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S U M M A R Y
With the Marchenko method, Green’s functions in the subsurface can be retrieved from seismic
reflection data at the surface. State-of-the-art Marchenko methods work well for propagating
waves but break down for evanescent waves. This paper discusses a first step towards extending
the Marchenko method for evanescent waves and analyses its possibilities and limitations. In
theory both the downward and upward decaying components can be retrieved. The retrieval of
the upward decaying component appears to be very sensitive to model errors, but the downward
decaying component, including multiple reflections, can be retrieved in a reasonably stable
and accurate way. The reported research opens the way to develop new Marchenko methods
that can handle refracted waves in wide-angle reflection data.

Key words: Controlled source seismology; Seismic interferometry; Wave scattering and
diffraction.

1 I N T RO D U C T I O N

Building on the single-sided autofocusing method of Rose (2002),
Broggini & Snieder (2012) proposed a data-driven method to re-
trieve the Green’s function inside a layered medium from the seismic
reflection response at the surface. This method, which is based on
the Marchenko equation, has been extended for laterally varying
media and used for imaging the subsurface without artefacts re-
lated to internal multiple reflections (Wapenaar et al. 2014; Ravasi
et al. 2016; Staring et al. 2018). Current Marchenko methods only
handle propagating waves, which for most practical applications is
acceptable. However, in reflection experiments with large horizon-
tal offsets, which may include refracted arrivals, evanescent waves
play a significant role. This paper discusses a first step towards ex-
tending the Marchenko method for evanescent waves and analyses
its possibilities and limitations.

2 P RO PA G AT I O N I N VA R I A N T S

We review propagation invariants for a horizontally layered lossless
acoustic medium, which will be used for the derivation of represen-
tations for the Marchenko method in the next section. The propaga-
tion velocity c(z) and mass density ρ(z) are piecewise continuous
functions of the depth coordinate z. In this medium, we consider a
2-D space- and time-dependent acoustic wave field, characterized
by p(x, z, t) and vz(x, z, t), where p is the acoustic pressure, vz the
vertical component of the particle velocity, x the horizontal coor-
dinate and t the time. We define the temporal and spatial Fourier
transform of p(x, z, t) as

p̃(sx , z, ω) =
∫ ∞

−∞

∫ ∞

−∞
p(x, z, t) exp{iω(t − sx x)}dtdx, (1)

where i is the imaginary unit, ω the angular frequency and sx the hori-
zontal slowness. A similar definition holds for ṽz(sx , z, ω). Through-
out this paper ω is taken positive or zero. Since we use slowness
sx (instead of wavenumber kx = ωsx) as the spatial Fourier variable
in p̃(sx , z, ω), the inverse temporal Fourier transform is defined per
sx-value as

p(sx , z, τ ) = 1

π
�

∫ ∞

0
p̃(sx , z, ω) exp(−iωτ )dω. (2)

Here R denotes the real part and τ is the so-called intercept time
(Stoffa 1989). For p̃(sx , z, ω) as well as p(sx, z, τ ), the wave field is
propagating when |sx| ≤ 1/c(z) and evanescent when |sx| > 1/c(z).
For propagating waves, the local propagation angle α(z) follows
from sx = sin α(z)/c(z). Everything that follows also holds for 3-D
cylindrically symmetric wave fields when the spatial Fourier trans-
form is replaced by a Hankel transform and the horizontal slowness
sx by the radial slowness sr.

