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SUMMARY

The matrix—vector wave equation is a compact first-order differential equation. It was origi-
nally used for the analysis of elastodynamic plane waves in laterally invariant media. It has
been extended by various authors for laterally varying media. Other authors derived a sim-
ilar formalism for other wave phenomena. This paper starts with a unified formulation of
the matrix—vector wave equation for 3-D inhomogeneous, dissipative media. The wave vec-
tor, source vector and operator matrix are specified in the appendices for acoustic, quantum
mechanical, electromagnetic, elastodynamic, poroelastodynamic, piezoelectric and seismo-
electric waves. It is shown that the operator matrix obeys unified symmetry relations for all
these wave phenomena. Next, unified matrix—vector reciprocity theorems of the convolution
and correlation type are derived, utilizing the symmetry properties of the operator matrix.
These theorems formulate mathematical relations between two wave states in the same spa-
tial domain. A unified wavefield representation is obtained by replacing one of the states in
the convolution-type reciprocity theorem by a Green’s state. By replacing both states in the
correlation-type reciprocity theorem by Green’s states, a unified representation of the ho-
mogeneous Green’s matrix is obtained. Applications of the unified reciprocity theorems and
representations for forward and inverse wave problems are briefly indicated.
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1 INTRODUCTION

The basic equations for wave propagation in an inhomogeneous medium can be organized in a compact matrix—vector wave equation. This
equation expresses the vertical derivative of a wave vector in terms of an operator matrix acting on this wave vector. This specific form of the
wave equation is useful, for example, to evaluate wave problems in media of which the medium parameters vary more rapidly in the vertical
direction than in the lateral directions. It is also particularly useful for situations in which the vertical direction is the preferred direction of
wave propagation. However, the theoretical treatment of the matrix—vector wave equation in this paper is not limited to these special situations.

The matrix—vector wave equation finds its roots in early work on the analysis of plane waves in laterally invariant media. Thomson (1950)
introduced a matrix formalism for the analysis of elastodynamic plane waves propagating through a stratified solid medium. Haskell (1953)
used the same formalism to analyse the dispersion of surface waves in layered media. Backus (1962) used similar concepts to derive long-wave
effective anisotropic parameters for stratified media. This approach has become known as Backus averaging (Mavko et al. 2009). Gilbert &
Backus (1966) used the matrix—vector wave equation to derive so-called propagator matrices for elastodynamic wave problems in stratified
media. Woodhouse (1974) extended the formalism for arbitrary anisotropic inhomogeneous media and used it for the study of surface waves
in laterally varying layered media. Frasier (1970), Kennett e al. (1978), Frazer & Fryer (1989) and Chapman (1994) used the matrix—vector
wave equation to derive symmetry properties of reflection and transmission responses of laterally invariant media. Haines (1988), Kennett
et al. (1990), Koketsu et al. (1991) and Takenaka et al. (1993) exploited the symmetry properties of the matrix—vector wave equation to derive
so-called propagation invariants for laterally varying layered media and used this for modelling of reflection and transmission responses
of such media. Using the same symmetry properties, Haines & de Hoop (1996) and Wapenaar (1996b) derived reciprocity theorems and
representations for the acoustic wave vector.

The matrix—vector wave equation has been used by many authors as the starting point for decomposition into coupled wave equations for
downgoing and upgoing waves, for example for modelling in horizontally layered media (Kennett & Kerry 1979; Kennett & Illingworth 1981),
for wide-angle propagation in laterally variant media (Fishman & McCoy 1984; Weston 1989; Fishman 1992), and for deriving reciprocity
theorems for coupled downward and upward propagating waves (Wapenaar & Grimbergen 1996; Thomson 2015a,b), generalized Bremmer
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Unified matrix—vector wave equation 561

Table 1. Wavefield vectors q; and q; for the different wave phenomena considered in this paper. Labels A to G refer
to the appendices in which these wave phenomena are discussed in more detail.

q1 q2
A: Acoustic p v3
B: Quantum mechanic W ,2”—7? iy
. E, H
C: Electromagnetic Ey = H) =
: o= () =( %)
713 vy
D: Elastodynamic —13=—| 123 v=| n
733 U3
—z v
E: Poroelastodynamic ( > ( 3 )
P’ $f —v3)
o . —13 A
F: Piezoelectric ( Eo > Ho
_1}37 v
G: Seismoelectric p/ (b(v{ —v3)
Eo Hy

series representations for reflection data (Corones 1975; Haines & de Hoop 1996; Wapenaar 1996a; de Hoop 1996b) and representations for
seismic interferometry (Wapenaar 2003).

This paper discusses the matrix—vector wave equation and its symmetry properties for a range of wave phenomena in a unified way
(Section 2 and Appendices A to G). The treatment builds on earlier systematic treatments of different wave phenomena by Auld (1973), Ursin
(1983), Kennett (1983), Miiller (1985), Wapenaar & Berkhout (1989), de Hoop (1995, 1996a), Gangi (2000), Carcione (2007) and Mittet
(2015). The matrix—vector wave equation forms the basis for the derivation of unified matrix—vector reciprocity theorems (Section 3) and
representations (Section 4), analogous to those for the acoustic wave vector (Haines & de Hoop 1996; Wapenaar 1996b).

2 THE UNIFIED MATRIX-VECTOR WAVE EQUATION AND ITS SYMMETRY
PROPERTIES

2.1 The matrix—vector wave equation

The unified matrix—vector wave equation has the form

q=Aq+d. (1)

Here q is the wavefield vector, d the source vector and .A the operator matrix. All quantities are defined in the space—frequency domain, hence
q = q(x, w), etc., where x denotes the Cartesian coordinate vector (x, x,, x3) and w the angular frequency. The positive x;3-axis is pointing
downward. Operator 95 stands for the spatial differential operator 9/0x;. The vectors and matrix in eq. (1) are partitioned as follows:

qi d A Ap
= s d= . A: s 2
q <QZ> <d2> (A21 Azz) 2)

hence,
qr = Anq + Apq; +di, (3)
q = Az q + Apq; +ds. 4)

The vectors q; and q, are specified in rows A to G of Table 1 for the different wave phenomena considered in this paper. The wavefield
quantities contained in these vectors are defined in Appendices A to G. For acoustic and quantum mechanical waves (rows A and B), q; and
q. are scalars. For electromagnetic, elastodynamic and poroelastodynamic waves (rows C to E) they are 2 x 1, 3 x 1 and 4 x 1 vectors,
respectively (superscripts b, fand s in row E stand for bulk, fluid and solid, respectively). Rows F and G represent coupled electromagnetic
and (poro)elastodynamic waves. For piezoelectric waves (row F), constitutive eqs (F1) and (F2) account for the coupling. For this situation the
vectors ¢, and q, are combinations of those for electromagnetic and elastodynamic waves (rows C and D). For seismoelectric waves (row G),
constitutive eqs (G1) and (G2) account for the coupling. In this case the vectors q; and q, are combinations of those for electromagnetic and
poroelastodynamic waves (rows C and E).

In all cases, except for quantum mechanical waves, the vectors q; and q, are defined such that they constitute the power-flux density j
in the x3-direction via

o1
=700+ ga). 5)
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562 K. Wapenaar

where the superscript T denotes transposition and complex conjugation. For quantum mechanical waves, j represents the probability current
density in the x3-direction. Vectors d; and d, and operator matrices 4,1, A,», Ay, and Ay, are defined in Appendices A to G for the different
wave phenomena. The operator matrices contain specific combinations of space-dependent medium parameters (or, for quantum mechanics,
the potential /" and mass m) and spatial differential operators 9, and 9, (standing for 3/dx; and 9/dx,, respectively).

Eq. (1), with the operator matrix specified in the appendices, may be used as a starting point for generalizing many of the applications
mentioned in the introduction (analysis of surface waves, derivation of long-wave effective medium parameters, derivation of propagator
matrices, decomposition into downgoing and upgoing waves, modelling wide-angle propagation in laterally variant media, etc.). A discussion
of these applications is beyond the scope of this paper. Here we focus on the symmetry of the operator matrix and its use in unified reciprocity
theorems and representations.

2.2 Symmetry properties of the operator matrix

We discuss the symmetry properties of the operator matrix. First, consider a scalar operator I/, containing space-dependent parameters and
differential operators 8, and d,. We introduce its transpose 2" and adjoint ! via their integral properties

[wnsesi= [ rargax, ©)
and
[wrredx = [ rages. @)

Here xy is the horizontal coordinate vector (x1, x,), superscript * denotes complex conjugation, A denotes an infinite horizontal integration
boundary at arbitrary depth x3, and f = f{x) and g = g(x) are space-dependent functions with sufficient decay along A towards infinity. Eq. (6)
implies

LYWy =wav'y', ®)
where also V and WV are scalar operators. Eqs (6) and (7) imply

U = U ©)
For the special case that i/ = 9, eq. (6) implies (via integration by parts) 9] = —,. Similarly, 3; = —9,. Hence,

3l = — s (10)

where Greek subscripts take on the values 1 and 2. Using this property and eq. (8), we find for example for the operator in eq. (A22),
(00bapdp) = dpbapd, (Einstein’s summation convention applies to repeated subscripts). Since byg = bgy, this implies (3obepdp) = 05bpa
= 8aba/38/3 and, USing €q. (9)3 (aabaﬂ aﬂ)T = (aabaﬂ aﬂ)* = aotb:ﬂ aﬂ'

Next, we consider an operator matrix U, of which the entries are operators containing space-dependent parameters and differential
operators 9; and d,. Analogous to eqs (6) and (7), we introduce its transpose U’ and its adjoint U via

/A(Llf)’ngXH :/f’(u’g)dQXH (1D
A

and

Janiedx = [ e, 12)

where f = f(x) and g = g(x) are space-dependent vector functions with sufficient decay along A towards infinity. Eq. (11) implies that U’
involves transposition of the matrix and transposition of the operators contained in the matrix. For example, for a 2 x 2 operator matrix U,
we have

t
U U Uy, U,
= . 1
<U21 Uzz) <Uf2 U, (13)
Eq. (11) implies
UYW) =w'vu', (14)

where also V and VW are operator matrices. Eqs (11) and (12) imply
ut =@y (15)

Using eqs (8), (10) and (14), it follows that operator matrices A;1, A1, Ay and A, defined in Appendices A to G, obey the following
symmetry relations

1= —An, (16)
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Unified matrix—vector wave equation 563

AL = Ay, (17)

Ay = Ay, (18)

In Appendices A to G we define adjoint medium parameters (or, for quantum mechanics, an adjoint potential). When a medium is
dissipative, its adjoint is effectual, and vice versa (de Hoop 1987, 1988; Wapenaar et al. 2001). A wave propagating through an effectual
medium gains energy. Effectual media play a role in the reciprocity theorems and representations, discussed in Sections 3 and 4. An adjoint
medium parameter is denoted by an overbar. An operator with an overbar means that the medium parameters contained in that operator
are replaced by their adjoints. For example, for the operator in eq. (A22) we have iao, bapdp = ﬁaal;aﬂ dg. Since l_)a,g = b, this becomes
E0ubapdp = 1 0aD%3 08 = — (55 0ubapdp)”.

For the operator matrices in Appendices A to G in an adjoint medium we have

A=Al (19)
Ap = —Aj, (20)
Ay =-A, (21)
Ay = AL (22)
Using eq. (15), we find from eqgs (16) to (22)

Al = —Ay, (23)
Al = — Ay, (24)
Ay = = Ao, (25)
A;z =-A. (26)
From eqs (16) to (26), we find for the operator matrix .A defined in eq. (2)

AN = —NA, 27
A'J = JA, (28)
AK = —KA, (29)
with

o 1 1 o o 1
(8 0) o 8) - e) o

where O and I are zero and identity matrices of appropriate size. Symmetry relations in the wavenumber-frequency domain for the special
case of a laterally invariant medium (or potential) are given in Appendix H.

