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SUMMARY

Recent work on the Marchenko equation has shown that the scalar 3-D Green’s function for a
virtual source in the subsurface can be retrieved from the single-sided reflection response at the
surface and an estimate of the direct arrival. Here, we discuss the first steps towards extending
this result to multicomponent data. After introducing a unified multicomponent 3-D Green’s
function representation, we analyse its 1-D version for elastodynamic waves in more detail. It
follows that the main additional requirement is that the multicomponent direct arrival, needed
to initiate the iterative solution of the Marchenko equation, includes the forward-scattered
field. Under this and other conditions, the multicomponent Green’s function can be retrieved
from single-sided reflection data, and this is demonstrated with a 1-D numerical example.
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1 INTRODUCTION

Building on pioneering work by Rose (2001, 2002) on acoustic
single-sided autofocusing, Broggini & Snieder (2012) showed that
the Green’s function for a source inside an unknown 1-D medium
can be retrieved from the single-sided reflection response at the
surface of that medium. Hence, like in seismic interferometry
(Campillo & Paul 2003; Schuster et al. 2004; Curtis et al. 2006),
a virtual source can be created inside an unknown 1-D medium,
but, unlike in seismic interferometry, without needing a physical
receiver at the position of the virtual source and without needing
omnidirectional illumination of the medium. Using heuristic argu-
ments, we showed that the approach of Broggini & Snieder (2012)
can be extended to 3-D media (Wapenaar et al. 2012). Later we pre-
sented a more formal derivation by extending the 1-D Marchenko
equation, underlying the work of Rose (2001, 2002) and Broggini
& Snieder (2012), to a 3-D Marchenko equation (Wapenaar et al.
2014a). This 3-D approach to Green’s function retrieval requires,
apart from the reflection data at the surface, an estimate of the
direct arrivals between the virtual source inside the medium and
the receivers at the surface. A smooth subsurface model is usually
sufficient to model these direct arrivals. The information needed to
predict the multiple reflections in the 3-D Green’s function comes
entirely from the reflection data.

Both the 1- and 3-D approaches to retrieving the Green’s function
from single-sided reflection data have to date been derived for scalar
waves only. These methods rely on a specific causality condition,
namely, that in the time domain the coda of the so-called focusing
function can be completely separated from the Green’s function.
This condition is strictly obeyed for 1-D scalar waves. For 3-D

scalar waves the condition holds in layered media with moderately
curved interfaces, assuming finite horizontal source—receiver offsets
(Wapenaar et al. 2014a); in more complex media and/or at large
offsets the condition may be violated. For 1- and 3-D vectorial
waves, it has not yet been investigated to what extent the causality
condition holds and how one can cope with situations in which the
condition is violated. This is the main reason why the Marchenko
equation has not yet been modified for multicomponent single-sided
reflection data.

This paper discusses initial steps in this direction. Da Costa et al.
(2014) pursue an independent approach. First, a unified 3-D single-
sided representation is presented which expresses the multicompo-
nent Green’s function in terms of the multicomponent reflection
response and a multicomponent version of the focusing function.
Next, we focus on the 1-D version of this representation and analyse
the causality condition for the situation of elastodynamic wavefields.
Based on this analysis we propose a 1-D Marchenko equation for
single-sided elastodynamic reflection data and show how it can be
used for elastodynamic Green’s function retrieval. We discuss its
limitations and briefly indicate how the scheme can be extended to
the 3-D situation.

Note that our proposal is essentially different from previous work
by Budreck & Rose (1990), who use the Newton—Marchenko equa-
tion for 3-D inverse scattering in elastic media. The method of
Budreck & Rose (1990) requires that the medium is illuminated
from all directions and that the response is also measured in all
directions (which involves reflection as well as transmission re-
sponses). In contrast, the method proposed here requires a reflection
response, measured at one side of the medium only, and a specific
initial estimate of the multicomponent focusing function.
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2 A UNIFIED GREEN’S FUNCTION
REPRESENTATION

