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S U M M A R Y
Current macromodel-based one-way wavefield extrapolation ignores the practical highly dis-
continuous character of rock formations. The main effects of this highly discontinuous be-
haviour on transmitted wavefields are angle-dependent dispersion and amplitude losses. In
this paper the angle-dependent dispersion and amplitude losses are quantified by a proposed
extended macro model, which is closely related to the current macro model except that two
stochastic parameters on the rock formations are added. The stochastic parameters are derived
based on the observation of power-law behaviour of subsurface heterogeneity. The resulting
replacement medium described by the extended macro model is an anisotropic medium with
anelastic losses. Explicit extrapolation operators are used to perform forward and inverse
wavefield extrapolation in the inhomogeneous replacement medium, which mimics a true sub-
surface that is moderately inhomogeneous at the macro scale and highly discontinuous at the
subwavelength scale. The stability of the inverse wavefield extrapolation is achieved through
controlling the maximum angle of propagation. Also a table-driven true-amplitude pre-stack
migration scheme is proposed, which can approximately eliminate the dispersion effects of the
fine-layering together with the geometrical spreading effects in imaging the subsurface based
on the extended macro model. A number of numerical examples are presented to illustrate the
algorithms.
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I N T RO D U C T I O N

The main process in seismic migration is the elimination of propa-
gation effects from the seismic measurements. Usually these prop-
agation effects are quantified by a macro model, which contains
the main geological boundaries in the subsurface and the average
velocities between these boundaries. However, the rock formations
as revealed by well logs and core samples are highly discontinuous
at all length-scales down to a few centimetres and smaller. Exten-
sive studies on wave propagation through (1-D) finely layered media
(e.g. O’Doherty & Anstey 1971; Schoenberger & Levin 1979) have
shown that short-period internal multiples may seriously affect the
apparent propagation properties of the seismic wavefield. The main
effects are angle-dependent dispersion and amplitude losses of the
transmitted wavefield. It is obvious that the macro model does not in-
clude the details of rock formations at such small scales. Hence, the
seismic processing based on the macro model will not compensate
for these angle-dependent dispersions and amplitude losses. This
may result in dispersed images and erroneous amplitude-variation-
with-angle (AVA) effects. It is not realistic to attempt to construct

∗On leave from: The Department of Engineering Mechanics, Dalian Univer-
sity of Technology, Dalian 116023, China. E-mail: zhangjf@mail.igcas.ac.cn

a velocity model that includes the correct details of the rock for-
mations. Instead, it is more feasible to describe the changes of the
primary wave due to the fine-layering scattering (i.e. short-period
internal multiples) in terms of the stochastic wave propagation and
then use the stochastic parameters that characterize the medium to
mimic the apparent propagation properties of wavefield. This ap-
proach was followed by O’Doherty & Anstey (1971) and Banik
et al. (1985) for normal incident wavefields through 1-D acoustic
media, by Shapiro & Zien (1993) for obliquely incident wavefields
through 1-D acoustic media, and by Burridge & Chang (1989) for
obliquely incident wavefields through 1-D elastic media. Hermann
& Wapenaar (1992) and Wapenaar et al. (1994) introduced an ex-
tended macro model. The extended macro model aims to replace
a finely layered medium by a homogeneous anisotropic medium
with anelastic losses in such a way that the transmission response
of this replacement medium is effectively the same as the trans-
mission response of the original finely layered medium. This pro-
vides a possibility to take the fine-layering scattering into account
in seismic processing for a practical subsurface that is moderately
inhomogeneous at the macro scale and highly discontinuous at the
subwavelength scale.

In this paper, we further develop the idea of the extended macro
model. Instead of describing the model with frequency-dependent
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vertical and horizontal complex phase velocities as introduced in
Wapenaar et al. (1994), we directly derive the dispersion relation
for the replacement medium based on the apparent transmission
response of the original finely layered medium, and then define
the average velocities and stochastic parameters as those used by
Wapenaar et al. (1994) as a new parametrized extended macro
model. This means that the proposed replacement model has a
less severe angle limitation for mimicking the wave propagation
in the true finely layered medium and it is able to handle fine-
layering structures that are either horizontal or tilted. Also, in the
proposed method the Kramers–Kronig relations are satisfied for
all propagation angles. By developing phase-shift operators that
govern primary wave propagation in the anisotropic replacement
medium with anelastic losses, based on the derived dispersion re-
lation, and then designing short explicit extrapolation operators in
the space–frequency domain based on these phase-shift operators,
we can perform wavefield depth extrapolation which takes short-
period internal multiples into account in inhomogeneous media.
Thus, a table-driven ‘true-amplitude’ migration scheme is devel-
oped, which can approximately eliminate the dispersion effects of
the fine-layering together with the geometrical spreading effects in
imaging the subsurface based on an extended macro model. Here the
quotation marks mean that we assume that the intrinsic absorption
has been eliminated separately, e.g. by a time-variant deconvolu-
tion process, and ‘table-driven’ indicates that the depth extrapo-
lation process is performed by selecting the space-variant explicit
operators from a pre-calculated operator table (Blacquiere et al.
1989). Several authors (Wapenaar & Hermann 1993; Widmaier et al.
1996) have proposed to include fine-layering effects into migration.
The extended macro model we use is closely related to the con-
ventional macro model used for current migration schemes, except
that two stochastic parameters on the rock formations need to be
added. The stochastic parameters are derived based on the observa-
tion of power-law behaviour of subsurface heterogeneity (Walden
& Hosken 1985; Stefani & De 2001), which can be estimated from
well logs, from VSP data, or directly from the reflection measure-
ments based on the proposed imaging scheme. It has been observed
from well logs that one of the stochastic parameters, the value of the
power, does not vary much for different basin types (Stefani & De
2001).

