d. 3~D marine acquisition configuration above the subsurface
configuration of Figure b,

e. Cross-section (at x=o, indicated by the arrow in d) of the 3-D
multi-fold ZO section at the upper boundary of the target zone.
Left frame: result obtained from one seismic line
Middle frame: result obtained from eight seismic lines

Right frame: result obtained from 64 seismic lines

Figure VI-9b. In the 3-D case, however, the cluster of shot records should not
only be downward extrapolated to the central line at the upper boundary of the
target zone (that is the line in Figure VI-9b which contains the three point
diffractors), but to all parallel lines which together form the upper boundary
of the target zone. Of course this downward extrapolation should be carried out
in a 3-D sense. Figure VI-9¢c shows three 2-D slices of 3-D multi-fold Z0 data
(related to one cluster of shot records, that is, the original 2-D seismic
line), generated at three different lines (indicated by arrows in Figure VI-9b)
at the upper boundary of the target zone. It is interesting to note that the
three point diffractors at the central line (y=o0) also appear at other lines at
this boundary. In other words, the diffractors are not resolved in the
crogg-direction (perpendicular to the acquisition direction). This lack of
resolution in the cross-direction, which is even better seen in the left frame
of Figure VI-9e, can be well understood if one keeps in mind that only one
seismic line was involved in the downward extrapolation process. If the
procedure is repeated for eight clusters of shot records (eight seismic lines,
see also Figure VI-9d), followed by CDP stacking, then the resolution in the
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crogss—direction improves somewhat. The middle frame of Figure VI-9e shows a
cross—section of the multi-fold Z0 data (related to eight lines) at the upper

boundary of the target zone. Notice that the results of all individual seismic
lines can be distinguished in this figure. This effect is also known as spatial
aliasing: the line spacing at the surface is significantly larger than a
quarter of the dominant wavelength (remember that no offsets are measured in
the cross-direction; therefore a ZO anti-aliasing criterion should be satisfied
in the cross-direction). If the procedure is carried out for 64 clusters of
shot records (64 seismic lines), then the line-spacing at the surface reduces.
The right frame of Figure VI-9e shows an aliasing-free cross—section of
wide-angle multi-fold Z0 data at the upper boundary of the target zone. Notice
that the upper diffractor is properly focussed and that the lower diffractor is

clearly represented by a (cross-section of a) hyperboloid.

Finally, the ZO data for the target zone are migrated by a true 3-D ZO
migration algorithm (recursive 3-D phase-shift and imaging). Figure VI-10a
shows the in-line section at y=o and Figure VI-10b shows the cross-section at
x=0, both after 3-D migration. Notice that the hyperboloid related to the lower
point-diffractor has been collapsed. Constant-depth sections for the upper and
lower boundary of the target zoue are shown in Figures VI-10c and VI-10d,
respectively. Notice that the resolution in the line-direction (x-direction) is
much better than the resolution in the cross-direction (y-direction). This big
difference of resolution in both directions is of course directly related to

the orientation of the seismic lines at the surface.

Two important conclusions can be drawn from this experiment:

1, Target oriented 3-D pre-stack migration properly handles diffraction
energy. This means a significant improvement over conventional 3-D
‘migration, where diffraction energy is suppressed by CMP stacking.

2. Target oriented 3-D pre-stack migration yields resolution and proper
positioning in the line-direction as well as in the cross-direction. This
means a significant improvement over 2-D pre-stack migration, where
resolution is obtained only in the line-direction and where 'out of plane

events' are imaged in the wrong plane.



Figure VI-10: Data of Figure VI-9, after 3-D Z0 migration.
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to give an impression of the practical feasibility, we give the
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computation time. In this experiment the following amount of data was

1 Gbyte of data. The total procedure requires 100 minutes CPU time on
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VI.6 RESULTS OF TARGET ORIENTED 3-D PRE-STACK MIGRATION ON SCALE MODEL
DATA

In this final section we demonstrate the validity of the target oriented
migration concept and show how target oriented 3-D pre-stack migration compares
with target oriented 2-D pre-stack migration. Therefore we generated 3-D
multi-experiment, multi-offset data by physical modeling in a water tank. On
the bottom of the water tank we placed the well known 'French model! (French,
1975), see Figure VI-ll., The measurements were done just below the water
surface, using two axial-symmetric piezo-electric transducers in a
xs,xr,y—positioning system (xs = in-line coordinate of source, x, = in-line
coordinate of receiver, y = cross-line coordinate of source and receiver). By
carrying out 32 experiments for a fixed source position and a variable receiver

position a 32 channel common-shotpoint gather can be simulated.

In total we modeled 64 seismic lines with 64 CSP gathers each, thus simulating
a 3-D marine survey with 64x64x32 = 131,072 traces. The line spacing equals
20 m (throughout this section we give the simulated dimensions, the scaling
factor being 20,000). The 32nd CSP gather of line 25 is shown in Figure VI-1l2a.

