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S U M M A R Y
PP + PS = SS refers to a method introduced by Grechka and Tsvankin in 2002 that uses
recordings of PP and PS reflections between sources and receivers to estimate the SS reflections
between those same receivers. Using source–receiver seismic interferometry as a basis, we
derive new, dynamically correct expressions relating reflected and converted P- and S-wave
recordings to both P- and S-wave sources. We use these expressions to derive a generalized
form of relationship between P and S waves, and show that the PP + PS = SS method of
Grechka and co-workers is a special case of these new relationships. By considering the simple
example of two elastic half-spaces, we illustrate the differences between the special case of
PP + PS = SS and the generalized approach derived here. By relating the method to seismic
interferometry, it is possible to see further applications of the new relationships in acquisition
and processing of P and S waves, and also in the development of new imaging and inversion
schemes.

Key words: Interferometry; Controlled source seismology; Body waves; Theoretical seis-
mology.

I N T RO D U C T I O N

The shear wave component of the seismic wavefield is important in determining the shear wave velocities in any medium. For example, in the
Earth’s subsurface the combination of P- and S-wave information allows fluid and rock properties to be discriminated. It is also particularly
important in the study of anisotropic media where the polarizations of fast and slow split S waves are often used to infer the average alignment
of fracture fields, or of crystalline lattice structures such as in uppermost mantle olivine.

In industrial geophysics, typically converted PS responses (P waves propagating down to a reflector at which the wave reflects and
converts to S energy that propagates back to the surface) are used to infer S-wave velocity structure. However, this is undesirable from several
points of view: both P- and S-wave velocity models are required to estimate reflection and conversion points, and Grechka & Tsvankin (2002)
discuss the difficulty of velocity analysis for converted S waves due to the asymmetric moveout of the PS response. Ideally, pure PP responses
(i.e. P-wave source, P-wave receiver) and pure SS responses (S-wave source, S-wave receiver) would be analysed independently.

Typically, the horizontal components of a three-component geophone are assumed to predominantly contain S waves whereas the vertical
component is assumed to contain P waves. There are also various separation techniques that can be used to make more accurate measurements
of the recorded P- and S-wavefields. For example, Curtis & Robertsson (2002) and Robertsson & Curtis (2002) introduce methods to separate
P- and S-wave recordings using distributed arrays of three-component geophones. Sources of P-wave energy are also available as standard
industrial equipment. However, it is far more difficult to inject significant S-wave energy into the ground economically.

Grechka & Tsvankin (2002) and Grechka & Dewangan (2003) proposed a potential solution to this problem: by combining PP and PS
responses, pseudo-shear wave data can be generated that has the same kinematics as a pure SS response. Presumably, as the interest in elastic
full waveform imaging and inversion grows, the recovery of shear wave velocity profiles, and the study of anisotropic media will come under
greater scrutiny. Therefore, it is important to consider approaches such as that presented by Grechka & Tsvankin (2002) and Grechka &
Dewangan (2003).

We examine the relationship between P- and S-wave energy in a novel way using theory from the field of seismic interferometry.
Generally, seismic interferometry refers to the process of generating responses to imagined or virtual approximately impulsive sources
by cross-correlation (Wapenaar 2003; van Manen et al. 2006; Wapenaar & Fokkema 2006), cross-convolution (e.g. Slob et al. 2007) or
deconvolution (e.g. Vasconcelos & Snieder 2008a,b; Wapenaar et al. 2008, 2011) of wavefields from surrounding energy sources recorded at
different receiver locations. Recent work has shown that intersource wavefields can be estimated by cross-correlating recordings of a pair of
sources at a range of azimuths (Hong & Menke 2006; Curtis et al. 2009). Furthermore, Curtis & Halliday (2010) demonstrated that it is possible
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to use so-called source–receiver interferometry to estimate the wavefield between a source and a receiver, allowing interferometry to be used
to construct wavefields between any combination of source and receiver pairs. Halliday & Curtis (2010) also showed that the source–receiver
relationships establish a direct link between seismic interferometry and seismic imaging. These theorems are generalized forms of existing
imaging methods, for example, the methods of Oristaglio (1989) and Vasconcelos et al. (2010). Most generally, interferometry can be thought
of as a method to synthesize desired wavefields that were not directly recorded. An example of such a wavefield is the SS response described
earlier.

In this paper, we extend the applicability of the new source–receiver relationships by using the results of Curtis & Halliday (2010) to
find interferometric relationships that describe precisely how P- and S-wave responses between sources and receivers are related. Wapenaar
& Fokkema (2006) have already shown how P- and S-wave source and receivers can be incorporated within the framework for interferometry
provided by reciprocity theorems of the correlation type, and the derivation in this paper follows a similar path to theirs. As a result, we
derive the PP + PS = SS equation of Grechka & Dewangan (2003) from source–receiver interferometry. Although the derivation of Grechka
& Dewangan (2003) was in part heuristic and was purely kinematic, here we show that this can also be derived from first principles. The
source–receiver representations that we consider are derived dynamically, directly from reciprocity and representation theorems (Curtis &
Halliday 2010). This approach reveals the key approximations and assumptions inherent in the approach of Grechka & Tsvankin (2002)
and Grechka & Dewangan (2003), and provides a theoretical framework to develop future P- and S-wave processing, imaging and inversion
algorithms, potentially using novel combinations of P- and S-wave energy sources and receivers.