In the proposed migration scheme, the instability, due to boost-
ing amplitudes in the inverse depth extrapolation of a wavefield, is
avoided through suppressing the amplitudes of the spatial Fourier
transform of the explicit operators for high angles of propagation
in the design of the operators. The asymmetric short explicit ex-
trapolation operators, which can boost and decay the amplitudes
of wavefields during inverse and forward extrapolations, are de-
signed by adapting the weighted least-squares method (Thorbecke
& Rietveld 1994; Zhang et al. 2001). The short spatial extent of
the derived explicit operators makes it more reasonable for the pro-
posed scheme to handle laterally inhomogeneous media. Of course,
the scheme has a dip-angle restriction.

The set-up of this paper is as follows: first oblique wave prop-
agation through 1-D finely layered acoustic media is briefly re-
viewed; then we present an extended macro model described by
a dispersion relation based on average velocities and stochas-
tic parameters; next, the forward and inverse phase-shift opera-
tors and the design of spatial explicit operators are discussed;
after this an AVA pre-stack migration scheme is proposed; fi-
nally, a number of numerical examples are given to illustrate the
algorithms.

Transmission response of a layered medium

According to the O’Doherty & Anstey formula, the transmission
response of a normal incident wave propagating through a finely
layered medium can be described in terms of wavefield extrapolation
operators as

W̃ +
g (zm, z0, θ = 0, ω) = W̃ +

p (zm, z0, θ = 0, ω)C̃(zm, z0, θ = 0, ω),
(1)

where W̃ +
p (zm, z0, θ = 0, ω) is the extrapolation operator for the

primary wave and C̃(zm, z0, θ = 0, ω) is a correction operator that
accounts for the fine-layering scattering. We call W̃ +

g (zm, z0, θ =
0, ω) the generalized primary extrapolation operator. The correction
operator C̃(zm, z0, θ = 0, ω)reads

C̃(zm, z0, θ = 0, ω) = exp(−A(ω)�T )

= exp

[
−1

2
R(ω)�T − j

1

2
I (ω)�T

]
, (2)

where �T is the time of the primary pulse travelling from z0 to
zm, R(ω) is the power-spectrum of the reflection coefficients as a
function of two-way traveltime (Banik et al. 1985), and from the
Kramers–Kronig relation I (ω) should be the Hilbert transform of
R(ω) (Aki & Richards 1980). The functions R(ω) and I (ω) de-
fine the apparent attenuation and time delay of the transmission
response due to the fine-layering scattering, respectively. It has been
observed from well logs that in many situations the statistics of the
fine-layering are described by fractal Brownian motion (Walden &
Hosken 1985). Consequently, R(ω) in eq. (2) may be expressed as

R(ω) = υ|ω|α, (3)

and its Hilbert transform, I (ω), is given by

I (ω) = υ tan(απ/2)sign(ω)|ω|α. (4)

The analysis of well logs from different basins shows that the value
of the power, α, varies from about 0.5 to 0.9 (Stefani & De 2001).
The value of υ is determined by the variations of the velocities in
the finely layered medium. α and υ can be estimated from sonic
logs or from VSP data based on the attenuation and time delay of
the pulse (e.g. Walden & Hosken 1985).