0 300 600 900 12001500 1800
|

TN N

line 28 —|~f— — +l— - — |- — o —
Hine 33 --|- -L J

Figure VI-11: The 'French model' (five centimeters in the model simulate one
kilometer).
a. Perspective view.

b. Top-view and two-gside views.
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Figure VI-12: 3-D marine survey simulated by physical modeling.
a. CSP gather (line 25, shotpoint 32).

b. CO gather (line 25, offset 225 m).

c. Seismic line 25 (64 CSP gathers).
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The smallest source-receiver offset equals 225 m and the receiver spacing
equals 15 m. The time traces start at 0.84 8, the time sampling interval is

4 ms and the total trace-length is 256 samples. The frequency content ranges
from approximately 20 Hz to 100 Hz. A common-offset gather, selected from line
25, is shown in Figure VI-12b. The offset equals 225 m and the midpoint spacing
equals 30 m. Figure VI-12c shows all 64 CSP gathers of line 25, plotted next to
each other (every fourth trace is plotted only). The shot spacing equals 30 m.

Vertical 2-D slices of the subsurface below limes 25 and 33, respectively, are
shown in Figure VI-13. The upper boundary of the target zone is defined at a
depth of 600 m and the lower boundary at 1000 m. Two-dimensional redatuming of
line 25 to the upper boundary of the target zone, followed by 2-D wide-angle
CDP stacking and 2-D Z0 migration in the target zone yields the depth section
shown in Figure VI-l4a. Notice that the first dome ig correctly positioned (the
top of this dome lies almost vertically below line 25). However, two other
events are easily mis—interpreted: a side-swipe reflection from the second dome
is imaged just below the left end of the horizontal reflector and a side-swipe
reflection from the sloping edge intersects the right end of the horizontal
reflector. The same procedure applied to line 33 yields the depth section shown
in Figure VI-14b. Apart from forementioned artefacts notice that also the first
dome is mispositioned and that side-swipe diffractions from the dome—-edge are

imaged below the dome. For clarity the erroneously positioned 'out of plane

pre-stack
redatuming

— CDP stack
ZO migration

pre-stack
redatuming

600m — — — —>CDP stack
: - I ZO migration
1000m
b

Figure VI-13: Vertical 2-D slices of the subsurface below lines 25 and 33,
respectively. (The dotted lines indicate mis-positioned events

after 2-D processing, see also Figure VI-14).
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Figure VI-1l4: Results after 2-D redatuming, wide-angle CDP stacking and Z0
migration.
a. Line 25
b. Line 33

events' are indicated by dotted lines in Figure VI-13. Notice that these false
images are due to the invalidity of the 2-D assumption (the 'coherent noise’
just below the dome is mainly due to imperfections of the physical model and

the noise above the horizontal reflector is due to spatial under-sampling).

Three-dimensional redatuming to the upper boundary of the target zone, followed
by 3-D wide—angle CDP stacking and 3-D Z0 migration in the target zone, yields
a 3-D depth section. 2-D slices of this section vertically below lines 25 and
33 are shown in Figures VI-15a and VI-15b, respectively. To avoid spatial
aliasing related to the line spacing, we used an operator angle of 15 degrees
in the cross-line direction. Therefore a high spatial resolution may not be
expected in the cross—-line direction. However, the positioning of most events
is now correct, in spite of the small operator angle: all above mentioned
side-swipe reflections and diffractions disappeared completely, which improved

for instance the lateral continuity below the horizontal reflector. The limited
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Figure VI-15: Results after 3-D redatuming, wide~angle CDP stacking and ZO
migration.
a. Line 25.
b. Line 33.

cross—line operator angle accounts for the fact that the algorithm did not

produce a new image of the sloping edge at the correct position.

Therefore we did another experiment, using a finer line spacing (10 m instead
of 20 m) and a wider cross—line operator angle (30 degrees instead of 15
degrees). Also we reduced the detector interval (12 m instead of 15 m) to
suppress the aliasing noise above the horizontal reflector. A vertical 2-D
slice of the subsurface below line 1 is shown in Figure VI-l6a. The result
after 2-D redatuming, wide—angle CDP stacking and ZO migration of line 1 is
shown in Figure VI-16b. Note the strong side-swipe reflection of dome 1 and the
mis-positioned sloping edge. A 2-D slice below line 1 of the result after

3-D redatuming, wide—angle CDP stacking and ZO migration is shown in Figure
VVI—léc. Note that the side-swipe reflection of dome 1 disappeared for the
greater part and that the sloping edge is positioned correctly.
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Figure VI-16: Results of a new experiment, using a finer line spacing.

a. A vertical 2-D slice of the subsurface below line 1 (the dotted lines

b.

indicate mis-positioned events after 2-D processing, see also Figure b).

Result after 2-D redatuming, wide-angle CDP stacking and ZO migration

(line 1).

(line 1).

. Result after 3-D redatuming, wide—angle CDP stacking and Z0 migration

211

. Unmigrated result after 3-D redatuming and wide-angle CDP stacking (line 1).
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Finally, in Figure VI-16d we show a 2-D slice of the unmigrated 3-D wide-angle
CDP stack (after 3-D redatuming) at the upper boundary of the target zone.

Notice that these Z0 data in the time domain can be easily interpreted because
they are simulated at a level just above the zone of interest. In fact these
unmigrated data are very similar to the migrated data in Figure VI-16c!