At the time of writing, there are already a range of applications that apply the single integral (virtual-source or virtual-receiver) forms of
seismic interferometry using P and S waves. For example, Gaiser & Vasconcelos (2010) apply interferometry to seabed data to recover PP,
PS and (potentially) SS responses, Bakulin & Mateeva (2008) apply seismic interferometry to horizontal component borehole geophones to
create virtual-shear wave check shots, Miyazawa et al. (2008) apply seismic interferometry to ambient noise recorded in a borehole and show
that they can observe shear wave splitting on the resultant virtual-source records, and van der Neut et al. (2011) outline a theoretical framework
for the application of multidimensional deconvolution using separated P and S waves. Tonegawa & Nishida (2010) study earthquake records
and show that virtual-receiver seismic interferometry (Curtis et al. 2009) can be used to recover direct P and S waves propagating between
pairs of deep earthquakes. While an application of the (double-integral) form of source–receiver interferometry that differentiates P and S
waves has yet to be published, here we will demonstrate that the PP + PS = SS method may be considered as such an application. Moreover,
the relationships derived here provide a framework for the development of future applications of source–receiver interferometry using P- and
S-wave sources and receivers.

First, we consider the derivation of source–receiver interferometric relationships for P- and S-wave sources and receivers. We illustrate
that in the general case, with a source and receiver located within two enclosing boundaries, the recovery of the SS reflection response through
interferometry alone (i.e. without recording it directly) in a simple example requires only S-wave sources and S-wave receivers. Then, we
introduce the approximations and assumptions required to derive the special case of PP + PS = SS published by Grechka & Dewangan
(2003). In this special case, contrary to the general case, no S-wave sources are required. Using the same simple model, we illustrate the
key differences between the PP + PS = SS approach, and this general approach based on the new representations derived here. Finally, we
discuss further applications of the source–receiver integrals for P and S waves.

S O U RC E – R E C E I V E R R E P R E S E N TAT I O N F O R P A N D S WAV E S

We now derive the source–receiver representations for P and S waves by following the approach of Curtis & Halliday (2010, appendix A).
In the following, we will also take advantage of the P- and S-wave Green’s functions used by Wapenaar & Haimé (1990) and Wapenaar &
Fokkema (2006).

Using the elastodynamic representation theorem, Curtis & Halliday (2010, appendix A) show that the response between a real source
and a real receiver in a lossless inhomogeneous anisotropic medium can be derived using two correlation-type representation theorems.

Gqm(x2, x1) − G∗
qm(x2, x1) =

∫
S

{
G∗

qn(x2, x)n j cnjkl∂k�ml (x1, x) − n j cnjkl∂k G∗
ql (x2, x)�mn(x1, x)

}
dS, (1)

where

�ml (x1, x) = −
∫

S′

{
Gn′l (x

′, x)n j ′ cn′ j ′k′l ′∂k′ G∗
l ′m(x′, x1) − n j ′ cn′ j ′k′l ′∂k′ Gl ′l (x

′, x)G∗
n′m(x′, x1)

}
dS′. (2)

Here, Gqm(x2,x1) is the Green’s function in the frequency domain representing the qth component of particle displacement at x2 due to a
unidirectional point force in the m-direction at x1, nj is the jth component of the normal vector on the boundary S, ∂k denotes a spatial
derivative in the k-direction and cnjkl is the stiffness tensor. Primed and unprimed quantities indicate that these relate to the primed and
unprimed boundaries, respectively (Fig. 1a), and Einstein’s summation principle for repeated indices applies throughout.

Eq. (1) describes the recovery of a Green’s function (plus its time reverse due to the complex conjugate on the left-hand side) between a
source at x1 and a receiver at x2 in elastic media, using only Green’s functions from x1 to a surrounding boundary S′ of receivers, and Green’s
functions from a surrounding boundary S (Fig. 1a). The integral in eq. (2) describes a first step where the boundary S′ is used to determine
the Green’s functions (plus the time reverse) between the source at x1 and each source on the boundary S; hence, this first step turns the
source x1 into a virtual receiver. In a second step, the boundary S is used to determine the Green’s function between the receiver at x2 and

C© 2012 The Authors, GJI, 189, 1015–1024

Geophysical Journal International C© 2012 RAS



PP + PS = SS from seismic interferometry 1017

Figure 1. Canonical geometries for source–receiver interferometry for (a) the correlation–correlation, (b) the correlation–convolution, and (c) the
convolution–convolution forms (Curtis & Halliday 2010). Note the different positions of x1 and x2 relative to the boundaries.

the newly generated virtual receiver x1 (in reality, a source). Thus, this interferometric integral uses both surrounding sources and receivers
to reconstruct virtual-source to virtual-receiver wavefields. This specific form of the integral is derived by combining two representation
theorems of the correlation type and can be used in the canonical geometry represented in Fig. 1(a) where the source and receiver both lie
within both boundaries. Figs 1(b) and (c) show other configurations that can be derived using (b) both correlation- and convolution-type
representation theorems, and (c) two convolution-type representation theorems, respectively (Curtis & Halliday 2010).