Various authors (Burridge & Chang 1989; Shapiro & Zien 1993;
Wapenaar et al. 1994) extended eq. (1) for oblique wave propagation
through a 1-D acoustic medium. For a plane wave with an incident
angle of θ , the primary extrapolation operator is given by

W̃ +
p (zm, z0, θ, ω) = exp(− jω cos φ�z/c0), (5)

where �z = zm − z0. We assume a Goupillaud medium (one in
which the vertical traveltime across every layer is the same) in our
discussion since the stochastic wave theorem is only proven for
Goupillaud layered media (Burridge & Chang 1989). Thus, c0 in
eq. (5) denotes the average velocity of the finely layered medium
(c0 = ∑m

i=1 ci/m) and φ is defined as

cos φ =
√

1 − (
c2

s

/
c2

1

)
(sin θ )2, (6)

where c2
s = ∑m

i=1 c2
i /m, and c1 denotes the velocity of the first layer

medium. For the fractal Brownian motion model (i.e. eqs 3 and 4),
the correction operator may be expressed as (Wapenaar et al. 1994)

C̃(zm, z0, θ, ω) = exp
[ − A(ω)(cos φ)α−n�z/c0

]
, (7)
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Figure 1. Transmission responses for plane waves with incident angles of 0◦, 30◦ and 50◦. The solid-line denotes the exact transmission responses based on
the numerical modelling in the true layered medium. The dashed line denotes primary responses based on the average velocity (i.e. macro model). The dotted
line denotes the generalized primaries that take the fine-layering scattering into account.

where n = 4 when the layered medium contains velocity contrasts
only, and n = 0 for density contrasts only.

For plane waves with incident angles of 0◦, 30◦ and 50◦, Fig. 1
illustrates the comparisons of the primaries, which are generated
based on the macro model (i.e. based on eq. 5 and φ = θ ), the
generalized primaries, which are obtained based on eqs (5)–(7) that
take the fine-layering scattering into account, and exact transmis-
sion responses, which are derived from a numerical modelling of
the acoustic wave equation in the true layered medium. The syn-
thetic velocity well log for the 1-D layered medium is shown in
Fig. 2, and the corresponding α and υ are estimated from the syn-
thetic well log as 0.8779 and 0.0018. The average velocity is 2077
m s−1. From Fig. 1 we can see the significant attenuation and time
delay with respect to the primaries due to the fine-layering scatter-
ing. Also we find that the generalized primaries match the exact
transmission responses well. This shows that the average velocities

and the stochastic parameters account for the apparent propagation
properties of the finely layered medium.

Extended macro model

The extended macro model aims to replace a finely layered medium
by a (piecewise) homogeneous anisotropic medium with anelastic
losses in such a way that the primary transmission response of this
replacement medium is effectively the same as that of the original
finely layered medium. Wapenaar et al. (1994) proposed an extended
macro model that is described using frequency-dependent vertical
and horizontal complex phase velocities. As a result of only match-
ing the coefficients of zeroth-order and second-order ray parameters
in the Taylor series expansion, the proposed model has a high angle
limitation for the transmission response of the replacement medium
to mimic the generalized primary. As an alternative, we directly
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Figure 2. A synthetic velocity well log for an average velocity of 2077 m s−1. The corresponding stochastic parameters are α = 0.8779 and υ = 0.0018.

derive the dispersion relation for the replacement medium based on
the generalized primary, and then define the average velocities and
stochastic parameters, that determine the dispersion relation, as a
parametrized extended macro model. Thus the proposed method
also satisfies the Kramers–Kronig relations for all propagation
angles.

For a plane wave with an incident angle of θ , the corresponding
horizontal wavenumber reads kx = (ω/c1) sin θ . From its transmis-
sion response as expressed with eqs (5) and (7), we can derive a
related complex vertical wavenumber as

kz = [ω cos φ + 0.5I (ω)(cos φ)α−n]/c0 − j0.5R(ω)(cos φ)α−n/c0,

(8)

with

cos φ =
√

1 − c2
s k2

x/ω
2. (9)

For a given kx value we can solve kz from eqs (8) and (9). This
defines a dispersion relation for the replacement medium.

For a finely layered structure that makes an angle of β with the
horizontal direction, the corresponding dispersion relation can be

obtained as

kz = cos θ

cos(θ − β)
[ω cos φ + 0.5I (ω)(cos φ)α−n]/c0

− j
cos θ

cos(θ − β)
0.5R(ω)(cos φ)α−n/c0, (10)

with

cos φ =√
1 − c2

s

ω2

[
k2

x cos 2β + ω2

c2
1

sin2 β − kx

(
ω2/c2

1 − k2
x

)1/2
sin 2β

]
.

(11)

Now an extra parameter c1 appears, which is the velocity of the first
layer. Normally it can be approximately replaced using the average
velocity of c0. Moreover, the cs, the root-mean-square velocity, can
also be replaced by c0. Thus the three parameters, i.e. the average
velocity c0 and the stochastic parameters α and υ (together with
the dip-angle of the fine-layering structure), provide a parametrized
extended macro model, which is closely related to the conventional
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Figure 3. Dispersion relation of the horizontal finely layered medium with its velocity well log as shown in Fig. 2. The positive values (top) are related to
the real part of the vertical wavenumber and the negative values (bottom) are related to its imaginary part. The dotted lines denote the conventional dispersion
relation with its velocity equal to the corresponding average velocity. The corresponding frequency is ω/2π = 95 Hz and the average velocity is c0 =
2077 m s−1.

macro model used for current migration schemes, except that two
stochastic parameters on the rock formations have been added.

