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S U M M A R Y

Iterative substitution of the coupled Marchenko equations is a novel methodology to retrieve

the Green’s functions from a source or receiver array at an acquisition surface to an arbitrary

location in an acoustic medium. The methodology requires as input the single-sided reflection

response at the acquisition surface and an initial focusing function, being the time-reversed

direct wavefield from the acquisition surface to a specified location in the subsurface. We

express the iterative scheme that is applied by this methodology explicitly as the successive

actions of various linear operators, acting on an initial focusing function. These operators

involve multidimensional crosscorrelations with the reflection data and truncations in time.

We offer physical interpretations of the multidimensional crosscorrelations by subtracting

traveltimes along common ray paths at the stationary points of the underlying integrals. This

provides a clear understanding of how individual events are retrieved by the scheme. Our

interpretation also exposes some of the scheme’s limitations in terms of what can be retrieved

in case of a finite recording aperture. Green’s function retrieval is only successful if the

relevant stationary points are sampled. As a consequence, internal multiples can only be

retrieved at a subsurface location with a particular ray parameter if this location is illuminated

by the direct wavefield with this specific ray parameter. Several assumptions are required to

solve the Marchenko equations. We show that these assumptions are not always satisfied in

arbitrary heterogeneous media, which can result in incomplete Green’s function retrieval and

the emergence of artefacts. Despite these limitations, accurate Green’s functions can often be

retrieved by the iterative scheme, which is highly relevant for seismic imaging and inversion

of internal multiple reflections.

Key words: Controlled source seismology; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Strong heterogeneities in the shallow subsurface can distort trans-

mitted seismic wavefields, thereby challenging the imaging, char-

acterization or monitoring of deep targets from the acquisition

surface. To overcome this problem, the seismic wavefield can

be redatumed to a level below the major complexities (Berry-

hill 1984). Such redatuming requires an estimate of the transmis-

sion response of the overburden, which can either be computed

in a macro velocity model of the subsurface or be retrieved di-

rectly from the reflection data, using for instance the Common

Focal Point (CFP) method (Al-Ali & Verschuur 2006). Although

this type of redatuming addresses the propagation effects through

the overburden, internal multiple reflections are not taken into

account.

Bakulin & Calvert (2006) revised the seismic redatuming prob-

lem by deploying actual receivers below the overburden that mea-

sure the transmission response directly. In their so-called virtual

source method, this transmission response is used for data-driven re-

datuming. Similar concepts have been presented by Schuster (2009)

and various others, inspired by the principles of seismic interferome-

try. The original aim of the virtual source method has been to correct

only for the primary transmission effects of the overburden. Since

internal multiple reflections were not accounted for in the formula-

tion, spurious events could emerge in the retrieved gathers (Snieder

et al. 2006). This problem has been mitigated to some extent by sep-

arating upgoing and downgoing waves prior to redatuming, which

was made possible by the deployment of multicomponent receivers

(Mehta et al. 2007). Wapenaar et al. (2011) demonstrated that reda-

tuming of the complete wavefield can be achieved by multidimen-

sional deconvolution of the separated wavefields. To establish this

technology, knowledge was required of the Green’s functions (in-

cluding all orders of internal multiples) as they would be recorded

at depth due to sources at the surface. So far, this could only be
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achieved by deploying physical multicomponent receivers in the

subsurface.

Recently, a novel iterative scheme was presented to retrieve the

required Green’s functions from reflection data and an estimate of

the propagation effect of the direct wavefield through the overburden

(Wapenaar et al. 2014b). This estimate can be obtained from a macro

velocity model, but a CFP operator may also be used. The develop-

ment of this methodology has been inspired by the pioneering work

of Rose (2002). Broggini & Snieder (2012) related this work to seis-

mic interferometry, from where it was realized how a Green’s func-

tion of a 1-D medium can be retrieved from its single-sided reflection

response. This methodology was extended to 3-D wave propagation

by Wapenaar et al. (2014b), relying on a causality assumption that

is satisfied in media with moderately curved interfaces, but whose

limitations are still to be investigated in more complex media. In this

paper, we restrict ourselves to applications in acoustic media. Exten-

sions of the methodology for elastodynamic wave propagation have

been presented by da Costa Filho et al. (2014) and Wapenaar & Slob

(2014).

In the so-called Marchenko redatuming (Wapenaar et al. 2014a),

the estimated Green’s functions are used to redatum the seismic

wavefield, potentially below a complex overburden. Since internal

multiple reflections are included in the estimated transmission re-

sponse, they are correctly handled by this methodology. Marchenko

redatuming can also be used directly for imaging. By applying the

methodology at each depth level in the subsurface and taking the

response at zero time lag and zero space lag, an image with accurate

amplitudes can be obtained without artefacts from internal multiple

reflections (Wapenaar et al. 2014a; Broggini et al. 2014a; Behura

et al. 2014). By including non-zero lags, equivalent extended images

can also be created (Vasconcelos & Rickett 2013), which can be use-

ful input for migration velocity analysis (Sava & Vasconcelos 2011),

reservoir characterization (De Bruin et al. 1990; Thomson 2012)

and novel schemes for nonlinear imaging (Fleury & Vasconcelos

2012; Ravasi & Curtis 2012) and waveform inversion (Vasconce-

los et al. 2014a). Alternatively, we can use the Marchenko equa-

tions to retrieve internal multiples at the acquisition level, which

could then be adaptively subtracted from the recorded data (Meles

et al. 2015). For some initial field data applications of Marchenko

redatuming, see Ravasi et al. (2015) and Van der Neut et al.

(2015b).

In this paper, we provide an alternative view on Green’s function

retrieval by explicit iterative substitution of the coupled Marchenko

equations, following Wapenaar et al. (2014b) and Slob et al. (2014).

We build on knowledge and findings of seismic interferometry,

where the retrieval of a seismic response through crosscorrelation

is commonly interpreted by subtracting traveltimes along common

ray paths at the stationary points of the underlying integrals (Schus-

ter 2009). Since the iterative scheme that we consider can be in-

terpreted as a sequential series of crosscorrelations, this interpre-

tation provides us with valuable insights on how individual events

in the retrieved Green’s functions are constructed. We begin the

paper with a concise derivation of the Green’s function represen-

tations that undergird the coupled Marchenko equations. Then, we

introduce a discrete framework in which the coupled Marchenko

equations can be effectively represented and solved. We study the

retrieval of Green’s function in a layered medium and in a medium

with point scatterers. Based on our observations, several conclu-

sions will be drawn on the requirements and limitations of the

methodology.

2 G R E E N ’ S F U N C T I O N

R E P R E S E N TAT I O N S

An extensive derivation of the coupled Marchenko equations for

acoustic wave propagation in 3-D media with smooth moderately

curved interfaces is given by Wapenaar et al. (2014b). In this sec-

tion, we introduce an alternative derivation that requires less steps

but provides additional physical insights. In both derivations, an

essential role is played by the so-called focusing functions, relat-

ing the desired Green’s functions in the subsurface directly to the

recorded data at the surface. While Wapenaar et al. (2014b) de-

fine these focusing functions as solutions of the wave equation

with a specified focusing condition, we define them in this paper

as functions of transmission and reflection responses. However,

since the origin of both derivations is found in the same reciprocity

theorems for one-way wavefields, the results are effectively the

same. We start this section with an introduction to the required reci-

procity theorems. Then, we introduce two focusing functions: one

for focusing at depth and the other for focusing at the acquisition

surface.

2.1 Reciprocity theorems

Throughout this paper, we express wavefields in the time–space

domain as p (χ , z; t). In this notation, t and z denote the time

and depth, while χ refers to the horizontal (x and y) coordinates

of space. Further, we define x = (x, y, z) = (χ , z). Bold charac-

ters are used to denote vectors and matrices, whereas all scalars

are non-bold. Any wavefield can be transformed to the frequency–

space domain by the temporal Fourier transform that we define

as

p̂ (χ , z; ω) =

+∞
∫

−∞

dt exp (− jωt)p (χ , z; t) . (1)

Here, the hat denotes the frequency–space domain, j is the imaginary

unit and ω is the angular frequency. The inverse Fourier transform

is defined as

p (χ , z; t) =
1

2π

+∞
∫

−∞

dω exp ( jωt) p̂ (χ , z; ω) . (2)

In reciprocity theorems for one-way wavefields (Wapenaar &

Grimbergen 1996), wavefields are defined in two states A and B

(indicated by subscripts A and B) in the frequency–space domain.

These wavefields are evaluated at two depth levels, being the ac-

quisition surface 3a and the focusing level 3f. The wavefields

are decomposed into downgoing and upgoing constituents, where

downgoing is indicated with superscript + and upgoing with super-

script −. The decomposed wavefields are flux-normalized (Coro-

nes et al. 1983; Fishman et al. 1987) and can be related to the

physical quantities of pressure and vertical particle velocity, us-

ing expressions of Wapenaar & Grimbergen (1996). We note that

the coordinate system can be rotated and that reciprocity theo-

rems for one-way wavefields have also been defined in curvi-

linear coordinate systems (Frijlink & Wapenaar 2010). Hence,

the following theory may also be extended for such coordinate

systems.
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794 J. van der Neut, I. Vasconcelos and K. Wapenaar

Figure 1. Illustration of states A and B that are discussed in the main text. Levels 3a and 3f are infinitely long boundaries. In both states, the medium

properties are identical to the physical medium between these boundaries and the medium is reflection free above 3a. In state A, the medium is also reflection

free below 3f, whereas in state B, it is identical to the physical medium below this boundary.

We start with a reciprocity theorem of the convolution type, relat-

ing two wavefields that are propagating forward in time (Wapenaar

& Grimbergen 1996):
∫

3a

d2χ
{

p̂+
A p̂−

B − p̂−
A p̂+

B

}

=

∫

3 f

d2χ
{

p̂+
A p̂−

B − p̂−
A p̂+

B

}

. (3)

Because all wavefield quantities are expressed in the frequency–

space domain, the multiplications in eq. (3) are equivalent to con-

volutions in the time–space domain. The integrals are carried out

over level 3a at depth za and level 3f at depth zf. Eq. (3) is valid

when the medium parameters between 3a and 3f are identical in

both states and when no sources exist between these depth levels.