Hence, 3-D pre-stack redatuming and wide—angle CDP stacking at the upper
boundary of the target zone represents a more costly but far superior
alternative to conventional CMP stacking at the acquisition surface. It may be
expected that the combination of redatuming and CDP stacking will play a key

role in future seismic processing.



APPENDICES

APPENDIX A

In this appendix we give the mathematical proof of relations (II-50) and
(I1~51). We use the following notation convention: the elements of matrix
capital i) are denoted by lower case qij. Furthermore we delete the
super—scripts + and — as well as the argument z,.

First we prove that (&, defined according to (I1I-47a) as

G - §7§ [z s*T] [z s] | (a-1)

may be written as

G - TG, v [S;T Sm] (a-2)

m

assuming G is a diagonal matrix. According to (A-1) the elements of G read

gl = % [(% (s;‘li)*> (% szj>], (A-3a)

or, since by definition s;v =0 if v # m:
i ki * j
g = Y Jeth" &, (A-3b)
k Lt

or, since it is assumed that gij =0 if 1 # j:
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- }: [ Sk1y* 311‘1]. (A-3c)

On the other hand, according to (A-2) the elements of &G read

-2 [Z( skiy* flj)]. (A=ba)

or, changing the order of summation and taking into account that s Woa o if

v # m:
-3 [ehy® o], (i)

According to this expression gij = o0 if 1 # j, while the diagonal elements

g“ are given by

gli = > [(31;1)* sl;i]. (a-4c)
k

Notice that gii in (A-3¢) equals gii in (A-4c), which completes the proof

of (I1-50).
Next we prove that X, defined according to (II-5la) as

e [rrdfzedfser)

may be written as
X-= Z[PmCmSm ] (4-6)
which is the equivalent of relation (II-5lb).

According to (A-5) the elements of X read

x = Z Z [(Z Pik) (% c:}) <§ (sil)*>] s (A-7a)

k 1 m

uv uv v
or, sincepm =0, ¢ =oa11ds::1 =0 if v # m:

a3y [Pik oyt (sfl)*]. (a-7b)
k 1



uv
or, since € =oif u# v

ij ik kk jk* -
X Zk I:pk ck (sk )]. (A-T7c)

On the other hand, according to (A-6) the elements of X read
. 1 i1 *
SN DID) (pik & (s1hy ) , (A-8a)
m Lk T\"® o o

or, changing the order of summation and taking into account that p:v = o if

vV & m:

1j i 1 jl.*
NN [l el Chaul N (4-8b)
1 k k k
or, since c:;v=oifufv:

. . o x
xiJ = % [p;k ctk (sl':k) ]. (A-8c)

Notice that x3 in (A-7c) equals xid in (A~-8c), which completes the proof
of (II-51).
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APPENDIX B

In this appendix we study the relations (I1I-32c) and (III-32d) for Az-0.

. . m—1 m
Jim Wiz ,2) = i [( Jii %’*(zi))( i ﬁ*(zi,zi_l))] »  (B-la)

=1 i=]
. ~1 m
lim o _ lim b _
Az+o v (zo’zm) " Azro [( 131 T (zl))(gl W (zl 1’21))] ’ (B-1b)
with Az = z; < Z5 -

Notice that z is fixed, so m*“ when Az+0. Here we consider relation (B-la),
for propagating waves only (H 20). According to relation (III-16d) operator
v (z )25 ) is given by

~t o~
W (zi’zi—l) = exp[—JHI(zi_l)Az]. (B~-2)
By solving the boundary conditions at z = zy @ continuous, Vz continuous),

~t
it follows easily that the transmission operator T (zi) 1s’ given by
(Berkhout, 1982)

~t o~
T (z,) =1+ R(z.), (B-3a)
i i
with
- plz DB (z5_1) = olz, ) (z))
R(z ) = = ~ . (B-3by
i oz (z;5_1) + plz_ ) H (z))
Assuming a continuously layered medium, we may rewrite T+(zi) when
Az = z;72 »0 according to
lim g+ 1 9p 1
= + ] - ¥ -_—— —4
Azro T (zi) 1 [2 oz z; ﬁ 3 (B-4)

assuming ﬁi(zi) # 0.
Substitution of (B~2) and (B~4) in relation (B-la), assuming ﬁ%(z)>0 for

z <2<z, yields
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. m=] m
limgt _ lim ~ ~t .
Az—*ow (zm,zo) = exp[Az_’o 311;1 InT (zi) + 1;1 oW (zi,zi_l){l

m
- I 9p_ 1 1 _
exp j {20 3z 5y 9z 3“1}""
z 1
o
‘m 3 H] ‘o ~
= exp f v - dz exp I -jHldz,
z z
[ o

from which relation (II1I-33a) follows immediately. Relation (III-33b) can be
derived accordingly. Similar relations can be derived for evanescent waves

(ﬁ%(O for z <z<z ). This is beyond the scope of this appendix.
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APPENDIX C

Solutions of Airy equation (III-43) are given by Airy functions (see Figure
I11-6). Here we summarize the results tabulated by Abramowitz and Stegun
(1970). A pair of independent solutions is Ai(Z), Bi(Z), which can be expressed

in terms of Bessel functions I and J of fractional order.

