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S U M M A R Y 

Many seismic imaging methods use wav efield e xtrapolation operators to redatum sources and 

receivers from the surface into the subsurface. We discuss wavefield extrapolation operators 
that account for internal multiple reflections, in particular propagator matrices, transfer matri- 
ces and Marchenko focusing functions. A propagator matrix is a square matrix that ‘propagates’ 
a wav efield v ector from one depth lev el to another. It accounts for primaries and multiples and 

holds for propagating and e v anescent w aves. A Marchenko focusing function is a wavefield 

that focuses at a designated point in space at zero time. Marchenko focusing functions are 
useful for retrieving the wavefield inside a heterogeneous medium from the reflection response 
at its surface. By expressing these focusing functions in terms of the propagator matrix, the 
usual approximations (such as ignoring e v anescent w a ves) are a voided. While a propagator 
matrix acts on the full wavefield vector, a transfer matrix (according to the definition used 

in this paper) ‘transfers’ a decomposed wavefield vector (containing downgoing and upgoing 

waves) from one depth level to another. It can be expressed in terms of decomposed Marchenko 

focusing functions. We present propagator matrices, transfer matrices and Marchenko focusing 

functions in a consistent way and discuss their mutual relations. In the main text we consider 
the acoustic situation and in the appendices we discuss other wave phenomena. Understand- 
ing these mutual connections may lead to new developments of Marchenko theory and its 
applications in wavefield focusing, Green’s function retrieval and imaging. 

Key words: Controlled source seismology; Theoretical seismology; Wave propagation; Wave 
scattering and diffraction. 
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 I N T RO D U C T I O N  

n many seismic imaging methods, wavefield extrapolation is used
o redatum sources and receivers from the surface to a depth level
n the subsurface. In most cases the redatuming process is based on
ne-w ay w av efield e xtrapolation operators, which only account for
rimaries. To account for internal multiple reflections in redatum-
ng, more adv anced w av efield e xtrapolation operators are required.
his paper is not about the redatuming process itself, but about
av efield e xtrapolation operators that account for internal multi-
les. In particular, we discuss propagator and transfer matrices,
archenko focusing functions and their mutual relations. 
In elastodynamic wave theory, a propagator matrix is a square
atrix that ‘propagates’ a wavefield vector from one depth level to

nother. It was originally introduced in geophysics for horizontally
ayered media (Thomson 1950 ; Haskell 1953 ; Gilbert & Backus
966 ) and later extended for laterally varying media (Kennett 1972 ).
t has been used for modelling surface waves (Woodhouse 1974 )
nd reflection and transmission responses of heterogeneous media
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Roy
Haines 1988 ; Kennett et al. 1990 ; Koketsu et al. 1991 ; Takenaka
t al. 1993 ). It has also been proposed as an operator for accurate
eismic imaging schemes, accounting for high propagation angles
K osloff & Ba ysal 1983 ) and internal multiple reflections (Wapenaar
 Berkhout 1986 ). The wav efield v ector that the propagator matrix

cts on contains components of the full wavefield (e.g. particle
elocity and stress). Here ‘full’ means that the wavefield implicitly
onsists of downgoing and upgoing, propagating and e v anescent
aves. 
A Marchenko focusing function is a wavefield that focuses at a

esignated point in space at zero time, accounting for primaries and
ultiples. Marchenko focusing functions were originally introduced

o retrieve the wavefield inside a horizontally layered medium from
he reflection response at the boundary of that medium (Rose 2001 ,
002 ; Broggini & Snieder 2012 ; Slob et al. 2014 ). This has been
xtended for laterally varying media (Wapenaar et al. 2013 ), under
he assumption that the wavefield inside the medium can be decom-
osed into downgoing and upgoing components and that e v anes-
ent waves can be neglected. It has recently been shown that the
al Astronomical Society. 1403 
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propagator matrix can be expressed in terms of Marchenko focus- 
ing functions and vice versa (Wapenaar & de Ridder 2022 ). Via this 
relation, the usual assumptions underlying the focusing functions 
(such as ignoring e v anescent w av es) are circumv ented. 