The medium parameters of both states can be different from each

other above 3a and below 3f. Sources can also exist in this part of

the medium.

An analogous reciprocity theorem of the correlation type re-

lates wavefields that propagate forward in time to wavefields

that propagate backward in time (Wapenaar & Grimbergen

1996):
∫

3a

d2χ
{

p̂+
A p̂+∗

B − p̂−
A p̂−∗

B

}

=

∫

3 f

d2χ
{

p̂+
A p̂+∗

B − p̂−
A p̂−∗

B

}

. (4)

Here, the superscript ∗ denotes complex conjugation, being equiv-

alent to time reversal in the time–space domain. Hence, the multi-

plications in eq. (4) are crosscorrelations in the time–space domain.

Apart from the assumptions that are intrinsic to the reciprocity the-

orem of the convolution type, eq. (4) requires the medium to be

lossless between the levels 3a and 3f. This requirement imposes an

important limitation to the current methodology, namely that intrin-

sic losses in the overburden are not accounted for in the underlying

theory. Moreover, evanescent wave modes are ignored at 3a and 3f.

2.2 Focusing at depth

We will choose a medium A in state A that is identical to the physical

medium above 3f and reflection-free below this level. We refer to

this truncated medium with subscript A. For state B, we choose the

physical medium (referred to without a subscript). An illustration is

given in Fig. 1. In both states, we do not include a free surface (i.e.

no downgoing waves exist at or above 3a). Free-surface multiples

can also be included, yielding an additional integral in the Green’s

function representations and the coupled Marchenko equations that

follow (Singh et al. 2015).

In state A, we place a point source for a downgoing wavefield

just above 3a, creating a delta function in the lateral coordinates

at 3a, that is p̂+
A = δ (χ − χ A). Here, χ A is the horizontal loca-

tion of the source, which is positioned at depth zA. The upgoing

wavefield at 3a is p̂−
A = R̂A (χ , za ; χ A, za ; ω), being the reflec-

tion response at the surface in the truncated medium. At 3f, we

find the downgoing wavefield p̂+
A = T̂A(χ , z f ; χ A, za ; ω), being the

transmission response of the truncated medium. Since the medium

is non-reflective below 3f, the upgoing wavefield at this level is

p̂−
A = 0. In state B, we also place a point source for a downgoing

wavefield (at χ B) just above the surface, such that p̂+
B = δ (χ − χ B)

and p̂−
B = R̂ (χ , za ; χ B, za ; ω), being the reflection response of the

physical medium at the surface. At the focusing level, we refer

to the wavefields in state B as downgoing and upgoing Green’s

functions p̂±
B = Ĝ±

(

χ , z f ; χ B, za ; ω
)

. Substituting these ingredi-

ents into eqs (3) and (4) brings us (after re-arranging some terms)

at
∫

3 f

d2χ T̂A(χ , z f ; χ A, za ; ω)Ĝ−(χ , z f ; χ B, za ; ω)

= R̂ (χ A, za ; χ B, za ; ω) − R̂A (χ B, za ; χ A, za ; ω) , (5)

and
∫

3 f

d2χ T̂A(χ , z f ; χ A, za ; ω)Ĝ+∗(χ , z f ; χ B, za ; ω)

= −

∫

3a

d2χ R̂A (χ , za ; χ A, za ; ω) R̂∗ (χ , za ; χ B, za ; ω)

+ δ (χ B − χ A) . (6)
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The coupled Marchenko equations 795

To retrieve the Green’s function, the inverse of the transmission

response T̂A should be applied to eqs (5) and (6). Initially, this

inverse is unknown, but, as we will see later, it can be retrieved by

an iterative scheme. We refer to the inverse of T̂A as f̂ +
1 , which is

defined via

δ(χ − χ F ) =

∫

3a

d2χ A T̂A(χ , z f , χ A, za ; ω)

× f̂
+

1

(

χ A, za ; χ F , z f ; ω
)

. (7)

The delta function should be interpreted as a spatially band-limited

delta function, where the evanescent field has been ignored (Wape-

naar et al. 2014b). The field f̂
+

1 is identical to the downgoing part

of the focusing function f̂ 1, as defined by Wapenaar et al. (2014b),

being a solution of the wave equation in the truncated medium with

a specified focusing condition.

By applying f̂
+

1 (χ A, za ; χ F , z f ; ω) to eqs (5) and (6), we find,

after integrating χ A over 3a and with help of eq. (7):

Ĝ−(χ F , z f ; χ B, za ; ω) =

∫

3a

d2χ R̂(χ , za ; χ B, za ; ω)

× f̂ +
1 (χ , za ; χ F , z f ; ω)

− f̂ −
1 (χ B, za ; χ F , z f ; ω), (8)

and

Ĝ+∗(χ F , z f ; χ B, za ; ω) = −

∫

3a

d2χ R̂∗(χ , za ; χ B, za ; ω)

× f̂ −
1 (χ , za ; χ F , z f ; ω)

+ f̂ +
1 (χ B, za ; χ F , z f ; ω). (9)

For notational convenience, we have replaced the integration vari-

able χ A in eq. (8) by χ , and we defined additionally

f̂
−

1 (χ , za ; χ F , z f ; ω) =

∫

3a

d2χ A R̂A(χ , za ; χ A, za ; ω)

× f̂ +
1 (χ A, za ; χ F , z f ; ω), (10)

which can be interpreted as the response of the truncated medium

to f̂
+

1 . Note that f̂
−

1 is the upgoing part of the focusing func-

tion as defined by Wapenaar et al. (2014b), where f̂ 1 = f̂
+

1 + f −
1 .

Eqs (8) and (9) are essential representations that will be utilized

later to retrieve the Green’s functions Ĝ− and Ĝ+∗.

2.3 Focusing at the acquisition level

Remember that f̂
+

1 is defined as the inverse of the transmission

response from level 3a to 3f, where 3a is the integration surface

(see eq. 7). Alternatively, we can define a focusing function f̂
−

2 as

the inverse of the transmission response from level 3f to 3a, where

3f is the integration surface. For this purpose, we introduce

δ(χ − χ B) =

∫

3 f

d2χG T̂A(χ , za ; χG, z f ; ω)

× f̂
−

2 (χG, z f ; χ B, za ; ω). (11)

In this expression, T̂A is the transmission response of the truncated

medium when illuminated from below and f̂
−

2 is its inverse. Similar

to f̂
−

1 , we can define f̂
+

2 as the response of the truncated medium

to f̂
−

2 , according to

f̂
+

2 (χ , z f ; χ B, za ; ω) =

∫

3 f

d2χG R̂∩
A(χ , z f ; χG, z f ; ω)

× f̂
−

2 (χG, z f ; χ B, za ; ω), (12)

where R̂∩
A is introduced as the reflection response of the truncated

medium from below.

Wapenaar et al. (2014b) showed that f̂
±

1 and f̂
±

2 obey the fol-

lowing relations:

f̂
+

1 (χ B, za ; χ F , z f ; ω) = f̂
−

2 (χ F , z f ; χ B, za ; ω), (13)

and

− f̂
−∗

1 (χ B, za ; χ F , z f ; ω) = f̂
+

2 (χ F , z f ; χ B, za ; ω). (14)

These relations follow directly from the definitions (7) and (11), and

the symmetry of the transmission response. They play an essential

role in the reasoning that will be applied in the following section.

3 T H E C O U P L E D M A RC H E N KO

E Q UAT I O N S

To derive the coupled Marchenko equations, we rewrite eqs (8) and

(9) in a discrete notation. Then, we introduce a causality argument,

which is imposed by a window matrix. Having derived the coupled

Marchenko equations, they can be solved by iterative substitution.

Eventually, the desired Green’s functions can be computed.

3.1 Discrete notation

For the introduction of our discrete notation, we start by rewriting

eqs (8) and (9) in the time–space domain. This is done by substitut-

ing the forward Fourier transform of f̂
+

1 (as in eq. 1) into eq. (8).

We apply inverse Fourier transformation with eq. (2) to both sides

of the result. After rearranging the terms, we find

f −
1 (χ B, za ; χ F , z f ; t) + G−(χ F , z f ; χ B, za ; t)

=

[

1

2π

+∞
∫

−∞

dω exp( jωt)

∫

3a

d2χ R̂(χ , za ; χ B, za ; ω)

×

+∞
∫

−∞

dτ exp(− jωτ )

]

f +
1 (χ , za ; χ F , z f ; τ ). (15)

The term between square brackets can be interpreted as a mul-

tidimensional filter, acting on the downgoing focusing function

f +
1 (χ , za ; χ F , z f ; τ ). We introduced τ as an additional time vari-

able. For practical reasons, we prefer to rewrite this expression in

a discrete and concise way. For this purpose, we store the focusing

functions as vectors f±
1 in which the seismic traces are concatenated

in the time–space domain. Further, we define a matrix R that applies

the operations between the square brackets in eq. (15), meaning for-

ward Fourier transformation, multidimensional convolution with the

reflection response and inverse Fourier transformation. Effectively,

this filter propagates the downgoing focusing function forward in

time with the reflection response. As can be observed from eq. (15),

this operation yields, besides the upgoing focusing function f −
1 , the
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796 J. van der Neut, I. Vasconcelos and K. Wapenaar

upgoing Green’s function G−. This Green’s function is written as

a vector g−. Here, it should be noted that the organization of the

elements in this vector with respect to χ B and t is similar as in the

focusing functions f±
1 . Within this discrete framework, eq. (15) can

be written for any focal point as

f−
1 + g− = Rf+

1 . (16)

Eq. (9) can be rewritten in a similar way. This is done by substitution

of the forward Fourier transform of f −
1 (as in eq. 1). After inverse

Fourier transformation of the result with eq. (2) and rearranging the

terms, we find

f +
1 (χ B, za ; χ F , z f ; t) − G+(χ F , z f ; χ B, za ; −t)

=

[

1

2π

+∞
∫

−∞

dω exp( jωt)

∫

3a

d2χ R̂∗(χ , za ; χ B, za ; ω)

×

+∞
∫

−∞

dτ exp(− jωτ )

]

f −
1 (χ , za ; χ F , z f ; τ ). (17)

The term between square brackets can be interpreted as a multidi-

mensional filter, propagating the upgoing focusing function back-

ward in time with the reflection response. We introduce matrix

R⋆ that applies this operation to any vector. The action of R⋆ on

f−
1 yields, besides the downgoing focusing function, the downgoing

Green’s function −g+⋆, propagating backward in time with reversed

polarity. Here, it should be noted that the organization of the ele-

ments in this vector with respect to χ B and t is similar as in the

focusing functions, but that all traces are reversed in time (which is

indicated by superscript ⋆). With these ingredients, eq. (17) can be

written as

f+
1 − g+⋆ = R⋆f−

1 . (18)

On the right-hand side of eqs (16) and (18), we find multidi-

mensional filters that propagate the focusing functions forward and

backward in time. On the left-hand side, we find a constituent of

the Green’s function and a constituent of the focusing function. Our

aim is to solve these two equations having four unknowns (g+⋆, g−,

f+
1 and f−

1 ). Hence, in its present form, this system of equations

is underdetermined. However, we can eliminate two unknowns by

exploiting the fact that focusing functions and Green’s functions

have different causality properties in the time–space domain.