1. 00,0 =32 L m - FVE L 1) = 1,5, (c-1a)
A(@) = = FEUI_,,500) - 1,501, (c-1b)
Bi(Z) = V/;:;[1_1/3(0) + 11,3(0)i, (C-1c)
Bl(z) = CVA;-[I—2/3(”) + 1,0, (c-14)

where the primes denote differentiation with respect to Z.

2. 20,9 =20)¥% ai(0) = fVTT Ly + 9,000, (c-2a)
AL(D) = 32 13_,,,(0) = 3, (D], (c-2b)
b1 = [k @ - 3,00, (c-2¢)
i) = -0 /T 1,0 + 3,500, (c-24)

3. ai(oBl(D) - al(opi(n) = 77 (c-3)

4. AL(0) = Bi(0)/\/3 = 3'2/3/r(§o = .355028053887817, (C-4a)

-4i(0) = B1(0)/v/3 = 373 /1)) = .258819403792807. (C-4b)

5. oo, 9= %3/2 s AL(g) = -27’7{'% e_", (C-5a)
ai@) = -zt - 1 haso, (c-5b)

Bi(L) = —tee £ ¥ &P, (c-5¢)

Bi(z) = (2% - k¢ LIBi(D). (c-5d)



6. g, 9 =207 M@ =0T e + D), (c-6a)
™
AL@) = ~(0)iBi) + %) ' AL@), (C-6b)
. 1 -k T
Bi(g) = —=(-¢) * cos(d +T)’ (C-6¢c)
™
Bi(z) = (-p)tai(e) + ¥y 'BiCD). (c-6d)

Notice that in chapter III the arguments { and ¢ for propagating waves read

= X%, - X3, (c-7a)

9 = 2ix1m'w/2. (C-7b)
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APPENDIX D

In this appendix, we discuss the details of step 2ii of the inversion scheme
presented in section ITI-10. We assume that the data are downward extrapolated
to z and we abbreviate cq1€2) and °m+1(zm) to c(z) and ¢, respective-

ly. According to Aki and Richards (1980), the intercept time T, corresponding

to a critical angle event described by ray-parameter p, can be expressed as

(p)

Z
t =
w(p) = 2 j Vi) - plaz, (0-1)
o]

where the turning point depth zt(p) follows from p=1/c(zt). Migrating
critical angle data, using an estimated velocity profile c'(z), yields an
apparent turning point depth z:(p) which satisfies the following integral
equation

z;(p)

zt(p)
2 f Ve @) - plaz = 2 ] Vie' )12 - plaz. (0-2)
[o]

=]

The underlying philosophy for this equation is that the turning point image is
obtained when the intercept time 7 is consumed by means of downward
extrapolation of the data. In the following we present a solution of (D-2),

assuming
-2 -2
c (z) = <, [1 - az], a>0. (D-3a)

Futhermore, we assume that the data are migrated, using migration velocity
c'(z), such that

-2
c
o

fe' @12 =c?1-a2], O<al'<a. (0-3b)
Finally we assume that the output velocity profile c"(z) satisfies

{t:"(z)}-2 = c;Z[l - a"z], a";ﬁ. (D-3c)

Notice that, with p=1/c(zt), the corresponding turning point depths follow

from



z,(®) = (1 - <2p’)/a, | (D-4a)
21(p) = [1 - c2p’V/a’, (0-4b)
zz(p) =[1 - czpz]/a". (D=4c)

Given the input and output parameters a' and a” respectively, then the true
value a follows from (D-2) - (D-4), according to
A
a=a/il- -2 (0-5)
Now the true velocity is obtained by substituting this value in relatiomn
(b-3a).

Notice that even for ll-a'/a"|<<l we may not write a~%(a'+a”), so relation
(I11-76a) is biased, even for small gradients, which follows from rewriting
(D-3) for small gradients.

221




222

APPENDIX E

In this appendix, we derive a two-way wave field extrapolation operator for
arbitrarily inhomogeneous media. We follow the same procedure as in section
IV.4, however, here we take into account the first derivative of the medium

properties with respect to z.

Our starting point is relation (IV-33)

w (z-z fn >
a(z) = Z _L[LQ]

E-1
m=0 m! P P ’ (B-ia)
o

where

o> m-1>

it 1[8_3, (&-10)

2™ 9z Laz™
with >

-g% = AQ, (E-1lc)

-
A and Q being defined by relations (IV-2b,c). In the following we assume

linearized medium properties, according to

c(x,y,z) = co(x,y)[1+q(x,y)Az] (E-2a)
and

p(x,y,2) = o (x,y)[14r(x,y) 2], (E-2b)
with

Az = 2z,
while

lq(x,y)Az|<<1 (E-2c)
and

lr(x,y)Az|<<1. (E-2d)

Now operator A can be linearized, according to
A=A +3A A, (E-3a)
o z o

with
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*
o podo* o poTd,
. P » 3,A = : , (E-3b,c)
- —L,* o —G,* o
% 2 Py 2
L, = Ho(z ), G, = p_[-2-(~ tn,)) (E-3d,e)
2 T F2%%e7r B2 T PolgetT 520 g ’

In the following we assume that lateral derivatives of q(x,y) and r(x,y) may be

neglected. In this case we obtain
G, =1L, + (2qw2/c2)d (E-3f)
2 2 o’ 0o’
while [Bt:a]z can be approximated for even m (m=2n) by
o