In this paper, we define a transfer matrix as a square matrix 
that ‘transfers’ decomposed wavefield vectors (explicitly contain- 
ing downgoing and upgoing waves) from one depth level to another 
(Born & Wolf 1965 ; Katsidis & Siapkas 2002 ). It is different from 

the propagator matrix, which acts on full wavefield vectors (but 
please note that in the literature there is not a clear distinction be- 
tween the use of the terminologies ‘propagator matrix’ and ‘transfer 
matrix’). It has recently been shown that the transfer matrix can be 
expressed in terms of decomposed Marchenko focusing functions 
(Dukalski et al. 2022a , b ), an insight that is expected to be useful in 
further analysis of the minimum-phase property of elastodynamic 
focusing functions (Reinicke et al. 2023 ) and beyond. 

The aim of this paper is to present propagator matrices, transfer 
matrices and Marchenko focusing functions in a consistent way and 
to discuss their mutual relations. We aim to set up the theory as 
general as possible, accounting for lateral and vertical variations 
of the medium parameters, accounting for e v anescent w aves and 
taking dissipation into account. Whereas in the main text we con- 
sider acoustic waves, in the appendices we generalize the theory for 
other wave phenomena. The numerical examples, which are meant 
as illustrations of the different quantities and their relations, are 
restricted to oblique acoustic plane waves in a lossless horizontally 
layered medium. 

We hope that this consistent treatment will contribute to the 
understanding of the mutual connections and provide insight in 
the assumptions and approximations that underlie Marchenko-type 
w avefield retrie v al schemes and how to cope with them (Slob 2016 ; 
Dukalski et al. 2019 , 2022b ; Reinicke et al. 2020 , 2023 ; Elison 
et al. 2020 ; Diekmann & Vasconcelos 2021 ; Wapenaar et al. 2021 ; 
Kiraz et al. 2023 ). Moreover, we hope to stimulate new research 
directions. 

The setup of this paper is as follows. In Section 2 , we discuss 
the 2 × 2 propagator matrix for acoustic wavefields and its rela- 
tion with acoustic Marchenko focusing functions. The advantage 
of concentrating on the acoustic situation is that all expressions are 
relati vel y simple and yet contain all essential aspects. In Section 3, 
we discuss the 2 × 2 transfer matrix for acoustic wavefields and its 
relation with decomposed acoustic Marchenko focusing functions. 
In Section 4 , we present some conclusions. 

Appendices A and B are generalisations of Sections 2 and 3 for 
other wave phenomena. Here, the propagator and transfer matrices 
are N × N matrices, with N ranging from 2 for acoustic waves 
to 12 for seismoelectric waves; the Marchenko focusing functions 
are N 

2 × N 
2 matrices. We derive their mutual relations by exploiting 

general symmetry properties, which are derived in Appendix C . 
The appendices not only cover classical waves, but also quantum 

mechanical waves obeying the Schr ödinger equation ( N = 2) and 
the Dirac equation ( N = 4). 

2  A  C O U S T I C  P RO PA  G A  T O R  M A  T R I X  

A N D  F O C U S I N G  F U N C T I O N S  

2.1 Acoustic matrix–vector wave equation 

Our starting point is the following matrix–v ector wav e equation in 
the space–frequency domain 

∂ 3 q = A q + d (1) 
(Woodhouse 1974 ; Corones 1975 ; Ursin 1983 ; Kosloff & Baysal 
1983 ; Fishman & McCoy 1984 ; Wapenaar & Berkhout 1986 ; de 
Hoop 1996 ). In Appendix A, we discuss this equation for a range of 
wave phenomena. Here we consider acoustic waves. For this situa- 
tion, q is a vector containing the wavefield components p (acoustic 
pressure) and v 3 (vertical component of the particle velocity), both 
as a function of the space coordinate vector x = ( x 1 , x 2 , x 3 ) (with
positive x 3 denoting depth) and the angular frequency ω, hence, 

q ( x , ω) = 

(
p 
v 3 

)
( x , ω) . (2) 

Operator ∂ 3 stands for the partial differential operator ∂ / ∂ x 3 . The 
space- and frequency-dependent operator matrix A is defined as 