3 MATRIX-VECTOR WAVEFIELD RECIPROCITY THEOREMS

In wave theory, a reciprocity theorem formulates a mathematical relation between two states (wavefields, sources and medium parameters)
in the same spatial domain. An early reference for the acoustic reciprocity theorem is Rayleigh (1878), who referred to it as Helmholtz’s
theorem. Lorentz (1895) formulated a reciprocity theorem for electromagnetic fields. Early references for elastodynamic reciprocity theorems
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lns =+1 oDy

Figure 1. Configuration for the matrix—vector reciprocity theorems, eqs (36) and (37). The combination of boundaries 9Dy and dD; is called 9D in these
equations.

are Knopoff & Gangi (1959) and de Hoop (1966). Auld (1979) and Pride & Haartsen (1996) formulated reciprocity theorems for piezoelectric
and seismoelectric waves, respectively. Comprehensive overviews of the history of reciprocity theorems and their applications are given by
Fokkema & van den Berg (1993), de Hoop (1995) and Achenbach (2003).

Matrix—vector wave eq. (1) and symmetry relations (27) and (29) underly unified matrix—vector reciprocity theorems in an inhomogeneous
medium (or potential). We consider two states 4 and B, characterized by independent wave vectors q4(X, @) and qz(X, @), obeying matrix—
vector wave eq. (1), with source vectors d4(x, w) and dp(x, w), and operator matrices A (X, w) and Az (X, w). The subscripts 4 and B of these
operator matrices refer to the, possibly different, medium parameters in states 4 and B. We assume that outside a finite domain, the medium
(or potential) and its adjoint are lossless in both states. We consider a spatial domain D enclosed by two infinite horizontal boundaries 9D
and 0D, (with 0D, below 0Dy), together denoted by 0D, see Fig. 1. The starting point for deriving reciprocity theorems for the wavefields in
states A and B is formed by the quantities 3;{q’,Nqz} and i);{qt1 Kq;} in domain D. Applying the product rule for differentiation gives

9:{q;Nq;z} = (3:9,)Nqz + q',N(3:q5), (31

3:(q!Kaz) = (3:q')Kaz + ¢/ K(3:q5). (32)

Note that eq. (10), which defines the transpose of the horizontal differential operator d,, does not apply to the vertical differential operator
d3. Hence, we may replace (d;q',) by (35q4)" in eq. (31), and (35 qL) by (93q4)" in eq. (32). Using wave eq. (1) for both states in the right-hand
sides of eqs (31) and (32), integrating both sides of these equations over domain D) and applying the theorem of Gauss to the left-hand sides,
we obtain

/ q',Nqpn;dixy = /I:((AA(]A)r +d’,)Ngz + q,N(Azqz + dB)]d3X (33)
oD D
and
" Kqgnsdxy = Auq0) +d))K TK(A d;) | 34
q Kqpnsd’xy = | [ ((A4q0)" +d))Kqs + q/ K(Azqs + d3) |Ex. (34)
oD D
Here n3 is the vertical component of the outward pointing normal vector on dID, with n; = —1 at the upper boundary dDy and n; = +1 at the

lower boundary dD,. The integrals on the right-hand sides can be written as

/D - )dx = / dxy / - )dx, (35)

where x3 ¢ and x3 | denote the depths of 9Dy and 9D, respectively. Hence, at each depth level between 9Dy and dID; we can use the integral
properties of transpose and adjoint operators, as formulated by eqs (11) and (12). Together with the symmetry relations (27) and (29) for
operator A 4, we thus obtain the following matrix—vector reciprocity theorems

/‘(thN‘IB + q’ANdB)d3x 2/ q',Nqpn;d’xy + / q,N(A, — Ap)qpd’x (36)

D oD D

and

f (4 Kqs + q'Kdp)d'x = f q' Kqsnsd®xy + / a' KA, — Ap)qpdx. (37)
) oD D

Eq. (36) is a convolution-type reciprocity theorem (Fokkema & van den Berg 1993; de Hoop 1995) because products like q,Nqyp in the
frequency domain correspond to convolutions in the time domain. Eq. (37) is a correlation-type reciprocity theorem (Bojarski 1983) because
products like qL Kgq; in the frequency domain correspond to correlations in the time domain. These matrix—vector reciprocity theorems have
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Unified matrix—vector wave equation 565

been previously derived for acoustic waves (Haines & de Hoop 1996; Wapenaar 1996b). Because these theorems follow from the unified
matrix—vector wave eq. (1), with unified symmetry relations (27) and (29), they hold for all wave phenomena listed in Table 1. In the next
section we use these theorems as the basis for matrix—vector wavefield representations. Here we consider some special cases of these theorems.
Power balance
When the sources, medium parameters and wavefields are identical in both states, we may drop the subscripts 4 and B. In this case
eq. (37) simplifies to

/%(dTKq—i—qTKd)d%{ =[
D

qu Kqnsd*xy + / lqT K(A — A)qd’x. (38)
an 4 p 4
Because %qTKq = %(qﬁqz + q;ql) = j, the first term on the right-hand side is the power flux (or probability current) through the boundary
oD = 9Dy U D, (i.e. the power leaving the domain D). Hence, eq. (38) formulates the unified power balance. The term on the left-hand side
is the power generated by the sources in D and the second term on the right-hand side is the dissipated power in D.

Propagation invariants

When there are no sources in D and the medium parameters in D are equal in the two states, the domain integrals in eq. (36) vanish,
hence

/ q/Nqgnsd®xy =0, (39)

aDUID,

or, since n3 = —1 at 0Dy and n3 = +1 at 0Dy,

[ aNasdni= [ diNascx (40)
Dy oDy

Since this holds for any choice of the domain D, we infer that the quantity

/q’ANquQXH, 41)
A

with A denoting a horizontal plane at arbitrary depth x;3, is a unified propagation invariant (i.e. it is independent of the depth x; of A). On the
other hand, when the medium parameters are each other’s adjoints in the two states, we find in a similar way from eq. (37) that the quantity

/ q Kqzdxy (42)
A

is a unified propagation invariant. Propagation invariants have been extensively used in the analysis of symmetry properties of reflection and
transmission responses and for the design of efficient numerical modelling schemes for acoustic and elastodynamic wavefields (Haines 1988;
Kennett et al. 1990; Koketsu ef al. 1991; Takenaka et al. 1993).

4 MATRIX-VECTOR WAVEFIELD REPRESENTATIONS

4.1 Representation of the convolution type

A wavefield representation is obtained by replacing one of the states in a reciprocity theorem by a Green'’s state (Knopoff 1956; de Hoop 1958;
Gangi 1970; Pao & Varatharajulu 1976). Here we derive a unified matrix—vector wavefield representation from the matrix—vector reciprocity
theorem of the convolution type (eq. 36).

We introduce the Green’s matrix G(x, X4, w) (with the same dimensions as matrix .A) as the solution of the unified matrix—vector wave
eq. (1), with the source vector d replaced by a diagonal point-source matrix. Hence

9;G = AG + I8(x — x,), (43)

where I is an identity matrix and x, defines the position of the point source. We let G represent the forward propagating solution of eq. (43),
which corresponds to imposing causality in the time domain, that is, G(x, x4, 1) = O for # < 0, where O is a zero matrix (the relation
between functions in the time- and frequency domain is defined by the Fourier transform, eq. A7). Before we derive the unified wavefield
representation, we first derive a reciprocity relation for the Green’s matrix. To this end we define a second forward propagating Green’s matrix
G(x, x5, w), with its point source at xz. We assume that x4 and x are both situated in D. We replace q, and qp in reciprocity theorem (36)
by G(x, x4, ®) and G(X, X, w), respectively. Accordingly, we replace d4 and dp by I§(x — x,) and I§(x — xp), respectively. Both Green’s
matrices are defined in the same medium, hence, A, = Aj. This implies that the second integral on the right-hand side of eq. (36) vanishes.
When Neumann or Dirichlet boundary conditions apply on 0D, or when the medium outside 9D is homogeneous, the first integral on the
right-hand side of eq. (36) vanishes as well. We thus obtain

NG(x,, X3, ®) + G'(xg, X4, )N = O. (44)
Using N~! = —N this gives
G(x,, X3, w) = NG'(x, X1, ®)N, (45)
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566 K. Wapenaar

which is the unified source—receiver reciprocity relation for the Green’s matrix.

Next, we use the same reciprocity theorem to derive a representation for the actual wavefield vector q. We let state B be the actual state
(i.e. actual wavefield, source and medium parameters). For convenience we drop the subscript B from q3, dp and Ajp. For state 4 we choose
again the Green’s state. Hence, we replace q4 by G(x, x4, ) and d4 by I§(x — x). Operator A4, may be defined in a reference medium or in
the actual medium. Making these substitutions in eq. (36), pre-multiplying all terms by —N, using eq. (45) and —NN = I, we obtain

XXXy, 0) = / G(x4, X, w)d(x, w)d’x — / G(x4, X, w)q(x, w)nsd*xy + / G(x4, x, o)A — A, )q(x, 0)d’x, (46)
D oD D
where x(x,) is the characteristic function, defined as

1, forx, inside D,
x(x4) =131, forx,onaD, 47)
0, for x, outside .

The left-hand side of eq. (46) is the actual wavefield vector q, observed at x4 (When x4 is inside D). The right-hand side contains, respectively,
a contribution from the source distribution d(x, ) inside D, a contribution from the wavefield q(x, w) at the boundary 0D, and a contribution
from the contrast operator A — A, applied to the wavefield q(x, w) inside D. This unified matrix—vector wavefield representation holds for
all wave phenomena listed in Table 1.

This representation can often be simplified, which leads to different applications. For example, when the medium outside the domain D
is homogeneous, source free and identical in both states, the boundary integral on the right-hand side vanishes. The remaining representation
(with A, defined in a reference medium) forms a basis for the analysis of forward scattering problems. On the other hand, when A is
defined in the actual medium (i.e. A4 = A) and the domain D is source free, only the boundary integral on the right-hand side remains. In
this case, eq. (46) is a generalization of the Kirchhoff-Helmholtz integral (Morse & Feshbach 1953; Born & Wolf 1965; Pao & Varatharajulu
1976; Berkhout 1982; Frazer & Sen 1985), which finds applications in forward wavefield extrapolation problems.

4.2 Representation of the correlation type

Representations of the correlation type find their application in inverse source problems (Porter & Devaney 1982; de Hoop 1995), inverse
scattering problems (Devaney 1982; Bojarski 1983; Bleistein 1984; Oristaglio 1989), imaging (Porter 1970; Schneider 1978; Berkhout 1982;
Maynard et al. 1985; Esmersoy & Oristaglio 1988; Lindsey & Braun 2004), time-reversal acoustics (Fink & Prada 2001), and Green’s
function retrieval from ambient noise (Derode et al. 2003; Wapenaar 2003; Weaver & Lobkis 2004). There are several ways to approach the
representation of the correlation type. The homogeneous Green’s function representation (Porter 1970; Oristaglio 1989) elegantly covers most
of the aforementioned applications for scalar wavefields. It is obtained by replacing both states in the reciprocity theorem of the correlation
type by Green’s states. Here we derive a unified representation for the homogeneous Green’s matrix by substituting two Green’s matrices into
the matrix—vector reciprocity theorem of the correlation type (eq. 37).

Before we discuss the homogeneous Green’s matrix, we introduce the Green’s matrix of the adjoint medium, G(x, X4, @), as the forward
propagating solution of the following matrix—vector wave equation

3G = AG + I8(x — x). (48)
Pre- and post multiplying all terms by J and subsequently using eq. (28) gives

IGI = A"IGI + JIS(x — x,). (49)
Taking the complex conjugate of all terms and using JJ = I gives

3;JG*J = AIG*T + I8(x — x4). (50)

Subtracting all terms in this equation from the corresponding terms in eq. (43) we obtain

03Gh(x, X4, ) = AGp(X, X, ®), (51)
with
Gh(x, X, w) = G(x, X1, w) — JG*(x, x4, w)J. (52)

Because Gy(x, X4, @) obeys a matrix—vector wave equation without a source term, we call it the homogeneous Green’s matrix. The second
term on the right-hand side represents a backward propagating wavefield in the adjoint medium.

Next, we use the correlation-type reciprocity theorem (eq. 37) to derive a representation for the homogeneous Green’s matrix Gy,. For
state A4 we choose the Green’s matrix in the adjoint medium, hence, we replace q, by G(x, x4, @), d, by I8(x — x,), and .4, by .A. For state B
we choose the Green’s matrix in the actual medium, hence, we replace q by G(x, X3, @), dp by I8(x — x;), and Aj by A. With these choices
the contrast operator A, — Az = A — A vanishes. Making these substitutions in eq. (37), taking x,; and x5 both inside I, pre-multiplying
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Unified matrix—vector wave equation 567
all terms by K, using eqgs (45) and (52), KK = I and K = JN = —NJ, we obtain

KG'(x, x4, 0)KG(X, Xz, 0)n3d>xy. (53)

oD

Gi(x4, X3, w) =

This unified homogeneous Green’s matrix representation holds for all wave phenomena listed in Table 1. It forms the basis for generalizing
the applications mentioned at the beginning of this section.