We consider two independent acoustic states, indicated by sub-
scripts A and B. The following combinations of wave fields in states
A and B,

p̃Aṽz,B − ṽz,A p̃B (3)

and

p̃∗
Aṽz,B + ṽ∗

z,A p̃B (4)

(with the asterisk denoting complex conjugation), are propagation
invariants. This means that for fixed sx and ω these quantities are
independent of the depth coordinate z in any source-free region
(Kennett et al. 1978). A special case is obtained when we take
states A and B identical: dropping the subscripts A and B in eq. (4)
and multiplying by a factor 1/4, this yields the power-flux density
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in the z-direction, that is,

j = 1

4
{ p̃∗ṽz + ṽ∗

z p̃}. (5)

Next, we introduce pressure-normalized downgoing and upgoing
fields p̃+ and p̃−, respectively, and relate these to the total fields p̃
and ṽz , via

p̃ = p̃+ + p̃−, (6)

ṽz = sz

ρ
( p̃+ − p̃−). (7)

Here sz(z) is the vertical slowness. For propagating waves it is
positive real-valued or zero, according to

sz = +
√

1/c2 − s2
x , for s2

x ≤ 1/c2(z), (8)

whereas for evanescent waves it is positive imaginary-valued, that
is,

sz = +i
√

s2
x − 1/c2, for s2

x > 1/c2(z). (9)

For evanescent waves, p̃+ and p̃− are downward and upward
decaying (i.e. decaying in the +z and −z direction), respectively.
Substitution of eqs (6) and (7) into eqs (3) and (4) yields two addi-
tional propagations invariants (Ursin 1983; Wapenaar et al. 1989)

− 2sz

ρ

(
p̃+

A p̃−
B − p̃−

A p̃+
B

)
(10)

and

2�(sz)

ρ

(
( p̃+

A )∗ p̃+
B − ( p̃−

A )∗ p̃−
B

) − 2i�(sz)

ρ

(
( p̃+

A )∗ p̃−
B − ( p̃−

A )∗ p̃+
B

)
,

(11)

respectively, where � denotes the imaginary part. The second
propagation invariant consists of two terms, of which only the first
term is non-zero for propagating waves, whereas for evanescent
waves only the second term is non-zero. This second term was
neglected in previous derivations of the Marchenko method. In
a layered medium, where tunnelling of evanescent waves occurs
in thin high-velocity layers, the propagation invariant of eq. (11)
switches back and forth between the first and the second term, but
its value is the same in each layer. Finally, for the special case that
states A and B are identical we obtain for the power-flux density

j = �(sz)

2ρ

(| p̃+|2 − | p̃−|2) + �(sz)

ρ
�(

( p̃+)∗ p̃−)
. (12)

The first term quantifies the power-flux density of propagating
waves and the second term that of tunnelling evanescent waves in
high-velocity layers.

3 R E P R E S E N TAT I O N S F O R T H E
M A RC H E N KO M E T H O D

We use the propagation invariants of eqs (10) and (11) to derive
representations for the Marchenko method, analogous to Slob et al.
(2014) and Wapenaar et al. (2014), but extended for evanescent
waves. We consider a layered source-free lossless medium for z ≥
z0. For state B we consider a Green’s function G̃ = G̃+ + G̃−, with
its source (scaled with −iωρ) just above z0. At z0, the downgoing
Green’s function G̃+ equals ρ(z0)/2sz(sx, z0) (Aki & Richards
1980; Fokkema & van den Berg 1993). The wave fields p̃+

B and
p̃−

B at z0 (just below the source) and at zF (an arbitrarily chosen
focal depth inside the medium) are given in Table 1. Note that
R̃∪(sx , z0, ω) denotes the reflection response “from above” of the

layered medium. For state A we introduce a focusing function
f̃ 1 = f̃ +

1 + f̃ −
1 in a truncated medium, which is identical to

the actual medium above the focal depth zF and homogeneous
below it. The downgoing focusing function f̃ +

1 (sx , z, zF , ω) is
defined such that, when emitted from z = z0 into the medium, it
focuses at zF. Its propagation to the focal depth zF is described
by T̃ +(sx , zF , z0, ω) f̃ +

1 (sx , z0, zF , ω) = f̃ +
1 (sx , zF , zF , ω), where

T̃ +(sx , zF , z0, ω) is the downgoing transmission response of the
truncated medium and f̃ +