To extend eq. (1) to describe the recovery of P and S responses, we recall from Wapenaar & Fokkema (2006) that the P- and S-wave
components of the wavefield can be expressed as a sum of partial derivatives of the displacement

Gψ0m(x2, x1) = −ρc2
P∂q Gqm(x2, x1), (3)

Gψk m(x2, x1) = ρc2
Sεk jq∂ j Gqm(x2, x1), (4)

where cS is the local S-wave velocity at x2, cP is the local P-wave velocity at x2, ρ is the density at x2, ω is the angular frequency, Gψk m(x2, x1)
is the Green’s function representing the S wave at x2 polarized in the plane with normal nk, due to a point force in the m-direction at x1 and
Gψ0m(x2, x1) is the equivalent Green’s function for a P wave at x2. εkjq is the alternating tensor with ε123 = ε312 = ε231 = −ε213 = −ε321 =
−ε132 = 1. When we interpret eqs (3) and (4) as P- and S-wave Green’s functions, we assume that the medium is homogeneous and isotropic
locally around the receiver point, x2. In the following, we will use one notation for the Green’s function, GψK m(x2, x1), with K equal to 0, 1,
2 or 3. K = 0 denotes P waves (cf. eq. 3) and K = 1, 2 or 3 denotes a shear wave polarized in the plane with normal nK (cf. eq. 4), assuming
appropriate P or S velocities are used.

Eqs (3) and (4) are weighted sums of the spatial derivatives of point-force responses (and likewise, by reciprocity, we can find similar
expressions for the particle displacement due to P- and S-wave sources—see Wapenaar & Fokkema (2006)). Hence, eqs (3) and (4) show
how appropriately weighted sums of partial derivatives of eq. (1) represent P- and S-wave source and receiver Green’s functions. Evaluating
these sums explicitly using eq. (1) results in

GψQψM
(x2, x1) − G∗

ψQψM
(x2, x1) =

∫
S

{
G∗

ψQ n(x2, x)n j cnjkl∂k�ψM l (x1, x)− n j cnjkl∂k G∗
ψQl (x2, x)�ψM n(x1, x)

}
dS, (5)

with

�ψM l (x1, x) = −
∫

S′

{
Gn′l (x

′, x)n j ′ cn′ j ′k′l ′∂k′ G∗
l ′ψM

(x′, x1) − n j ′ cn′ j ′k′l ′∂k′ Gl ′l (x
′, x)G∗

n′ψM
(x′, x1)

}
dS′. (6)

Here, GψQψM
(x2, x1) is the Green’s function representing the P- or S-wave component of the wavefield at x2 due to a P- or S-wave source

at x1. Gn′ψM
(x′, x1) is the Green’s function representing the n′th component of particle displacement at x′ due to a P- or S-wave source at x1.

On the source component, the uppercase subscript M runs from 0 to 3, with 0 denoting a P-wave source, and 1 to 3 denoting a shear wave
source polarized in the plane with normal nM .

While the left-hand side of eq. (5) now contains only P-to-S, S-to-P, P-to-P or S-to-S Green’s functions, the right-hand side of eq. (5) and
also eq. (6) contain Green’s functions that require particle displacement and unidirectional point forces on the surfaces S′ and S, respectively.
We now follow Wapenaar & Fokkema (2006) in changing these to be P- and S-wave receivers or sources. First, we consider the integral in
eq. (6): from Wapenaar & Fokkema (2006, equations 72 and 73) we can write

�ψM l (x1, x) = − 2

ρ

∫
S′

∂ j ′ Gψ ′
K l (x

′, x)G∗
ψ ′

K ψM
(x′, x1) dS′. (7)

Because we use P- and S-wave quantities on the boundary, we are assuming that the medium at and outside the boundary S′ is homogeneous
and isotropic. Applying the same principles to the integral over S such that it consists of only recordings of P- and S-wave sources, we obtain

GψQψM
(x2, x1) − G∗

ψQψM
(x2, x1) = 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψQψK

(x2, x)∂ j ′ Gψ ′
K ψK

(x′, x)G∗
ψ ′

K ψM
(x′, x1)n j ′ n j dS′ dS. (8)
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Figure 2. Sketch of the setup used to calculate the finite difference synthetic data. Black filled circles represent the line of receivers used as the boundary S′,
white filled circles represent the line of sources used as the boundary S, the star indicates the single source, x1, and the black dotted line represents the receivers
x2 at which we wish to reconstruct the response due to the source at x1. The solid black line indicates the single reflector.