Consider a 3-D inhomogeneous lossless medium below a horizontal
boundary 9Dy; the half-space above this boundary is homogeneous
(Fig. 1a). In the space-time (X, ) domain, an N x 1 wavefield vector
u’(x, £), containing the N components of a flux-normalized decom-
posed downgoing wavefield, is incident to the medium from above.
In our unified treatment, the wavefield can be an electromagnetic
or an elastodynamic wavefield (or a coupled field in a piezoelec-
tric or poroelastic medium). For example, in the case of a 3-D
elastodynamic wavefield, the components of u™(x, ) represent the
downgoing compressional wave and the two types of downgoing
shear waves. The response of the medium to u™(x, #) is denoted in
the upper half-space above 0Dy as u™(x, ), which is a wavefield
vector containing N decomposed upgoing wavefield components.
At 0D, these wave vectors are related via

t
u (xp,1) = [ dx(')/ R(x, Xp, t — )u'(xp, ') dt’, )
Dy —00

where R(Xo, xg, t) is the N x N reflection response matrix of the
inhomogeneous medium below 3. The subscript 0 in X, and X
denotes that these coordinate vectors are defined at 9D, hence
X0 = (Xn, zo) and X, = (X}, Zo), Where z, denotes the depth of 3Dy,
and xy = (x, y) represents the horizontal coordinate vector. Each
column in R(Xo, X;, #) contains N upgoing wavefield components at
X, in response to a specific type of source for downgoing waves at
x;,; the N columns correspond to N source types (e.g. one source for
downgoing compressional waves and two sources for downgoing
shear waves in the elastodynamic case).

At an arbitrary chosen depth z; (below z), we define a second
boundary dD); and we denote coordinate vectors at this boundary
as X; = (xy, z;). At 9D, the response to u™(xo, #) is denoted as

a) Homogeneous half-space

Actual inhomogeneous half-space

b) Homogeneous half-space

Reflection-free reference half-space

Figure 1. (a) Reflection response and Green’s functions in actual medium
(egs 1 and 2). (b) Focusing functions and transmission response in reference
configuration (eq. 3).

u't(x;, f) (for the downgoing part) and u™(x;, ) (for the upgoing part).
Analogous to eq. (1), we introduce N x N Green’s matrices via

t
us(x;, 1) = f dx;, / GH T (x;, X}, t — tHut(x(, ') dr'. )
aDg —00

Here the second superscript of the Green’s matrix (4) denotes
the downward propagation direction at the Green’s source at X,
whereas the first superscript (£) refers to the propagation direction
at the observation point x; (Fig. 1a). Note that our definition of the
Green’s matrix is different from that in seismological textbooks. In
the Supporting Information we discuss their mutual relation (eqs
A36-AS51).

Our goal is to find a representation for the Green’s matri-
ces GH(x,, Xy, t) in terms of the reflection response matrix
R(x, X;, t). To this end, we first introduce a reference config-
uration, which is identical to the actual medium above 0ID; but
reflection-free below this boundary (Fig. 1b). An N x N focusing
wavefield matrix F{(x, X/, r) is incident to this reference configu-
ration from above. This field is shaped (as a function of x and 7)
such that it focuses at focal point x; at boundary 0ID; at t=0 [i.e.
each column of F{ (x, x}, ¢) focuses onto one specific wave type at
the focal point]. Hence, the response to Ff(x, x;, t) at aD); is de-
fined as F (x;, X}, #) = I8(xg — x};)8(¢). The delta functions should
be interpreted in a band-limited sense (evanescent waves are not
included), and I'is an N x N identity matrix. The focusing matrix at
9D, and its response at dID; are related, similar to eqs (1) and (2),
via

Fi(x;, X}, 1) = I8(xn — x31)5(1)
t
= / dxg/ T(x;, x5, t — t)F} (x5, x,, ")dt’. (3)
Dy —00

Here T(x;, X, t) is the N x N transmission response matrix of the
reference configuration between 0D and dID;. According to eq. (3),
the focusing matrix Ff(x{, X/, 7) is the inverse of this transmis-
sion response matrix. For a comparison of this focusing condition
with that in time-reversed acoustics, see Wapenaar et al. (2014b).
In the upper half-space, the response to F(x, X/, 7) is denoted as
F, (x, x, ). Because the reference configuration is reflection-free
below dD); there is no upgoing field at 9;, hence F, (x;, X, #) = O,
where O is an N x N zero matrix.