A ( x , ω) = 

(
0 iωρ

iωκ − 1 
iω ∂ α

1 
ρ
∂ α 0 

)
( x , ω) , (3) 

where κ( x , ω) is the compressibility, ρ( x , ω) the mass density and 
i the imaginary unit. Operator ∂ α stands for the partial differential 
operator ∂ / ∂ x α . Greek subscripts take on the values 1 and 2 and 
Einstein’s summation convention applies to repeated subscripts, 
unless otherwise noted. In general the medium may be dissipative, 
meaning that κ and ρ may be frequency-dependent and complex- 
valued, with (for positive ω) � ( κ) ≥ 0 and � ( ρ) ≥ 0, where � denotes 
the imaginary part. For later convenience we rewrite the operator 
matrix as follows: 

A ( x , ω) = 

(
0 iωρ

− 1 
iω 

√ 

ρ
H 2 

1 √ 

ρ
0 

)
( x , ω) . (4) 

Here H 2 ( x , ω) is the Helmholtz operator, defined as 

H 2 ( x , ω) = k 2 ( x , ω) + ∂ α∂ α, (5) 

with wavenumber k ( x , ω) defined via 

k 2 ( x , ω) = ω 

2 κρ − 3( ∂ αρ)( ∂ αρ) 

4 ρ2 
+ 

( ∂ α∂ αρ) 

2 ρ
(6) 

(Brekhovskikh 1960 ; Wapenaar et al. 2001 ). Finally, vector d in 
eq. ( 1 ) contains source terms, according to 

d ( x , ω) = 

( 

ˆ f 3 
1 

iω ∂ α( 1 
ρ

ˆ f α) + ˆ q 

) 

( x , ω) . (7) 

Here ˆ f α( x , ω) and ˆ f 3 ( x , ω) are the horizontal and vertical compo- 
nents, respecti vel y, of the external force density (the hats are used 
to distinguish external force components from focusing functions), 
and ˆ q ( x , ω) is the volume injection-rate density (where ˆ q is to be 
distinguished from the wavefield vector q ). From here onward we 
simplify the notation by not explicitly mentioning the frequency- 
dependency in the argument lists. 

2.2 Acoustic propagator matrix 

We define a boundary ∂D F at depth level x 3 = x 3, F . We define 
a coordinate vector x F at this boundary as x F = ( x 1, F , x 2, F , x 3, F ) 
(with fixed x 3, F ). We introduce the propagator matrix W ( x , x F ) as a 
solution of wave eq. ( 1 ) for the source-free situation, according to 

∂ 3 W ( x , x F ) = A ( x ) W ( x , x F ) , (8) 

with boundary condition 

W ( x , x F ) | x 3 = x 3 ,F = I δ( x H − x H ,F ) , (9) 

where I is the identity matrix and x H and x H , F denote the horizontal 
coordinates of x and x F , respecti vel y, hence x H = ( x 1 , x 2 ) and x H , F 
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 ( x 1, F , x 2, F ). Since eqs ( 1 ) and ( 8 ) are both linear, Huygens’
uperposition principle can be applied to get a representation for
 ( x ) in terms of W ( x , x F ). For a given depth level x 3 , assuming there
re no sources for q ( x ) between x 3, F and x 3 , we obtain 

 ( x ) = 

∫ 
∂D F 

W ( x , x F ) q ( x F ) d 
2 x F (10) 

Gilbert & Backus 1966 ; Kennett 1972 ; Woodhouse 1974 ). Note
hat eq. ( 10 ) expresses the ‘propagation’ of q from depth level x 3, F 

o depth level x 3 , which is why W ( x , x F ) is called the propagator
atrix. It is partitioned as follows: 

 ( x , x F ) = 

(
W 

p,p W 

p,v 

W 

v,p W 

v,v 

)
( x , x F ) , (11) 

here W 

p,p , W 

p,v , W 

v,p and W 

v,v are the scalar components of
he propagator matrix. For each of these components, the second
uperscript refers to the wavefield component ( p or v 3 ) it acts on at
 F , whereas the first superscript refers to the wavefield component
t contributes to at x . Eq. ( 10 ) is illustrated in the upper-left frame
f Fig. 1 . The solid line at x 3, F denotes the boundary ∂D F (not
ecessarily a physical boundary). The medium below ∂D F may be
nhomogeneous and dissipative. The dashed line at x 3 indicates an
rbitrary depth level inside the inhomogeneous medium. 