Again, we assume that the medium at and outside the boundary S is isotropic and homogeneous. Eq. (8) is a generalized form of the PP +
PS = SS equation used by Grechka & Dewangan (2003). This describes the recovery of any combination of P- and S-wave source and receiver
from other P- and S-wave sources and receivers. We can also split the right-hand side into integrals dependent on PP (ψK = ψ0, ψ ′

K = ψ ′
0),

PS (ψK = ψ0, ψ ′
K = ψ ′

k), SP (ψK = ψk , ψ ′
K = ψ ′

0) and SS responses (ψK = ψk , ψ ′
K = ψ ′

k). Thus, if we wish to recover the SS response
(ψQ = ψq, ψM = ψm) for example, we can write

Gψq ψm
(x2, x1) − G∗

ψq ψm
(x2, x1) = 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψ0

(x2, x)∂ j ′ Gψ ′
kψ0

(x′, x)G∗
ψ ′

kψm
(x′, x1)n j ′ n j dS′dS

+ 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψk

(x2, x)∂ j ′ Gψ ′
0ψk

(x′, x)G∗
ψ ′

0ψm
(x′, x1)n j ′ n j dS′dS

+ 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψk

(x2, x)∂ j ′ Gψ ′
kψk

(x′, x)G∗
ψ ′

kψm
(x′, x1)n j ′ n j dS′dS

+ 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψ0

(x2, x)∂ j ′ Gψ ′
0ψ0

(x′, x)G∗
ψ ′

0ψm
(x′, x1)n j ′ n j dS′dS.

(9)

Similar expressions can be written for any other type of response on the left-hand side of eq. (9). For illustration, consider the
simple example of two elastic half-spaces (Fig. 2). As in the PP + PS = SS method, the aim of this example is to recover the SS re-
flection response between a source and a receiver using other types of responses from and to that source and receiver, respectively. In the
following, we make some assumptions based on the stationary phase approach for reflected waves discussed by Snieder et al. (2006). First,
because we are interested only in the reflected waves, and we assume that transmitted waves from sources on the lower boundary do not
contribute to this, we set the contribution from this part of the boundary to be equal to zero. Lines extending to infinity are then used in place
of closed surfaces S and S′. Secondly, we assume that the source-to-receiver singly reflected wave will result from the direct waves between
each source on the boundary S and the receiver at x2, the direct waves between the source at x1 and each receiver on the boundary S′ and the
reflected waves between each source on S and each receiver on S′. This means that the PS and SP responses between x2 and x, and x and x1

are equal to zero, since the direct wave is not subject to any P-to-S or S-to-P conversions. Thus, the first, second and fourth integrals on the
right-hand side of eq. (9) are equal to zero, and we consider application of the following resulting equation:

Gr
ψq ψm

(x2, x1) − Gr∗
ψq ψm

(x2, x1) = 4

ρ2

∫
S

∫
S′

∂ j G
d∗
ψq ψk

(x2, x)∂ j ′ G
r
ψ ′

kψk
(x′, x)Gd∗

ψ ′
kψm

(x′, x1)n j ′ n j dS′dS, (10)

where the superscripts r and d indicate reflected waves and direct waves, respectively. Eq. (10) shows how the SS response between x1 and x2

can be constructed using only the responses from S-wave sources recorded on S-wave receivers.
Fig. 2 shows a sketch of the example considered here. We will use both simple sketches and finite difference synthetic seismograms

(Robertsson et al. 1994) to illustrate the example. A single reflector exists at 300 m depth, there is a horizontal line of 250 receivers separated
at 4 m intervals at 0 m depth, a horizontal line of 250 sources separated at 4 m intervals at 50 m depth, a line of 100 receivers separated at
4 m intervals at 100 m depth and a single source centred on that line. The top half-space has a P-wave velocity of 1500 m s–1, an S-wave
velocity of 800 m s–1 and a density of 1700 kg m–3. Corresponding parameters for the bottom half-space are 2400 m s–1, 1000 m s–1 and
2000 kg m–3, respectively. The medium is lossless. The aim of the example is to estimate the SS reflections between the source at 100 m
depth and each receiver on the line at the same depth. To allow accurate separation of direct and reflected waves, each synthetic seismogram
is modelled twice, once without the reflector to give the direct wave only, and once with the reflector to give the direct wave and the reflected
wave. The reflected wave is then separated by taking the difference of the two.
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Figure 3. Sketch example of the kinematics involved in recovering the SS reflection using eq. (10). White circles indicate a line of sources, black circles
indicate a line of receivers, the triangle is a single receiver and the star is a single source. (a) The starting point is the SS reflection between each source on
the boundary S, and each receiver on the boundary S′. (b) The first step is the cross-correlation of the interboundary responses with the direct S wave between
the single source and boundary of receivers. The result is the SS reflection between the boundary of sources, and the single source. (c) The second step is
cross-correlation of the intersource SS reflections with the direct S wave between the source boundary and the single receiver. This results in the SS reflection
between the source and receiver.