2 2n, 2 p2n-2 2n-3
(5,701, = [AZ A (A (1A (0,A DA 1z ), (E-4a)

o]

and for odd m (m=2n+l) by

2nt1 _ 2ntl, 2 4 2n-1 2n-2 _
(7, = (AT AT A DA (3,A DA Az ), (B-4b)

where
’ Zn* ° 2 ° I"Zn*‘gol‘o*
A’ = (1) SAZ = R ,(E=4c ,d)
1 1
° p_LZn*poLo* P I"21'1+2,k °
o o
20-2 ° poﬂ"Zn—Z* GZ*LZn-2* o
A2 A H=-(-1)" LA A )=--D)"
o z' "o ) . o z*%o .
5 522" © ° Lon
o
(E-be,f)
o G, *L * -rL_ * o
2n-3 n Pe”2" 204 2n-2 n n
A (3 _A DA =(-1) » A (G A DA =D
o z" 00 o r . o z' %0 o G 5L
o
? ¥2n ° 2 “2n-2
o .
with L, +2 defined recursively, according to (E-4g,h)
= * - = -
LG_*_z L2 LG) LO do(x,)') 6(3)5()')- (E 4i,j)

With these relations we finally find
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d(z) = W(z,2z,(z,), (E-5a)
where
Wiz,z )% Wpp(z,z)*
W(z,zo) = s (E-5b)
Wirp(zs2g)* Wry(z,z)*
® 2
= - (A)_ _r.. * -
v (2,2 ) nZo [anLZn+znbn{ b +2 L, }LG_z , (E-5c)
o
® 2
- %, - w_ - E * -
W (z,2) nzo [anZH poLo+ZDonan{(n 1)q 2 3Ly }LG_4], (E-5d)
' (]
< 1 2 w2 o
= [ ] — —_— - =] % -
Wrpp(eazg) = 2 [bn o Lont2t 5 “an{"‘q L) }LG—z , (E=3e)
n=o (o] [+] Co
< 1 w2 r
= —_ - —_— - * -
Wiy(z,2) ngo [an poLG*poL°+2nbn{ (otl)q % 3Ly }L2n_2], (E-5£)
o

with a and b  defined by relations (IV-37d,f). Notice that for g=r=o,

relation (IV-37) is obtained. On the other hand, if the medium properties ¢ and
p are functions of z only, then extrapolation may be carried out in the
wavenumber—frequency domain, so operator LG may be replaced by E;=ﬁg(zo).

Now the infinite series in (E-5) can be summed to closed expressions, yielding

operators (IV-25b,c,d,e).
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APPENDIX F

In this appendix, we derive a fast converging two-way wave field extrapolation
operator for arbitrarily inhomogeneous media. We follow the same procedure as
in section IV.5, however, here we take into account the first derivative of the

medium properties with respect to z.

Our starting point is operator (E-5b). Neglecting the lateral derivatives of

the medium parameters, this operator can be rewritten as

- < [ n -
W(z,z ) = nz=:oL{ RE_ + (S+JU) Fn +(T+J V)Gn}Lz] (F-la)
where
-1+R o SR o S o
R - . S- , T= , (F-1b,c,d)
L o 1-Rr o SR o -S
o do* 1+R o =S o
J = QOAZ U= > v = » (F-le)f)g)
Z2* [ o I4R o -
a o . bn/Az o
En - R = s (F-1h,i)
o a o bn/Az
1 n LG* °
Gn =Xz—2 [Eﬁl - Fn+l]’ L2 = , (F-13,k)
o L, *
2n
1 m2
Z2 =-—3 [(l—rAz)L2 - gAz —5 do]’ (F-11)
o o
m2 3 r
s =L, , R == Az, (F-1lm,n)
2c§ 2

with co(x,y), po(x,y), q(x,y), r(x,y) given by (E-2), L,, siven by (E-41)
and a, bn given by relations (IV-37d,f). In relation (F-1) we made use of
the property Azan = (2n+1)bn.
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Similar as in section IV.5, we may write for L;:
n a 1 n\pm 2,2
L, = 3 | =55 KDY, « = of/el, (F-2)
m=o aK

with K and DZ given by relations (IV-39b,c). Substitution in (F-1), changing
the order of summations, and using the property 3:Kn = o for m>n, yields

Wizz,) = i[ﬂk(&—m) + (8 + JU(EN)

m=0

+ (T + JV) fl) ] (F-3a)

where

M- 3 [EK] N- 3 [EK]. p- 3

n=9o n=Q n=o

[G K] (F-3b,c,d)

The infinite expansions for M, N and P can be replaced by closed

expressions, according to

lbl,o ° l1’2,0 ° ¢3’° °
M- ’ N = ’ P- ’ (F-4a,b,c)
° ¥ 4 °o ¥, ° Y3,
where
sin@o cos<I>° sin<I>o
wl 0 = cos@o, q;z 0o =T lb3 0T T T T3 » (F-4d,e,f)
’ ! d>° : <I>o <I>o
with
= bz = = pe. (F-4g)
o

Notice that wl,o’ ‘112,0 and ¢3’° equal the operators ¥,, ¥, and lb3,
respectively, given by relations (IV-25i,j,k) for horizontal plane waves, that

2 2
is, for kx = ky = 0.