By applying eq. ( 10 ) recursi vel y, it follows that W obeys the
ollowing recursive expression 

 ( x ′ , x F ) = 

∫ 
∂D 

W ( x ′ , x ) W ( x , x F ) d 
2 x , (12) 

here ∂D is a horizontal boundary at a constant depth level x 3 . By
aking x ′ 3 = x 3 ,F , we obtain from eqs ( 9 ) and ( 12 ) 

 δ( x ′ H − x H ,F ) = 

∫ 
∂D 

W ( x ′ H , x 3 ,F , x ) W ( x , x F ) d 
2 x , (13) 

rom which it follows that W ( x F , x ) is the inverse of W ( x , x F ). 
The propagator matrix W ( x , x F ) accounts for primaries and multi-

les between x 3, F and x 3 and it holds for propagating and e v anescent
aves (for example, Woodhouse 1974 , uses the elastodynamic ver-

ion of the propagator matrix to analyse surface waves). Evanescent
eld components may lead to instability and should be handled
ith care (Kennett & Kerry 1979 ). Since the underl ying w ave equa-

ion is based on the explicit Helmholtz operator H 2 (rather than on
ts square-root, appearing in one-way wave equations), Kosloff &
aysal ( 1983 ) argue that the numerical e v aluation of eq. ( 10 ) con-
erges much faster and for higher propagation angles than schemes
ased on one-way wav e equations. The y e xploit this property in
ide-angle imaging of seismic reflection responses. They use filters

o eliminate e v anescent and downgoing waves, so they do not exploit
he fact that the propagator matrix can handle multiply reflected and
 v anescent w aves. Wapenaar & Berkhout ( 1986 ) propose a seismic
maging scheme based on the propagator matrix that handles inter-
al multiple reflections. Since their scheme is v ery sensitiv e to the
hosen background model it has not found broad applications. In
ection 2.3 , we show that the propagator matrix can be expressed

n terms of Marchenko focusing functions. For a lossless medium,
hese focusing functions can be derived from seismic reflection data
nd a smooth background model (Section 2.4 ). Hence, this leads
o a propagator matrix that can be used for seismic imaging, which
roperly handles internal multiple reflections without being highly
ensitive to the background model. 

We conclude this section with a numerical illustration of the
ropagator matrix for the horizontally layered lossless medium of
ig. 2 (a). In each layer the propagation velocity c = 1 / 

√ 

κρ is
hown (in m s −1 ). We define the spatial Fourier transformation of a
unction u ( x , ω) along the horizontal coordinate x H for constant x 3 
s 

˜  ( s , x 3 , ω) = 

∫ 
R 2 

exp {−iωs · x H } u ( x H , x 3 , ω) d 2 x H , (14) 

here s = ( s 1 , s 2 ) is the horizontal slowness vector and R is the set
f real numbers. For a horizontally layered medium, this transfor-
ation decomposes u ( x , ω) into independent plane waves, with

ropagation angle θ (with respect to the vertical axis) obeying
in θ = c | s | . We apply this transformation to the propagator ma-
rix W ( x , x F ), choosing x F = (0, 0, x 3, F ). This yields the trans-
ormed propagator matrix ˜ W ( s , x 3 , x 3 ,F ) , with boundary condition
˜ 
 ( s , x 3 ,F , x 3 ,F ) = I . Analogous to eq. ( 12 ) it obeys the recursive

xpression 

˜ 
 ( s , x ′ 3 , x 3 ,F ) = 

˜ W ( s , x ′ 3 , x 3 ) ˜ W ( s , x 3 , x 3 ,F ) . (15) 

ext, we define the inverse temporal Fourier transformation for
onstant s and x 3 as 