3.2 The window matrix

We assume that the Green’s function contains a distinct downgoing

direct arrival and a coda of reflected events that arrive thereafter. We

design a window matrix 2 that removes all events after the direct

wave, including the direct wave itself. This window is designed to

be symmetric in time. Hence, any acausal event that arrives before

the time-reversed direct wave is also removed by its action. When

2 is applied to the upgoing Green’s function g−, causality dictates

that

2g− = 0. (19)

Since 2 is symmetric in time, it follows for the time-reversed down-

going Green’s function g+⋆ that

2g+⋆ = 0. (20)

Hence, the Green’s functions can be eliminated from eqs (16) and

(18) by applying matrix 2.

In the following, we analyse how the focusing functions that also

appear in the left-hand side of eqs (16) and (18) respond to the

actions of 2. For this purpose, we make use of eq. (7). We rewrite

this equation in the time–space domain by substituting the forward

Fourier transform (as in eq. 1) of f +
1 and applying inverse Fourier

transformation (as in eq. 2) to both sides of the result, yielding

δ(χ − χ F )δ(t)

=

[

1

2π

+∞
∫

−∞

dω exp( jωt)

∫

3a

d2χ A T̂A(χ , z f ; χ A, za ; ω)

×

+∞
∫

−∞

dτ exp(− jωτ )

]

f +
1 (χ A, za ; χ F , z f ; τ ). (21)

The term between square brackets can be interpreted as a multidi-

mensional filter, acting on the downgoing focusing function. This

filter can also be represented by matrix TA, acting on the vectorized

focusing function f+
1 . The term on the left-hand side can be dis-

cretely represented by a vector i, having only one non-zero element

at t = 0 and χ = χ F at the chosen focusing location. With these

definitions, eq. (21) can be written as

i = TAf+
1 . (22)

Remember that we assume the transmission response to contain a

direct wave and a distinct coda that arrives thereafter. Building on

this assumption, matrix TA can be partitioned as

TA = TAd + TAm, (23)

where TAd describes the convolution with the direct wave and TAm

describes the convolution with the coda, resulting from internal

multiple reflections in the transmission response. We define a fo-

cusing function for the direct wave f+
1d , which will be referred to

as the initial focusing function. In analogy to eq. (22), the initial

focusing function obeys

i = TAd f+
1d . (24)

The initial focusing function f+
1d can be subtracted from f+

1 . We refer

to the remainder as the coda f+
1m , where

f+
1 = f+

1d + f+
1m . (25)

To investigate the properties of f+
1d and f+

1m , we subtract eq. (24)

from eq. (22). The result is rewritten with help of eqs (23) and (25)

as

TAmf+
1d = − (TAd + TAm) f+

1m . (26)

This result can be interpreted as follows. When TAd is applied to

f+
1d , it will produce a response at zero intercept time, as dictated by

eq. (24). Hence, f+
1d should contain a single event that is kinemati-

cally identical to the time-reversed direct wave. Since TAm applies

convolutions with events that arrive after the direct wave, the left-

hand side of eq. (26) is purely causal. Hence, the right-hand side

should be causal too. The earliest event on the right-hand side is

produced by the convolution of the direct wave in TAd with the first

event in f+
1m . The condition that this event should be causal translates

directly in the conclusion that f+
1m cannot contain any event arriving

earlier than the time-reversed direct wave.

We have thus concluded that the time-reversed direct wave is

the earliest event in f+
1 . With the help of eq. (13), we can also

conclude that the time-reversed direct wave is the earliest event in

f−
2 . Since eq. (12) states that f+

2 can be obtained by convolving f−
2

with a causal reflection response, it follows that all events in f+
2
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The coupled Marchenko equations 797

arrive after the time-reversed direct wave. Since f−
1 is related to f+

2

by polarity reversal and time reversal, as dictated by eq. (14), we

conclude that all events in f−
1 arrive before the direct wave.

Using the causality of the reflection response and the fact that f+
1

and f−
1 are related by eq. (12), it follows from the previous statements

that all events in f+
1m and f−

1 arrive after the time-reversed direct wave

but before the direct wave. Hence, it can be concluded that

2f+
1 = 2

(

f+
1d + f+

1m

)

= f+
1m, (27)

and

2f−
1 = f−

1 . (28)

It is important to realize that our arguments to justify eqs (27) and

(28) are rather intuitive and strictly valid in 1-D media only. The

exact limitations of these arguments in complex 3-D media are still

to be explored, see also Vasconcelos et al. (2014b).

3.3 Iterative solution

Now that we have verified the responses of the Green’s functions

and focusing functions to the window matrix, we can apply this

matrix to eq. (16). With the help of eqs (19), (25) and (28), the

result of this operation can be written as

f−
1 = 2Rf+

1d + 2Rf+
1m . (29)

Similarly, we can use eqs (20), (25) and (27) to deduct from the

action of 2 on eq. (18) that

f+
1m = 2R⋆f−

1 . (30)

Eqs (29) and (30) are the coupled Marchenko equations. We inter-

pret f+
1d as the initial focusing function. Assuming that the direct

wave is known from either a macro velocity model or the CFP

method (Al-Ali & Verschuur 2006), the initial focusing function

can be obtained by inversion of eq. (24). In practice, we generally

approximate this inverse by time-reversal (Wapenaar et al. 2014b).

Once f+
1d is known, a first estimate of f−

1 can be obtained with eq.

(29) (with the initial estimate f+
1m = 0). Now that we have an es-

timate of f−
1 , we can estimate f+

1m with eq. (30), evaluate eq. (29)

again and proceed by iteration. With every iteration of eq. (29), the

focusing function is propagated forward in time, whereas with every

iteration of eq. (30), it is propagated backward in time. As will be

shown in the examples, each of these cases can be interpreted as a

multidimensional crosscorrelation process.

Alternatively, the focusing function can be retrieved by inversion.

By composing eq. (29) with 2R⋆ and then noting that eq. (30)

permits the elimination of f−
1 , we find

[I − 2R⋆2R] f+
1m = 2R⋆2Rf+

1d . (31)

This equation can be solved for f+
1m . To establish the relation between

solving this inverse problem and iteratively substituting eqs (29) and

(30), we observe that eq. (31) is a Fredholm equation of the second

kind. It is well known that such an equation can be expanded as a

Neumann series (Fokkema & Van den Berg 1993), yielding for the

Kth order estimate of f+
1 :

f
+(K )

1 =

K
∑

k=0

(2R⋆2R)k
f+
1d . (32)

Here, we have added f+
1d to the expansion of f+

1m , for convenience.

The Kth order solution of f−
1 can be found by substituting this result

into eq. (29), yielding

f
−(K )

1 = 2R

K
∑

k=0

(2R⋆2R)k
f+
1d . (33)

It can easily be verified that these results are identical to those

obtained by iterative substitution of eqs (29) and (30). Hence, our

iterative solution can be interpreted as a Neumann series. Note that

convergence is established for such a series, under the condition

that | (2R⋆2R)k f+
1d |2 → 0 as k → ∞ (Fokkema & Van den Berg

1993), where subscript 2 denotes the ℓ2-norm.

3.4 Green’s function retrieval

Once the focusing functions are found, the upgoing Green’s function

can be computed with eq. (16). Although accurate Green’s functions

can be retrieved if sufficient iterations are evaluated (Broggini et al.

2014b), we often prefer to keep the number of iterations small. To

improve the result in these cases, it can be useful to remove all

events before the direct arrival. This is achieved by the filter 9 = I

− 2, which we apply to both sides of eq. (16). Here, I is an identity

matrix. Note that 9 acts as a filter that removes all events before

the direct wave, but not the direct wave. With the help of eqs (19),

(25) and (28), we obtain in this way

g− = 9Rf+
1d + 9Rf+

1m . (34)

Similarly, we apply 9 to both sides of the eq. (18) to find for the

time-reversed downgoing Green’s function:

g+⋆ = f+
1d − 9R⋆f−

1 , (35)

where we used eqs (20), (25) and (27). In eqs (34) and (35), we

have deliberately separated the contributions of the initial focusing

functions f+
1d from the contributions of its coda, since we will track

these contributions individually in the examples that follow.

By substitution of eqs (32) and (33) into eqs (34) and (35), it

follows that the retrieved Green’s functions can also be expressed

in terms of a single (but complicated) filter acting on the initial

focusing function. In this way, we come up with the following

expressions for the Kth order estimate of the Green’s functions

(where we also used f+
1 = f+

1d + f+
1m):

g−(K ) =

[

9R

K
∑

k=0

(2R⋆2R)k

]

f+
1d , (36)

and

g+⋆(K ) =

[

I − 9R⋆2R

K−1
∑

k=0

(2R⋆2R)k

]

f+
1d , (37)

for K > 0. For K = 0, we define g−(0) = 9Rf+
1d and g+⋆(0) = f+

1d .