By substituting relation (F-4) in relation (F-3), it follows that operator
W(z,zo) is given by

WI(z,zo)* WII(z,zo)*
W(z,zo) = s (F~5a)
Wipp(z,z)* Wpylz,z )%
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where
wl(z,zo) = ;Z? a Doy Wii(z,2)) = ;ZL BPom? (F-5b,c)
Wirp(eszg) = 2y * Wpp(2azg), Vpy(a,z) = 2 YpDy, (F-5d,e)
with
_ (S R) -
ay = (IHR)T, + =y + S9, (F-5£)
B, = (L#R)n, - p A289 , (F-5g)
= (-p)z. + 8 gy (F-5h)
Yo m poAz ™ m’

1 P 1 /3%
tn = <3K 11')l o) Ny = P, Az —(—‘JJaK ) o)’ Iy = _<_E 1P3,°> . (F-51, j,k)

For m=o, 1 etc., we find

1
Lo = cosd , Ty =~ 5 @osinéo, etc., (F-6a,b)
sin<I>o poAz sin‘bo
Ny = phz ——= My = = |5 " c0s%,|, etc. (F-6c,d)
o o
cos<I>0 sin<I>o ) sin®0 3cos<l>0 35in¢o

g =—a = O == + - , etc. (F-6e,£)

o <I)2 ¢3 1 2K ® ¢2 ¢3

o o o o o

Notice that for q=r=o, operator (F-5) equals operator (IV-42). On the other
hand, if the medium properties ¢ and p are functions of z only, then
extrapolation may be carried out in the wavenumber-frequency domain, so D2m
may be replaced by D = (- k2 kz)m. Now the infinite series in (F-5) can be

summed to closed expressions, ylelding operators (IV-25b,c,d,e).
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APPENDIX G

Operator As in relation (V-8) is given by

0 A,
As = , (G-1a)

A 2 0o

0 0
0 - , (G~1b)

0 0

[ wz A

- (A+2u)do(x)* -()\+2u)d1 (x)*
A] = R (G-1c)

A 4u
__(A+2u) 4, (x)* {pdo(x)-b—(? <A+2u)d2(")}

[0a % =4 (x)%
A = 2 . (6-14)
-4 ()% =T (x)*

This operator can be decomposed as follows

A - LA, L;l (6-2a)
witi‘n
L L
L, - , (G-2b)
L, -L,
A O
A, = , (G-2c)
0 -Aj
L' L
L' -3 , (G-2d)



A=

I'muiP)*

juﬁl(x)*

L‘Z(%dl()l)*ﬂsl’)* - (jomdo(x)ﬂj%dz (x)] *

—[ jpwdo(x)+23%d2(x)]* _zﬁdl(x)*H(ISV)*
| jwdl(x)* _wH(]SV)*
‘jﬂgp)* o
o _jH§SV)*
Sl L A1yt
L7 =-SAL,
pw
-1 1 o-1gT
LZ - - __Z_A Ll’
pw
:'IHEI;)* o
Al -
o jHESlv)*
B »ul = 50w,
() ®) _ .(P)
H& oo ol =H, 0,
(P) w2p
HZ = (X+2u>d°(x) + dZ(K),
Hfs;v) N H§SV) - 5,
Hisv) % H](.SV) - Hésv)’
NE <912_p)d )+ 4
2 A L ().

(G—2e)

(G-2f)

(6-2g)

(6~2h)

(G-21)

(G~-23)

(6-2k)

(G-21)

(G-2m)

(G-2n)

(G-2p)

(6-2q)
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APPENDIX H

From the equation of motion (V-3) for inhomogeneous isotropic solids
VEOF2u)V. V] = x(uusd) + polV =
= 220 (VIV - (WV.T + (V) x (VD) ] (H-1a)

and the following three stress-strain relations

Jwzg, = u@V,/3z + v, /ax), (H-1b)
ijy - u(avy/az + v, /3y), (H-1lc)
Juz, = X9V + 2u(aV,/22), (B-1d)

the matrix formulation of the full elastic two-way wave equation for 3-D inhomo-
geneous solids can be derived in a similar way as described in section V.2 for
the 2-D inhomogeneous case. Assuming the lateral derivatives of the medium

parameters )\, p and p may be neglected, we find

3Q
5= AL, (H-2a)
where
- T _
Q= [30V,,2,,2.,2 , 309, 30 17, (B-2b)
and
0 A]
As = ’ (H-2¢)
A?_ 0
where
o o (]
O=]|0 0 o , (H-24)
(o] [e] 0.