5 CONCLUSIONS

A unified matrix—vector wave equation is presented for acoustic, quantum mechanical, electromagnetic, elastodynamic, poroelastodynamic,
piezoelectric and seismoelectric waves. For most cases a 3-D inhomogeneous, anisotropic, dissipative medium is considered. The unified
equation may be used as a basis for generalizing various applications of the elastodynamic matrix—vector wave equation, such as the analysis of
surface waves, the derivation of long-wave effective medium parameters, the derivation of propagator matrices, decomposition into downgoing
and upgoing waves, modelling wide-angle propagation in laterally variant media, etc.

The operator matrix in the matrix—vector wave equation obeys unified symmetry relations. These symmetry relations underly unified
reciprocity theorems of the convolution and correlation type, which, in turn, form the basis for representations of the wave vector and the
homogeneous Green’s matrix. Reciprocity theorems and representations find applications in forward modelling problems, inverse source and
inverse scattering problems, imaging, time-reversal methods and Green’s function retrieval from ambient noise. The unified treatment in this
paper provides a starting point for generalizing these applications to a broad range of wave phenomena.
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APPENDIX A: ACOUSTIC WAVES

The basic equations for acoustic wave propagation are the linearized equation of motion

oam; +0;p=fi
and the linearized deformation equation

- 0,0+ 0 =¢q

(A1)

(A2)

(de Hoop 1995; Willis 2012). Here m; = m;(x, f) is the momentum density as a function of spatial position x and time ¢, p = p(x, ?) is the
acoustic pressure, ® = O(x, 7) the cubic dilatation, v; = v;(x, t) the particle velocity, and f; = fi(X, ¢) and ¢ = ¢(X, ) represent the sources in
terms of external force density and volume-injection rate density, respectively (the function ¢ should not be confused with vector q and its
components (; and ¢, in egs (1) and (2)). Operator d; stands for differentiation in the x;-direction. Lower-case Latin subscripts (except 7) take
on the values 1, 2 and 3, and Einstein’s summation convention applies to repeated subscripts. Operator 9, stands for the temporal differential
operator d/dt. The constitutive relations for an inhomogeneous, anisotropic fluid are given by

m; = pPijv;, (A3)

O = —«p, (A4)

where p;; = p;(x) and k = «k(x) are the mass density and compressibility, respectively. To account for anisotropy, the mass density is defined as
a tensor. Although ideal fluids are by definition isotropic, inhomogeneities at the micro scale can often be represented by effective anisotropic
parameters at the macro scale. For example, a periodic stratified fluid can, in the long wavelength limit, be represented by a homogeneous
fluid with an effective transverse isotropic mass density tensor and an effective isotropic compressibility (Schoenberg & Sen 1983). The mass
density tensor is symmetric, that is, p; = p;;. Substituting the constitutive relations (A3) and (A4) into eqs (A1) and (A2) yields

pijatvj—kaip:f,-, (AS)

kOp+ 0y =gq. (A6)
We define the temporal Fourier transform of a space- and time-dependent function A(x, 7) as

h(x, ) = / h(x, t)exp(iwt)dt, (A7)

where 7 is the imaginary unit. For notational convenience, we use the same symbol (here /) for quantities in the time domain and in the
frequency domain. We use eq. (A7) to transform eqs (AS) and (A6) to the frequency domain. The time derivatives are thus replaced by —iw,
hence

—ia)p,-jvj—l—a,-p:fi, (A8)

—iwkp + 0;v; = ¢, (A9)
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with p = p(x, ®), v; = v;(X, ), fi = fi(x, ) and ¢ = g(X, w). In a lossless medium, the parameters p;;(x) and «(x) are real-valued and
frequency independent. To account for losses, we replace them by complex-valued, frequency-dependent parameters p; = p;;(X, @) and k =
k(X, w) (de Hoop 1995; Carcione 2007).

The quantities p and v; constitute the power-flux density j in the x;-direction, via

1
j =P v +vip). (A10)
We choose these quantities for the 1 x 1 vectors q; and q; in eqs (3) and (4), hence
q =P Q=13 (A1)

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities, v; and v, from eqs (A8) and
(A9). To this end, we first introduce the inverse of the mass density tensor, the so-called specific volume tensor ¥ ,; = 9 ,:(x, w), via

Vi Pij = Onjs (A12)

with §;; denoting the Kronecker delta. On account of the symmetry of the mass density tensor and eq. (A12), the specific volume tensor is
symmetric as well, hence ¥,; = ¥,,. Applying ), to both sides of eq. (A8), using eq. (A12), gives

—iov, + 00 p = Vi fi. (A13)
We separate the derivatives in the x;-direction from the lateral derivatives in eqs (A13) and (A9), according to

83[7 = 19331 (—l93ﬁ8ﬁp + ia)v3 + 03,‘f,'), (A14)

03v3 = IwKp — 0,V + ¢ (A15)

Einstein’s summation convention applies also to repeated Greek subscripts (which take on the values 1 and 2). The particle velocity v, needs
to be eliminated from eq. (A15). From eq. (A13) we obtain

1
Vg = %(ﬂaﬂaﬂp+ﬁa383p_ﬁaiﬁ)' (A16)
Substituting eq. (A16) into eq. (A15), using eq. (A14), we obtain

1
0303 = iwkp — Eaa(ﬁaﬁaﬁp + Va3dsp — Vi /i) + 4

1 _ .
= iwkp — 580( (ﬁaﬁaﬂp + z?a37}331 (703ﬂaﬂp +iwv; + 1931-]’1-) — ﬁa,-ﬁ) +q. (A17)
We define
bai = l?o(i - 190(3 193_3l193i1 (AIS)

with b3 = 0 and b, = by, on account of ¥, = ¥;. Eqs (A14) and (A17) have the form of eqs (3) and (4), with q; and q, defined in
eq. (A11), 1 x 1 vectors d; and d, defined as

. 1
di =95 05 fis do = —0u(bup f) + 4 (A19)

and 1 x 1 operator matrices A, A1, Az and Ay, defined as

Ay = —0953'93405, (A20)

Ap = iovy), (A21)
) 1

A21 = lWK — ,—Babaﬁaﬁ, (A22)
150)

Ay = =3, 043053 (A23)

The notation in the right-hand side of these equations should be understood in the sense that differential operators act on all factors to the
right of it. For example, operator d,b,5094, applied via eq. (4) to p, stands for d,(bes94p), etc. Operators Ay, A, A, and A, obey the
symmetry relations (16) — (18). We define adjoint acoustic medium parameters as & = «*, ¥;; = 07, and hence b,s = by Operators A,
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Ay, A,y and Ay, in the adjoint medium are defined as in eqs (A20)—(A23), but with «, 9, and byp replaced by &, Oy and Baﬁ, respectively.
These operators obey relations (19)—(22).

For the special case of an isotropic fluid we have ,; = %8;,,~, with p denoting the mass density of the isotropic fluid. For this situation
eqs (A20)—(A23) reduce to the well-known expressions

A= Ap =0, (A24)

A = iwp, (A25)
. 1 1

Ay = iwk — — 0y — 0y, (A26)
io " p

(Corones 1975; Ursin 1983; Fishman & McCoy 1984; Wapenaar & Berkhout 1989; de Hoop 1996Db).

APPENDIX B: QUANTUM MECHANICAL WAVES

Schrédinger’s wave equation for a particle with mass m in a potential /' = V(x) is given by (Messiah 1961; Merzbacher 1961)
h2

ihdy = ———8;9,y + V, (BI)
2m

where ¥ = (X, ) is the wave function and & = h/2w, with & Planck’s constant. We use eq. (A7) to transform this equation to the
space—frequency domain, which means we can replace 9, by —iw. This gives

2

hoyr = —;—ma,-a,.w + Vi, (B2)

with ¥ = ¥ (X, w). To account for losses, we replace V(x) by a complex-valued, frequency-dependent function V(x, w). The quantities ¥ and
fn—':? 03¢ constitute the probability current density j in the x3-direction, via

o 12h, .
J =g (W =y, (B3)

We choose these quantities for the 1 x 1 vectors q; and q; in eqgs (3) and (4), hence
2h
Q=Y q@=—0y (B4)
mi
To arrive at a set of equations for these quantities, we first recast eq. (B2) (using the fact that 4 and m are constants) as
2h . vV 2h
0s( = osw) = 4i (0 — = )¥ = 0,0, (BS)
mi h mi
This equation, together with the trivial equation
81//_mi(ZFLa 1/}) (B6)
T o\ mi )

have the form of eqs (4) and (3), with q; and q; defined in eq. (B4), d; =d, =0, and 1 x 1 operator matrices A1, A1z, Ay and Ay, defined
as

A= Ap =0, B7)

A= T (BS)
. V 2h

Ay = 4i (a) - E) - %aaaa- (B9)

Operators A, and A,; obey the symmetry relations (17) and (18). We define the adjoint potential as ¥/ = ¥*. Operators \A,, and .A,, for
the adjoint potential obey relations (20) and (21).

APPENDIX C: ELECTROMAGNETIC WAVES
In the space—frequency domain, the Maxwell equations for electromagnetic wave propagation read (Landau & Lifshitz 1960; de Hoop 1995)

—iwD; + J; — €d; Hy = —Jf, (€D
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572 K. Wapenaar

—iwB; + €ynd E,y = —J}", (C2)

where E,, = E, (X, o) is the electric field strength, H; = H;(x, w) the magnetic field strength, D; = D;(x, w) the electric flux density, B; =
Bi(x, w) the magnetic flux density, J; = Ji(X, w) the induced electric current density, J¢ = Jf(X, w) and J;" = J"(X, w) are source functions
in terms of external electric and magnetic current densities and, finally, € is the alternating tensor (or Levi-Civita tensor), with €23 = €312
= €)31 = —€7313 = —€331 = —€13; = | and all other elements being equal to 0. The constitutive relations for an inhomogeneous, anisotropic,
dissipative medium are given by

D; = & Ey = eo&rix E, (C3)
Bk = /’L/cmHm = /’LO,U/r,ka{mv (C4)
Ji = oy Ey, (CS)

where ¢ = ey(X, ®), im = Wim(X, @) and o = o 4(X, w) are the permittivity, permeability and conductivity tensors, respectively. The
subscripts 0 refer to the parameters in vacuum and the subscripts r denote relative parameters for the anisotropic medium. These tensors obey
the symmetry relations €; = &4, lim = m and oy = oy, respectively. Substituting the constitutive relations (C3)—(C5) into Maxwell’s
electromagnetic field eqs (C1) and (C2) yields

- ia)S,-kEk - El'jkaij = —Jie, (C6)

- ia)ﬂkan1 + €klmalE‘m = _kas (C7)

with

Eu = e — . (©8)
LW

A matrix—vector wave equation for electromagnetic waves in an isotropic stratified medium is given by Ursin (1983) and van Stralen
(1997). This has been extended for an anisotropic stratified medium by Leseth & Ursin (2007). Here we derive the matrix—vector wave
equation for electromagnetic waves in a 3-D inhomogeneous, anisotropic, dissipative medium.

The quantities

Ey = (2) and Hy = (j;) (C9)

constitute the power-flux density j in the x;-direction, via
| 1
Jj= Z(E(T)Ho + HJEg) = Z(ETHz — E3H + HE, — HE»). (C10)
We choose these quantities for the 2 x 1 vectors q; and q; in eqs (3) and (4), hence
q =E;, q=H,. (C11)

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities, £5 and Hs, from eqs (C6) and
(C7). We start by rewriting these equations as

—iwE By — i0EE3 + 9 Hy — Vo Hy = —J¢, (C12)
—iwEE) — iw€ E3 + VIH) = —J5, (C13)
—iopHy — iops Hy + 83Eg — Vi Ey = —J7, (C14)
—iop Hy — ious Hy + ViEg = —J7", (C15)
with

& & £ —
£ = 11 12 &= 13 .= M2 M2 . s = M23 ’ (C16)
En &n En —HMi12 M1 —M13
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Eq. (10) implies

g

v{:(—al ~3,), v;:(—az al).