Fig. 3 illustrates the dispersion relation of the horizontal finely
layered medium with its velocity well log as shown in Fig. 2. Fig. 4
further shows the dispersion relation of a tilted structure when the
layers have an angle of 15◦ with the horizontal direction, with its
velocity distribution the same as Fig. 2. The frequency is ω/2π =
95 Hz and the average velocity is c0 = 2077m s−1 for both fig-
ures. From Fig. 4 we can find that the replacement medium for a
tilted finely layered structure is that of an asymmetrical anisotropic
anelastic medium.

Phase-shift operator

From the dispersion relation we can obtain a phase-shift extrapo-
lation operator that can efficiently perform wavefield depth extrap-
olation and imaging in a laterally invariant medium. The forward
phase-shift extrapolation operator for downgoing waves for ω > 0
reads as

W̃ +
g (zi+1, zi , kx , ω, c0, υ, α, β) = exp(− jkz�z), �z = zi+1 − zi ,

(12)

and the inverse phase-shift extrapolation (downward continuation)
operator for upgoing waves can be expressed as

F̃−
g (zi+1, zi , kx , ω, c0, υ, α, β) = {

exp
[− j

(
k−

z

)∗
�z

]}∗
, (13)

where the superscript ∗ denotes the complex conjugate, and we have
(Zhang et al. 2001)

k−
z = kz(−kx , ω, c0, υ, α, β). (14)

The complex conjugate for k−
z in eq. (13) makes the inverse phase-

shift operator able to compensate for the attenuation and dispersion
due to the fine-layering scattering. However, the stability due to
boosting amplitudes appears to be a crucial problem for the inverse
phase-shift operator. Hence, even for laterally invariant media, we
cannot directly apply the phase-shift operator of eq. (13) to perform
inverse wavefield extrapolation.

The stability can be achieved by modifying the part of k−
z as-

sociated with high angles, that is, we set the imaginary part of k−
z

positive for incident angles exceeding a given value. Hence, beyond
this angle the amplitudes are suppressed (of course below this angle
the amplitudes remain slightly larger than unity in order to com-
pensate for the scattering losses). In this way, we find a conditional
stable operator for a finite number of depth extrapolation steps. This
is illustrated by the comparison of the wavenumber spectrum of the
inverse phase-shift operator with the derived explicit extrapolation
operator in Figs 5 and 6 in the next section.

Explicit extrapolation operator

The phase-shift extrapolation operators are only valid for laterally
homogeneous media. However, we have to handle laterally varying
media for imaging complex subsurface structures. The explicit ex-
trapolation operator scheme provides an approximation to determine
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Figure 4. Dispersion relation of the dipping finely layered structure. The finely layered structure is the same as was used for Fig. 3, except that the structure
now makes an angle of 15◦ with the horizontal direction.

the spatial forward and inverse extrapolation operators in a laterally
varying medium. The assumption is made that the extended macro
model is homogeneous within the spatial extent of the operator. If
we obtain a short spatial operator that accurately approximates the
phase-shift operator in the wavenumber domain, we can use this
short operator to perform the wavefield depth extrapolation in the
space domain. It is impossible for a spatial short operator to mimic
the phase-shift operator for all wave propagation properties. How-
ever, matching the phase-shift operator accurately in a finite range
of angles of propagation will be enough for the purpose of eliminat-
ing the propagation effects in seismic imaging for a restricted dip
range (the operator also needs to decay the energy of the wavefield
outside the given range of angles of propagation). This proposes
a rule to design the spatial short operator. That is to find a short
operator in the space–frequency domain such that its spatial Fourier
transform matches the phase-shift operator in the required range of
angles of propagation as accurately as possible and its amplitudes
decay outside this propagation region. As a result of the fact that the
algorithm is implemented by recursive spatial convolution, the short
spatial length of the operator will also reduce much computational
cost. The explicit extrapolation operator scheme has proven its effec-
tiveness for wavefield extrapolation in inhomogeneous isotropic and
anisotropic macro models (e.g. Holberg 1988; Zhang et al. 2001).

For the explicit extrapolation operator scheme, the task to stabilize
the inverse extrapolation operators by suppressing the wavefield with
a high angle of propagation can be easily accomplished through
taking the requirement of stability into account when determining
the maximum angle of propagation.

There exist a number of available methods for designing sym-
metric short operators (e.g. Holberg 1988; Hale 1991). However, an
asymmetric short operator needs to be designed here. In contrast
to Holberg’s non-linear least-squares and Hale’s Taylor series ex-
pansion methods, the weighted least-squares method (Thorbecke &
Rietveld 1994) can derive a stable, highly accurate short operator
with a very low computational cost in an isotropic lossless medium.
The method has been extended to design asymmetric short oper-
ators by Zhang et al. (2001). Here we further adapt the weighted
least-squares method to design short operators for an anisotropic
lossy medium.