1 (sx , zF , zF , ω) is the focused field
at zF. We could define f̃ +

1 (sx , zF , zF , ω) = 1, where 1 is the
Fourier transform of a temporal delta function. However, in
analogy with the downgoing Green’s function at z0, we define
f̃ +

1 (sx , zF , zF , ω) = ρ(zF )/2sz(sx , zF ), see Table 1. We thus obtain

f̃ +
1 (sx , z0, zF , ω) = ρ(zF )

2sz(sx , zF )

1

T̃ +(sx , zF , z0, ω)
. (13)

Hence, the downgoing focusing function f̃ +
1 (sx , z0, zF , ω) is

defined as a scaled inverse of the transmission response of the trun-
cated medium. The upgoing focusing function f̃ −

1 (sx , z0, zF , ω) is
the reflection response of the truncated medium to f̃ +

1 (sx , z0, zF , ω).
Since the half-space below the truncated medium is homogeneous,
we have f̃ −

1 (sx , zF , zF , ω) = 0.
The propagation invariants are now used to relate the quantities

in Table 1 at z0 to those at zF. From propagation invariant (10) we
obtain (for propagating and evanescent waves)

G̃−(sx , zF , z0, ω) + f̃ −
1 (sx , z0, zF , ω)

= R̃∪(sx , z0, ω) f̃ +
1 (sx , z0, zF , ω), (14)

or, using the inverse Fourier transform defined in eq. (2),

G−(sx , zF , z0, τ ) + f −
1 (sx , z0, zF , τ )

=
∫ τ

−∞
R∪(sx , z0, τ − τ ′) f +

1 (sx , z0, zF , τ ′)dτ ′. (15)

Next we use propagation invariant (11). First we consider propa-
gating waves at z0 and zF. For this situation we only use the first term
of this propagation invariant. Substituting the quantities of Table 1
and applying the inverse Fourier transform of eq. (2), we obtain

G+(sx , zF , z0, τ ) − f +
1 (sx , z0, zF , −τ )

= −
∫ τ

−∞
R∪(sx , z0, τ − τ ′) f −

1 (sx , z0, zF , −τ ′)dτ ′. (16)

Next, we consider propagating waves at z0 and evanescent waves at
zF. Equating the first term of propagation invariant (11) at z0 to the
second term at zF, we obtain for the quantities of Table 1 (after an
inverse Fourier transform)

G−(sx , zF , z0, τ ) − f +
1 (sx , z0, zF , −τ )

= −
∫ τ

−∞
R∪(sx , z0, τ − τ ′) f −

1 (sx , z0, zF , −τ ′)dτ ′. (17)

Eqs (15) and (16) were already known but eq. (17) is new. It ex-
presses the upward decaying part of the Green’s function at zF in
terms of the reflection response at the surface and focusing func-
tions. Note that two more relations can be derived for evanescent
fields at z0, but these will not be discussed here.

We discuss some aspects of eqs (15)–(17). Consider the medium
of Fig. 1, with zF = 480 m and z3 = 500 m. Fig. 2 shows the functions
in the left-hand sides of eqs (15) and (16), convolved with a seismic
wavelet (central frequency 50 Hz), for sx = 0 s m–1, hence, for
propagating waves at z0 and zF. The focusing functions are shown
in blue and the Green’s functions in green. The traveltime of the
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Table 1. Quantities to derive representations (15)–(17).

p̃+
A (sx , z, ω) p̃−

A (sx , z, ω) p̃+
B (sx , z, ω) p̃−

B (sx , z, ω)

z = z0 f̃ +
1 (sx , z0, zF , ω) f̃ −

1 (sx , z0, zF , ω) ρ(z0)
2sz (sx ,z0)

ρ(z0)R̃∪(sx ,z0,ω)
2sz (sx ,z0)

z = zF
ρ(zF )

2sz (sx ,zF ) 0 G̃+(sx , zF , z0, ω) G̃−(sx , zF , z0, ω)

Figure 1. Horizontally layered lossless acoustic medium.