Iy
Sy

) =

gy
—Jr

).

Unified matrix—vector wave equation

We separate the derivatives in the x;-direction from the lateral derivatives in eqs (C14) and (C12), according to

03Eg = iop Hy + iops Hs + Vi E; — J,

83H0 = ia)S]Eo + iw£3E3 + V2H3 - JS

The field components £5 and H3 need to be eliminated. From eqs (C13) and (C15) we obtain

1 -
E = &5 (—ggEo + —V{H + EJ;),

_ 1 | -
H = 15 (_ﬂgHO + —VEo+ —J; )

Substituting eqs (C21) and (C22) into eqs (C19) and (C20) we obtain

— —_ . . — 1 — 1 - e m - m
E) = (ILSIng; Vzr - V1533183>E0 + (lwﬂ'l - lw”ﬁﬂ'glug + ZVI(C/’B]V]’)HO + Evl(‘%gl J}) - J() + IL3/~L33] J3 s

1 1
83H0 = (ia){;’l — iw8353’315[3 + EVZM;; V;)Eo + <g35373]V1’ — VzlL;BI[L;)HO - JS + 83533] J; + EVZ(M;; J;n)

Eqgs (C23) and (C24) have the form of eqs (3) and (4), with q; and q, defined in eq. (C11), 2 x 1 vectors d; and d, defined as

d;

d,

and 2 x 2 operator matrices A, A1, Az and Ay, defined as

A = M3H§31V2t - V153}18§,

1 - e m - m
$V1(5331J3) - Jo + IL3/vL331J3 )

., 1 1 om
—Jf) + 536331J§ + $V2(/1-331J3 )

1
A = io(ry — paps; ) + EVIS;V{’

1
Ay = io(E) — E:65 EL) + EV”‘;;VZ”

Azz = S;S;;Vl’ - Vz,u,;;[l.g

573

(C17)

(C18)

(C19)

(C20)

(Cc21)

(C22)

(C23)

(C24)

(C25)

(C26)

(c27)

(C28)

(C29)

(C30)

These operators obey the symmetry relations (16)—(18). We define adjoint electromagnetic medium parameters as & = &}, flum = [}, and

0y = —0o/;. Using eq. (C8) it follows that i = &.. Similar relations hold for £, €5, u; and u3, which contain the parameters £ and
im- Operators A s AIZ, A, and A, in the adjoint medium obey relations (19)—(22). Explicit expressions for the operator matrices in an

isotropic medium are given in the supplemental material, section 1.

APPENDIX D: ELASTODYNAMIC WAVES

In the space-frequency domain, the elastodynamic equations of motion and deformation read (Achenbach 1973; Aki & Richards 1980; de

Hoop 1995; Willis 2012)

—iwm,- — 31111 = ﬁ

(DD
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574 K. Wapenaar

1
iwey + 5(31(111 + dvp) = hy, (D2)

where m; = m;(X, ®) is the momentum density, 7; = 7;(X, w) the stress tensor, ey = ey(X, w) the strain tensor, v, = vi(X, w) the particle
velocity, and f; = fi(X, w) and Ay = hy(X, w) are source functions in terms of external force density and deformation-rate density, respectively.
The stress, strain and deformation-rate tensors obey the symmetry relations t; = 7, ey = ey and Ay = hy. The constitutive relations for an
inhomogeneous, anisotropic, dissipative solid are given by

m; = pP;jv;, (D3)

€kl = SkimnTmn (D4)

where p; = p;i(X, ®) and Sg, = Suma(X, @) are the mass density and compliance tensors, respectively. These tensors obey the symmetry
relations p;; = 0;; and Sgimn = Sigmn = Skinm = Smnki> T€Spectively (Aki & Richards 1980; Dahlen & Tromp 1998). Substituting the constitutive
relations (D3) and (D4) into eqs (D1) and (D2) yields

1
LS kimn Ton + 5(3kv/ + ) = hy. (D6)

We introduce the stiffness tensor c;; = c;u(X, @) as the inverse of the compliance tensor sy, according to

1
CijkiSkimn = SijkiCklmn = E(Simsjn + Sinsjrﬂ)' (D7)

The stiffness tensor obeys the symmetry relation c; = cjm = cyr = cuy. Multiplying all terms in eq. (D6) by c;u, using the symmetry
relations 7;; = 7;; and ¢ = ¢, we obtain an alternative form of eq. (D6), according to

iwTj + Cij vk = Cijhu. (D8)

A matrix—vector wave equation for elastodynamic waves in an inhomogeneous anisotropic medium is given by Woodhouse (1974). Here
we review this derivation, which also serves as a starting point for the derivation of the matrix—vector wave equations for poroelastodynamic
waves (Appendix E), piezoelectric waves (Appendix F) and seismoelectric waves (Appendix G). The quantities —z3 and v (which are 3 x 1
vectors, with (73); = t;3 and (v); = v;) constitute the power-flux density j in the x;-direction, via

1 . 1

j= 7(—r§v —V'T3) = = (=150 — V] 1;3). (DY)
4 4

We choose these quantities for the 3 x 1 vectors q; and q in eqs (3) and (4), hence

qi = —T3, (2 =V. (D10)

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities, 3 x 1 vectors T; and 7, (with
()i = t;;), from eqs (D5) and (D8). We start by rewriting these equations as

—ia)pv—aj‘r_,- =f, (Dll)

iwr/ + Cﬂalv = C/’lhl’ (D12)

where p and Cj; are 3 x 3 matrices, with (p);; = pi;, p* = p, (Ci)ix = Ciju, Cz., = Cy;, and where fand h; are 3 x 1 vectors, with (f); = f; and
(h))x = hy. We separate the derivatives in the x;-direction from the lateral derivatives in eqs (D11) and (D12), according to

— 03T3 = iwpV + 0,7, + 1, (D13)

dyv = C5) (—im;, — Cypdv + C31h1). (D14)
The field components 7, and 7, need to be eliminated. From eq. (D12) we obtain

T, = —i(c‘,ﬂaﬂv + Co303v — Cyhy). (D15)
Substituting eq. (D14) into (D15) and the result into eq. (D13), we obtain

1
— 0573 = 3,(Cos C3'13) + iwpv — — 0, (U(,,ga,gv - Ua,h,) s (D16)
1w
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Unified matrix—vector wave equation 575
with
Uy = Co — Cu3C33 Cy, (D17)

where U,z = O and foﬁ = Up, on account of C’/., = Cj;. Eqs (D16) and (D14) have the form of eqs (3) and (4), with q; and q, defined in
eq. (D10), 3 x 1 vectors d; and d, defined as

d =f+ ,iaa(Uaﬂhﬁ), (D18)
Lw

d; = C5; Cyhy, (D19)

and 3 x 3 operator matrices A, Az, Az and Ay, defined as

Aj = —9,Cu3C3y, (D20)
, 1

Alz =1lwp — .—BaUaﬁBﬁ, (D2l)
1w

Ay = iwCyy, (D22)

Ay = —C3, Cspg. (D23)

These operators obey the symmetry relations (16)—(18). We define adjoint elastodynamic medium parameters as ;i = ¢}y and py; = pj;.
Similar relations hold for C;;, Uyg and p, which contain the parameters c;; and p;;. Operators A, 1 A, Ay and A, in the adjoint medium
obey relations (19)—(22). Explicit expressions for the operator matrices in an isotropic medium are given in the supplemental material,
Section 2.

APPENDIX E: POROELASTODYNAMIC WAVES

In the space—frequency domain, the basic equations for poroelastodynamic wave propagation in an inhomogeneous, anisotropic, dissipative,
fluid-saturated porous solid read (Biot 1956a,b; Pride et al. 1992; Pride & Haartsen 1996)

— iwpf/vj — iwpgwj - 8,-1,.%} =/, (E1)
LI ! Y

- gkijﬂ‘-zvz +wi + ;k,-,-ajp = Zkijfj ; (E2)
i(ufi];- + C,'J'Ha]l)i + C,-/Bkwk = Cijkth[ + ijqf, (E3)
—iwp’ + Cudp + Mdw, = Cyht, + Mg, (E4)
with

w; = ¢(vjf =), (ES)
vl = gvl +(1— P} = v +w;, (E6)
T = ¢t + (1 — )t = =98, p’ + (1 — P)7;), (E7)
fr=efl +a-9)f. (E8)

Pl = oo+ (11— $)p);. (E9)
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Superscripts b, f'and s stand for bulk, fluid and solid, respectively. The wavefield quantity v; = v;(X, w) is the averaged particle velocity in
the bulk, fluid or solid (depending on the superscript), w; = w;(X, ) is the filtration velocity, t;; = 7;;(X, ) the averaged stress in the bulk,
fluid or solid and p/ = p/(x, w) the averaged fluid pressure. The stress tensors are symmetric, i.e., 7; = 7;. The medium parameter p; =
pij(X, w) is the mass density of the bulk, fluid or solid (depending on the superscript). Furthermore, k; = k;(x, ) is the dynamic permeability
tensor, 7 = 1(X, w) is the fluid viscosity parameter and ¢ = ¢(x) the porosity. Moreover, ¢y = c;u(X, ®), Cj = Cy(x, @) and M = M(X, w) are
stiffness parameters of the porous solid. The medium parameters obey the following symmetry relations p; = p;i, kij = kji, ciju = Cjiw = Cijic
= cuy and C; = Cj;. The source function f; = fi(X, w) is the volume density of external force on the bulk, fluid or solid. For many source types
the forces on the bulk and fluid are equal but in the following they will be treated distinctly. The source functions %, = h%(x, ®) and ¢ =
¢/(x, w) are the volume densities of external deformation rate on the bulk and volume-injection rate in the fluid (Wapenaar & Berkhout 1989;
Pride 1994; de Hoop 1995; Grobbe 2016). The deformation rate tensor is symmetric, that is, hil = hf’kA For later convenience, we eliminate
oywy, from eq. (E3), using eq. (E4). This yields

. , P 1O . ,
zwri’;- + cl.j,dB;vk + MC,-jp-/ = cl.jk,hi'l, (E10)
with ¢, = ¢};y(X, ) defined as
, 1
Ciju = Cijut = 77 CijCu- (E11)

A matrix—vector wave equation for normal-incidence poroelastodynamic waves in a stratified isotropic medium is given by Norris
(1993) and Gurevich & Lopatnikov (1995). This has been extended for oblique-incidence poroelastodynamic waves in a stratified anisotropic
medium, separately for P-SV and SH propagation, by Gelinsky & Shapiro (1997). Here we derive the matrix—vector wave equation for
poroelastodynamic waves in a 3D inhomogeneous, anisotropic, dissipative, fluid-saturated porous solid. The quantities —7%, p/, v* and w;
(with (r? )i = ri_’;. and (v*); = v}) constitute the power-flux density j in the x3-direction, via

. 1 TS * NI * 1 kS £ s * f
j= Z(—(ré’)rv —|—pf w3 — (vA)1 ré’ + w3pf) = Z(—r.b3 v; + p/ws — v,."r,.b3 + w3pf). (E12)

We choose these quantities for the 4 x 1 vectors q; and q in eqs (3) and (4), hence

_ b s
q1=< Tﬁ) qz=<V ) (E13)
p’ w3

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities from eqs (E1), (E2), (E10) and
(E4). We start by rewriting these equations as

— 1a)pbv3 — lwpfi]w] — aj'[? = fb, (E14)
j 1 1

— ko!V +iw, + —kij8,p" = —ki, f/, (E15)
n n n

ia)r? =+ C,-,E);vs =+ %cjpf = Cﬂhf’, (E16)

—iwp’ + v + Mdw, = ¢'hl + Mg/, (E17)

where p, k and Cj are 3 x 3 matrices, with (p);; = p;;, p' = p, (K);j = kyj, k' =Kk, (Cj))i = clfjkl, Ci., = Cy;, and where ¢;, . h,b and i; are
3 x 1 vectors, with (¢,); = Cy, (f°); = 0 (hb), = kb, and (ij); = d;. Eqs (E14)«(E17) form the starting point for deriving matrix—vector
equations in the form of eqs (3) and (4), with q, and q, defined in eq. (E13). The other quantities (r’l’ s r’z’ , w; and w,) need to be eliminated.