With a complex vector Y1 + jY2 denoting the desired short op-
erator, the discretized values of its spatial Fourier transform can
be expressed with a complex vector as Ỹ = (Γ1Y1 − Γ2Y2) +
j(Γ1Y2 + Γ2Y1). Here the elements of the matrices Γ1 and Γ2

are, respectively, defined as cos (m�kxn�x) and sin (m�kxn�x)
for m = −M , M ; n = −N , N , where (2N + 1)�x is the
spatial length of the short operator and �kx = 1/(2�xM) is
the horizontal wavenumber interval. Defining the sum-of-squares
error as

e = (
YT

1Γ
T
1 − YT

2Γ
T
2 − Ỹ

T
er

)
Λ(Γ1Y1 − Γ2Y2 − Ỹer )

+ (
YT

2Γ
T
1 + YT

1Γ
T
2 − Ỹ

T
ei

)
Λ(	1Y2 + Γ2Y1 − Ỹei ), (15)

we can transform the design of the short operator into an uncon-
strained optimization problem, i.e. minimizing e. Here the complex
vector Ỹe = Ỹer + jỸei contains the discretized values of the
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Figure 5. (a) Amplitude spectrum for a stabilized symmetric 25-point ex-
plicit operator for inverse wavefield extrapolation (solid lines). The dotted
lines are related to the amplitude spectrum of the exact inverse phase-shift
operator. The top shows a detailed view around 1.005. Note the stabiliza-
tion effects of the proposed scheme: the high amplitudes are suppressed.
(b) Phase spectrum for a stabilized symmetric 25-point explicit operator for
inverse wavefield extrapolation (solid line). The dotted line is related to the
phase spectrum of the exact inverse phase-shift operator.

phase-shift operator for |m�kx| ≤ (ω/c0) sin (θmax), and for
|m�kx| > (ω/c0) sin (θmax) the components of Ỹe are given by

Re(ym) = Re(yc) exp
{−γ1 [|m�kx | − (ω/c0) sin(θmax)]2

}
, (16a)

Im(ym) = Im(yc) exp
{−γ2 [|m�kx | − (ω/c0) sin(θmax)]2

}
,

|m�kx | < ω/c0,
(16b)
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Figure 6. (a) Amplitude spectrum for a stabilized asymmetric 25-point
explicit operator (solid lines). The dotted lines are related to the amplitude
spectrum of the exact inverse phase-shift operator. The top shows a detailed
view around 1.005. Everything is the same as in Fig. 5(a), except that the
corresponding finely layered structure makes an angle of 15◦ with the hor-
izontal direction. (b) Phase spectrum for a stabilized asymmetric 25-point
explicit operator (solid line). The dotted line is related to the phase spec-
trum of the exact inverse phase-shift operator. Everything is the same as in
Fig. 5(b), except that the corresponding finely layered structure makes an
angle of 15◦ with the horizontal direction.

Im(ym) = 0, |m�kx | ≥ ω/c0, (16c)

where yc is the value of the phase-shift operator for kx = (ω/c0)
sin (θmax), ym is the component of Ỹe that corresponds to kx =
m�kx, θmax is determined according to the spatial sampling interval
and the accepted maximum magnitude for extrapolating a finite
number of steps (the more steps, the smaller θmax), and γ 1 and γ 2

are parameters selected according to the decay requirement for the
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amplitudes. The weight matrixΛ in eq. (15) is a real-valued diagonal
matrix, the elements of which are 1.0 for |m�kx| ≤ (ω/c0) sin (θmax)
and a very small value (e.g. 10−5) for |m�kx| > (ω/c0) sin (θmax).
From the optimization problem of eq. (15) we can solve the short
operator as{

Y1

Y2

}
=

[
ΓT

1ΛΓ1 + ΓT
2ΛΓ2 ΓT

2ΛΓ1 − ΓT
1ΛΓ2

ΓT
1ΛΓ2 − ΓT

2ΛΓ1 ΓT
1ΛΓ1 + ΓT

2ΛΓ2

]−1

×
{
ΓT

1ΛỸer + ΓT
2ΛỸei

ΓT
1ΛỸei − ΓT

2ΛỸer

}
. (17)

Fig. 5(a) shows an amplitude spectrum in the wavenumber do-
main for a 25-point (N = 12) symmetric explicit inverse operator
that corresponds to the dispersion relation of Fig. 3. Here we assume
the accepted maximum magnitude is 1.01, for which the maximum
angle of propagation is 60◦. Fig. 5(b) further illustrates the phase
spectrum of this 25-point operator. Fig. 6(a) shows an amplitude
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Figure 7. Comparisons of the transmission responses of the explicit depth extrapolation with that of exact numerical modelling in the true finely layered
medium. The plane waves have incident angles of 0◦, 30◦ and 50◦.