(a)

(b)

Figure 2. Functions in the left-hand sides of (a) eq. (15) and (b) eq. (16),
for propagating waves at z0 and zF.

direct arrival of the downgoing Green’s function in Fig. 2(b) is τ d.
The onset of this direct arrival is indicated by τ ε

d = τd − ε, where
ε is half the duration of the wavelet. Note that in Figs 2(a) and (b),
τ ε

d separates the focusing functions (at τ < τε
d ) from the Green’s

functions (at τ > τε
d ), except for the coinciding direct arrivals in

Fig. 2(b) (eq. 16). This separation is an essential requirement for
the standard Marchenko method. Next, consider again the medium
of Fig. 1, this time with zF = 420 m and z3 = 430 m. The third layer
between z2 and z3 is now a thin layer. Fig. 3 shows the functions
in the left-hand sides of eqs (15) and (17) for sx = 1/2800 s m–1,
hence, for propagating waves at z0 and evanescent waves at zF.
Note that for this situation there appear to be coinciding arrivals
in both equations, hence, the aforementioned requirement for the
standard Marchenko method is not fulfilled. The mentioned arrivals
will remain coincident even when the focal depth zF is varied within
the thin layer, since for evanescent waves the traveltime does not
vary with depth.

(a)

(b)

Figure 3. Functions in the left-hand sides of (a) eq. (15) and (b) eq. (17),
for propagating waves at z0 and evanescent waves at zF. In this display the
amplitudes of the focusing functions are scaled by a factor 1/8.

To resolve this issue, we derive a relation between f +
1 and f −

1 . To
this end, we first introduce focusing functions f +

2 and f −
2 (Wape-

naar et al. 2014). The upgoing focusing function f̃ −
2 (sx , z, z0, ω) is

defined such that, when emitted from z = zF into the truncated
medium, it focuses at z0. In Table 1 we replace the quantities
in state B by p̃±

B (sx , zF , ω) = f̃ ±
2 (sx , zF , z0, ω), p̃−

B (sx , z0, ω) =
f̃ −

2 (sx , z0, z0, ω) = ρ(z0)/2sz(sx , z0) and p̃+
B (sx , z0, ω) = 0. State

A remains unchanged. From propagation invariant (10) we obtain
(after an inverse Fourier transform)

f +
1 (sx , z0, zF , τ ) = f −

2 (sx , zF , z0, τ ). (18)

From propagation invariant (11) we obtain for propagating waves
at z0 and evanescent waves at zF

− f −
1 (sx , z0, zF , −τ ) = f −

2 (sx , zF , z0, τ ). (19)

Combining these two equations yields

f −
1 (sx , z0, zF , τ ) = − f +

1 (sx , z0, zF , −τ ). (20)

Using this in either eqs (15) or (17) gives

G−(sx , zF , z0, τ ) − f +
1 (sx , z0, zF , −τ )

=
∫ τ

−∞
R∪(sx , z0, τ − τ ′) f +

1 (sx , z0, zF , τ ′)dτ ′. (21)

Hence, for the situation of propagating waves at z0 and evanescent
waves at zF, we have reduced the system of eqs (15) and (17) to
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the single eq. (21). Since coincident arrivals occur now only in one
equation (illustrated by Fig. 3b), we have achieved a situation which
can be solved with a modified Marchenko method (to be discussed
in the next section). This yields f +

1 (sx , z0, zF , τ ), G−(sx, zF, z0, τ )
and (via eq. 20) f −

1 (sx , z0, zF , τ ).
We still need a representation for G+(sx, zF, z0, τ ), which we

derive as follows. In the original Table 1, we replace the quanti-
ties in state A by p̃−