 ( s , x 3 , τ ) = 

1 

π
� 

∫ ∞ 

0 
˜ u ( s , x 3 , ω) exp {−iωτ } d ω, (16) 

here R denotes the real part and τ is the intercept time (Stoffa
989 ). Applying this transformation to ˜ W ( s , x 3 , x 3 ,F ) we obtain
 ( s , x 3 , x 3, F , τ ), with boundary condition W ( s , x 3, F , x 3, F , τ ) =

 δ( τ ) and with W ( s , x 3 , x 3, F , τ ) obeying the recursive expression 

 ( s , x ′ 3 , x 3 ,F , τ ) = W ( s , x ′ 3 , x 3 , τ ) ∗ W ( s , x 3 , x 3 ,F , τ ) , (17) 

here the inline asterisk denotes temporal convolution. Although
he numerical modelling is most ef ficientl y done in the slowness-
requency domain (using eq. 15 ), the results are more conveniently
nterpreted w hen display ed in the slowness intercept-time domain.
etting s 2 = 0, the components W 

p,p ( s 1 , x 3 , x 3, F , τ ) and W 

p,v ( s 1 ,
 3 , x 3, F , τ ), with boundary conditions W 

p,p ( s 1 , x 3, F , x 3, F , τ ) = δ( τ )
nd W 

p,v ( s 1 , x 3, F , x 3, F , τ ) = 0, are shown in Figs 2 (b) and (c)
or fixed s 1 = 1/3500 s m 

−1 , as a function of intercept time τ and
epth x 3 . To get a smooth display, at each depth the components are
onvolved with a Ricker wavelet with a central frequency of 50 Hz.
he upper traces at x 3 = x 3, F = 0 m represent the aforementioned
oundary conditions. Note that W 

p,p and W 

p,v are, for each depth
 3 , even and odd functions, respectively, of intercept time τ . The
ecursive character, described by eq. ( 17 ), is manifest in Figs 2 (b)
nd (c). The propagation velocity in the layer between x 3 = 760 m
nd x 3 = 800 m equals 3600 m s −1 , which implies that for the chosen
orizontal slowness s 1 = 1/3500 s m 

−1 we have sin θ = cs 1 > 1 (i.e.
is complex-v alued). Hence, w aves become ‘e v anescent’ in this

a yer. The wa vefield tunnels through this la yer and the amplitudes
elow this layer are higher than above it. In general, e v anescent
eld components of the propagator matrix should be handled with
are, because next to exponentially decaying terms they contain
xponentially g rowing ter ms that may cause numerical inaccuracies
K ennett & K erry 1979 ). In practice this means that beyond a certain
orizontal slowness the wavefield should be tapered to zero. 

.3 Relation between acoustic propagator matrix and 

ar chenko f ocusing functions 

rom here onward we assume that the medium at and above ∂D F 

s homogeneous and may be dissipative, with mass density ρ0 and
ropagation velocity c 0 . The medium below ∂D F may be inhomo-
eneous and dissipative, and it is source free. 
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Figure 1. Relations between the propagator matrix W ( x , x F ), the transfer matrix T ( x , x F ) and the Marchenko focusing functions F p ( x , x F ) and F v ( x , 
x F ) [right-hand column of Y ( x , x F )]. The green and yellow double-sided arrows indicate full wavefields (implicitly consisting of downgoing and upgoing 
components), whereas the red and blue single-sided arrows indicate decomposed downgoing and upgoing wavefields, respectively. 
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In preparation for defining the focusing functions, we decompose 
operator matrix A (in the space–frequency domain) as follows: 

A = L � L 

−1 , (18) 

with 

� = 

(
iH 1 0 

0 −iH 1 

)
, H 1 = ρ1 / 2 H 

1 / 2 
2 ρ−1 / 2 , (19) 

L = 

(
1 1 

1 
ωρ
H 1 − 1 

ωρ
H 1 

)
, L 

−1 = 

1 

2 

(
1 ωH 

−1 
1 ρ

1 −ωH 

−1 
1 ρ

)
(20) 

(Corones 1975 ; Fishman & McCoy 1984 ; Wapenaar & Berkhout 
1986 ; de Hoop 1996 ). The square-root operator H 