spectrum in the wavenumber domain for a 25-point (N = 12) asym-
metric explicit inverse operator that corresponds to the dispersion
relation of Fig. 4 when the layers have an angle of 15◦ with the hori-
zontal direction. The corresponding phase spectrum of this operator
is illustrated in Fig. 6(b). The parameters for both Figs 5 and 6 are
�x = 9 m, �z = 4 m, ω/2π = 95 Hz, c0 = 2077 m s−1. For Fig. 6
we assume the accepted maximum magnitude is 1.018, for which
the maximum angle of propagation is 50◦. From Figs 5 and 6 we
find that the derived explicit inverse operators match the original
operators well below the maximum angle of propagation. The com-
parisons of the amplitude spectra of the phase-shift operators with
the derived short operators illustrate the stabilizing effects of the
proposed scheme. It should be noted that the fact that the maximum
magnitudes of the derived short operator does not approach the ac-
cepted maximum magnitudes in Figs 5(a) and 6(a) is due to the fact
that the frequency corresponding to the operators is 0.8ωmax instead
of ωmax.

The scheme is implemented by pre-calculating an operator ta-
ble and then selecting the space-variant operator at each gridpoint
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according to the local macro velocity and the two stochastic param-
eters during the depth extrapolation process.

AVA migration

The major factors affecting the amplitudes in seismic data may be
outlined as: geometrical spreading, interface reflection coefficients,
intrinsic absorption, short-period internal multiples and transmis-
sion losses. Conventional pre-stack migration schemes only com-
pensate for the geometrical spreading, so the image does not repre-
sent the true reflectivity of the subsurface. The angle-independent
intrinsic absorption can be treated in a pre-processing step by so-
called inverse Q-filters or in the migration process itself (Mittet
et al. 1995; Zhang & Wapenaar 2002). Short-period internal multi-
ples due to high discontinuities of rock formations, deserve attention
for imaging the true reflectivity of the subsurface with better resolu-
tion. In the foregoing sections, we developed an explicit extrapola-
tion operator scheme that can compensate for the angle-dependent
dispersion and amplitude losses due to fine-layering scattering (i.e.
short-period internal multiples). Based on this algorithm, we now
propose an AVA pre-stack migration scheme.

The true-reflectivity imaging can be achieved using two alterna-
tive ways. One is given by

�(x, z) =
∫

PU(x, z, ω){PD(x, z, ω)}∗

PD(x, z, ω){PD(x, z, ω)}∗ + ε
dω, (18)

where PD(x , z, ω) is the one-way downgoing wavefield obtained by
recursive convolutions with the forward explicit extrapolation op-
erators, PU(x , z, ω) is the one-way upgoing wavefield obtained by
recursive convolutions with the inverse explicit extrapolation oper-
ators and ε a small stabilization constant. The other imaging con-
dition is developed by designing forward extrapolation operators
that also compensate for amplitude losses rather than attenuating
wavefields. Fortunately, this forward extrapolation operator can be
easily obtained by taking the complex conjugate of the correspond-
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Figure 8. The generalized primary response of a line source for the finely
layered medium with its velocity well log as shown in Fig. 2.

ing inverse extrapolation operator. With [PD(x , z, ω)]′ denoting the
one-way forward extrapolated downgoing wavefield that is obtained
by recursive convolutions with the derived forward explicit extrap-
olation operators, the imaging condition can be expressed as

�(x, z) =
∫

PU(x, z, ω){[PD(x, z, ω)]′}∗ dω. (19)

The imaging condition of eq. (19) was first proposed by Mittet et al.
(1995) for imaging anelastic media. In both cases, �(x , z) repre-
sents the reflectivity as a function of depth (z) and lateral position
(x), which can, for each shot record, be translated to an angle of
incidence.

The advantage of the second imaging condition is that only one
operator table is needed, which reduces the computational costs.
However, from a theoretical point of view the imaging condition
of eq. (18) is preferred. Numerical studies on imaging in anelastic
media (Zhang & Wapenaar 2002) indeed show that the imaging
condition of eq. (18) gives better results than the imaging condition
of eq. (19). Therefore, in the remainder of this paper we use the
imaging condition of eq. (18).
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Figure 9. Comparison of the inverse depth extrapolation for taking the
fine-layering scattering into account and neglecting it. The result in (a) is
obtained using the correct stochastic parameters and average velocity. The
result in (b) is obtained only using the average velocity but neglecting the
highly discontinuous properties of the velocity distribution. Note the fact
that (b) fails to focus at a point. The parameters we use are θmax = 60◦,
�x = 9 m and �z = 4 m.
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Figure 10. Suppressing the aliasing due to sparse spatial sampling. The re-
sult of the inverse depth extrapolation is obtained based on a sparse sampling
spacing of 15 m for the line source response of Fig. 8. A 25-point operator
with a maximum angle of propagation of 35◦ is used.