Note that g−(0) is the upgoing wavefield that is retrieved by standard

inverse wavefield extrapolation, while g+∗(0) is the wavefield that is

used to initiate the iterative scheme. It has been shown that all events

in the Green’s functions can be retrieved with correct amplitudes

for K → ∞, given that the initial focusing function obeys eq. (24)

(Broggini et al. 2014b; Slob et al. 2014; Wapenaar et al. 2014a).

In practice, only a few iterations are generally sufficient to predict

the dominant internal multiples in the wavefield with fairly accurate

amplitudes, as we will demonstrate in the synthetic examples that

follow.
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798 J. van der Neut, I. Vasconcelos and K. Wapenaar

Figure 2. (a) Layered model with constant velocity (2.5 km s−1) and densities of 1000 kg m−3 (white) and 2000 kg m−3 (grey). The acquisition level is at 0 km

and the focusing level at 2 km depth. Indicated are the one-way traveltimes at normal incidence between the different interfaces, including the acquisition and

focusing levels. (b) Reflection response with a source at x = 0 km at the acquisition level. Various events are labelled.

Figure 3. (a) Downgoing Green’s function. (b) Upgoing Green’s function. Both gathers are common receiver gathers that have been obtained by finite difference

modelling and wavefield decomposition. Sources are located at the acquisition level and a single receiver is deployed at x = 0 km at the focusing level. The red

curves define the muting times for matrix 2.

4 L AY E R E D M E D I U M E X A M P L E

In this section, we compute synthetic seismic data in a layered

medium. To understand the construction of focusing functions when

the Marchenko equations are iteratively substituted, we evaluate the

result of each iteration individually. Then, we demonstrate how

the desired Green’s functions are retrieved. Finally, we discuss the

existence of stationary points and their locations.

4.1 The model

In Fig. 2(a), we show a simple model with constant velocity of

2.5 km s−1 and density contrasts at 0.75, 1.5 and 2.375 km. The ac-

quisition level and focusing level are chosen at 0 and 2 km depth,

respectively. The model has been designed such that a wave at nor-

mal incidence takes 0.3s to reach the first interface, another 0.3s

to reach the second interface, another 0.2s to arrive at the focusing

level and 0.15s more to get to the deepest interface. These travel-

times have been indicated in the figure for convenience. In Fig. 2(b),

we show the reflection response of a single source at the acquisition

level. We have identified various events with labels A–G. Our aim

is to retrieve the downgoing and upgoing Green’s function with

sources at the surface and a receiver at the focusing level. In Fig. 3,

we show these Green’s functions for reference. To obtain these

Green’s functions, we modelled the responses from every point at

the acquisition surface to a virtual array in the subsurface and we

applied wavefield decomposition in the frequency–wavenumber do-

main (Wapenaar et al. 2014b). Once more, various events have been

identified with labels H–O. Finally, we have drawn a red curve just

above the direct wave and another curve that is mirrored in time.

The window matrix 2 is designed such that all data outside the two

curves are muted, while preserving the data in between the curves.

4.2 Step 1: initiating the upgoing wavefields

The iterative scheme is initiated with the initial focusing function

f+
1d , which is obtained by time-reversal of the direct wave. This direct

wave is indicated as event H in Fig. 3(a). In this stylized example,

we isolate this event with a time gate. In practical applications, the

direct wave can also be computed by finite-difference modelling in

a smooth background model. In the first iteration, we want to update

f−
1 with eq. (29), using the initial estimate f+

1m = 0. To facilitate this,

the initial focusing function is propagated forward in time with the

reflection response to compute Rf+
1d , as it appears in the right-hand

side of eq. (29). Since the initial focusing function is acausal and

the reflection response is causal, this operation can be interpreted

as a crosscorrelation process. It should be well understood that this

is a multidimensional crosscorrelation, since it involves the evalu-

ation of an integral over the acquisition surface (like the integral in

eq. 8). This initial step of the scheme is similar to inverse wavefield

extrapolation, since it essentially redatums the reflection data at the

receiver side (Berryhill 1984). Following similar reasoning as is

commonly applied in seismic interferometry (Schuster 2009), each

trace in the output gather Rf+
1d can be interpreted as the stack of a

correlation gather that is obtained by crosscorrelation of each trace

in the reflection response at a fixed source point χ B with each trace

in the initial focusing function at a fixed focal point χ F . In Fig. 4(a),

we show the correlation gather with χ B and χ F both at x = 0 km.
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The coupled Marchenko equations 799

Figure 4. (a) Correlation gather of Rf+
1d with χ B and χ F both at x = 0 km. (b) Gather of Rf+

1d with χ F at x = 0 km. The traces at the dashed green and black

lines are constructed by stacking the gathers in panel (a) and Fig. 13(a), respectively. The red curves define the muting times for matrix 2.

Figure 5. Illustrations of the retrieval of events P, Q and R. In each case, the time-reversed (indicated by superscript ⋆) event H⋆ is convolved with an event (A,

B or C) in the reflection response. Traveltimes along red ray paths are positive, whereas traveltimes along green ray paths are negative. Hence, the traveltimes

of events P, Q and R can be found by subtracting the traveltimes along the green ray paths from the traveltimes along the red ray paths (the numbers represent

traveltimes at normal incidence). The dashed lines represent the parts of the ray paths that overlay and are subtracted.

The stacked gather Rf+
1d is shown in Fig. 4(b). The dashed green

line indicates the trace that is obtained by stacking the correlation

gather in Fig. 4(a). From eq. (16), we can learn that the constructed

gather Rf+
1d can be interpreted as an initial estimate of the superpo-

sition of the upgoing focusing function f−
1 and the upgoing Green’s

function g−. From eqs (19) and (28), we note that the estimate of

g− should be located outside the red curves (indicating where 2 is

applied), whereas the estimate of f−
1 should be located in between

these curves. In between the curves, we find two events that we

label as P and Q. The origin of these events is explained in the first

two panels of Fig. 5. The traveltimes of these events are found by

subtracting the traveltimes along the green ray paths from the trav-

eltimes along the red ray paths in the schematics. The traveltimes at

normal incidence are indicated in the figure. We refer to these events

as virtual events, using the terminology of Ikelle (2006), who also

observed these artefacts of inverse wavefield extrapolation and rea-

soned how they may be used to predict internal multiples. However,

our approach is different from that of Ikelle (2006), in the sense

that we base our observations on the coupled Marchenko equations,

where we do not have to identify these virtual events in practice,

since they are separated automatically from the Green’s functions

by the actions of 2 at each iteration. There are also virtual events

outside the red curves in Fig. 4. A clear example is event R, whose

origin is explained in the lowest panel of Fig. 5. This virtual event,
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800 J. van der Neut, I. Vasconcelos and K. Wapenaar

Figure 6. Illustrations of the retrieval of events M, N and O. In each case, the time-reversed event H⋆ is convolved with an event (D, E or F) in the reflection

response. Note that M, N and O are all upgoing reflections with positive traveltimes.

stemming from the internal multiple C in the reflection data, appears

after the direct wave and therefore could be mistaken for a deeper

primary reflection. Hence, this type of event is prone to produce

artefacts in seismic imaging (Malcolm et al. 2007), where inverse

extrapolators like f+
1d are generally used to reconstruct wavefields

in the subsurface. Apart from the virtual events, we find the phys-

ical reflections of g− outside the red curves. These are the events

M, N and O that we also indicated in Fig. 3(b). Their retrieval is

illustrated by the schematics in Fig. 6. Note that in the initial step of

the iterative scheme, all upgoing primaries and internal multiples of

the upgoing Green’s function are retrieved. However, we also find

virtual events. Later, we will see how the virtual events in between

the red curves are utilized to eliminate the virtual events outside

the curves, allowing us to retrieve g− without artefacts. Moreover,

we will see how the polarity- and time-reversed downgoing Green’s

function −g+⋆ is constructed.

4.3 Step 2: updating the downgoing wavefields

In the second step of the iterative scheme, the initial estimate of

f−
1 that follows from eq. (29) (containing only the events P and

Q) is propagated backward in time with the reflection response,

following eq. (30). A correlation gather and a stacked gather for

this operation are shown in Fig. 7. Once more, we have drawn

the red curves that define the muting times for window matrix 2.

The gather in Fig. 7(b) can be interpreted as an initial estimate of

the sum of the two terms on the left-hand side of eq. (18). The

time- and polarity-reversed downgoing Green’s function −g+⋆ is

located outside the red curves, as is the initial focusing function

f+
1d . The coda of the focusing function f+

1m is situated in between the

curves. Note from Fig. 7 that we find only one event S in between

the curves, whose origin is explained in the upper panel of Fig. 8.

This event is a vital ingredient for removing the artefacts that were

observed in the upgoing Green’s function (e.g. event R), as we will

see later. Outside the curves, we find updates of event H⋆ (where

superscript ⋆ denotes that it is time-reversed), which is the time-

reversed direct wave that initiated the scheme. Explanations are

given in the lowest two panels of Fig. 8. These updates are important

to retrieve the exact amplitude of the Green’s function. However, it

should be noted that exact amplitudes can only be retrieved when the

iterative scheme is initiated with the inverse of the direct wavefield

in the true medium (Wapenaar et al. 2014a). In practice, the initial

focusing function is generally computed in a smooth background

model. As a consequence, the retrieved Green’s functions are scaled

versions of the exact Green’s functions. We also find events I⋆, J⋆,

K⋆ and L⋆ in Fig. 7. Their origins are explained in Fig. 9 (the

schematic for event K⋆ is omitted, but its explanation is similar to

the others). Note that these are all time-reversed internal multiples

of the downgoing wavefield that can also be found in Fig. 3(a). The

polarity of these events is reversed compared to that in Fig. 3(a), as

we expect from the minus sign in the first term of eq. (18). Note that

all major downgoing internal multiples are already visible in this

first estimate of −g+⋆, with relatively accurate amplitudes. These

events are constructed by crosscorrelating two primary reflections

and the direct wavefield. This mechanism is closely related to that of

various other schemes that predict internal multiples at the surface

by crosscorrelation of three primary reflections (Weglein et al. 1997;

Jakubowicz 1998; Ten Kroode 2002; Ikelle 2006). This analogy has

 b
y
 g

u
est o

n
 S

ep
tem

b
er 9

, 2
0
1
5

h
ttp

://g
ji.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



The coupled Marchenko equations 801

Figure 7. (a) Correlation gather of R⋆f−
1 with χ B and χ F both at x = 0 km. (b) Gather of R⋆f−

1 with χ F at x = 0 km. The traces at the dashed green and black

lines are constructed by stacking the gathers in panel (a) and Fig. 13(b), respectively. The red curves define the muting times for matrix 2.