The detailed derivation can be found in the supplemental material, Section 3. The 4 x 1 vectors d; and d, are defined as

a = 0 i k(1 + Jisitk™ i, i k)i /7 — % o igit ki £ + 1 + L0, (Usghf) E18)
Ltk igdLki; /7 + £
d G Caf (E19)
2= —8a(%ika(l + Ltk i K)i, £ — nlhi;khf{) + Luthl 4 g/

and the 4 x 4 operator matrices A, A3, Ay and Ay, as

All AIZ All AIZ
A = 11 ) A, = 12 12 E20
" (Aﬂ Aﬁ) - ((Ali)’ A%%) =0
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11 Aé2
Ay = ! V] An=-AlLL (E21)
(Al A5 "
Here
i1 = —8Ca3C33, (E22)
12 i , | T 1
f=-"0 (1— Skisisk 1313)k1,,aﬂ — Ot (E23)
AL =0, (E24)
1
Al = —gigk_lhigkiﬂaﬂ, (E25)
11 . p 1 o? fe st Lo i, o I
A, =iop’ — —0uUapdp — P o, (k — 5Ktk i3isK)igiy 0, (E26)
2 _ %pfkiﬂgk’lh, (E27)
2 Moy 1.
L= 75131( iz, (E28)
) = i0Cyy, (E29)
iw
A = -G, (E30)
' ' 1 1
A2 = %cgcgg + ’Mw o (i i — ki ki) 0. (E31)
with 0 denoting a zero vector and
Uyp = Cop — Co3Ci3 Cag, (E32)
u, = ¢, — CpCii'es, (E33)
b =1 — itk i, i Kis. (E34)

Operators Ay, Ay, Ay and Ay, obey the symmetry relations formulated in eqs (16)—(18). We defined the adjoints of the medium
parameters c; and p;; in Appendix D (where p;; now has superscript b or f). Moreover, we define k; j =k, 0n=-n" C; ; = C}; and M= M*.
Sirnilar rel_ations hold for Cy, 0’, o/, kand ¢;, which contain the parameters c,fj o = Cijkl — iC,- i Cris pibj, p,:;, kij and Cj;. Operators Ay, A,
A, and Ay, in the adjoint medium obey relations (19)—(22). Explicit expressions for the operator matrices in an isotropic medium are given
in the supplemental material, section 3.

APPENDIX F: PIEZOELECTRIC WAVES

Piezoelectric waves are governed by the equations for electromagnetic waves (Appendix C) and elastodynamic waves (Appendix D), in which
two of the constitutive relations need to be modified to account for the coupling between the two wave types. For piezoelectric waves, the
modified constitutive relations are (Auld 1973)

D; = gixEr + dijktjk, (F1)
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578 K. Wapenaar

€r = dklm Ey + StimnTon- (Fz)

The field quantities and medium parameters (except dj;) have been defined in Appendices C and D. Parameters ¢ in eq. (F1) and sy, in
eq. (F2) are defined under constant stress and constant electric field, respectively. The coupling tensor dyx = dj(X, w) obeys the symmetry
relation djy = d; = dy;. Eq. (F1) replaces constitutive relation (C3) and is substituted, together with constitutive relations (C4) and (C5), into
the Maxwell eqs (C1) and (C2). Eq. (F2) replaces stress—strain relation (D4) and is substituted, together with constitutive relation (D3), into
eqs (D2) and (D1). Subsequently, all terms in the latter equation are multiplied by c;, using eq. (D7) as well as the symmetry relations 7;; =
7j; and ¢; = c;i. The basic equations for coupled electromagnetic and elastodynamic waves thus read

—iwEREy — €30, Hy — iodiptjy = —J¢, (F3)
— it Hy + € Ey = —J", (F4)
—iwpijv; —0;Ti; = fi (F5)
iwTj + Cijudvr + i0Cjudum En = cijihu, (F6)

with & = g — %

A matrix—vector wave equation in the quasi-static approximation for 2-D piezoelectric waves in an anisotropic stratified medium is
given by Honein ez al. (1991), Wang & Rokhlin (2002) and Zhao et al. (2012). Here we derive the exact matrix—vector wave equation for
piezoelectric waves in a 3-D inhomogeneous, anisotropic, dissipative, piezoelectric medium. The quantities —t3, Ey, v and Hy (with E, and

H, defined in Appendix C and 73 and v defined in Appendix D) constitute the power-flux density j in the x;-direction, via
1 . 1
j= Z(_T;v +E{H; — vizs + HE) = (T E{Hy = ESHy — vt + H; Ey — HY Ey). (F7)

We choose these quantities for the 5 x 1 vectors q; and q; in eqs (3) and (4), hence

—T3 v
q1=(E0 ) qz:(H())' (F8)

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities from eqs (F3) to (F6). Using the
notation introduced in Appendices C and D, we rewrite eqs (F3)—(F6) as

- ia)ElEo - ia)83E3 + 83H0 - V2H3 - ia)Dtlka = —Jg, (Fg)
- IQ)ESEO - ia)533E3 + VltHO - l.(l)D;ka = —J;, (FlO)
— ia)[LlHo — iwu3H3 + 33E0 — V1E3 = —Jgi, (Fll)
— iu)[l,gHO — iw,u33H3 + vztE() = —J3m, (F12)
—iwpv —9;T; =1, (F13)
ia)r‘, =+ C,-,B;v =+ ia)le (D”Eo =+ D31E3) = Cj]h], (F14)
with
dur di ik
Dy = d21k d22k , Dy = d23k . (Fls)
dyie da d33k

Egs (F9)—~(F14) form the starting point for deriving matrix—vector equations in the form of eqs (3) and (4), with q; and q, defined in eq. (F8).
The other quantities (7, 75, £5 and H3) need to be eliminated. The detailed derivation can be found in the supplemental material, section 4.
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The 5 x 1 vectors d; and d, are defined as

d — f+ 7 0(Ughp) — 8. ((E5) ' UpD3g J5)
EVI((E) (IS — D4, Ugghy)) — I + pspusy Sy

d, = ( C5; (Cy, by — (£5)7'CaD3, J5)

=I5+ (E53) 7 EVS + 5 Valusy I + (D) Ugghy

w

and the 5 x 5 operator matrices Ay, A1, Ay and Ay, have the form defined in eqs (E20) and (E21), where

Ajj = —3(C3,) Cy,
12 = —3,U,sD

18>

1= Vi(€L) D CiCyy

AT = 13153 Vs — Vi€3) TN (£

1
All = iwp — —3,U. 0,
12 4 o ap 98

3 —if’a(gs/z)*anﬂDwV',
AD = io(p — papsy 1) + ivl(gglg)flvt,
1 = i0(C5y — (£5;)7'C53 CyyDy D}, Ci3Cyy),
A’% = —iwC3_31C3,D’1,,
A = i0(E) ~ 1 EN) + ViV,
with
Uys = Cop — Co3C55' Csg,
5/1 =& - D’laUaﬁDlﬂ,
&y =& —D|,UyDsg,
&3 = &3 — Dy, UggDsg,
U:xﬂ = Uy + (5§3)_1UWD3VD'35U5/;,
C

3m

= C3m + (5§3)71C3/D31D§(1Uam’
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(F16)

(F17)

(F18)

(F19)

(F20)

(F21)

(F22)

(F23)

(F24)

(F25)

(F26)

(F27)

(F28)

(F29)

(F30)

(F31)

(F32)

(F33)
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D), = Dy — (&) 'Du(EY), (F34)

with U,3 = O. Operators A;1, Aj,, Az and Aj,; obey the symmetry relations formulated in eqs (16)—(18). We defined the adjoints of the
medium parameters Eix, [, cju and p;; in Appendices C and D. Moreover, we define d; k= di’; .- Similar relations hold for £, €3, 1, ps,
Cj, p, Dy and Ds3;, which contain the parameters i, fbm, Ciju, i and dj.. Operators A1, A, Ay and Ay in the adjoint medium obey

relations (19)—(22).

APPENDIX G: SEISMOELECTRIC WAVES

Seismoelectric waves are governed by the equations for electromagnetic waves (Appendix C) and poroelastodynamic waves (Appendix E),
in which two of the constitutive relations need to be modified to account for the coupling between the two wave types. In this appendix we
consider an isotropic medium (the derivation for the anisotropic situation is disproportionally long). For seismoelectric waves, the modified
constitutive relations are (Pride 1994; Pride & Haartsen 1996)

Ji = 0E; 4+ L(—=d:p" +iop’vi + 1), (GD)

k ) .
w; = LE; + ;(—8,-pf +iwp v + f7). (G2)

The field quantities, sources and medium parameters (except L) have been defined in Appendices C and E (except that tensors are now replaced
by scalars). Here L = L(x, w) accounts for the coupling between the elastodynamic and electromagnetic waves and vice versa. Eqs (G1) and
(G2) contain the same coupling coefficient L (due to Onsager’s reciprocity relation, Pride (1994)). Eq. (G1) replaces the isotropic version
of constitutive relation (C5) and is substituted, together with the isotropic versions of constitutive relations (C3) and (C4), into the Maxwell
eqs (C1) and (C2). Eq. (G2) replaces the isotropic version of eq. (E2). The basic equations for coupled electromagnetic and poroelastodynamic
waves thus read

—iwp’v} — iwpw; — ajrf; = 17, (G3)
—iwp” v} + %(w,. —LE)+ap = [/, (G4)
ia)ri[;. + cijudvy + Co;owy = c,-‘,»klh?, + C&»jqf, (G5)
—iwp” + C80v + Moywy, = Cyhl, + Mg’ (G6)
—iweE; + 0 E; 4+ L(—0;p” +iwp’v}) — ejud; Hy = —J¢ — Lf (G7)
—iwpHy + €y Ey = —J7". (G8)

For the isotropic medium we have
2
ciju = (Kg — ngr)Siijkl + G(8ikSj1 + 88 1), (G9)

where Gy; is the shear modulus of the framework of the grains when the fluid is absent and K is the Gassmann modulus (Pride ef al. 1992).
The permittivity and permeability are defined as ¢ = ¢e, and w = pou,. The subscripts 0 refer to the parameters in vacuum and the subscripts
r denote relative parameters. For ¢, and p, we have (Pride 1994)

& = i(Kf — i) 4 K, (G10)
Uoo
e~ 1, (G11)

where «/ and «* are the dielectric parameters of the fluid and solid, respectively, and a., is the tortuosity at infinite frequency. For later
convenience, we eliminate d,w; from eq. (GS5), using eq. (G6). This yields

_ C ,
ot + ¢} 0v) + ia)ﬁﬁijpf = c}h}. (G12)
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/

o
with ¢, = ¢};(X, ) defined as

2
cl{jk[ = Cijkl — ﬁéi‘/&d. (G13)
Also for later convenience, we add L times eq. (G4) to eq. (G7) in order to compensate for the term L(—d; p/ + iwp/ v?). This yields

—iwEE; + %Lw, — ed Hy = —J°, (G14)

with
1 n .,
E=eg— —(0c—=L"%). Gl15
¢ iw(a k ) ( )

A matrix—vector wave equation for oblique-incidence seismoelectric waves in a stratified isotropic medium, separately for P-SV-TM and
SH-TE propagation, is given by Haartsen & Pride (1997), White & Zhou (2006) and Grobbe (2016). Here we derive the matrix—vector wave
equation for a 3-D inhomogeneous, isotropic, dissipative, fluid-saturated porous solid. The quantities —rg’ , 7, Eq, v°, wy and H,, constitute
the power-flux density j in the x3-direction, via

J =@V pws + EjHy — (V)73 + wip/ + HiE)
1 ) )
= Z(_f;;*v; + p"*ws + ETHy — EjHy — v th + wip’ + HY E\ — H} E>). (G16)

We choose these quantities for the 6 x 1 vectors q; and q, in eqs (3) and (4), hence

-7} \&
a=|p | @a=|w| (G17)
E, H,

To arrive at a set of equations for these quantities, we need to eliminate the remaining wavefield quantities from eqs (G3), (G4), (G12), (G6),
(G14) and (G8). We start by rewriting these equations as

—iwpbvs—iwpfijwj—ajrﬁ =f’, (G13)
—iwp iV + %(w,- — LGB + 85 Ey) + 0ip” = £ (G19)
ioth +C;d v + iw%ijpf = C,;h}, (G20)
—iwp’ + Ciiv' + Mow, = Cith? + Mg/, (G21)
— K + %Ljawa + 8Hy — Vo Hy = —J¢, (G22)
—iwEEs + %Lw; +VIH = —J5, (G23)
—iwpHy + 8:Eg — Vi E3 = —J7', (G24)
—iwpHs + ViEy = —JI", (G25)

with most of the vectors and matrices defined in Appendices C and E. In addition, j; isa 2 x 1 unit vector, with (j;)s = 8. Eqs (G18)~(G25)
form the starting point for deriving matrix—vector equations in the form of eqs (3) and (4), with q; and q defined in eq. (G17). The other
quantities (r’l’ s rg, E;, wy, wy and H;) need to be eliminated. The detailed derivation can be found in the supplemental material, Section 5.
The 6 x 1 vectors d; and d, are defined as

2 +iwp’ gia £+ iaq (Uush)
d = e tLIS + 1] : (G26)

=I5+ Vi(zg %)
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C3,'Cyh?
g’ + Lunt —os(E 1))
=¥+ (L) = Lio f]

iwp

and the 6 x 6 operator matrices A, A2, Ay and Ay, as

All

A

Here

11
11

12
All
13

11

11
12

12
AIZ

22
12

23
Al 2

33
12

11
1

Al

22
1

Al

Al

A AT AR Ay AR
0 0 0|, An=|(AD Aj
) 0 o 0o (ABY

11 12
121 t A%; 023 — At
(A2l) 1 A’Z] ’ A22 - All .
o (A A}

_aot Cu3c3_3l )

-k 1
—ia)pffiaaa — 0y — Uy,

n M
iwp’ Liajl.