The proposed pre-stack migration scheme can also effectively
suppress the aliasing due to sparse spatial sampling by controlling
the maximum angle of propagation in the design of the explicit
extrapolation operators. This means that we choose θmax such that
sin (θmax) ≤ πc0/(ωmax�x) besides taking the accepted maximum
magnitude into account in determining the maximum angle of prop-
agation. Here ωmax is the maximum frequency of the seismic data.

N U M E R I C A L E X A M P L E S

Depth extrapolation

The performance of the proposed forward explicit extrapolation op-
erators is illustrated through comparing the extrapolation results
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Figure 11. A synthetic velocity well log for a layered medium. The right is the corresponding macro model.

with the exact transmission responses of the finely layered medium.
The velocity log is as shown in Fig. 2. Fig. 7 illustrates the compar-
isons for plane waves with incident angles of 0◦, 30◦ and 50◦. The
result for ‘operator extrapolation’ is obtained by performing recur-
sively spatial convolutions as in a homogeneous medium, using the
derived short operators from z = 0 to 1500 m with �z = 4 m and
�x = 9 m. A 25-point short operator with a maximum angle of
propagation of 60◦ is used. From Fig. 7 we see that the general-
ized primaries of the two methods agree well. The small errors
for the amplitudes are of the same order as those of the general-
ized primaries compared with the exact transmission responses, as
shown in Fig. 1, which originated from the stochastic wave the-
ory. The proposed inverse explicit extrapolation operators are illus-
trated by performing inverse wavefield extrapolation for a gener-
alized primary response of a line source, as shown in Fig. 8. The
line source is located at the origin and receivers are positioned at
z = 1500 m for a medium with its velocity well log as shown in
Fig. 2. Fig. 9 illustrates the results of inverse depth extrapolations,
using different kinds of explicit operators. One kind of operator is
designed using the correct stochastic parameter and average veloc-
ity. The corresponding result is shown in Fig. 9(a). The other kind
of operators is obtained only using the average velocity (i.e. the
macro model) but ignoring the highly discontinuous properties of
the velocity distribution. This is shown in Fig. 9(b). By compar-
ing Figs 9(a) and (b) we find that the macromodel result does not
focus at one point, which will lead to dispersed images in seismic
migration.

A 25-point operator with θmax = 60◦, �x = 9 m and �z = 4 m
is used for Fig. 9. With c0 = 2077 m s−1 and ωmax = 120 Hz, the
spatial sampling should be 8.6 m for θmax = 90◦. By taking a sparse

Table 1. Stochastic parameters and density.

Layer 1 2 3 4

υ 0.0011 0.0016 0.0010 0.0004
α 0.8286 0.8234 0.8907 0.8243
ρ (kg m−3) 1000 1200 1800 2600
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sampling of 15 m for the line source response of Fig. 8, we still
obtain a good focusing effect, as illustrated in Fig. 10, by designing
the short operators with θmax = 35◦ and �z = 5 m. This shows that
the proposed scheme can effectively suppress the aliasing due to
sparse spatial sampling.

A zero-phase Ricker wavelet with a peak frequency of 40 Hz is
used for all examples.

Pre-stack depth migration

A synthetic seismic experiment is designed to test the proposed
AVA pre-stack migration scheme. The seismic data set is generated
through numerical modelling of the two-way acoustic wave equa-
tion in a true finely layered medium using the reflectivity method.
The synthetic velocity well log of the layered medium is illustrated
in the left of Fig. 11, and the corresponding macro model is shown
in the right of Fig. 11. The associated stochastic parameters are
listed in Table 1, which together with the macro model in the right
of Fig. 11 provide an extended macro model for the highly dis-
continuous velocity distribution as shown in the left of Fig. 11.
The densities corresponding to the macro model are also listed in
Table 1. One shot gather is shown in Fig. 12. The source is a zero-
phase Ricker wavelet with a peak frequency of 40 Hz. The migrated
results for this shot gather with the extended macro model as well
as with the standard macro model are illustrated in Figs 13(a) and
(b). A 25-point short operator with θmax = 60◦ was used with �x =
8 m and �z = 4 m. The migration with the standard macro model
means that the highly discontinuous properties of the velocity dis-
tribution are ignored. From Fig. 13 we see that the main reflectors
are imaged clearly. Fig. 14 shows a detailed view of the comparisons
of two migrated results for the offsets of 0 and 600 m and the ray
angle of 28◦ in the vicinities of three reflectors. From Fig. 14 we
find that the migrated results that take the fine-layering scattering
into account are positioned at the correct locations, i.e. 500, 1100
and 1900 m. Also, significant differences of the amplitudes can be
seen for the two migrated results. Fig. 15 further shows the compar-
isons of the offset-dependent reflectivity of the two migrated results
with the exact reflection coefficient at the depth level of 1100 m,