A unified representation for the Green’s matrices is obtained by
substituting all quantities introduced into reciprocity theorems for
downgoing and upgoing wavefields. The procedure is similar to that
for the scalar situation (Slob e al. 2014; Wapenaar et al. 2014a). The
main difference is that, because we deal with matrices, the order of
multiplications matters. The details of the derivation can be found
in the Supporting Information. The resulting expressions are

G (xg, X;, ) + Fy (xg, X}, 1)
t
= / dXo/ R(xy, Xo, t — ")F} (X0, X, ') dt’ )
aDy —00
nd

al

G (xg. X, 1) + F{ (xq, xj, —1)

t
= / dx()/ R(xy, xo, t — t")F| (x0, X;, —¢')dt’, %)
Dy —00

respectively. Note that the Green’s matrices in these representa-
tions are the reciprocals of those in eq. (2), with G~ (xj, X/, 1) =
(G (x!,xg, )} and G (xg, X}, 1) = —{GTT(x], x{}, 1)} (super-

script ¢ denotes transposition). In these representations, the Green’s
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wavefields originate from a virtual source at x;, which coincides
with the focal point of the focusing function [each column of
G~*(xy, X}, t) corresponds to one specific wave type radiated by
the virtual source]. In eq. (4), the virtual source radiates downwards,
denoted by the second superscript (+) of the Green’s function; sim-
ilarly, in eq. (5) it radiates upwards, also denoted by the second
superscript (—). In both representations the first superscript of the
Green'’s function (—) refers to the upward propagation direction at
the observation point x at the surface 9ID. Representations (4) and
(5) form a unified basis for retrieving the multicomponent Green’s
functions from the single-sided multicomponent reflection response
and the multicomponent focusing functions. The main question is
how to retrieve the multicomponent focusing functions from the
reflection response. Once the focusing functions are known, the
Green’s functions follow immediately and can be used for multi-
component imaging. In the following, we analyse a 1-D version of
eqs (4) and (5) to gain insight in the possibilities and limitations of
retrieving the focusing functions from the reflection response.

3 ANALYSIS OF THE 1-D
REPRESENTATION

From here onwards we assume that the medium is horizontally
layered. Moreover, we consider elastodynamic propagation in the
(x, z)-plane, assuming the wavefields are constant in the y-direction.
By applying a plane wave decomposition, the x-coordinate is
replaced by the horizontal rayparameter p. In the rayparameter
intercept-time (p, v) domain, eqgs (4) and (5) become

G " (p,z0,z1,7) + F{ (p, 20,21, T)

= [ Rzt o 0z v ©

o0

and
G (p.zo.zi, 1) + F (= p. 20, 21, —7)
T
= / R(p,zo, 7 — t)F{ (—p, 20, z;, —7) dT’, @)

respectively (see the Supporting Information for a derivation). The
matrices are 2 x 2 matrices, for example,

. ( Gpp Grs ) . (f,fp f%)
G =( ", 1) Fr=("1 L) ®)
Gsr Gss fsp  Jss

The subscripts P and S stand for compressional and shear waves,
respectively. Note that in eqs (6) and (7), the left columns in these
two matrices can be considered independent from the right columns.

First, we analyse G * and F; by direct modelling in the horizon-
tally layered medium of Fig. 2, with z; = 1000 m. F} is obtained as
the inverse of the modelled transmission response T of the reference
configuration, see eq. (3) and Fig. 1(b); F is the reflection response
to F/ in the reference configuration. For normal incidence (p = 0)
no conversion takes place, hence, the PP elements of G™* and F,i
are the same as in the acoustic case. They are shown in Fig. 3, con-
volved with a zero-phase wavelet with a central frequency of 50 Hz.
Here 78, indicates the time of the onset of the direct arrival of
G p- Figs 3(a) and (b) represent the left-hand sides of eqs (6) and
(7), respectively. Note that G;:J,S and f; p are well separated in time
(Fig. 3a), whereas G, and the time-reversal of £}, overlap each
other at the direct arrival of G, (Fig. 3b). The overlapping events
cannot be resolved from eqs (6) and (7). Therefore, in the acoustic
Marchenko scheme the direct arrival is estimated separately and its
inverse is taken as the initial estimate of 7 ;. The coda of f5 » and
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cp =2000m/s cs = 1000m/s

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2o =0m
cp =2000m/s cs = 1000m/s
z =400m
cp =4500m/s cs = 3500m/s
z =800m
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, z; = 1000 m
cp =2500m/s cs = 1500m/s
z = 1400m

cp =4000m/s cg = 2500m/s

Figure 2. Horizontally layered medium (the mass density is 2000 kg m~—3
in all layers). The dashed line at z; = 1000 m denotes the depth of the virtual
source.
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Figure 3. Directly modelled Green’s functions (green) and focusing func-
tions (blue) for normal incidence (p = 0).

the entire function f, , are subsequently resolved from the scalar
version of eqs (6) and (7) for T < t4, (Broggini & Snieder 2012;
Wapenaar et al. 2012; Slob et al. 2014).