1 ol oL - il o/ Ki it
— 0, Unpdp +iow( 0’z +iw(p’ ) =i, ),
iw n

i a),of i3,

1
FOJI | v\ —V/,
topls + YiwE !
iwC3_3',

. 1.
—io—Cy;i
3313,
M

c? iw k
io—1C3'l + — + 95— g,
M2 333 M ﬁn B

—9pLjj

1
(iw5 — ﬂLZ)Iz Y —V,
k iopn

(0]
o
A

where I; is a 3 x 3 identity matrix, I, a 2 x 2 identity matrix and

Uy = Cop — Ca3C3_31 Csg,

(G27)

(G28)

(G29)

(G30)

(G31)

(G32)

(G33)

(G34)

(G35)

(G36)

(G37)

(G38)

(G39)

(G40)

(G41)

(G42)

(G43)
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u, = Ciy — Co3C3y'iz). (G44)

Operators A, Ap, Ay and Ay, obey the symmetry relations formulated in eqs (16)—(18). We define the adjoints of the medium
parameters &, [, 0, ¢y, p (With superscript b or f), k, n, C and M similar as in Appendices C, D and E but for the isotropic situation. Moreover,
we define L = —L*. Operators A, s A, 2, A, and A, in the adjoint medium obey relations (19)—(22). Explicit expressions for the operator
matrices are given in the supplemental material, Section 5.

APPENDIX H: SYMMETRY PROPERTIES OF THE OPERATOR MATRIX IN THE
WAVENUMBER-FREQUENCY DOMAIN

We derive symmetry properties of the operator matrix for the special case of a laterally invariant medium (or potential) in the wavenumber-
frequency domain. We define the spatial Fourier transform of a space- and frequency-dependent quantity A(x, w) as

l;(ka,xg,w)th(x, w)exp(—ikyxy)d* Xy, (H1)
A

with k&, for @ = 1, 2 representing the horizontal wavenumbers. Lateral derivatives d,/A(X, w) in the space-frequency domain are replaced by
products i koh(ky, x3, w) in the wavenumber-frequency domain. We denote the Fourier transform of d,, as d,=ik,. Similarly, for an operator
matrix U in a laterally invariant medium, containing the differential operator 9, we denote the Fourier transform as U(3,) = (k). Using
eqs (10) and (15), we find

U@ = U(—k)Y, (H2)
U@D) = U=k}, (H3)
U@ = Uk} (H4)

We use eq. (H1) to transform eq. (1) to the wavenumber-frequency domain, according to 93§ = 4§ + d. We find the symmetry properties of
Alky, x3, w) by applying eqs (H2)—(H4) to the left-hand sides of eqs (27)—(29). This gives

{A(=ky, x3, 0))'N = ~NA(ky, x5, ®), (H5)
LA(—ky, X3, @)} = JA(ky, X3, ©), (H6)
(Alky, x3, 0)) K = —~KA(ky, x3, w). (H7)
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1 ELECTROMAGNETIC WAVES

The electromagnetic matrix-vector wave equation for an inhomogeneous, anisotropic, dissipative medium is derived in Ap-
pendix C in the main paper. For the special case of an isotropic medium we have &, = £ and pgm = Udkm, or

E 0 0 0 0
&= (O g) 5 83 - <0> 5 533 = 57 M = (lg /‘L> B H3 = <0> ) H33 = M. (1)

For this situation the wave and source vectors read

Eo L Vi(ETIS) = I
= d= Tw B o ’ )
4 <Ho) (—J8+ Lo (w3 )
and the operator matrices reduce to
ol e (fn - S0k0 — Lok,
A =t WNE = ( — 10,10, dwp— L,1o,) (3)
- 1 T iaziaz i(%%@l
Ay = w&i+ iwv2u Vay = ( %31&82 wé — %Olial (4)

and Aj1 = Agz = O, where O is a 2 X 2 zero matrix.

2 ELASTODYNAMIC WAVES

The elastodynamic matrix-vector wave equation for an inhomogeneous, anisotropic, dissipative solid is derived in Appendix
D in the main paper. For the special case of an isotropic medium we have

cijkt = Aij0m + p(dindji + 6adjn), (5)
pij = poij, (©6)

with Lamé parameters A = A(x,w) and g = pu(x,w) and mass density p = p(x,w). Hence, the mass density matrix reduces to
p = plL. For the stiffness matrices C;; we have (Cj1)ix = cijwr = Adij0ks + p(dindji + 040k ), hence

K. 0 0 0 X O 0 0 X
Cu=0 pu 0), Cia=(p 0 0], Ciz=|0 0 0],
0 0 u 00 0 u 00
0 u 0 W 0 0 00 0
Coo=[r 0 0], Cm=[0 K. 0], Cs=[0 0 A, (1)
0 0 O 0 0 pu 0 0
00 u 00 0 L 0 0
031 = 0 0 0 : 032 = 0 0 y2 y C33 = 0 12 0
A0 O 0 X O 0 0 K.
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with K. = Kc(x,w) = A(x,w) + 2u(x,w). For this situation the operator matrices reduce to

0 0 -0 —Ajm

An = 0 0 x5 (8)
—01 —0- 0
wp — %(817/181 +62u82) —$(32u81 +811/282) 0
A = —% (821/281 + 61#82) wp — % (81u81 + 82V162) 0 R (9)
0 0 wp
o0 0
weo
A = 0 % 0 , (10)
0 0 /\réu
0 0 —01
Ay = 9 /9 -0z |, (11)
“xim O Taim 0
where
A+
v = Vl(xaw) :4/-L()\+2’L:L)7 (12)
A
vy, = Vg(x7w):2,u(/\+2u). (13)

3 POROELASTODYNAMIC WAVES

Equations (E.14) — (E.17) in Appendix E in the main paper form the starting point for deriving a poroelastodynamic matrix-
vector wave equation for the quantities 75, p’, v° and ws in vector q. Pre-multiplying all terms in equation (E.15) by nitk ™!,
with 3 X 1 unit vector (i;); = di;, gives

—iwitp! v + itk Mijw; + 9ip” = £ (14)

We separate the derivatives in the x3-direction from the lateral derivatives in equations (E.14)*, (14)", (E.16) and (E.17),
according to

—837'13’, = z‘wpbvS + z‘wpf(iawa + igwg) + 8047'3 + fb, (15)
dsp’ = dwibp've — nitk " (lawa + isws) + £, (16)
v = C;f (—iwrg — Weap” — Casdv’ + C3lhf)7 (17)

w f 1 t s t s 1 t1.b f
83’11}3 = Mp — M(Cfgaﬁv + C383V ) — (%wa + Mclhl + q . (18)
The field components 7%, and w, need to be eliminated. From equation (E.16) we obtain
1 s s W
‘rl; = 7$(Caﬁ8ﬁv + Cu303v° + Mcapf — Calh?). (19)
Pre-multiplying all terms in equation (E.15) by i, gives
) s 1. . 1.
wa = i, (Ekpf — —k(ipdsp” + i30sp”) + fkljfjf). (20)
n n n
Using this in equation (16) gives
osp’ = iwitp v — pitk tisws — itk tiail (iwkpf v* —k(ig0pp’ +1i303p”) + ki, f/ ) + 1, (21)
(1 —isk Maibkis)dsp’ = dwitp’v® —nitk isws — itk iail, (iwkp' v — kigdpp’ +ki; f]) + f1, (22)
1 . . S . — 1l . — 1 . . S . .
dsp’ = 3 (zwlgpfv — pitk isws — 15k iadl (zwkpfv — klgagpf + kljf]f) + fsf) (23)
1 _ _ _ _
= g(igk Yiaibkigdsp’ + iwis(I— k Haitk)p!ve — itk Hsws — itk tiaibki; £ + fgf),

* Equation numbers starting with a letter (E, F or G) refer to equations in the Appendices in the main paper.
T Equation numbers without a letter refer to equations in this supplementary material, unless noted otherwise.
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with
b=1—itk i, kis. (24)

Substituting this into equation (20) gives

_ st (wy pos  Lyeooop o Lo oo
wa = 1a(—kp ~ Jkigdsp +—k1-f.)
7 " n 7
fﬁigkig (igkfliyigkiﬁaﬁpf +iwis (T — k™ iyl k) p/ v* — nisk ™ tisws — iskiyil ki; ff + f?{), (25)
wo = 71(iflkiﬂ + %igkigigkfliwigkig)aﬂpf + 2tk (T - %igig(I ~k'i,itk))p v
n n
+%igkigigk—1igw3 + %ika(l + %igiék_liﬂ,if/k)ijfjf - %igkigfg. (26)

We are now ready to eliminate 72 and w, from equations (15) — (18). The expression for 3v*, equation (17), already has
the desired form. Substituting equations (19) and (26) into equation (15), we obtain

j 1 _ 2 1 _
—osrh = —Zpfi,(iLkis + S iakdsifk i Kig ) 9sp” + iwp’v® — L plinil k(T — Siais (I~ k ,i0k))p' v
n n

. 1. e . vty —1ys wof. . 1, 0 1. ctqs W f. ot
+zwpf(I+ glal’;klglék 1)13103 + ;pflalgk(1+ Elglgk 11713k)1jfjf — %pflalgklgf;{

1 s s dw ¥ b 1 b
—0a (caﬁaﬁv + Casdsv" + Trcap )+f + -=0a(Carhf). (27)

Upon substitution of equation (17) and using

k 'iitk = k'(I-isif)k=1-k lisitk, (28)
itk Litkis = i3I -k tisitk)ig = —ijk 'isiskis, (29)
we obtain
—0s7h = 0a(CasCiiirh) — %pria (it kis — %igkigigk*igigkiﬁ)aﬁpf - %aa(%uapf + UaﬁaﬁvS)

2
+iwp®v® — %pfiaigk(l - %igiék‘ligigk)pfvs +iwp’ (T+ %iai’;kigigk_l)igwg

‘ 1, e ; 1
+ 2 o 1Ak (T 4 ~isitk it k)i £ — =2 pliaitKis £ + £2 + —0a (Uwh?), (30)
n b 7 b iw
with
Ua = Ca — CasCiy Csy, (31)
w = ¢ —CiCics, (32)

where Ugys = O, us = 0 and
Ul = Uga (33)

on account of Cj; = Cy;. Using equations (28) and (29) in equation (23), we obtain

1
o’ = 3 (K iailkiadsp! + iwitk Miaitkp! V' — migk iaws — iskiaitkis ] + £, (34)
with

b=1—itk 'i,ifkis = i5(I — k 'i.if k)is = itk isitkis = (i5k'is)(ifkis) = (ifkis)(i5k 'is) = ifkizitk 'is. (35)