—'< 2‘) " A d ( A d ( )
A+2 ERC 2y x)* \2u y

A - <x+2u)d ¥ d,(ruy)+ “qady (¥ -7d, (DI* ~56d, (O, ()

_(X+>\2u> d, (5)* ﬁﬁdl(x)*dl(y)* lpd (x,y)+ -w—d (x)+w —fad,(y))*

-

(H-2e)
Odo(x,y)* 'dl(X)* ‘dl(y)*
w2
A, = |4 x)* TR C Sl o , (H-2£)
u)2
—dl (y)* (o) - Tdo(x,y)*
= [Au -

Qa ()‘+—211>’ (H-2g)

— (3A+2u _
B (A+2u)' (H-2h)
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SUMMARY

This thesis deals with theoretical and practical aspects of an important
seismic inversion technique, generally referred to as pre-stack migration. As
opposed to- post-stack migration, which inverts stacked (pseudo zero-offset)
data, pre—stack migration inverts multi-experiment, multi-offset seismic data,
assuming known macro features of the earth's subsurface (geologically oriented
'macro subsurface model'). The output consists of a detailed two-dimensional
(2-D) or three-dimensional (3-D) structural image of the subsurface ('micro
subsurface model') in terms of the wide-angle zero—offset reflectivity.

In chapter I some general aspects of seismic inversion are briefly reviewed. It
is argued on theoretical and practical grounds that pre-stack migration should
be applied to shot records (no common-midpoint or common-offset compromises),

followed by genuine common—depthpoint stacking.

In chapter II the proposed shot record migration technique is discussed in more
detail. It is shown that
= non—hyperbolic move-out curves are allowed,
= true amplitude migration may be accomplished,
— any data acquisition configuration is allowed,
— small errors in the macro subsurface model can be compensated for,
— any type of wave equation can be used (one-way, two-way, full elastic,
ete.),
~ many variants can be designed, depending of the migration objective (angle
dependent reflectivity, full response data sets at the major interfaces,

etc.).

In chapter III various theoretical aspects of the acoustic one-way wave
equations are reviewed and applications in pre—stack migration are discussed.
It is concluded that the one-way approach is valid for sub-critical primary
events in 1-D, 2-D and 3-D inhomogeneousbmacro subsurface models. In addition,
it is shown that pre-stack migration based on the acoustic WKBJ one-~way wave
equations is valid for sub-critical as well as critical 'primary’' events

(turning point effects) in 1-D inhomogeneous macro subsurface models.
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In chapter IV various theoretical aspects of the acoustic two-way wave
equation are reviewed and applications in pre-stack migration are discussed. It

is concluded that the two-way approach is valid for 1-D, 2-D and 3-D inhomoge-—
neous macro subsurface models. Acoustic two-way wave equation migration
properly handles critical angle events and multiple reflections if the macro
subsurface model is accurately known. For smoothed macro subsurface models a

high dip—angle performance for primary waves may be expected.

In chapter V various theoretical aspects of the full elastic two—way wave
equation are reviewed and applications in pre-stack migration are discussed. It
is concluded that the full elastic two—way approach is valid for 1-D and 2-D
inhomogeneous macro subsurface models and that it can be extended for 3-D
inhomogeneous macro subsurface models. Full elastic wave equation migration
properly handles multiple reflections and wave conversion if the (full elastic)
macro subsurface model is accurately known. For smoothed macro subsurface

models a high dip-angle performance for primary waves may be expected.

In chapter VI various practical aspects of 3-D pre-stack migration are
discussed. In many practical situations seismic interpreters are mainly
interested in a high resolution image of a pre-specified target zone. Hence,
realistic processing times can be obtained by applying 'target-oriented' 3-D
pre-stack migration, without the need to make compromises with respect to the
underlying principles. The target-oriented shot record migration algorithm is
tested on simulated 3-D marine surveys (both synthetic and scale model data)
for simple subsurface models. The results illustrate the good imaging
properties for the cross-line direction and the excellent imaging properties

for the inmline direction.
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SAMENVATTING

Dit proefschrift behandelt theoretische en praktische aspekten van een belang-
rijke seismische inversietechniek, de zogenaamde pre~stack migratie (letter-

lijk: migratie v66r stapelen). In tegenstelling tot post-stack migratie,

" waarin na stack pseudo zero-offset metingen geInverteerd worden, worden in

pre-stack migratie de originele seismische experimenten met meervoudige offsets
gelnverteerd, uitgaande van een globale beschri jving van de ondergrond (het
geologische 'makro model'). Het resultaat bestaat uit een gedetailleerde twee—
dimengionale (2-D) of drie~dimensionale (3-D) struktuur—-afbeelding van de
ondergrond (het 'mikro model'), uitgedrukt in de 'groothoek' zero-offset
reflektiviteit.

In hoofdstuk I worden in het kort enkele algemene aspekten van seismische
inversie besproken. Op theoretische en praktische gronden wordt geargumenteerd
dat pre-stack migratie dient te worden uitgevoerd per seismisch experiment (dus
géén 'gemeenschappeli jk-middelpunt' of 'gemeenschappeli jke~offset' kompro-
missen), gevolgd door een echte stack (stapeling) per gemeenschappeli jk
afbeeldingspunt.

In hoofdstuk II wordt de voorgestelde methode, te weten, migratie per seismisch
experiment, uitgebreider besproken. Er wordt aangetoond dat
= niet-hyperbolische responsie—krommen zijn toegestaan,
= korrekte amplitudes kunnen worden verkregen,
~ iedere data—acquisitie konfiguratie is toegestaan,
= kleine fouten in het makro model van de ondergrond kunnen worden
gekompenseerd,
= ieder type golfvergelijking kan worden toegepast (éénweg, tweeweg,
volledig elastisch, enz.),
— vele varianten kunnen worden ontworpen, afhankelijk van het migratie—doel
(hoekafhankeli jke reflektie, volledige datasets op geologische grenslagen,

enz.).