A (sx , zF , ω) = 1, p̃+
A (sx , zF , ω) = R̃∩(sx , zF , ω),

p̃−
A (sx , z0, ω) = T̃ −(sx , z0, zF , ω) and p̃+

A (sx , z0, ω) = 0. Here
R̃∩(sx , zF , ω) denotes the reflection response ‘from below’ of
the truncated medium and T̃ −(sx , z0, zF , ω) its upgoing transmis-
sion response. State B remains unchanged. From propagation in-
variant (10) we obtain, after an inverse Fourier transform, using
sz(sx, z0)ρ(zF)T−(sx, z0, zF, τ ) = sz(sx, zF)ρ(z0)T+(sx, zF, z0, τ )
(Wapenaar 1998),

G+(sx , zF , z0, τ ) = ρ(z0)T +(sx , zF , z0, τ )

2sz(sx , z0)

+
∫ τ

−∞
R∩(sx , zF , τ − τ ′)

× G−(sx , zF , z0, τ
′)dτ ′. (22)

According to eq. (13), T+(sx, zF, z0, τ ) can be obtained
from f +

1 (sx , z0, zF , τ ). We propose to approximate the unknown
R∩(sx, zF, τ ) by its first reflection, coming from the deepest inter-
face above zF. Since this is a reflection response for evanescent
waves, its amplitude is small and its arrival time is zero, hence it
does not require an accurate model.

4 M A RC H E N KO M E T H O D F O R
E VA N E S C E N T WAV E S

We use eq. (21) as the basis for deriving a modified Marchenko
method for the situation of propagating waves at z0 and evanescent
waves at zF. Our first aim is to suppress the Green’s function G−

from this equation, so that we are left with an equation for the
focusing function f +

1 . We write this focusing function as

f +
1 (sx , z0, zF , τ ) = f +

1,d(sx , z0, zF , τ ) + M+(sx , z0, zF , τ ), (23)

where f +
1,d is the direct arrival and M+ the coda. The time-reversed

direct arrival is coincident with the direct arrival of G−, whereas
the time-reversed coda is separated in time from G−, see Fig. 3(b)
for an example. We define a window function w(τ ) = θ (τ ε

d − τ ),
where θ (τ ) is the Heaviside step function. Applying this window to
both sides of eq. (21) gives

M+(sx , z0, zF , −τ ) = −w(τ )
∫ τ

−∞
R∪(sx , z0, τ − τ ′)

× f +
1 (sx , z0, zF , τ ′)dτ ′. (24)

This equation, with M+ replaced by f +
1 − f +

1,d, can be solved with
the following iterative scheme

f +
1,k+1(sx , z0, zF ,−τ ) = f +

1,d(sx , z0, zF ,−τ ) − w(τ )

×
∫ τ

−∞
R∪(sx , z0, τ − τ ′)

× f +
1,k (sx , z0, zF , τ ′)dτ ′. (25)

The scheme starts with f +
1,1 = f +

1,d, where f +
1,d is obtained by invert-

ing the direct arrival of the transmission response of the truncated
medium, analogous to eq. (13). Because of the evanescent behaviour
of the transmission response, the amplitude of f +

1,d grows rapidly

with increasing zF, hence, f +
1,d is stable only for a finite depth interval

in the layer where waves are evanescent.
Hence, when the reflection response R∪ and the direct arrival

of the focusing function, f +
1,d, are known, the iterative scheme

of eq. (25) yields f +
1 . Subsequently, eqs (22) and (21) yield

G+(sx, zF, z0, τ ) and G−(sx, zF, z0, τ ). In these retrieved Green’s func-
tions, zF indicates the position of a virtual receiver which observes
downward and upward decaying evanescent waves, respectively (or,
via reciprocity, a virtual source which emits upward and downward
decaying evanescent waves).