Substituting equations (17) and (26) into equation (18), we obtain

w 1 s 1 ~1/. iw s
Os3wz = Mpf — Mctﬁagv‘ + MCEC&; (zw’rg + MCgpf + C3p0pv° — C3lh?)
—0a (—%(igkifj - %itakigiék_ligigkig)@ﬁpf + %wigk(l - %igigk_ligigk)pfvs
+1.tk. .zkfl. 1.zkI 1. .tkfl. .tk._ f 1.tk. f 1 thb f 36
gla 1313 13w3+51a ( +51313 1y1y )ljfj _%la iz f3 ""MQ 19, (36)
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or
iw iw _ 1,.,. Loy, vty —1e oty
Jsws = Mc§C33 = 7P f + W030331C3pf + aa;(lgklg — glikl:;lgk 1131§k1[3)6ﬁpf
f%ugaﬁvs - 8a%igk(1 - %i3igk*1i3i§k)pfvs
1
—aa(giﬁlkigigk_ligwg n %igk(l n %igiék Litk)i; ff — fl k13f3) n ﬁuth’; +q (37)

Equations (30), (34), (17) and (37) can be cast in the form of matrix-vector wave equation (1) in the main paper, with the
wave vector q = q(x,w) and the source vector d = d(x,w) defined as

1t ’—“pflalak(l + - 1313k 1ay(1W )1]ff - %f)f;alaklgf3 +f° +; 8 ( a,gh%)
f L jtkt,il ki I+ )
_| P _ 3 J 3
q= ve , d= 033 CSlhl (38)
ws faa(}]igk(l + Lk, i k) £ — ﬁi;kig,fg) + Lulhl 4+ gf

and the operator matrix A = A(x,w) having the form of equation (2) in the main paper, with

AL ip A
A = . A = , 39
oo (G A e (Gl A )
11 12 11 12
_ 1 21 _ A 22
A21 = (Ag} A22) s A22 = (.Ag% A%%) ) (40)
where, using equation (35),
i = —0aCasCyy, (41)
12 _ ——bp (biai’;—iaigkigiék_ligig)kigag—aa%ua
] f(bI—13b13 1aiflki3i§,k_1igi§)kig85—8a%ua
1
= w;pf (bI 1313 + i )k1313k 13i§>ki585 - OaMua
- —%pf(l—fklglg,k lgig)kiﬂaﬁ—aaﬁua, (42)
o= 0, (43)
1
0= ik isiskiadp, (44)
= jwpl — iaauaﬁaﬁ - w—priait k(bI — isitk ™ 'isitk) p”
iw nb h
oy 1 w? foot s ot s get s stp —ls st f
= iwp — EaaUaﬂaﬂ - %p 1a1ak(b151B + igbiz — izizk 1313k)p
1 2
= jwp® — Eaauaﬁaﬁ - %pfiaiflk(biﬁif@ — isifkisibk(I — isib)) p’
oy 1 w2f..t 1o i 1. sty N st f
= iwp — ﬁaaUagag — ?p iaig (k— gk1313k 1313k)1g1ﬁp , (45)
A = 20 (iab + ailkiaifk i) = 20 (iaif + iail)Kiaifk
= %pf Kisitk i, (46)
W.pr 1, .
o= sk isiske!, (47)
Bo= ik (48)
1% = iWC3_31, (49)
W
1% = *MC331037 (50)
w
no= Mc}iCss, (51)
- 1
2 _ M2 2 eiCaycs + ¥, ( tkig — —itkisisk ™ isiskis) g, (52)

M b
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2 = —C33Capp, (53)
3 = 0, (54)
21 1 4 W ¢ e TR

2 = —Muﬁag — &lglak(l — 51313k 1313k)p , (55)
3 = —8a%itaki3i§k_1i3. (56)

For the special case of an isotropic medium we have

cijm = (Kag— %Gfr)éij&cz + G (0ik051 + 0idjk ), (57)
Cy = Céby, (58)
pi; = P8, (59)
ol = pldy, (60)
ki = ko (61)

Here Gy is the complex frequency-dependent shear modulus of the framework of the grains when the fluid is absent. The
elastic parameters K¢ (Gassmann modulus), C' and M are given by (Pride et al. 1992; Pride 1994)

Ki + oK + (1+ ¢)K°A

Ke = I+A ' (62)
¢ = MriA (63)
M = %%, (64)
A= o ), (65)

where K® and K/ are the solid and fluid compression moduli and Ky is the compression modulus of the framework of the
grains. These parameters can be expressed in terms of Biot’s parameters A, N, @ and R (Biot 1956a,b), according to

Q+R R

2
Ko — -G =A+2 R, Gg =N, C= . M=-—. 66
G 3 f: + Q + f ¢ ¢2 ( )
Hence,
/ C?
(Cj1)ik = Cijrr = Cijki — M(Sijfskl = 8050k + N(0ir0j1 + dudjn), (67)
Q2
S = A-= 68
R’ (68)
c; = Cij, (69)
" = oL (70)
ot = 'L, (71)
k = kI, (72)
b 1. (73)
With these substitutions, we obtain for the source vector
! i fL 4+ £+ L0, (Uash)
_ £
4= C3, Cy/h! (74)

0 (E£L) + Sulbl, + ¢!
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and for the operator matrices

11

11 -

12

11 -

21

11 =

22
-A11 =

11

12 -

12
12

21

12 =

22

12 -

11

21 -

12
1

21
-A21 =

22

21 -

11
2
12
2

21

2 =

22

2 =

_aacalicfs_ala

k 1
—iwpt 2iz05 — 8, —
wp 7715 B M
o
0,

Ua,

1 . b ekl
EGQUQB(‘)B —l—zw(p I+iw(p’) Elala)7

iwpf i3,
iwp’ i,
U

—
. C_l
wWioss,
o C 1.
fszC% is,
L C 1
—sz13033,
2

. C
Wz
—C35 Csp0p,
0,

W

M

k

iécggli:*; + — + 8&;6047

k 1
fiwaapffig — —ufgaﬁ,
n

M
0.

Using this in equations (39) and (40) we obtain

(91)

f
0 0 -dg g—?al -3
A = 0 0 7821% 5782 — 02 12\/1015’\1 )
-0 —0- 0 0
0 0 0 0
. 2
Zw(pb — (ZT)) - i(aﬂllal + azNag) —%(82N81 + 811/2(92) 0 0
. 2
A, = —i(agllzt% + 81N82) zw(pb - <ZE) ) — i(81N81 + 821/182) 0 0 \
0 0 iwp®  iwpf
0 0 iwp?  iwp®
e 0 0
A = N W iwC
2 0 0 ITCC o2 T MK,
iw : 1 1
0 0 T MK, ZLA'J(M2I(C +M) 780‘1'wa80‘
0 0 -0 0
0 0 —02 0
A22 = f—%ﬁl f—%ag 0 0 !
815—,571%161?681 825—,57]%%?082 0 0
where
E E _
pro= pxw) =
v = wnxw)= 4N(S+ N),
S
ve = wa(xw)= 2N(E),
K. = Kc(x,w)=S5+2N.

(92)

(93)

(94)
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4 PIEZOELECTRIC WAVES

Equations (F.9) — (F.14) in Appendix F in the main paper form the starting point for deriving a piezoelectric matrix-vector
wave equation for the quantities 73, Eo, v and Hy. We separate the derivatives in the x3-direction from the lateral derivatives,
according to

—03T3 = WPV + 0aTa + 1, (99)
BEy = iwp,Ho + iwpsHs + Vi Es — J7', (100)
d93v = Ci3 (—iwTs — C3p9sv — iwCs (D1 Eo + D3 E3) + Caihy), (101)
Hy = w& Eg+iwEs3Es + VoHs +iwDiry — J§. (102)

The field components T4, F3 and Hs need to be eliminated. We start by deriving an explicit expression for E3. From equations
(F.10) and (F.14) we obtain

~ 1 1 1 1.
By = & (*531‘30 + —ViH, + Dy, (.*CklalV + Cri(DuEo + D3 E3) — kalhz) + ,—J3>, (103)
w w ww w
1 1 1 1 .
(€33 — D CuDu) By = —E5Fo + —ViHo + Dl (—Cudv + CuDyEo — —Ciihy ) + - Ji, (104)
1w w w 1w
1" — 1" 1 1 1 e
By = (&) 1(_(53)tE0 + - ViHo + - Diy (Cupdsv + Cradev — Cualu ) + EJ;),), (105)
with
&y = &3 — D4, CrDgy, (106)
(£5)" = &3-DgCuDu. (107)

The term 03V is eliminated from equation (105) by substituting equation (101), hence
Es = (&) (—(8§)tEo + %VfHo + %ng (Ckgagv - Cklhl) + %Jg (108)
+$ngckgc;; (—iwTs — C3p9pv — iwCs (D1 Eo + D3 Es) + C3lhl)>,
(s + DiCraCiif CaDat) By = —(€4)Bo + - ViHo + - Dl (Cusdav — Cub) + - J5 (109)

1 _ . .
+ED§,ka303; (—’LUJT3 — ngagv —wCs3 D Eg + C3lh1),

_ 1 1 ~ 1,
By = (&53)7" <—(5/3)tE0 + EVfHo + EDék (Ukﬁaﬁv - Uklhl) — D, Ci3Ci3' T3 + 5‘]3)’
(110)
with
&3 = &35+ D5 CrsCiy CaDyy = E33 — D5 UriDay, (111)
(€5)" = (€)' +D5CisCay CuDy = €5 — D, UnDyy, (112)
Ui = Cu — CisCsy Ca, (113)
where Uz = Uz = O and
Ul = Uga (114)
on account of C%; = Cy;. Next, we derive an expression for Hs from equation (F.12), according to
_ 1 1 om
Hs = pizy (*HgHO + —VEo+ —J; ) (115)
iw iw
From equation (F.14) we obtain the following expression for 7,
1 1 1
—To = —Cqap0pv + —Ca303v + Cy (Dqu + D31E3) — —Caihy, (116)
iw iw iw
from which d3v and E3 need to be eliminated. Substituting equation (110) into equation (101) yields
O3v = 0;31 <in3 — C353/3V —iwCg Dy Eg + Csihy (117)
SV , 1 1 _ 1.
—zw(533) 1C31D31 (—(gg)tEo + EVfHo + Eng (Ukﬁaﬁv - Ukmhm) - DékaSnglTS + WJJ)),
dsv = Cag (77:&)1,7'3 — iwCy Dy Eg — Ch05v — (E33)'CaD3iViHo — (E53) ' CaDay J5 + Clsmhm), (118)
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with

I' = I— (&) 'CyDyD5,CrsCiy (119)
Chn = Cam+(E53) 'CyD3y D4 Upyn, for m=p(=1,2),3, (120)
D}, = Du— (&) 'Da(Es)". (121)

Substituting equations (110) and (118) into equation (116) gives
1 1 _ _
—Ta = EcaﬁaﬁV + ﬁcoﬁcggl (*iWI/T?, - iUJngD/uEO — ngaﬁv — (5%3) 1ngD3szHo (122)

—(&33) ' CaDayJ5 + ClSmhm) + CouD1uEo

_ 1 1 _ 1.\ 1
+(E53) ' Cat Dy (*(gg)tEo + —ViH, + —Dj, (UkﬁaﬁV - Ukmhm) — D4,CrsCia3' 75 + st) — —Camhm,
iw iw iw iw
1 1 1 1
—Ta = —SaT3—ToEo+ —U,pdsv — —VoViHo — —UL by — — Vo J3, (123)
iw iw iw iw
with
Sa = CasCiyl' + (£33) 'CaiD3iD5;,CisCsy = (Cas + (€53) ' UaiD3D5;Cis) Cas (124)
To = CasCi3C3D)y — CaiDii+ (E53) ' CaiDsi(€5)" = —Uai(Du — (£33) ' Dsi(€5)"), (125)
Ul = Cam — CasCis Chy + (E55) " CarD3iDi Unm = Uam + (€33) ' UatD3iDi Usem, (126)
Vo = (&33) 'CasCay CaDar — (£33) ' CarDar = —(33) 'UaiDar, (127)

where Ul,5 = O and
(Uip)' = Uga- (128)

We are now ready to eliminate 7o, F3 and Hs from equations (99) — (102). The expression for ds3v, equation (118), already
has the desired form. Substituting equation (123) into (99) gives

1., 1 1 1 e
—0373 = iwpv +0a(SaTs + TaEo— —UlLpdsv+ —VoViHo + —Ulghg + — Vo J5) +f (129)
iw iw iw w
1 1 1 1
= aaSaT?) + aaTaEO + (pr - iaaU;ﬁaﬁ)V + .iaavavltHO + iaaU:),Bhﬁ + ‘iaavat]ée + f
iw iw iw iw
Substituting equations (110) and (115) into (100) yields