Figure 8. Illustrations of the retrieval of events S and H⋆. In each case, an event of f−
1 (Q or P) is convolved with a time-reversed event (A⋆ or B⋆) in the

reflection response.

also been mentioned by Sheiman (private communication, 2014).

During higher-order iterations, the amplitudes of the events are

updated, as illustrated by Wapenaar et al. (2014a), Broggini et al.

(2014b) and Slob et al. (2014).

4.4 Step 3: updating the upgoing wavefields

To facilitate the third step of the iterative scheme, an estimate of f+
1m

is obtained by muting all information outside the red curves in the

retrieved gather of R⋆f−
1 (see eq. 30). This estimate is propagated

forward in time with the reflection response, yielding Rf+
1m . When

added to the result of Rf+
1d , we should find a new estimate of f−

1

in between the red curves and a new estimate of g− outside these

curves, as can be learned from eq. (16). In Fig. 10 (showing a

correlation gather and a stacked gather of Rf+
1m), we observe a single

event in between the curves. From the schematic in the upper panel

of Fig. 11, we can learn that this event has similar kinematics as

event Q that appeared in the previous figures (e.g. in Fig. 5). Hence,

the amplitude of this event is updated. Outside the red curves, we

find various other events. First, we note event R that also appeared

in Fig. 5. Note that this event is not part of the upgoing Green’s

function and therefore should be removed from the initial estimate

of g− that we found in the first iteration. However, since the polarity

of event R is reversed in Rf+
1m with respect to Rf+

1d (compare Figs 10b

and 4b), this artefact is indeed suppressed when both terms are added

together.
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802 J. van der Neut, I. Vasconcelos and K. Wapenaar

Figure 9. Illustrations of the retrieval of events I⋆, J⋆ and L⋆. In each case, an event of f−
1 (P or Q) is convolved with a time-reversed event (B⋆ or D⋆) in the

reflection response. Note that I⋆, J⋆ and L⋆ are all time-reversed downgoing reflections with negative traveltimes.

Figure 10. (a) Correlation gather of Rf+
1m with χ B and χ F both at x = 0 km. (b) Gather of Rf+

1m with χ F at x = 0 km. The trace at the dashed green line is

constructed by stacking the gather in panel (a). The red curves define the muting times for matrix 2.

4.5 Green’s function estimates

After three iterations of the scheme, we can already retrieve a reason-

able estimate of the Green’s function. To illustrate this, we compute

the upgoing and downgoing Green’s functions with eqs (34) and

(35), using the obtained (first-order) estimates of f−
1 and f+

1m . The

retrieved gathers are shown in Fig. 12. Note that these results are

already quite accurate with respect to the directly modelled Green’s

functions that we showed in Fig. 3. We can also confirm that event

R that appeared in Fig. 4 has been significantly suppressed by in-

cluding the update from Rf+
1m , although some remnants remain. On

a similar note, event T (explained by the schematic in the lowest

panel of Fig. 11) eliminates an artefact that appears after the first

step of the iterative scheme. However, this event cannot be identi-

fied in Fig. 4, since its arrival time coincides with that of event N.

The result can be improved by including higher-order iterations

(Wapenaar et al. 2014a). Alternatively, the updates can be summed

adaptively, as illustrated by Van der Neut et al. (2015a).

4.6 Stationary points

Whether a particular event can be retrieved at a particular offset

depends on the acquisition design. As in seismic interferometry,

particular stationary points exist that should be sampled (Schuster

2009). In Fig. 4(a), we showed the correlation gather for a trace

between surface location χ B and focal point χ F , both chosen at

x = 0 km. Since there is no (horizontal) offset between χ B and χ F

in this case and the layers are flat, all stationary points are found

at x = 0 km. However, when χ B is chosen at an offset from χ F ,
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The coupled Marchenko equations 803

Figure 11. Illustrations of the retrieval of events Q, R and T. In each case, event S is convolved with an event (A, B or D) in the reflection response.

Figure 12. (a) Estimate of the downgoing Green’s function obtained by eq. (35), using the first-order estimate of f−
1 . (b) Estimate of the upgoing Green’s

function obtained by eq. (34), using the first-order estimate of f+
1m .

the situation is different. As an example, we take χ B at x = 0.2 km

and χ F at x = 0 km, yielding the correlation gather in Fig. 13(a). It

is clear that the stationary points are shifted. The stationary point

of event M (a primary reflection), for example, is found at x ≈ =

−0.145 km. This location can easily be confirmed, since the ray

paths of the reflected event D and the time-reversed direct wave H⋆

that construct event M (see the upper panel in Fig. 6) overlay each

other at this location. Similar reasoning can be applied to find the

stationary points of the virtual events P and Q. In Fig. 14, we show

how the stationary points of these events are found at x = 0.8 km and

x = −0.4 km, confirming the observations in Fig. 13(a). Note from

the schematics that the rays with positive and negative traveltimes

bend in opposite directions. This phenomenon has been referred to

by Ikelle & Gangi (2007) as negative ray bending. The construction

is relatively simple in this medium, since the layers are flat and

the velocity is constant. However, a similar analysis could also

be done in media with velocity variations and curved interfaces.

The stationary points of other events can also be constructed. In

Fig. 13(b), for instance, we show the correlation gather for the

second step of the iterative scheme, R⋆f−
1 with χ B at x = 0.2 km

and χ F at x = 0 km. The stationary points of events S and I⋆ are

located at x = −0.4 km and x = 0.04 km, respectively. In Fig. 15,

we also confirm the locations of these stationary points graphically.

5 P O I N T S C AT T E R E R S E X A M P L E

It should be well understood that exact Green’s function retrieval

by iterative substitution of the coupled Marchenko equations is

only possible if the assumptions that are made in the underlying
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804 J. van der Neut, I. Vasconcelos and K. Wapenaar

Figure 13. (a) Correlation gather of Rf+
1d with χ B at x = 0.2 km and χ F at x = 0 km. The blue dashed lines indicate the stationary points of events Q (at

x = −0.4 km), M (at x ≈ −0.145 km) and P (at x = 0.8 km). (b) Correlation gather of R⋆f−
1 with χ B at x = 0.2 km and χ F at x = 0 km. The blue dashed lines

indicate the stationary points of events S (at x = −0.4 km) and I⋆ (at x = 0.04 km).

Figure 14. Illustration of the construction of events (a) P (from events A and H⋆ as shown in the upper panel of Fig. 5) and (b) Q (from events B and H⋆ as

shown in the middle panel of Fig. 5) with χ B (cyan dot) at x = 0.2 km and χ F (magenta dot) at x = 0 km. From these illustrations, it is confirmed that the

stationary points χ S (blue dots) of events P and Q are located at x = 0.8 km and x = −0.4 km, respectively. At these stationary points, the red and green ray

paths overlay and cancel.

Figure 15. Illustration of the construction of events (a) S (from events A⋆ and Q as shown in the upper panel of Fig. 8) and (b) I⋆ (from events B⋆ and P as

shown in the upper panel of Fig. 9) with χ B (cyan dot) at x = 0.2 km and χ F (magenta dot) at x = 0 km. From these illustrations, it is confirmed that the

stationary points χ S (blue dots) of events S and I⋆ are located at x = −0.4 km and x = 0.04 km, respectively. At these stationary points, the red and green ray

paths overlay and cancel.

derivation are fulfilled. The most important assumption is that the

desired Green’s function should consist of a direct wave with a

distinct arrival time that does not interfere with its coda. From

a theoretical point of view, any forward-scattered event (which

we define as scattering in which the vertical propagation direc-

tion is not altered) should be included in the initial estimate of

the focusing function (Wapenaar et al. 2014b), but even then the

consequences of having more than a single event in f+
1d need fur-

ther investigation. In this section, we analyse the performance

of the iterative scheme in a medium with point scatterers. Even

though we do not include forward scattering in the initial focusing

function, we show that the scheme still works reasonably well in

such a medium, which we explain in terms of the interferomet-

ric interpretation that we have developed in the previous section.

Once again, each step of the scheme will be evaluated individu-

ally. In the end, we will expose some of the consequences of not

obeying the assumptions that undergird the coupled Marchenko

equations.
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The coupled Marchenko equations 805

Figure 16. (a) Synthetic 2-D model with three point scatterers (located at xX, xY and xZ) in a homogeneous background with velocity c = 2 km s−1 and density

ρ = 1000 kg m−3. The black solid line denotes the acquisition surface and the magenta dot is the focal point xF. We have also indicated the location of various

stationary points (blue dots). (b) Reflection response with a source at x = 0 km at the acquisition level. Various events are labelled.

Figure 17. (a) Downgoing Green’s function. (b) Upgoing Green’s function. Both gathers are common receiver gathers that have been obtained by direct

modelling and wavefield decomposition. Sources are located at the acquisition level and a single receiver is deployed at x = 0 km at the focusing level. The red

curves define the muting times for matrix 2.

5.1 The model

In Fig. 16(a), we show a 2-D synthetic model with three point scat-

terers at locations xX, xY and xZ. These scatterers are embedded

in a homogeneous background with a velocity of 2 km s−1. At the

acquisition surface, a fixed grid with 801 sources and 801 receivers

is deployed with source and receiver spacing 1x = 5m. The fo-

cal point xF is chosen at 1 km depth. We have indicated various

stationary points that will show up in the analysis to come: xXY,

xXF, xXZ, xYF, xYZ and xFZ. These stationary points are found by

intersecting the acquisition surface with lines that connect in pairs

the individual locations xX, xY, xZ and xF, where we used the fact

that the propagation velocity is constant. In Fig. 16(b), we show a

shot record where the source is located at x = 0 m. The desired

downgoing and upgoing Green’s functions are shown in Fig. 17,

for reference. These responses have been obtained with a modelling

code of Galetti et al. (2013) and wavefield decomposition (Wape-

naar & Grimbergen 1996). The red curves define the muting times

for matrix 2.