For oblique incidence (p =0.0002 s m~!, corresponding to an
angle of 24° for P waves in the first layer), the PP and SP elements
of G—% and Fy (i.e. their left columns) are shown in Fig. 4 (the
complete matrices are shown in Figs S2 and S3). Here t¢,, indicates
the time of the onset of the first arrival of G, (this wave starts
as an upgoing P wave at z; = 1000 m, converts to an S wave at
z=400 m and hence arrives as an S wave at zo =0 m). Figs 4(a)
and (b) represent the left-hand side of eq. (6). Note that here the
Green’s functions and focusing functions are well separated in time,
but, unlike in the scalar case, this separation is not guaranteed. For
example, when z; is close to an interface, the focusing functions
may extend into the region of the Green’s function. For now we
will assume this is not the case. Figs 4(c) and (d) represent the
left-hand side of eq. (7). Note that in both figures two events of the
Green’s function and the time-reversed focusing function overlap.
In more complex media more events will overlap. The overlap is
caused by the fact that different wave modes propagate with different
velocities.

4 A MULTICOMPONENT
SINGLE-SIDED MARCHENKO SCHEME

In the previous section we obtained G—* and F} by direct mod-
elling. Here we investigate how they can be resolved from eqs (6)
and (7). First, note that the overlapping events in Figs 4(c) and
(d) cannot be resolved from these equations. Like in the acous-
tic case, we define an initial estimate of the time-reversal of FT,
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Figure 4. Directly modelled Green’s functions (green) and focusing func-
tions (blue) for oblique incidence (p = 0.0002 s m~1).
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Figure 5. Inverse of the forward-scattering transmission response. This is
used as the initial estimate of the focusing functions in Figs 4(c) and (d).

consisting of the events that overlap with G™ ~. Recalling that
F[ is the inverse of the transmission response T of the reference
configuration (eq. 3 or A20), we define its initial estimate as the
inverse of the ‘forward-scattering’ transmission response, that is,
Fto(p, 29, zi, T) = Ti™(p, 2, z¢, 7). Here the ‘forward-scattering’
transmission response Ty is defined as the part of the transmis-
sion response which includes direct and forward converted waves
but no internal multiples. Fig. 5 shows the PP and SP elements
of Ti™(—p, z;, 29, —7) (the complete matrix is shown in Fig. S4).
These are equal to the overlapping parts of the PP and SP ele-
ments of F} (—p, 2o, z;, —7) in Figs 4(c) and (d). We used the true
medium between z, and z; to obtain Fig. 5. In practice an estimate
of the medium will be used. We come back to this in the concluding
remarks. For F (p, z¢, z;, T) we now write

F;r(l% 20, Zj, T) = T]trsw(pa Ziy 20y T) + M+(p! 205 Zis T)’ (9)

where M™(p, zo, z;, T) is the coda. Our aim is now to de-
rive a Marchenko scheme that retrieves M*(p, z, z;, t) and
F, (p, zo, z;, T) from the reflection response R(p, z¢, T), assuming
the initial estimate T (p, z;, zo, T) is known. We define a time-
window matrix W(t), according to

. H(tpp — 1) H(tps—1)
W) = (H(rgp —-1) H(td— r)>’ (10)

where H(t) is the Heaviside step function. The elements of W(7)
are equal to 1 left of the dashed lines at ¢, in Figs 4, S2 and S3, and
equal to 0 right of these dashed lines. Here 7, indicates the time
of the onset of the first arrival of G’y (note that the first arrival of
Gy'g is a twice converted wave). We apply W(r) via a Hadamard
matrix multiplication [i.e. W(t)oX(7), which defines element-wise
multiplication] to both sides of eqs (6) and (7). This removes the
Green’s functions from the left-hand sides. Moreover, it replaces
F!(—p, zo, z;, —7) in the left-hand side of eq. (7) by M ( — p, zo,
z;, —7). We thus obtain a coupled set of two Marchenko equations
for the two unknowns M*(p, zy, z;, T) and F (p, zo, z;, 7). This set
of equations can be solved iteratively, according to

M}T(p!ZOina —-1)
= W(1t)o /r R'(p, zo, T — ) (p, 20,2z, —7T')dr’  (11)
—o0
[where R!(p, zo, T) =R(—p, zo, T)] and
Fl(p. 20,2, 7)
= Fio(p, 20,2, 7)
+W(r)o /r R(p,z, T — T)M/ (p, 20, z;, T))dT’,  (12)
—c0
with
Fio(p. 20,2, 7)
= W(r)o /r R(p, 20, T — T)T™(p, z;, 29, ') d7". (13)
—o0