Figure 4. (a) SS response between a source on the boundary and the boundary of receivers illustrated in Fig. 3(a). (b) The result of the first cross-correlation
step which gives the SS refection between the source boundary and the single source (Fig. 3b). (c) The result of using source–receiver interferometry to recover
the SS reflection (Fig. 3c) and (d) the directly modelled SS reflection (accounting for the scale factor introduced in the interferometric estimates).

Fig. 3 shows a number of sketches that illustrate the construction of the unmeasured SS response using eq. (10). Fig. 3(a) shows a sketch
of the SS response between a boundary source (white circles), and a boundary receiver (black filled circles). The first pass of interferometry
(i.e. solution of the integral over S′ in eq. 10) uses the direct S wave from the boundary of receivers to compute the SS reflection between the
boundary of sources and the single source (star). Fig. 3(b) shows this intermediate step, where the part of the ray path between the boundary
of receivers and the single source has been removed (cf. Fig. 3a). The second pass of interferometry (i.e. solution of the integral over S) uses
the direct S wave from the boundary of sources to the single receiver (triangle) to compute the SS reflection between the single receiver and
the source. Fig. 3(c) shows the equivalent sketch, where the part of the ray path between the boundary of sources and the single receiver has
been removed, resulting in the reflected wave between the source and the receiver.

Figs 4(a)–(c) show the synthetic data corresponding to the illustrations in Figs 3(a)–(c). These are (a) the SS reflection response between
a single boundary source and each boundary receiver, (b) the intermediate SS reflection response between each boundary source, and the
single source, (c) the SS reflection response between a source and a line of receivers resulting from eq. (10) and (d) the directly modelled SS
reflection response for comparison (right-hand panel). A scale factor is required for the amplitude and phase of panels (c) and (d) to match
(the scale factor is due to the source wavelet and implementation of the source function used in the finite difference code). With the application

C© 2012 The Authors, GJI, 189, 1015–1024

Geophysical Journal International C© 2012 RAS



1020 D. Halliday, A. Curtis and K. Wapenaar

of this scale factor it is difficult to see any difference between the directly modelled source gather, and the source gather constructed with
source-receiver interferometry. This validates both the approach used to derive eq. (9), and also the assumptions based on stationary phase
used to reach eq. (10).

Thus, in the configuration sketched in Fig. 1(a) we see that the SS response is constructed without the use of any P-wave component
(either at the source or the receiver). This is contrary to the approach of Grechka & Tsvankin (2002) and Grechka & Dewangan (2003) who
require both a P-wave source and a P-wave receiver. In the next section, we will illustrate the special conditions under which their method
can be applied.

P P + P S = S S

We now show that the approach of Grechka & Dewangan (2003, eq. 5) to recover SS reflection responses from conventional (P-wave source)
seismic data can be considered a special case of eq. (8). Rather than constructing the SS reflection response using only S-wave sources and
S-waves receivers, Grechka and Dewangan do not use S-wave sources as an input. We move all the terms dependent on SS responses to the
left-hand side of eq. (9)

Gψq ψm
(x2, x1) − G∗

ψq ψm
(x2, x1) − 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψ0

(x2, x)∂ j ′ Gψ ′
kψ0

(x′, x)G∗
ψ ′

kψm
(x′, x1)n j ′ n j dS′dS

− 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψk

(x2, x)∂ j ′ Gψ ′
0ψk

(x′, x)G∗
ψ ′

0ψm
(x′, x1)n j ′ n j dS′dS

− 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψk

(x2, x)∂ j ′ Gψ ′
kψk

(x′, x)G∗
ψ ′

kψm
(x′, x1)n j ′ n j dS′dS

= 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψ0

(x2, x)∂ j ′ Gψ ′
0ψ0

(x′, x)G∗
ψ ′

0ψm
(x′, x1)n j ′ n j dS′dS. (11)

Since Grechka & Dewangan (2003) consider only PP and PS responses, we group all other responses together and define these as

Zψq ψm
(x2, x1) = − 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψ0

(x2, x)∂ j ′ Gψ ′
kψ0

(x′, x)G∗
ψ ′

kψm
(x′, x1)n j ′ n j dS′dS

− 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψk

(x2, x)∂ j ′ Gψ ′
0ψk

(x′, x)G∗
ψ ′

0ψm
(x′, x1)n j ′ n j dS′dS

− 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψk

(x2, x)∂ j ′ Gψ ′
kψk

(x′, x)G∗
ψ ′

kψm
(x′, x1)n j ′ n j dS′dS,

(12)

where after eq. (11) is rewritten as

Gψq ψm
(x2, x1) − G∗

ψq ψm
(x2, x1) + Zψq ψm

(x2, x1) = 4

ρ2

∫
S

∫
S′

∂ j G
∗
ψq ψ0

(x2, x)∂ j ′ Gψ ′
0ψ0

(x′, x)G∗
ψ ′

0ψm
(x′, x1)n j ′ n j dS′dS. (13)