5.2 Step 1: initiating the upgoing wavefields

The direct wave from the acquisition surface to the focal point is

computed in a homogeneous background medium without point

scatterers. The initial focusing function is obtained by time-

reversing this direct wave. The iterative scheme is initiated by prop-

agating this initial focusing function forward in time with the reflec-

tion response, following eq. (29) (with the initial estimate f+
1m = 0).

In Fig. 18(b), we show the result of this operation, Rf+
1d , where each

trace is obtained by stacking a correlation gather. As an example,

one such correlation gather is shown in Fig. 18(a). The red curves

indicate the muting times that are needed for matrix 2. Several

events have been labelled. In between the red curves, we find events

P, Q and U. In Fig. 19, we illustrate how events P and U are con-

structed (a similar schematic could be made for event Q). From

these schematics, we can learn that the stationary points to retrieve

these events are located at xXF (for event P) and xYF (for event U). It

can be confirmed in the correlation gathers in Fig. 18(a) that events

P and U are indeed stationary at these locations. Since these events

are in between the red curves, they represent our initial estimate of

f−
1 (see eq. 29). Outside the curves, we find events M, N, R and T.

As an illustration, we have visualized the construction of events M

and R in Fig. 19. The stationary points for these events are located at

xFZ (for event M) and xYF (for event R). Once more, these locations

can be confirmed in the correlation gather in Fig. 18(a). Since these

events are located outside the red curves, they represent our initial

estimate of g− (see eq. 16). By comparing Figs 18(b) and 17(b), it

is indeed clear that events M and N are physical upgoing reflections

that have been retrieved correctly. We also observe several unla-

belled events that branch off from event M. These waveforms have

forward-scattered at xX and xY before scattering at xZ. Deeper in the

gather, we find two internal multiples. Special attention should be
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806 J. van der Neut, I. Vasconcelos and K. Wapenaar

Figure 18. (a) Correlation gather of Rf+
1d with xB and xF both at x = 0 km. (b) Gather of Rf+

1d with xF at x = 0 km. The trace at the dashed green line is

constructed by stacking the gather in panel (a). The dashed blue lines indicate the stationary phase points xXF, xYF and xFZ that can also be found in Fig. 16(a).

The red curves define the muting times for matrix 2.

Figure 19. Illustrations of the retrieval of events P, U, M and R. In each case, the time-reversed (indicated by superscript ⋆) event H⋆ is convolved with an

event (A, D, C or E) in the reflection response. Events P and U are part of the focusing function. Event M is a physical upgoing reflection, while event R is

an artefact. Traveltimes along red ray paths are positive, whereas traveltimes along green ray paths are negative. The dashed lines represent the parts of the

ray paths that overlay and are subtracted. The thick red lines (in events R and E) indicate that the path has been traversed twice. The dark blue dots indicate

stationary points at the surface.

paid to events R and T. These are artefacts that should be suppressed

during higher-order iterations, as we will show in the following.

5.3 Step 2: updating the downgoing wavefields

The window matrix 2 is designed such that all data outside the red

curves in Fig. 18(b) are muted. The resulting estimate, f−
1 = 2Rf+

1d

(containing events P, Q and U, but not R, M, T and N), is prop-

agated backward in time with the reflection response, following

eq. (30). In Fig. 20, we show a correlation gather and the retrieved

gather of this operation, R⋆f−
1 . In between the red curves, we find

only event S, whose origin in explained in Fig. 21. The stationary

point of this event is located at xXY. In the correlation gather in

Fig. 20(a), we find that event S is indeed stationary at this location.

Since S is the only event that is located in between the red curves,

it represents our estimate of f+
1m . Outside the red curves, several

events are situated, of which events K⋆, I⋆ and J⋆ have been labelled.

Their origin is explained in Fig. 21. From these schematics, we
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The coupled Marchenko equations 807

Figure 20. (a) Correlation gather of R⋆f−
1 with xB and xF both at x = 0 km. (b) Gather of R⋆f−

1 with xF at x = 0 km. The trace at the dashed green line is

constructed by stacking the gather in panel (a). The dashed blue lines indicate the stationary points xXY and xYZ that can also be found in Fig. 16(a). The red

curves define the muting times for matrix 2.

Figure 21. Illustrations of the retrieval of events S, K⋆, I⋆ and J⋆. In each case, an event (Q or P) of f−
1 is convolved with a time-reversed event (A⋆, B⋆ or C⋆)

in the reflection response. Event S is part of the focusing function. Events K⋆, I⋆ and J⋆ are physical (time-reversed) downgoing reflections. The dark blue dots

indicate stationary points at the surface. The yellow dots are arbitrary, since all locations at the surface are stationary.

learn that the stationary points of events I⋆ and J⋆ are found at xXY

and xYZ, respectively. From the correlation gather in Fig. 20(a), it

follows that these events are indeed stationary at these locations.

For event K⋆, however, every point is stationary, as is clear from

the schematic in Fig. 21. Hence, event K⋆ is flat in the correlation

gather, as can be observed in Fig. 20(a). Consequently, we require

contributions along the entire surface to retrieve the exact ampli-

tude of this event, posing limitations in practical cases with a finite

recording aperture. This effect is also observed in Green’s function

retrieval by seismic interferometry (Wapenaar et al. 2010). It ac-

counts for nonlinear scattering effects at a single point scatterer. If

we compare Fig. 20(b) with Fig. 17(a), we observe that all events

K⋆, I⋆ and J⋆ are constituents of the downgoing Green’s function,

retrieved with negative polarity and reversed in time. This confirms

that we have retrieved an estimate of −g+⋆, as we expect from

eq. (18).

5.4 Step 3: updating the upgoing wavefields

When the window matrix 2 is applied to the retrieved gather R⋆f−
1 ,

all data, except for event S, are muted, resulting in an estimate of

f+
1m (see eq. 30). To interpret this estimate, we propagate it forward
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808 J. van der Neut, I. Vasconcelos and K. Wapenaar

Figure 22. (a) Correlation gather of Rf+
1m with xB and xF both at x = 0 km. (b) Gather of Rf+

1m with xF at x = 0 km. The trace at the dashed green line is

constructed by stacking the gather in panel (a). The dashed blue lines indicate the stationary phase points xXY and xYZ that can also be found in Fig. 16(a). The

red curves define the muting times for matrix 2.

Figure 23. Illustrations of the retrieval of events U, R and T. In each case, event S of f+
1m is convolved with an event (A, B or C) in the reflection response.

The lowest panels illustrate that event T also emerges in the first step of the iterative scheme, when event H⋆ of f+
1d is convolved with event F in the reflection

response. The dark blue dots indicate stationary points at the surface. The yellow dots are arbitrary, since all locations at the surface are stationary.

in time with the reflection response, as in Rf+
1m . The result of this

operation is shown in Fig. 22. Once again, the red curves indicate the

muting times that are needed for matrix 2. In between the curves, we

find event U, whose origin is explained in the first panel of Fig. 23.

Remember that a similar event U emerged in the first iteration, when

Rf+
1d was evaluated (see Figs 18b and 19). Hence, the amplitude

of this event is updated when f+
1m is added to the initial focusing

function. Once more, it is observed that every location at the surface

is stationary for the retrieval of event U. As a consequence, event

U is flat in the correlation gather, as can be seen in Fig. 22(a).

Hence, retrieving the exact amplitude of this event requires a very

large acquisition array at the surface. Outside the red curves, we

find events R and T. Their construction is explained in the second

and third panel of Fig. 23. Once more, we point out the necessity to

sample stationary points xXY (for event R) and xXZ (for event T) to

enable retrieval. These locations can be confirmed in the correlation

gather in Fig. 22(a). Remember that event R was also retrieved in

the first iteration, when Rf+
1d was evaluated (see Figs 18(b) and 19).

However, as can be seen by comparing Figs 18(b) and 22(b), the

predicted update has its polarity reversed. Hence, this artefact is

suppressed when Rf+
1d and Rf+

1m are added. A similar reasoning

holds for event T, which appears in the first iteration, as explained
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The coupled Marchenko equations 809

Figure 24. (a) Estimate of the downgoing Green’s function obtained by eq. (35), using the first-order estimate of f−
1 . (b) Estimate of the upgoing Green’s

function obtained by eq. (34), using the first-order estimate of f+
1m .

Figure 25. (a) Synthetic 2-D model with two point scatterers (located at xX and xY) in a homogeneous background with velocity c = 2 km s−1 and density

ρ = 1000 kg m−3. The acquisition array is indicated by the black solid line, covering [−1 km, 1 km]. We have also indicated the location of the focal point xF

and stationary points xXF and xYF. Note that xYF is covered by the acquisition array but xXF is not. (b) Common receiver gather of the desired Green’s function,

obtained by direct modelling. Sources are located at the acquisition level and a single receiver is deployed at the focal point. Events K and J are indicated. The

red curves define the muting times for matrix 2.

by the fourth panel of Fig. 23, and is updated by an event that we

explain in the third panel of Fig. 23.

5.5 Green’s function estimates

Finally, we can retrieve the upgoing and downgoing Green’s func-

tions with eqs (34) and (35). The results are shown in Fig. 24, where

we used the retrieved (first-order) estimates of f−
1 and f+

1m . Com-

pared to the Green’s functions in Fig. 17 that are obtained by direct

modelling, we observe that all events such as H, K, I, J, M and N

have been retrieved. Artefacts R and T are still visible in Fig. 24(b),

but they are significantly weakened compared to Fig. 18(b) (which

would be the retrieved upgoing field after a single iteration).