We apply this iterative scheme for k=0 - - - 3, using the reflection
response R(p, z¢, 7) and the inverse of the forward-scattering trans-
mission response, T™(p, z;, zo, 7) (Fig. 5), as input. The results for
k=13 are our final estimates of M" (p, zy, z;, 7) and F| (p, zo, z;, 7).
Using eq. (9) we construct F{ (p, zo, z;, T). After repeating the pro-
cedure for the opposite rayparameter —p we are able to retrieve
the Green’s functions G™ *(p, zy, z;, T) and G~ ~(p, zo, z;, T) via
eqgs (6) and (7). Their PP and SP elements are shown in Fig. 6
(the complete matrices are shown in Figs S6 and S7). The absolute

a) oar

02f I 1
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02} | | |
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02) ]
Gsp (p.\f“. 2i,T) + G;_';f(p‘ 20,20, T)

—d
0 0.2 0.4 TSp 0.6 0.

-0.4

8 1.0
— 7(s)

Figure 6. Retrieved Green’s functions after four iterations of the Marchenko
scheme.
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difference with the directly modelled Green’s functions in Fig. 4
is smaller than 1073 (after 10 iterations the difference is smaller
than 107%).

5 CONCLUDING REMARKS

The analysis in this paper shows that, at least in principle, the mul-
ticomponent Green’s function for a virtual source inside a medium
can be retrieved from the multicomponent reflection response at
the surface and an initial estimate of the multicomponent focus-
ing function. Compared with the scalar version of this approach
(Broggini & Snieder 2012; Wapenaar et al. 2012, 2014a; Slob et al.
2014), the main additional complication is that the focusing func-
tions have a larger overlap with the Green’s functions (compare
Figs 4c,d with 3b). Whereas in the scalar approach it suffices to
define the initial estimate of the focusing function by a single ar-
rival, the initial estimate of the time-reversed multicomponent fo-
cusing function F/ should contain all events which overlap with the
Green’s function G ~. We have shown with a numerical example
that this initial estimate can be obtained from the forward-scattering
transmission response, that is, the part of the transmission response
which includes direct and forward converted waves but no internal
multiples. The modelling of this response requires an estimate of
the medium, including the positions of the main interfaces, which
are responsible for the wave conversion. In contrast, for the scalar
method a smooth version of the medium suffices to define the direct
arrival. Note, however, that the requirements for a model that ex-
plains forward scattering are less severe than those for a model that
explains (backward scattered) internal multiples. In the proposed
method, the information for the internal multiples in the retrieved
Green’s functions comes entirely from the measured reflection re-
sponse (like in the scalar case). The sensitivity of the methodology
towards errors in the initial estimate of the focusing function needs
further research. Another issue which needs further investigation is
to what extent F] and the time-reversed coda of F| are separated
in time from the Green’s functions. In the considered numerical
example they are well separated, but, unlike in the scalar case, in
more complex media these functions may extend into the region of
the Green’s function.

The generalization of the 1-D multicomponent Marchenko
scheme (eqs 11-13) to a 3-D scheme goes along similar lines
as for the scalar case. The unified 3-D multicomponent Green’s
function representations (eqs 4 and 5) serve as the starting point.
The derivation of the 3-D multicomponent Marchenko scheme re-
quires (i) writing F{ (X, X/, #) as the sum of an initial estimate and a
coda, analogous to eq. (9), (ii) defining a space-dependent window
function (see e.g. Wapenaar et al. 2014a), analogous to eq. (10),
(iii) applying this window function to both sides of eqs (4) and
(5), and (iv) rewriting the resulting Marchenko equations into an
iterative scheme for M (xo, X;, —¢) and F, (o, X}, #).

Keeping the above-mentioned restrictions in mind, the multi-
component single-sided Marchenko scheme has the potential to
retrieve multicomponent Green’s functions, which, in turn, can be
used for multicomponent imaging, accounting for internal multi-
ples and wave conversion (a preliminary 1-D example is shown in
Figs S8-S10).
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Figure S6. Retrieved Green’s functions after four iterations of the
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DERIVATION OF THE UNIFIED GREEN’S
FUNCTION REPRESENTATION AND
FURTHER NUMERICAL EXAMPLES

We define the temporal Fourier transform as

u(x,w) = / u(x, t) exp(—jwt)dt, (A1)
where w is the angular frequency and j is the imaginary unit
(j = v/—1). To keep the notation simple, the same symbol
is used for time- and frequency-domain functions. In the
frequency domain, equations (1) — (3) become

u” (x0,w) = R(xo,xf),w)u+(x6,w)dx6, (A2)
g
ut(xi,w) = | GFF(xi, xp,w)ul (xp,w)dxy  (A3)
8Dy
and
Ff(xi,x;,w) =TI0(xu — x/H) =
T (%, x5, w)F{ (X0, X}, w)dxy, (A4)
aDg
respectively.