If both boundaries S′ and S are spheres with very large radius such that energy to (from) location x1 (x2) leaves (arrives) at the boundary
approximately perpendicularly, then the spatial derivatives in eq. (13) can be approximated by, ∂ j n j = − jω/.cK , where, cK = cP for K = 0,
and cK = cS for K = 1, 2 or 3. Zψq ψm

(x2, x1) includes terms that require S-wave sources, and in practice this type of seismic source is not
usually available. We will therefore neglect the contributions due to this term. Eq. (13) can then be written as

Gψq ψm
(x2, x1) − G∗

ψq ψm
(x2, x1) ≈ 4ω2

cP cP ′ρ2

∫
S

∫
S′

G∗
ψq ψ0

(x2, x)G
ψ ′

0ψ0
(x′, x)G∗

ψ ′
0ψm

(x′, x1) dS′ dS. (14)

Despite the fact that we have neglected the term dependent on S-wave sources, in the following the kinematics of the SS reflection response
are recovered, even when the S-wave sources are not considered. Note also that the final term on the right-hand side (Gψ ′0ψm

(x′, x1)) is the
reflected P wave (M = 0) due to an S-wave source (M = m). Since no S-wave sources are used in this approach source–receiver reciprocity
may be used such that this term is obtained from the reflected S wave due to a P-wave source Gψmψ ′0 (x1, x′). This requires that x1 is a receiver
and x′ is both a source and a receiver. Hence, the boundary of sources and the boundary of receivers must be collocated, to allow both
Gψmψ ′0 (x1, x′) and Gψ ′0ψ0 (x′, x) to be measured. This introduces zero-offset Green’s functions, but we can avoid associated complications by
assuming that we are only interested in the reflected and/or scattered part of the wavefield. Using the notation of eq. (10), this gives

Gr
ψq ψm

(x2, x1) − Gr∗
ψq ψm

(x2, x1) ≈ 4ω2

cP cP ′ρ2

∫
S

∫
S′

Gr∗
ψq ψ0

(x2, x)Gr
ψ ′

0ψ0
(x′, x)Gr∗

ψmψ ′
0
(x1, x′) dS′ dS. (15)

We now consider the same two half-space example as above. To accommodate the application of eq. (15), we move all sources and receivers
onto the same surface. In reaching eq. (15), we assumed that the source and receiver boundaries were collocated, and in the following example
we illustrate that both x1 and x2 must also be located on this same surface for the relation PP + PS = SS. Thus, rather than having sources
and receivers distributed across a range of depths as in Fig. 3(a), we now consider all sources and receivers at a depth of 0 m (Fig. 5a).

We again begin with a sketched example. Fig. 5(a) shows the ray path for a reflected PP wave between a source and receiver on the same
boundary. We denote the phase of the downgoing P wave as P1 and the phase of the upgoing P wave as P2 (the phase of this reflection is
then denoted as P1 + P2). In this example, the first step is cross-correlation of the PP wave with a PS reflection (P1 + S2). The result of
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Figure 5. Sketch example of the kinematics involved in recovering the SS reflection using eq. (15). Black circles indicate a line of receivers and white circles
indicate a line of sources. (a) The starting point is the PP reflection between each source on the boundary and each receiver on the boundary, P1 and P2 denote
the phases of the downgoing and upgoing legs of the reflection, respectively. (b) For a chosen source and receiver pair on the boundary, the first step is the
cross-correlation of the interboundary PP responses with the reflected PS (P1 + S2) wave. The dashed line indicates the common travel path (P1) removed by
cross-correlation. The result is a non-physical event with a traveltime equivalent to the difference between the traveltime of the upward leg of the PS reflection
(S2) and the upward leg of the PP reflection (P2). (c) The second step is cross-correlation of this intermediate event with the SP reflection (S1 + P2). The dash
line again indicates the common travel path (P2) removed by cross-correlation. (d) The results is the (time reverse of the) SS reflection (S1 + S2).

Figure 6. (a) PP response between a source on the boundary illustrated in Fig. 5 and the boundary of receivers. (b) The result of the first cross-correlation
step which gives a non-physical arrival with a traveltime equivalent to the traveltime difference of the upward leg of a PS reflection and the upward leg of a
PP reflection. (c) The result of the PP + PS = SS method to recover the SS reflection and (d) the directly modelled SS reflection (accounting for scale factors
introduced in the interferometric estimates).

this intermediate step is illustrated in Fig. 5(b). The cross-correlation removes the common path which is the downgoing P wave (P1). The
phase of this intermediate step is then P2 – S2. The result of this intermediate step is cross-correlated with the P-to-S reflection travelling in
the opposite direction (illustrated in Fig. 5c with phase S1 + P2). The common path is the upgoing P wave P2, and the result of this second
correlation is –(S1 + S2) and this results in the pseudo-SS reflection response—an event with the same traveltime as the SS reflected wave
between a source and a receiver (in this case we have recovered the time-reverse of the SS reflection).