5.6 Limitations

As also mentioned by Wapenaar et al. (2014b), the causality con-

ditions (eqs 27 and 28) that were used in the derivation of the cou-

pled Marchenko equations are sufficient in media with moderately

curved interfaces, but they are not generally true in arbitrary hetero-

geneous media. In fact, these conditions can easily be broken, even

in relatively simple media with a few point scatterers. To illustrate

this, we repeat the previous experiment with an alternative distribu-

tion of scatterers, see Fig. 25(a). The acquisition array contains 401

sources and 401 receivers (with source and receiver spacing 1x = 5

m) on the interval [−1 km, 1 km]. Note that stationary point xYF

is covered by the acquisition array, but xXF is not. The large offset

(1 km) between the point scatterers poses a complication, as will be

illustrated. In Fig. 25(b), we show the wavefield when sources are

excited at the surface and a receiver is positioned at the focal point.

Our goal is to retrieve this wavefield by iterative substitution of the

coupled Marchenko equations.

In Fig. 26(a), we show the result of the first step Rf+
1d , using

data from this model. Events P and Q have been labelled. Their

construction is explained in the upper two panels of Fig 27. Since

both scatterers are located at the same depth (0.5 km), we expect

these events to be similar in terms of their amplitude and move-out.

However, event P is significantly weaker and appears to be slightly

mispositioned with respect to event Q. This mismatch can easily be

explained from the fact that stationary point xXF, which is needed for

the construction of event P, has not been sampled, as can also be seen

in Fig. 27. Because of the finite acquisition array, we have truncated

the integral that is evaluated by Rf+
1d and what has been labelled

as event P in Fig. 26(a) is merely an artefact from this truncation.

Similar artefacts are also known in seismic interferometry and have

been well described in the literature (Mehta et al. 2008). To reduce

such artefacts, the acquisition array can be tapered, but event P will

be lost. On the contrary, event Q can still be retrieved well, since

xYF is covered by the acquisition array.
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810 J. van der Neut, I. Vasconcelos and K. Wapenaar

Figure 26. (a) Gather of Rf+
1d . Events P, Q and U are indicated. (b) Retrieved Green’s function after two iterations (the upgoing and downgoing parts have

been added together). Events U and K are indicated. The red curves define the muting times for matrix 2.

Figure 27. Illustrations of the retrieval of events P, Q and U during step 1. In each case, the time-reversed (indicated by superscript ⋆) event H⋆ is convolved

with an event in the reflection response. In the lowest panels, we illustrate how the time-reversed downgoing event J⋆ would be constructed during step 2. Since

the stationary point xXF is not covered by the acquisition array (which is indicated by the solid black line) and event P is poorly retrieved during step 1, this

construction cannot be realized.

We also focus our attention to event U that clearly intersects

with the lower red curve in Fig. 26(a), representing the muting time

for matrix 2 that should be applied to this gather to retrieve the

initial estimate of f−
1 . Because of this intersection, the tail of event

U is removed by the window matrix, even though it is part of the

upgoing focusing function. Besides from not being able to recover

the complete focusing function, the tail of U will create an artefact in

the estimate of g−, since it maps outside the red curves. This artefact

will not be removed during higher-order iterations. To understand

this problem, we study the way in which event U is constructed,

which is illustrated in Fig. 27. This construction involves subtracting

the traveltime from xY to the focal point from the traveltime from

the surface to xY via xX. Since xX has a significant lateral separation

from xY, the traveltime of event U (0.75 s at x = 0 km) exceeds

the traveltime of the direct wave (0.5 s at x = 0 km). Hence, event

U maps partly below the red curve at x = 0 km (and various other

surface locations) in Fig. 26(a), thereby violating eq. (28). Even

though the consequence of this type of imperfection needs further

investigation, it is clear that the exact Green’s function cannot be

retrieved by the current iterative scheme in this case.

To illustrate these limitations, we have retrieved the Green’s func-

tion (after evaluation of steps 1 and 2). The total Green’s function
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The coupled Marchenko equations 811

is constructed by adding its downgoing and upgoing parts together,

see Fig. 26(b). Comparing this result with Fig. 25(b), we observe

that various events have been retrieved well. However, we also ob-

serve the truncated tail of event U, which was part of the retrieved

upgoing Green’s function. Event J, which appears in Fig. 25(b), is

absent in Fig. 26(b). This can be understood from Fig. 27, where

we show that event P is required for the retrieval of this event and

that stationary point xXF should be covered by the acquisition array.

Since event P is poorly reconstructed and xXF is missed again, event

J is not (or barely) visible in the result. We also point at event K in

Fig 26(b), being the wavefield that forward-scattered at xX through

a similar mechanism as explained in Fig. 21 (for a different model).

Since every point at the surface is stationary for this operation and

the acquisition array has been truncated, the amplitude of event K is

relatively small. As mentioned earlier, the forward-scattered wave-

field (including event K) is a constituent of the direct wavefield

under our current definition. Hence, it should have been included

in the computation of the initial focusing function, which has not

been done in this example. The exact consequences of this violation

require further research.

6 D I S C U S S I O N

In this paper, we have demonstrated how individual events in the

upgoing and downgoing Green’s functions are retrieved by iterative

substitution of the coupled Marchenko equations. This demonstra-

tion provides us a better understanding of this methodology and

its limitations. As in seismic interferometry (Schuster 2009), the

evaluated integrals contain stationary points that should be sampled

by the acquisition array at the surface in order to retrieve particular

events of the focusing functions and Green’s functions. Successful

retrieval is not always guaranteed. As an example, we point at the

retrieval of event S, as illustrated in the upper panel of Fig. 21.

From this schematic, it is clear that stationary point xXY (which

we defined in Fig. 16a) should be sampled. If xX and xY would be

located at the same depth level, this stationary point would map

at infinity, obstructing the accurate retrieval of event S under any

practical condition. In other cases, such as for the construction of

event U in the upper panel of Fig. 23, every point at the surface

is stationary. Hence, exact amplitudes of this event can never be

retrieved with a finite recording aperture. Also seismic attenuation,

which is not accounted for in Marchenko redatuming, is likely to

cause mismatch in the updates of the focusing functions and Green’s

functions, when the iterative scheme is applied in practice.

To overcome some of these practical limitations, we may develop

an adaptive scheme, where we enforce retrieved events to match.

Here, it is important to realize that the upgoing and downgoing

constituents of the Green’s function are retrieved in a fundamen-

tally different way. For the downgoing Green’s function, amplitude

updates of physical events are generated at every iteration, as illus-

trated by Broggini et al. (2014b). For the upgoing Green’s function,

however, all physical events are retrieved with the correct ampli-

tude at the first iteration, whereas later iterations have no other role

than to eliminate artefacts. This statement can be validated by the

following arguments. To retrieve a physical upgoing event X from

event Y in the reflection response, event Y should be propagated

backward in time by an event Z in the focusing function. To facili-

tate this, event Z should have a traveltime that is less or equal to the

traveltime of the time-reversed direct wave (which is the minimum

time to traverse the overburden). Since eq. (27) states that all events

in f+
1m appear after the time-reversed direct wave, they can never

contribute to the retrieval of any physical upgoing event. Therefore,

all physical upgoing events are retrieved by the actions of R on

the initial focusing function, which happens at the first iteration.

Since the only role of the later iterations is the elimination of arte-

facts, the individual terms in eq. (36) can be summed adaptively,

while posing a minimum-energy criterion on the upgoing Green’s

function g−(K). In free-surface multiple elimination, similar adaptive

filters have proven to be of great help in matching predicted events

(multiples) to field observations (Verschuur & Berkhout 1997). Ap-

plications of adaptive filters for retrieval of the upgoing wavefield

have been presented by Van der Neut et al. (2015a), using synthetic

data, and by Van der Neut et al. (2015b), using field data. In both

cases, artefacts of internal multiples could be adaptively subtracted

from conventional seismic images. Care should be taken, though,

since the minimum-energy criterion is not always satisfied when

different events are interfering. This is also a common problem in

free-surface multiple elimination (Van Borselen et al. 2003).

A more fundamental limitation of the current iterative scheme

is that the causality conditions that lay at its core can easily be

broken. From our observations in media with point scatterers, we

note that the apices of most events in the upgoing focusing functions

are located in between the red curves, while another part of these

events maps outside these curves. Hence, it may be worthwhile to

investigate if window matrix 2 could be replaced by an alternative

filter, potentially in a domain where the separation of the upgoing

focusing function and Green’s function is more pronounced.

Our observations have important consequences for imaging in

complex media. Depending on the recording geometry, Green’s

function retrieval can be incomplete as particular multiples will

simply not be retrieved. From our interferometric interpretation,

we can learn that to retrieve an event that arrives at focal point

xF with ray parameter p, this focal point should be visited by the

direct wavefield with this specific ray parameter. Hence, it seems

virtually impossible to image shadow zones in the subsurface with

the current iterative scheme, given that the shadow zone cannot

be imaged with primary reflections under a particular recording

geometry. However, within the aperture of the direct wavefield, we

can retrieve internal multiples. This correct handling of multiple

scattering is highly relevant to improve amplitudes and to remove

artefacts in depth imaging and inversion, see also Vasconcelos et al.

(2014b).

Another point of attention is that accurate preprocessing should

be carried out before the iterative scheme can be applied. Data

should be deghosted at the source and receiver side, free-surface

multiples should be removed, the source signature should be decon-

volved and the amplitudes should be accurately scaled. For details

on this scaling, see Wapenaar et al. (2014b) and Van der Neut et al.

(2015b). To fulfil all these requirements, we could use the output

of inversion-based methods that are sometimes applied for free-

surface multiple removal. We mention the Up/Down Deconvolution

method of Amundsen et al. (2001), its implementation for towed-

streamer data (Majdanski et al. 2011) and estimation of primaries

by sparse inversion (Van Groenestijn & Verschuur 2009; Lin &

Herrmann 2013). Unlike in the conventional surface-related mul-

tiple elimination methodology (Verschuur et al. 1992), the source

signature is deconvolved by these methods and the appropriate scal-

ing of the output reflection response (as required by our scheme)

is guaranteed. To avoid such sophisticated preprocessing, we may

also rely on an adaptive Marchenko redatuming scheme (Van der

Neut et al. 2015a), where we enforce the data to match within a

particular degree of freedom that is controlled by the adaptive filter

length.

 b
y
 g

u
est o

n
 S

ep
tem

b
er 9

, 2
0
1
5

h
ttp

://g
ji.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



812 J. van der Neut, I. Vasconcelos and K. Wapenaar

The retrieved upgoing and downgoing Green’s functions can be

used for seismic imaging with internal multiple reflections (Wape-

naar et al. 2014a). Based on the previous observations, limitations

are to be expected in cases with steeply dipping structures, unless

the relevant high ray parameters are included in the initial focus-

ing functions. However, at this point it is unclear how the scheme

will behave when the initial focusing functions contain events that

propagate close to horizontal or even upgoing arrivals (i.e. diving

waves). For these reasons, more research is required in media with

strong velocity variations, including media with triplications. It is

worth mentioning that good results have been reported by Wape-

naar et al. (2014b) on applying the iterative scheme with an initial

focusing function that includes triplications.