Consider Figure S1, which consists of the two parallel
boundaries 9Dy and 0D;, embedded in the 3D inhomoge-
neous lossless medium. We consider two states, which will
be distinguished by subscripts A and B. Hence, the wave
vectors in state A will be denoted by uf; and u}, and those
in state B by uj; and uy. Assuming that these wave fields
are normalized with respect to the power flux, that the do-
main between 9Dy and 0D; is source-free and the medium
parameters in this domain are the same in both states, the
wave vectors obey in the space-frequency domain the follow-
ing reciprocity relations (Wapenaar et al. 2004, 2008)

{(u})'up — (uz)"uf}dxe =
aDg

a]D)j{(lli)tllé = (ux)'upldxi,  (A5)

Homogeneous half-space

Actual inhomogeneous half-space, or
Reflection-free reference half-space

Figure S1. Configuration for the reciprocity theorems (equa-
tions (A5) and (A6)).

and
/ {(uh)Tud — (uy) up}dxo =
ODg

{(wh) uf — (W) upldxi, (A6

am;
where superscript ¢ denotes transposition and superscript
denotes transposition and complex conjugation. In addition
to the assumptions mentioned above, evanescent waves are
neglected in equation (A6) at the boundaries 0Dy and JD;.

From here onward, we take for state A the fields in
the actual medium, which obey equations (A2) and (A3),
whereas for state B we take the focusing field in the reference
configuration, which obeys equation (A4) (Wapenaar et al.
2014; Slob et al. 2014). Despite the fact that the media are
different in these states, reciprocity relations (A5) and (A6)
hold for this combination of choices, because the assumption
that between 0Dy and JD; the medium parameters are the
same in both states is still fulfilled (see Figure 1 in the main
paper).

In state A we take for the downgoing wave field at 9Dg
a spatial delta function times an identity matrix, according
to

ul; (x0,w) — I8(xm — x17). (A7)



2 Wapenaar and Slob

Note that we don’t write an equal sign because we replace
a vector by a matrix. Each column of this matrix represents
a unit downgoing wave at xg = xp at 0Dy for one spe-
cific component of the decomposed wave field. According to
equation (A2) we obtain for the upgoing field at 9Dy in state
A

u; (x0,w) — R(x0, X, w). (A8)
Similarly, equation (A3) gives the downgoing and upgoing
fields at 0D; in state A

uf(xi,w) — GE T (xi, x4, w). (A9)

In state B the downgoing and upgoing fields at 0Dy are the
incident focusing field and its response, according to

uﬁ(xo,w) — F%(xo,xi,w). (A10)
Its response at dD; is obtained from equation (A4), i.e

uf(xi,w) — I6(xn — Xfy). (A11)

Because the reference configuration is reflection-free below
dD; there is no upgoing field at dD;, hence

uj(xi,w) = O. (A12)

Substituting equations (A7) — (Al2) into equa-
tions (A5) and (A6), using {R(xo,x§,w)} =
R(xg,x0,w), {G7F(xi,x0,w)} = G (xg,xw)
and {GTT(x},x{,w)}} = -G (x4,%},w) (Wapenaar
1996), gives
G (xg, X}, w) + Fy (xg, X},w) =
R(x{, %0, w)FT (%0, %}, w)dxo (A13)
oDy
and
G_7_(X6/,X;;,UJ) + {FI’_(X3>X{L7W)}* -
R(x(, %0, w){F71 (X0, %}, w)} dxo, (A14)
oDy

respectively. Here superscript * denotes complex conjuga-
tion. In the time domain, these equations read

G™ Jr()(07)(1775 + Fl (XOaxwt) (A15)
/ de/ R(x(, %0t — ¢ )F] (x0,;,t')dt’
Do -
and
G anxw + F+(X05X27 t) = (A16)
/ dXO/ R X07X07 )F;(XOaX;v 7t,)dt,7
Do
respectively.