Fig. 6 shows the synthetic example corresponding to the illustrations in Fig. 5. These are: (a) the PP reflection response between a
source and each receiver, (b) the intermediate result after the first PS cross-correlation (note the existence of causal and acausal parts; this
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intermediate step is non-physical), (c) the pseudo-SS reflection response between a source and a line of receivers and (d) the directly modelled
SS reflection response for comparison (right-hand panel). Note that as in Fig. 4(c), the traveltimes are correctly recovered using this method,
but there are differences in amplitudes of the estimated response and directly computed response. In this case, these cannot be removed by
applying a single-scale factor, because they are caused by neglecting the (dynamically varying) terms with S-wave sources to reach eq. (14).

Thus, in this second configuration sketched in Fig. 5, the SS reflection response is constructed without the use of any S-wave source
components. This special case is different to the general case in which S sources are required to construct the SS responses, and it requires
that both source and receiver boundaries are collocated, and that the particular source and receiver between which the Green’s function is to
be constructed also lie on the same source/receiver boundary.

Note that we have considered the result of two cross-correlations to recover the SS response. This is consistent with eq. (15) which
contains two complex conjugations. However, Grechka & Dewangan (2003) show that the SS response can be recovered from the result of a
cross-correlation and a convolution. If we take the complex conjugate of both sides of eq. (15), we find

Gr∗
ψq ψm

(x2, x1) − Gr
ψq ψm

(x2, x1) ≈ 4ω2

cP cP ′ρ2

∫
S

∫
S′

Gr
ψq ψ0

(x2, x)Gr∗
ψ ′

0ψ0
(x′, x)Gr

ψmψ ′
0
(x1, x′) dS′ dS. (16)

There is only a single complex conjugate on the right-hand side of eq. (16). Thus, we now have an equation equivalent to the approach
of Grechka & Dewangan (2003), containing one cross-correlation and one convolution. Let us use the phases defined earlier to illustrate
that the correlation–convolution approach yields the time reverse (complex conjugation) of the correlation–correlation approach. Earlier, we
consider the correlation of the PP reflection response (P1 + P2), with the PS reflection response (P1 + S2): P1 + P2 − (P1 − S2) = P2 −
S2. This intermediate step is then cross-correlated with the SP reflection response (S1 + P2): P2 – S2 – (S1 + P2) = – (S1 + S2). In the
correlation–convolution case, the PS reflection response is convolved with the SP reflection response: P1 + S2 + S1 + P2. This intermediate
step is then cross-correlated with the PP reflection response: P1 + S2 + S1 + P2 − (P1 + P2) = S1 + S2. Therefore, we see that the
correlation–convolution approach used by Grechka & Dewangan (2003) is equivalent to the complex conjugate of the correlation–correlation
approach that we have considered here.

D I S C U S S I O N

Using two different equations derived from the same starting point, we have shown that it is possible to recover the SS reflection response in
two different configurations. In the first case, the SS reflection response was recovered by cross-correlating direct S waves with reflected S
waves. In this normal configuration for source–receiver interferometry, the SS reflection response between a source and a receiver is recovered
(with the correct amplitude-versus-offset behaviour) without having a direct recording of that reflection. In the second case, we showed that
the SS reflection response can be recovered, even if we neglect all the terms requiring a shear wave source. In this second case, reflected S
waves are cross-correlated with reflected P waves. Thus, the SS response can be recovered using recordings of P and S waves due to P-wave
sources only, as shown by Grechka & Tsvankin (2002). The synthetic example illustrates that while the kinematics of this response are correct,
the dynamics are not. Using geometrical arguments illustrated in Fig. 5, we have shown that for this second approach to be successful all
sources and receivers must be located on the same surface.

Thus, the key differences in eq. (15) from eq. (10) are:

(1) Source–receiver reciprocity is applied to one of the inputs, requiring that all sources and receivers must be located on the same surface;
(2) The SS reflection response is recovered despite neglecting the S-wave sources required by theory;
(3) All direct wave contributions are neglected;
(4) All sources and receivers must be located on the same surface.

By neglecting the S-wave sources when applying eq. (15), we introduce amplitude errors in Fig. 6(c). For example, since there are no
S-wave sources, the PS responses are used, and the PS response tends towards zero amplitude at zero offset (this was also noted by Grechka
& Dewangan 2003).

Using the generalized relationship in eq. (8), we can also derive other relationships between P- and S-wave sources and receivers. For
example, by following the same steps used to reach eq. (9), but with Q = 0, M = 0 (P-wave source, P-wave receiver), we can write
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∫
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∫
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∂ j G
∗
ψ0ψk

(x2, x)∂ j ′ Gψ ′
kψk

(x′, x)G∗
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kψ0
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ψ0ψ0
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∫
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∫
S

∫
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(x2, x)∂ j ′ Gψ ′
kψ0

(x′, x)G∗
ψ ′

kψ0
(x′, x1)n j ′ n j dS′dS.