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ti
m

e 
(s

)

-2000 -1500 -1000 -500 0 500 1000 1500 2000
Offset (m)

shot gather

Figure 12. Shot gather for a zero-phase Ricker wavelet with a peak fre-
quency of 40 Hz. The shot gather is obtained using the reflectivity method
in the true finely layered medium.
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Figure 13. Shot-record migration results. The result in (a) is obtained using
an extended macro model that takes the fine-layering scattering into account.
The result in (b) is obtained using the macro model that ignores the highly
discontinuous properties of the velocity distribution.

as indicated by the arrow in Fig. 11. From this comparison we ob-
serve that the migration result, which takes fine-layering scattering
into account, better approaches the exact reflection coefficient. The
match is, however, not perfect for the following reasons. First, the
exact reflection coefficient is based on the velocity and density con-
trasts at the second boundary of the macro model, therefore this
‘exact reflection coefficient’ is exact for the macro model but it is
an approximation for the true finely layered medium. Secondly, the
migration result reveals a noisy character due to interference with
the reflectors above and below the depth level of 1100 m.

The reason that we use a laterally invariant medium is that the
only available modelling tool for the true velocity model, consisting
of 21 000 layers as illustrated in Fig. 11, is the reflectivity method.
However, the migration algorithm we use is based on the explicit
extrapolation operators, that has been proven to be effective for both
isotropic and anisotropic laterally varying macro models. Hence, it
is reasonable to state that the proposed scheme can efficiently be
applied for a practical subsurface that is moderately inhomogeneous
at the macro scale and highly discontinuous at the subwavelength
scale.
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Figure 14. Detailed views of the comparison of the two migration results in Fig. 13. The first two rows are for the offsets of 0 and 600 m, and the last row
is for the ray angle of 28◦. The columns are related to three main reflectors at 500, 1100 and 1900 m. (Dotted, macro model; solid, extended macro model,
including fine layering).

C O N C L U S I O N

A method for wavefield depth extrapolation in a subsurface that is
moderately inhomogeneous at the macro scale and highly discon-
tinuous at the subwavelength scale has been presented. Moreover,
a pre-stack migration scheme, which can image the true reflectivity
of the subsurface by eliminating the geometrical spreading effects
as well as the dispersion effects of the finely layering, has been pro-
posed. The statistical behaviour exhibited by the subsurface hetero-
geneity (fractal Brownian motion) is used to set up a parametrized
extended macro model, which can quantify the effects on the trans-
mission response of the short-period internal multiples due to the
highly discontinuous properties of the rock formations. The pro-
posed extended macro model introduces an anisotropic anelastic
medium to mimic the apparent propagation properties of the highly
discontinuous rock formations. Furthermore, a medium with vary-
ing macro model can mimic the propagation properties of a true

subsurface. In this paper the resulting replacement medium is de-
scribed by the dispersion relation instead of a real physical state. The
phase-shift operators are developed for the replacement medium
based on the dispersion relation, and then short spatial explicit ex-
trapolation operators are designed based on the derived phase-shift
operators. These are used to perform wavefield depth extrapolation
in inhomogeneous replacement media. The weighted least-squares
method is adapted to design the symmetric and asymmetric short
explicit extrapolation operators, and the stability for inverse wave-
field extrapolation is achieved by controlling the maximum angle
of propagation of the wavefield in the design of the short opera-
tors. Moreover, the aliasing due to sparse spatial sampling can be
effectively suppressed in this angle-controlled process. The pro-
posed AVA migration scheme is implemented based on the ex-
tended macro model by pre-calculating an operator table and then
selecting the space-variant operator during the depth extrapolation
process.
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Figure 15. Comparison of the reflectivity of the two migration results with the exact reflection coefficients at the depth level of the second main reflector. The
solid line denotes the migration result at the depth level of 1100 m obtained using an extended macro model that takes the fine-layering scattering into account,
the dotted line denotes the migration result obtained using the macro model that ignores the highly discontinuous properties of the velocity distribution and the
dashed line denotes the exact reflection coefficients based on the velocity and density contrasts at the second boundary of the macro model.

The accuracy of the proposed forward explicit extrapolation oper-
ators is demonstrated by comparing the forward extrapolation results
with exact transmission responses of the true finely layered medium.
The good performance of the derived explicit inverse operators is il-
lustrated by the inverse depth extrapolation of a generalized primary
response of a line source that includes angle-dependent dispersion
and amplitude losses. A synthetic data set, obtained using the re-
flectivity method for a finely layered medium, is used to test the
proposed AVA migration scheme. The numerical example shows a
significant improvement of the obtained angle-dependent reflectiv-
ity of the subsurface when taking the fine-layering scattering into
account.
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