We illustrate this for the medium of Fig. 1, again with zF =
420 m and z3 = 430 m. Fig. 4(a) shows the reflection response
R∪(sx, z0, τ ) for sx = 1/2800 s m–1. The direct focusing function
f +
1,d(sx , z0, zF , τ ), shown in Fig. 4(b), has been derived from the

direct transmission response, modelled for the moment in the ex-
act truncated medium. After three iterations, we obtain the results
shown in Figs 4(c), (d) and (e) (actually, for this simple medium
the method converges already after one iteration and remains sta-
ble even after 100 iterations). The results (shown again in blue and
green) overlay the directly modelled exact results (shown in red).
Note that the match is excellent (both for the primary and the multi-
ples) despite the simple approximation used for R∩, described below
eq. (22).

Numerical experiments, using erroneous velocities for modelling
the direct transmission response, reveal that the method is stable
with respect to small velocity errors for estimating f +

1 , but unstable
for estimating G− (unlike the Marchenko method for propagat-
ing waves). This means that in practical applications G− cannot
be obtained and that the representation for G+ (eq. 22) should be
approximated by the first term. This obviates the need for estimat-
ing R∩(sx, zF, τ ). Fig. 5(a) shows G+ obtained from the first term
in eq. (22). Apart from some amplitude errors, the result is still
accurate. Fig. 5(b) shows again G+, but this time after modelling
the direct transmission response in an erroneous truncated medium,
with velocities c̄1 = 1450, c̄2 = 2050 and c̄3 = 3030 m s–1. We ob-
serve similar amplitude errors as in Fig. 5(a) and in addition some
traveltime errors caused by the wrong velocities. Nevertheless, pri-
mary and multiples are still clearly discernible and no scattering
artefacts related to wrong velocities have come up. Next we re-
place the thin layer by a homogeneous half-space z > z2 (with c3 =
3000 m s–1). Fig. 5(c) shows the retrieved G+ (using the same erro-
neous truncated medium). Since in this situation G− is absent at zF,
the first term in eq. (22) suffices to retrieve G+. This explains why
the amplitudes in Fig. 5(c) are again very accurate. Finally, we apply
the Marchenko method for many focal depths (using the standard
method for z0 < zF ≤ z2 and the new method for evanescent waves
for zF > z2). The result is shown in Fig. 6. Below the interface at
z2 = 400 m we clearly observe the retrieved downward decaying
Green’s function, including multiple reflections related to the over-
lying medium. For zF > 480 m the method becomes unstable and
the results have been set to zero.

5 C O N C LU D I N G R E M A R K S

The analysis in this paper shows that, at least in principle, the
evanescent field of the Green’s function for a virtual receiver (or
via reciprocity a virtual source) inside a layered medium can be
retrieved from the reflection response at the surface and an estimate
of the direct transmission response. In theory both the downward
and upward decaying components can be retrieved. However, the
retrieval of the upward decaying Green’s function is very sensitive to
errors in the direct transmission response. The downward decaying
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(a)

(b)

(c)

(d)

(e)

Figure 4. (a, b) Input data. (c, d, e) Results of the Marchenko method for
evanescent waves at zF = 420 m.

Green’s function, including multiple reflections, can be retrieved
quite accurately, provided the distance over which the field decays is
limited. Errors in the direct transmission response cause traveltime
errors but do not give rise to scattering artefacts.

The analysis is restricted to a horizontally layered medium and a
single horizontal slowness. Of course the proposed method can be
applied for a range of horizontal slownesses (for propagating and
evanescent waves at one or more depth levels zF). Combining this
with an inverse transform to the space-time domain, this enables

(a)

(b)

(c)

Figure 5. Results of variations of the Marchenko method for evanescent
waves at zF = 420 m (details discussed in the text).

Figure 6. Results of the Marchenko method for all depth levels. To empha-
size the multiples, a time-dependent amplitude gain of exp {4τ} is used in
this display.

the monitoring of the space-time evolution of a wave field through a
layered medium, similar as in Brackenhoff et al. (2019) but includ-
ing refracted waves. The generalisation of the proposed method for
laterally varying media is subject of current research.
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