From here onward we consider a horizontally layered
medium and wave propagation in the (z, z)-plane only. We
define the spatial Fourier transform as

ulpzw) = [ uwzw)expliopaids, (A7)

where p is the horizontal rayparameter. In the rayparameter-
frequency domain, equations (A2) — (A6) become

Ui(}’h 207"‘)) = R(p7 20>w)u+(p7 207(’*})1 (A18)

u(p, 2i,w) = GE T (p, 21, 20,w)u’ (p, 20,w),  (A19)

Fi (p, zi,zi,w) = 1= T(p, 2i, 20, w)F{ (p, 20, 21, w), (A20)

{ujg(_p7 zo,w)}tug(p, Zo,bd) - {uzjl(_p7 zo,w)}tug(p, 20,(4))
= {UX(*I’, Zhw)}tu];(pv Z’ivw) - {uZ(fpa Ziaw)}tug(pv Zi?“u)
(A21)

and

(0 (9 70,) b (9, 20,) — (U7 (P, 20, ) g (s 20, )
— (k20 @) b (25, w) — {102 (9, 200 0)} g (21, ),
(A22)
respectively. Note that equation (A22) only holds for non-
evanescent fields at zo and z;. Analogous to equations (A7)
— (A12) we make the following replacements
ul(p,z0,w) — I, (A23)
uy(p,zo,w) — R(p,20,w) = {R(-p,z0,w)}',  (A24)
uf(p,zi,w) — Gi""(p,zi,zo,w)
= F{G T (—p, 20, 21,0)},

up(p,20,w) —  Fi(p20,2,w),
up(p,zi,w) — 1,
ug(p,zi,w) — O.
Substitution into equations (A21) and (A22) gives

G (p, 20, 2i,w) + F (p, 20, 2i,w) =
R(p, 20, w)FT (p, 20, 2i, w) (A29)

and

Gi’i(ipa 20, Z’i7w) + {Ff(pv 205 Zi?“'))}* =
R(7p7 Zo7w){F;(p7 207Zi7w)}*5 (A30)

respectively. In the rayparameter intercept-time domain
(Stoffa 1989) these expressions become

G~ (p, 20, 20, 7) + F1 (p, 20, 2, 7) =
/ R(p7 20, T —T/)Fi‘_(]ﬁ zO7Zi7T/)dTI (A31)

and (replacing p by —p)
G_’_(p> 20, %, 7-) + Fi’_(_p7 205 Ziy _T) -
/ R(pa 20, T _T,)F;(_p7 ZO?'Z’ia_T/)dT,? (A32)

respectively.

For the model of Figure 2 in the main paper, with
zo = Om and z; = 1000m, the elements of the directly
modeled elastodynamic Green’s functions Gf’i(p, 20, %i,T)
and focusing functions Fli(:Fp, 20,2i, F7) are shown in
Figures S2 and S3. Figure S4 shows the elements of the
inverse of the forward-scattering transmission response,
T (—p, zi, 20, —7). The latter, together with the reflection
response R(p, zo0,7) (Figure S5), forms the input of the
multicomponent single-sided Marchenko scheme of equa-
tions (11) — (13) in the main paper. The retrieved Green’s
functions Gf’i(p, 20, 2, T) after four iterations, are shown
in Figures S6 and S7.

(Text continues on page 5).
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The reciprocals of the retrieved Green’s functions, i.e.,

G (p, i, 20,7) = —{GT 7 (=p, 20, 2, )}, (A33)

G_,+(p7 Zi72077-) = +{G_’+(_p7 ZO7Zi7T)}t7 (A34)

(see equation A25) are mutually related via the reflection
response at z;, according to

G_7+(pa Zis 20, T) = / R(p7 Zis T_T/)G+7+(p7 Zisy 20, T/)dTl
—o0

(A35)
(Riley & Claerbout 1976; Wapenaar et al. 2000; Amundsen
2001). This expression states that the downgoing field G**
at z;, convolved with the reflection response R at z;, gives
the upgoing field G™T at z;. Note that G™' and G—T
are defined in the actual medium, whereas R(p, z;, 7) is de-
fined in a reference medium that is identical to the actual
medium below z; and reflection-free above z;. Resolving R
from equation (A35) involves “seismic interferometry by de-
convolution” (Snieder 2006; Vasconcelos & Snieder 2008;

Marchenko equation: Supporting Information 5
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Figure S7. Retrieved Green’s functions (continued).