‘ ) - 1 1 om m
9Eo = dwpHo + iwpspss (—psHo + EVQtEO + =5 ) —J¢ (130)

/ — ! 1 1 — 1 e
+Vi <(633) 1 (_(53)tE0 + S ViHy + =Dl (Uasdsv — Uashs ) — Dy CraCag' s + Z.ng))

- - - _ 1 _
~V1(53) " D CraCas Ta + (Hattaz Vs = Vi(E3s) ™ (£5) ) Bo + - Vi (E3s) " DiaUasdsv
. — 1 — t — m m 1 — 1 - €
+(ZW(H1 - ﬂ3M331N§,) + Evl(gés) 1VI)HO + pgpas I3t =I5 — Evl(gés) 'D5,Uashp + Evl(géﬂ Ls.
Substituting equations (F.14), (110), (115) and (118) into equation (102) gives
_ . . —1 t 1 t 1 m
0sHy = w&1Eg+ iww&3FE3 + Vs (/1,33 (—[,L3H0 + EVQEO + EJJ ))
~Diy (Ckﬁaﬁv + Cr30sv + iwCri (DyEg + D3 E3) — Cklhl) -J5
_ 1 1
= iwE Eo + iw(Ess) "t (€3 — DL, Cou D) <—(S§)tEo + —ViH, + -—Di; (ngaﬁv - Uklhl)
t —1 1 e —1 t 1 t 1 m
~DiyCrsC 73 + - J5 | + Vi (pizg' (—p5Ho + -~ VEEo + - J5'))
iw iw iw
-Di, (cwa,;v + CisCiy (—iwl'T3 — iwCs DY Eg — Ch305v — (E33) ' C3Ds ViHo
—(&33) ' CaDaJ5 + Chphim) + iwCrDyEo — Cklhl> - J5
. _ _ _ . _ 1 _
= iw(DixCraCa T — (E39) " E5 D5 CraCis ) Ta + (1w (EY — (E30) ' E5(£5)") + —Vausi V3 ) Eo
+((€39) " €5 D5 Uns — Din(Cup — CraCig Cia)) v + ((E39) ™ E4VE — Vapuzy i) Ho

— — — e 1 — m e
—((€33) " €5 D5k Upm — Dix(Crm — CrsCi Ci) Y hom + (E33) 7 E5J5 + — Vopugs J3" — I, (131)
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with
& = & —Di(CuD1y — Cy3C33 CyDY)) = €1 — DI UpDyy — (£33) ' D1 CrsCas CuiDsi(E5)". (132)
Using the following relations

D1 CrsCas I — (€33) €5D5:ChsCy =  (Dix — (£33) ' €3Di) CrsCag', (133)

EY — (E33) ' E4(E5)" = €1 - D1 UuDu — (E35) E5(E5)', (134)

(€33) ' E5D5, Usn — D13 (Crm — CrsCi3 Cs) =  —(Diy — (E33) ' E5D5,) Uprm, (135)
equation (131) can be rewritten as
OsHy = (Dl — (€5) ' £5Dh) CraCiitms + (iw(€1 — D UasDis — £5(E5) ' (€5)') + %vw;;vg)Eo

(Dl — (&3) " E4Dba) Unsdsv + ((€50) " E5VE = Vs w ) Ho
/7 —_ / — € 1 — m e
+(Dia — (£35) " E5Dsa) Uashys + (€53) ' ExJ5 + -~ Vapugs J5' — JG. (136)

Equations (129), (130), (118) and (136) can be cast in the form of matrix-vector wave equation (1) in the main paper, with
the wave vector q = q(x,w) and the source vector d = d(x,w) defined as

—T3 f+ £ 0a(Ulshs) — 500 ((E33) ' UapDagJ5)
q— | Fo d— | &V1((Es) ' (J5 — Db Uaghp)) — I + g I3 (137)
v’ Cy3' (Chmhim — (E33) ' CaDa J5)
Ho —JG + (€)1 ELTS + 35 Valpas JE') + (D1a) Uaghs
and the operator matrix A = A(x,w) having the form defined in equation (2) in the main paper, with
11 12 11 12
an = (Gl 4H) e (7 AE). (138)
11 11 12 12
11 12 11 12
A = (T GB) e (E AE). (130)
1 21 2 22
where
i% = —0a8a = —0a (Caf’) + (géB)_anﬁDiiﬂngCkS)Cg;7 (140)
11 = 0aTa=—-0aUas (D1s — (E33) ' Dss(E3)"), (141)
Al = Vi(€s) 'D3CrsCay s (142)
ﬁ = N3N§31V2t -V (5§3)71(£é)tv (143)
%% = iwp— %aaUlaﬁa[% (144)
12 1 t 1 1 \—1 t
- - aVa — — 7 Oq Ua D ) 14
12 iwa Vi zwa (533) sD3sVi ( 5)
1 _
%= Vi) ' DiUapds, (146)
. _ 1 ;-
15 = iw(py — pauss ph) + Evl(gaza) vy (147)
51 = iw(Cay — (33) ' Cay CaDaD3;,CrsCay ), (148)
21 = —iwCs3 CaDy, = —iwCsy Cai(Du — (€35) ' Dai(€5)"), (149)
5 = —iw(Diy) CrsCay = —iw(Diy — (E3) ' E5Df) CrsCg (150)
. 1, e 1 _
2 = iw(E1 - £5(E5) ' (£5)" — DiaUasDis) + - Vapiay Va, (151)
Ay = —C33'Cipds = —Cs3 (Cap + (€33) ' CaDiDia Uas) 95, (152)
22 = —(&5) ' Cay CuDuVi, (153)
%% = _(Dtla - (51/’)3)_182’,D§’)Q)Ua5057 (154)
o= (E33) 'ELVE — Vougy ph. (155)
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5 SEISMOELECTRIC WAVES

Equations (G.18) — (G.25) in Appendix G in the main paper form the starting point for deriving a seismoelectric matrix-
vector wave equation for the quantities 78, p¥, Eo, v, ws and Hy in vector q. We separate the derivatives in the z3-direction
from the lateral derivatives, according to

—0s15 = iwp’V' 4 iwp’ (lawa + isws) + Oath + £, (156)
o’ = wpligy® — L (ws — LEs) + £, (157)
03By = wuHo+ ViE; —J§, (158)
ov® = —C33 (ing + iw%igpf + C3505v° — Cglh?), (159)
0wz = %p — % (if;agvs + iéa‘svs) — Ogwg + %ﬁh? +d, (160)
3Hy = iwEEq — %Ljawa + VuHs — J¢, (161)

with 2 x 1 unit vector (jo)s = das. The field components 75, wq, F3 and Hs need to be eliminated. Using equations (G.19)
and (G.20), we can eliminate the terms iyws and 9o 72 from equation (156), yielding

—0s7h = iwpv® —iwp’ ia (—icupfﬁiflvS + ch)apf — than) + iwp’ isws
n n
1y (c 30V° 4+ Co383v® + iwZi pf) +£ 4 iwpfﬁi L+ Ly (Caihy) (162)
iw @ [e3 @ M « 7 ) o ZUJ « @ )
or, upon substitution of equation (159),
~3375 = 0a(Ca3CisTh) —iwp %1a8ap - 1—8 (Muap + Uapdsv® )
1
+z‘w(pb13 + iw(pf)2%iaifl)v5 + iwp isws + iwp’ Linj' Eo + £ + iu;pf%iafgj +:—0a (Uaihy), (163)
with I3 being a 3 X 3 identity matrix and
Uy = Ca— Ca3CiyCa, (164)
w, = C(ij— C;3Cais), (165)
where Ugys = O, us = 0 and
Ul; = Ugsa (166)
on account of C%; = Cy;. Using equation (G. 23) we eliminate Fs from equation (157), yielding
dsp’ = dwplibv' — 7(1 - —nL2> ws + —— T LVIH, +— Trge+ ff (167)
k iwE k iwE k 5 k 5
Using equation (G.23), we eliminate E5 from equation (158), yleldmg
By = W (TEL“B) + iwpHy + vl( gfoO) I+ vl( gJJ) (168)
Using equations (159) and (G.19), we eliminate the terms d3v*® and dgwgs from equation (160), according to
Ozws = %iécgg,l (iwr’é + iw%igpf> + Mpf + 0 (f}agpf - Ljngo — iwpf%igvs)
1 s 1 b
— U0V + ¢’ + okl — Bﬁ(%fg). (169)
Using equations (G.19) and (G.25), we eliminate w, and Hs from equation (161), yielding
1 1
0Hy = Lja (aapf it E, - iwpfigvS) +iwEEo + Vo (,—V5E0> —Jo+ VQ(_—ng) — Ljafl. (170)
k s o

Equations (163), (167), (168), (159), (169) and (170) can be cast in the form of matrix-vector wave equation (1) in the main
paper, with the wave vector q = q(x,w) and the source vector d = d(x,w) defined as

_.,-g o+ zwp lafa (Ua,gh%)
pf uuS kLJ3(+f3 )
_ EO _ _JO + vl iwE J3
a=| s |, d= nglcslhl (171)
ws ¢’ + jpuihg — 95 (5 f)

Ho _JO + v2(zwp ) LJD‘fa



and the operator matrix A = A(x,w) having the form of equation (2) in the main paper, with

-All

AQ 1

where

11
11

12
11

13
11

11
12

12
12

21
12

22
12

23
12

32
12

33
12

11

1

12
A21

21
1

22
1

23
21

A2
21
33

21
11

2

21

2

31
22

where I» is a 2 x 2 identity matrix. The submatrices that have not been listed here are zero. Using this in equations
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11 12 13
11 11 11
21 22 23 _
11 11 ], A=
31 32 33
11 11 11

11 12 13

2o

1 3
doan ) A
A21 A21 A21

—8(10(1303_31,
k 1
—iwpfgiaaa — 3aMua,

iwp’ Liagh,

1 . .
—EaaUagaﬁ + 1w (prg + uz.;(,of)2

. 1
iwpls + V1 RW’

o1
iwCsyy,
O 1.
_Z(JJM033 is,
Oy
—ZWH13C33,

2 .
ot ~y—1s w k

C — +0—0
13053513 + M + 577 8,

e
ZUJW
—6@ng,
Lja0a,

n

1
wEls + Va 7V2t - *L2ja.j?x =
Wi k

—C35 C3405,
1

t
0
Muﬁ B

ik
—iwOgp’ —ig —
n B

—iwp’ Ljail,

and (173), we obtain

0 0 —31;%

0 0 -
All — —01 —0s 0

0 0 0

0 0 0

0 0 0

501 — O
o g,
paQ 02

11
12
21
12
31
12
11

2
21
22

o ot
—igldg

. n ;2
wE — =1
! k

12 13
12 12
22 23
12 12
32 33
12 12
12 13
22 AQQ
22 23

2 2

31 32 33
A22 A22 A22

)

iwp’ L
0

oo oo

1
)12 +Vo— V3,
i

0
iwp’ L
0

0
0
0

11

(172)

(173)

(174)
(175)
(176)
(177)

(178)
(179)

(180)
(181)
(182)

(183)
(184)
(185)

(194)
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. fy2
zw(pb — (’;—E)) — (011101 + 2N ) — L (02N + 01120,)
. fy2
~ i (021201 + 01N D) iw(ph — C%) — L (NG + O2110n)
A = 0 0
0 0
0 0
0 0
0 0 0 0
0 0 0 0
iwp” iwp! 0 0
iwp iwp®(L+ B L?) Ly Lo |0
0 SOEEL dwp— Aoloy - Loylos
0 el ~Lokoy iwn— L0uto,
iﬁw 0 0 0 0 0
0 N 0 0 0 0
A. 0 0 % _J:;Igc 0 0
= iw - 2
21 0 0 _Mlgc ’LUJ(*MCQVKC + ﬁ) —85ﬁ86 _alL _82L
0 0 0 Lo iwe — 0 — L8, 10 Lo,10,
0o 0 0 Loe Lo,1, iwe — o — Lo,
0 0 - 0 0 0
0 0 —d 0 0 0
_S _ S
An = p! KC?CIN o KCQOCQN o0 ,
nipg — 3,00 Rlp — 3,02 0 0 00
—iwp’ L 0 0 00 0
0 —iwp’ L 0 0 0 0

with pE7 v1, V2, S and K.
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