(17)

As in eq. (9), all terms dependent on the SS response have been moved to the left-hand side. Note, with Q = 0 and M = 0, only one
term in the entire equation is dependent on the SS response, and it lies within a surface integral. Eq. (17) could, therefore, be used to
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formulate an inverse problem to find G
ψ ′

kψk
(x′, x) given all combinations of PP and PS responses; such an approach is equivalent to applying

the multidimensional deconvolution approach to solving interferometric equations (e.g. Wapenaar et al. 2008, 2011; van der Neut et al.
2011).

In the Introduction, we discussed various methods based on the standard single integral form of interferometry that use P and S waves
(or estimates of those) as inputs, for example, the work of Gaiser & Vasconcelos (2010) on seabed data, Bakulin & Mateeva’s (2008) work
on downhole data, Miyazawa et al.’s (2008) work on ambient noise in a downhole setting, the developments of van der Neut et al. (2011) in
the application of multidimensional deconvolution and the application of Tonegawa & Nishida (2010) to deep earthquake recordings. Thus,
we envisage that the representations derived here will find similar applications, but rather than being used to derive new responses between
pairs of receivers (or pairs of sources) the new representations explain how new types of wavefields can be derived between existing sources
and existing receivers.

Potential applications of the new source–receiver responses are discussed in Curtis & Halliday (2010), for example, in determining
source-to-receiver surface wave (or ground-roll noise) estimates, replacing bad or faulty channels in a seismic survey, or as a quality control
measure for the results of other forms of seismic interferometry. Furthermore, King & Curtis (2012) show that double-integral source–receiver
representations can be used to correct non-physical errors present in the Green’s functions estimates from single-integral forms of seismic
interferometry when applied, for example, to towed streamer, or other one-sided survey geometries. Poliannikov (2011) show that similar
interferometric relations can be used to recover underside reflections using surface sources and receivers, and the internal-multiple prediction
method developed by Weglein and co-workers also uses a similar combination of correlations and convolutions (e.g. Weglein et al. 1997).
With multicomponent recordings allowing the separation of P- and S-wave data, our methods extend existing forms of interferometry to be
able to be used with separated P- and S-wavefields.

Also note that the representations derived here are closely related to imaging methods, and therefore allow extension of those imaging
methods to P- and S-wave separated wavefields. For example, Halliday & Curtis (2010) show that the imaging method of Oristaglio (1989)
is a special case of the acoustic scattering form of source–receiver interferometry, and Vasconcelos et al. (2010) link source–receiver
interferometry to so-called extended images that are used for localized velocity analysis.

Note from Fig. 5(b) that the intermediate step is equivalent to the difference in traveltime between the upgoing P and upgoing S legs of
the PP and PS reflection responses, respectively. This could be considered as equivalent to a seismological receiver function where transmitted
P and S waves are deconvolved to give an event with a traveltime equivalent to that illustrated in Fig. 5(b) (Galetti & Curtis 2012). Therefore,
application of the second step in the PP + PS = SS method could be considered to be equivalent to the correlation of a receiver function
with a PS reflection response (or convolution where the complex conjugate form in eq. 16 is used). This observation could lead to a method
where an SS response is recovered from transmitted wavefields, or a combination of transmitted wavefields and surface seismic data. Ikelle
& Gangi (2007) also discuss the construction of physical events via a non-physical intermediate step. They refer to this intermediate step as
a virtual reflection, and show how it can be used to predict internal multiples.

C O N C LU S I O N S

We have derived generalized source–receiver interferometric integrals for P and S waves, and have shown how these integrals can be used to
calculate the SS reflection response between a source and a receiver using wavefields emitted by that source and recorded on other receivers,
and wavefields emitted by other sources and recorded only on that receiver. Thus, this SS reflection response can be calculated without directly
recording it.

We have shown that the PP + PS = SS method is a special case of these source–receiver integrals, and have identified the key differences
between this method and the fully generalized form. These key differences are that the S-wave sources are neglected, source–receiver
reciprocity must be applied to one of the inputs of the PP + PS = SS method, and this in turn requires that sources and receivers must be
colocated on the same surface. Since this results in singularities where zero offset Green’s functions exist, only the reflected (scattered) part
of the wavefield is used.

The generalized form includes all components of any source and receiver type, and allows derivation of other new relationships between
P- and S-wave source and receivers. For example, we have also shown that the new relationships may be used to formulate an inverse problem
to estimate SS responses from PP and PS responses. The new relationships may aid in combining existing P- and S-wave interferometry and
imaging methods and source–receiver interferometry and imaging methods to find new applications in acquisition and processing, and in
imaging and inversion of P- and S-wave data.

Finally, we noted that the intermediate step of the PP + PS = SS method may be considered as being equivalent to a receiver function,
which suggests there may be a possibility of applying a similar technique using transmitted wavefields.
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