In hoofdstuk III wordt een overzicht gegeven van verscheidene theoretische
aspekten van de akoestische éénweg golfvergeli jkingen. Tevens worden

toepassingen in pre-stack migratie besproken. Er wordt gekonkludeerd dat de
éénweg-methode geldig is voor sub~kritische primaire golven in 1-D, 2-D en
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3-D inhomogene makro modellen. Tevens wordt aangetoond dat pre—stack migratie,
gebaseerd op de akoestische WKBJ &&nweg golfvergelijkingen, geldig is voor
zowel sub~kritische als kritische 'primaire' golven ('keerpunt' effekten) in

1-D inhomogene makro modellen.

In hoofdstuk IV wordt een overzicht gegeven van verscheidene theoretische
aspekten van de akoestische tweeweg golfvergelijking. Tevens worden toepas-
singen in pre-stack migratie besproken. Er wordt gekonkludeerd dat de tweeweg-
methode geldig is voor 1-D, 2-D en 3-D inhomogene makro modellen van de onder—
grond. Pre-stack migratie, gebaseerd op de akoestische tweeweg golfvergelij-
king, behandelt op juiste wijze kritische effekten en meervoudige reflekties
indien het makro model van de ondergrond nauwkeurig bekend is. Voor geéffende
makro modellen mag tot grote openingshoeken een goede behandeling van primaire

golven verwacht worden.

In hoofdstuk V wordt een overzicht gegeven van verscheidene theoretische
aspekten van de volledig elastische tweeweg golfvergelijking. Tevens worden
toepassingen in pre-stack migratie besproken. Er wordt gekonkludeerd dat de
volledig elastische tweeweg methode geldig is voor 1-D en 2-D inhomogene makro
modellen en dat de methode kan worden uitgebreid voor 3-D inhomogene makro
modellen. Pre-stack migratie, gebaseerd op de volledig elastische golf-
vergeli jking, behandelt op juiste wijze meervoudige reflekties en golf-
konversie indien het (volledig elastische) makro model van de ondergrond
nauwkeurig bekend is. Voor geéffende makro modellen mag tot grote openings—

hoeken een goede behandeling van primaire golven verwacht worden.

In hoofdstuk VI worden verscheidene praktische aspekten van 3-D pre-stack
migratie besproken. In vele praktische situaties zijn seismische interpreta-
toren vooral geInteresseerd in een hoge resolutie afbeelding van een specifiek
'doelgebied'. Dit betekent dat realistische verwerkingsti jden kunnen worden
verkregen door 'doelgerichte' 3-D pre-stack migratie toe te passen, zonder dat
hiervoor kompromissen met betrekking tot de onderliggende principes gesloten
hoeven te worden. Het 'doelgerichte' migratie algoritme, toegepast per seis—
misch experiment, is getest aan de hand van gesimuleerde 3-D zee-datasets
(zowel syntetische~ als schaalmodel-metingen) voor eenvoudige ondergrond-
modellen. De resultaten illustreren de goede afbeeldingseigenschappen in de
richting loodrecht op de seismische 1lijnen en de uitstekende afbeeldings—

eigenschappen in de richting parallel aan de seismische 1lijnen.
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11.

STELLINGEN
behorende bij het proefschrift

"Pre-stack migration in two and three dimensions”

Migratie per fysisch experiment is een veelbelovende seismische inversie-

techniek. Met name de drie-dimensionale toepassing biedt perspektief.

Tweeweg golfveldextrapolatie langs de diepte—kodrdinaat (zowel akoestisch
als volledig elastisch) is meer geschikt voor inversie dan voor simulatie

van seismische data.

De akoestische tweeweg golfveldextrapolatie—operator kan na een eenvoudige

modifikatie ook worden toegepast in laminair stromende media.

Voor extrapolatie van menseli jk gedrag is geen eenduidig bemonsterings—

kriterium vast te stellen.

De vraag of er in het heelal een tweede beschaving bestaat is prematuur:

het bestaan van de eerste is nog niet bewezen.

Van de betrokkenen bij het zogenaamde 'Star Wars' projekt valt nauweli jks
te verwachten dat zij tot inkeer zullen komen. De hoop dient gevestigd te
worden op de in ruime mate in dit projekt toegepaste kunstmatige

intelligentie.

Een cycloop met encyclopedische kennis heeft een ruimere blik dan men op

grond van zijn uiterlijk zou vermoeden.

Ons model van de wereld is sterker verfijnd sinds Einstein dan ons begrip

sinds de batavieren.

De mogelijkheden der techniek zijn begrensd. Zo valt er niet te verwachten

dat er voor de piano een korrektietoets zal worden uitgevonden.

Een promovendus kan in zijn of haar vakantie volstaan met een 40-urige

werkweek.

Descartes had aan zijn stelling: 'ik denk, dus ik besta' nog kunnen

toevoegen: 'ik schrijf, dus ik blijf'.

6 februari 1986 Kees Wapenaar