van der Neut et al. 2011). We illustrate this with a numerical
example. Figure S8 shows again the elements of the reflec-
tion response R(p, zo, 7) at the surface, this time for a range
of p-values (the last trace in each panel corresponds with
Figure S5). Similar as above, the Green’s functions for all
p-values are retrieved via the Marchenko scheme. Next, the
reflection response at z;, R(p, z;, 7), is resolved from these
Green’s functions by inverting equation (A35) for each p-
value. This “redatumed” reflection response is shown in Fig-
ure S9. This figure clearly shows the response of the single re-
flector below z; (the interface at z = 1400 m, see Figure 2 in
the main paper). The p-dependent reflection amplitudes are
retrieved from these reflection responses after envelope de-
tection. They are denoted by the blue marks in Figure S10.
The green curves in this figure are the modeled p-dependent
reflection coefficients of the interface at z = 1400 m. Note
that for this idealized example the match is perfect.

(Text continues on page 7).
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Finally we discuss how the decomposed wave fields and
Green’s functions are related to measurable field quantities
and the standard Green’s functions encountered in seismo-
logical textbooks.

For elastodynamic wave fields in the (z,z)-plane in a
horizontally layered medium we relate the measurable (two-
way) wave field vector q(p, z,w) to the decomposed (one-
way) wave field vector u(p, z,w) via a composition matrix
L(p, z), according to

a(p, z,w) = L(p, 2)u(p, 2, w), (A36)
with

atz0) = () (200, (A37)

where T is the traction and v the particle velocity, and

ut
u(pz0) = (1) (.0), (A38)
where u™ and u™ are the flux-normalized decomposed down-
going and upgoing wave fields. The flux-normalized compo-
sition matrix L(p, z) is defined as (Frasier 1970; Ursin 1983,;
Wapenaar et al. 2008)

_(Li Ly
Lo = (11 1) ) (A39)
where
1 —2 2, 5
+2pq} —(c5? -2 2
st-a(y) (b )
(e5® —2p%) /a3 +2pq2
(A40)
LR
L (p,2) = (2p) 2 (p/ e iq%) o (AdD)
+q2  p/qd

with p(z) the mass density and cg(z) the S-wave velocity.
The vertical P- and S-wave slownesses gp(p, z) and ¢s(p, 2),
respectively, are defined as

ar(p,2) = (cp’(2) —p*)2, (A42)

(S

1

as(p,z) = (e5°(2) = p*)2, (A43)

with cp(z) the P-wave velocity. Because of the flux-
normalization, composition matrix L(p, z) has a simple in-
verse. The decomposition matrix L™!(p, z) is given by

L '(p,z) = —N"'L*(—p, 2)N, (A44)

O 1I
N = (71 O) , (A45)
hence

L - (ot

with

) era )
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We group the Green’s matrices for the decomposed wave
fields into a single one-way Green’s matrix Gr(p, 2o, zi, w),
according to

G+,+ G+,f
Gi(p, 20, 2i,w) = (G_’+ G_’_) (p, 20, zi,w).  (A47)

We define the two-way Green’s matrix Grr(p, zo, zi,w) as
follows

GT,f GT,h
GII(pa Z(),Zi,(.d) = (Gv,f Gv,h) (pv Zo,Zi,W). (A48)

Here the first superscripts (7 and v) refer to the observed
wave field at zo (traction and particle velocity, respectively),
whereas the second superscripts (f and h) refer to the source
type at z; (force and deformation, respectively). Note that
the lower left matrix G¥¥ (p, 20, 2, w) is the common Green’s
tensor in terms of particle velocity components in response
to force sources. The two-way Green’s matrix is related to
the one-way Green’s matrix according to

G11(p, 20, 2i,w) = L(p, 20)G1(p, 20, zi,w)L™ " (p, 2i), (A49)

or, using equation (A44),

G11(p, 20, 2i,w) = —L(p, 20)G1(p, 20, 2, w)N 'L’ (—p, z;)N.

(A50)
Similarly, for the unified Green’s matrices in 3D inho-
mogeneous media we write

Grr(xp,x),w) = —[,(zo,w)GI(xg,xg,w)N_lét(zi,w)N,

(A51)
where composition matrix £(zo,w) contains the appropriate
pseudo-differential operators (Fishman et al. 1987; Corones
et al. 1983, 1992; Fishman 1993; Haines & de Hoop 1996;
de Hoop 1996; Wapenaar & Grimbergen 1996; Wapenaar
et al. 2008), and where ét(zi,w) is the transposed compo-
sition matrix, with the pseudo-differential operators acting
on the quantities left of it.
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