Especially modern nonlinear imaging methods that go beyond

the classical single-scattering assumption (also known as the Born

approximation) are likely to benefit from the retrieval of Green’s

functions through the coupled Marchenko equations. These meth-

ods often require the computation of multiply scattered wavefields,

either through multiple interactions with a model of the medium per-

turbations (Malcolm et al. 2011; Fleury 2013) or by constructing

these wavefields in a recursive manner (Berkhout 2012; Davydenko

& Verschuur 2014). Since the coupled Marchenko equations provide

a linear map between the initial focusing function in a background

model and the multiply scattered wavefields in the physical subsur-

face, they may be an attractive alternative for these computations. As

the wavefield can be estimated at any focal point independently, the

Marchenko equations seem especially interesting for target-oriented

approaches. The Marchenko equations can also be useful to obtain

a reflection response at the bottom of a seismic (sub)volume to

turn recorded data with one-sided illumination into new data with

two-sided illumination. Such an attempt could be highly relevant

for nonlinear imaging, since a lack of illumination from below is

known to limit its potential (Fleury & Vasconcelos 2012; Ravasi

et al. 2014). To obtain reflection responses from below, we could

either invert eq. (12) at a single focusing level (Wapenaar et al.

2014a) or make use of a target-enclosing redatuming scheme that

was recently presented by Van der Neut et al. (2013).

7 C O N C LU S I O N S

Inverse wavefield extrapolation can be interpreted as applying a mul-

tidimensional filter of time-reversed Green’s functions to seismic

reflection data. These time-reversed Green’s functions are typically

computed in a macro velocity model and can be interpreted as initial

focusing functions. Scattering is not accounted for by this approach.

Inverse wavefield extrapolation can also be interpreted as applying a

multidimensional filter of reflection data to an initial focusing func-

tion. This filter propagates the initial focusing function forward in

time with the reflection response. In Green’s function retrieval by it-

erative substitution of the coupled Marchenko equations, scattering

effects are taken into account by applying a more complicated filter

to the initial focusing function. This filter involves a linear combi-

nation of several successive operations that include propagating the

wavefield forward in time with the reflection response, truncating it

to impose particular causality criteria and propagating it backward

in time with the reflection response. Separate filters can be defined

for the upgoing and downgoing Green’s functions. Each operation

that involves propagation (forward or backward in time) with the

reflection response can be interpreted as a multidimensional cross-

correlation process. This process can be analysed by subtracting

traveltimes along common ray paths at the stationary points of the

underlying integrals. In this way, the retrieval of individual events

can be visualized.

From this interpretation, it follows that the downgoing and up-

going Green’s functions are retrieved in a fundamentally different

way. For the downgoing Green’s function, the amplitudes of phys-

ical events are updated at every iteration. For the upgoing Green’s

function, all physical events are retrieved with correct amplitudes at

the first iteration. Later iterations, however, are required to eliminate

artefacts. To retrieve a specific down- or upgoing event, particular

stationary points should be sampled at the surface. For some events,

every surface location is stationary. This poses limitations to what

can be retrieved and to the amplitude recovery of particular events in

case of a finite recording aperture. Moreover, to retrieve an internal

multiple at a particular subsurface location with a particular ray pa-

rameter, the direct wavefield should visit this specific location with

this specific ray parameter. Finally, it is observed that the causal-

ity criteria that undergird the Marchenko equations are not always

obeyed in complex media, which can lead to artefacts in the re-

trieved Green’s functions. Despite these limitations, the Marchenko

methodology can be highly relevant for handling multiple scattering

in depth imaging and several encouraging results of this approach

have been presented recently.
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Pablo David Garcı́a López (University of Oviedo), James Rickett,

Colin Thomson (Schlumberger Gould Research), Yi Liu (Norwe-

gian University of Science and Technology) and Matteo Ravasi

(University of Edinburgh) for fruitful discussions that contributed

to this paper.

R E F E R E N C E S

Al-Ali, M.N. & Verschuur, D.J., 2006. An integrated method for resolving

the seismic complex near-surface problem, Geophys. Prospect., 54(6),

739–750.

Amundsen, L., Ikelle, T. & Berg, L.E., 2001. Multidimensional signature

deconvolution and free-surface multiple elimination of marine multicom-

ponent ocean-bottom seismic data, Geophysics, 66(5), 1594–1604.

Bakulin, A. & Calvert, R., 2006. The virtual source method: theory and case

study, Geophysics, 71(4), SI139–SI150.

Behura, J., Wapenaar, K. & Snieder, R., 2014. Autofocus imaging: im-

age reconstruction based on inverse scattering theory, Geophysics, 79(3),

A19–A26.

Berkhout, A.J., 2012. Combining full wavefield migration and full waveform

inversion, a glance into the future of seismic imaging, Geophysics, 77(2),

S43–S50.

Berryhill, J.R., 1984. Wave-equation datuming before stack, Geophysics,

49(8), 2064–2066.

Broggini, F. & Snieder, R., 2012. Connection of scattering principles: a

visual and mathematical tour, Eur. J. Phys., 33, 593–613.

Broggini, F., Snieder, R. & Wapenaar, K., 2014a. Data-driven wave field

focusing and imaging with multidimensional deconvolution: numerical

examples from reflection data with internal multiples, Geophysics, 79(3),

WA107–WA115.

Broggini, F., Wapenaar, K., van der Neut, J. & Snieder, R., 2014b. Data-

driven Green’s function retrieval and application to imaging with multi-

dimensional deconvolution, J. geophys. Res., 119, 425–444.

 b
y
 g

u
est o

n
 S

ep
tem

b
er 9

, 2
0
1
5

h
ttp

://g
ji.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



The coupled Marchenko equations 813

Corones, J.P., Davison, M.E. & Krueger, R.J., 1983. Direct and inverse

scattering in the time domain via invariant imbedding equations, J. acoust.

Soc. Am., 74, 1535–1541.

da Costa Filho, C., Ravasi, M., Curtis, A. & Meles, G., 2014. Elastody-

namic Green’s function retrieval through single-sided Marchenko inverse

scattering, Phys. Rev. E, 90(6), doi:10.1103/PhysRevE.90.063201.

Davydenko, M. & Verschuur, D.J., 2014. Full wavefield migration in three

dimensions, in 84th Annual Meeting, SEG, Expanded Abstracts. SEG,

Tulsa, OK, pp. 3935–3940.

De Bruin, C.G.M., Wapenaar, C.P.A. & Berkhout, A.J., 1990. Angle-

dependent reflectivity by means of prestack migration, Geophysics, 55(9),

1223–1234.

Fishman, L., McCoy, J.J. & Wales, S.C., 1987. Factorization and path inte-

gration of the Helmholtz equation: numerical algorithms, J. acoust. Soc.

Am., 81, 1355–1376.

Fleury, C., 2013. Increasing illumination and sensitivity of reverse-time

migration with internal multiples, Geophys. Prospect., 61(5), 891–906.

Fleury, C. & Vasconcelos, I., 2012. Imaging condition for nonlinear

scattering-based imaging: estimate of power loss in scattering, Geo-

physics, 77(1), S1–S18.

Fokkema, J.T. & Van den Berg, P.M., 1993. Seismic Applications of Acoustic

Reciprocity, Elsevier Science Pub. Co.

Frijlink, M. & Wapenaar, K., 2010. Reciprocity theorems for one-way wave

fields in curvilinear coordinate systems, SIAM Journal on Imaging Sci-

ences, 3(3), 390–415.

Galetti, E., Halliday, D. & Curtis, A., 2013. A simple and exact acoustic

wavefield modeling code for data processing, imaging, and interferometry

applications, Geophysics, 78(6), F17–F27.

Ikelle, L.T., 2006. A construct of internal multiples from surface data

only: the concept of virtual seismic events, Geophys. J. Int., 164,

383–393.

Ikelle, L.T. & Gangi, A.F., 2007. Negative bending in seismic reflection asso-

ciated with time-advanced and time-retarded fields, Geophys. Prospect.,

55(1), 57–69.

Jakubowicz, H., 1998. Wave equation prediction and removal of interbed

multiples, in 68th EAGE Conference and Exhibition, Extended Abstracts,

pp. 1527–1530, doi:10.3997/2214-4609.201408173.

Lin, T.T.Y. & Herrmann, F.J., 2013. Robust estimation of primaries by sparse

inversion via one-norm minimization, Geophysics, 78(3), R133–R150.

Majdanski, M., Kostov, C., Kragh, E., Moore, I., Thompson, M. & Mispel,

J., 2011. Attenuation of free-surface multiples by up/down deconvolution

for marine towed-streamer data, Geophysics, 76(6), V129–V138.

Malcolm, A.E., de Hoop, M.V. & Calandra, H., 2007. Identification of image

artifacts from internal multiples, Geophysics, 72(2), SI23–SI32.

Malcolm, A.E., de Hoop, M.V. & Ursin, B., 2011. Recursive imaging with

multiply scattered waves using partial image regularization: a north sea

case study, Geophysics, 76(2), 33–42.

Mehta, K., Bakulin, A., Sheiman, J., Calvert, R. & Snieder, R., 2007. Im-

proving the virtual source method by wavefield separation, Geophysics,

72(4), V79–V86.

Mehta, K., Snieder, R., Calvert, R. & Sheiman, J., 2008. Acquisition geom-

etry requirements for generating virtual-source data, Leading Edge, 27,

620–629.
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