1 / 2 
2 is symmetric 

in the following sense: ∫ 
R 2 

{ H 

1 / 2 
2 g( x H ) } h ( x H ) d 

2 x H = 

∫ 
R 2 

g( x H ) 
{ 
H 

1 / 2 
2 h ( x H ) 

} 
d 2 x H (21) 

(Wapenaar et al. 2001 ), where g ( x H ) and h ( x H ) are test functions 
in the horizontal plane with ‘sufficient decay at infinity’. Operator 
H 1 , as defined in eq. ( 19 ) is not symmetric, but operator 1 

ρ
H 1 and 

its inverse, both appearing in eq. ( 20 ), are symmetric. We use the 
operator matrix L to express the wav efield v ector q ( x ) in terms of 
downgoing and upgoing waves p + ( x ) and p −( x ) via 

q ( x ) = L ( x ) p ( x ) , (22) 

with 

p ( x ) = 

(
p + 

p −

)
( x ) . (23) 

Note that these equations imply 

p( x ) = p + ( x ) + p −( x ) , (24) 

hence, the downgoing and upgoing waves p + and p − are pressure- 
normalized. An advantage of pressure-normalized (or, more gener- 
ally, field-normalized) decomposition is that the decomposed quan- 
tities simply add up to a field quantity [acoustic pressure in the 
case of eq. ( 24 )]. This property does not apply to flux-normalized 
decomposed wavefields (Frasier 1970 ; Kennett et al. 1978 ; Ursin 
1983 ). On the other hand, an advantage of flux-normalized decom- 
position is that the underlying equations obey more simple symme- 
tr y proper ties. For a comprehensive discussion on field-normalized 
versus flux-normalized decomposition in inhomogeneous media, 
see de Hoop ( 1996 ) and Wapenaar ( 2020 ). In this paper, we use 
field-normalized decomposition. In the remainder of Section 2 , we 
appl y decomposition onl y at and above ∂D F , where the medium is 
assumed to be homogeneous. In Section 3, we will apply decompo- 
sition also inside the inhomogeneous medium. 

We use eq. ( 22 ) at ∂D F to derive focusing functions and express 
them in the components of the propagator matrix and vice versa. 
Substituting eq. ( 22 ), with x replaced by x F , into the right-hand side 
of eq. ( 10 ) gives 

q ( x ) = 

∫ 
∂D F 

Y ( x , x F ) p ( x F ) d 
2 x F , (25) 

for x 3 ≥ x 3, F , with 

Y ( x , x F ) = W ( x , x F ) L ( x F ) , (26) 

or 

Y ( x , x F ) = 

(
W 

p,p W 

p,v 

W 

v,p W 

v,v 

)
( x , x F ) 

(
1 1 

1 
ωρ0 

H 1 − 1 
ωρ0 

H 1 

)
( x F ) . (27) 

The operators ± 1 
ωρ0 

H 1 ( x F ) in eq. ( 27 ) act, via eq. ( 25 ), on p ±( x F ).
Ho wever , since these operators are symmetric [in the sense of 
eq. ( 21 )], we may replace the actions of these operators on p ±( x F ) 
by actions on the elements W 

p,v ( x , x F ) and W 

v,v ( x , x F ). To be more
specific, if we partition Y ( x , x F ) as follows: 

Y ( x , x F ) = 

(
Y 

p, + Y 

p, −

Y 

v, + Y 

v, −

)
( x , x F ) , (28) 

we obtain from eq. ( 27 ) for the elements of this matrix 

Y 

p, ±( x , x F ) = W 

p,p ( x , x F ) ± 1 

ωρ0 
H 1 ( x F ) W 

p,v ( x , x F ) , (29) 

art/ggad309_f1.eps
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Figure 2. (a) Horizontally layered medium. (b) Propagator matrix compo- 
nent W 

p,p ( s 1 , x 3 , x 3, F , τ ) (for fixed s 1 = 1/3500 m s −1 ). (c) Propagator 
matrix component W 

p,v ( s 1 , x 3 , x 3, F , τ ). 
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Y 

v, ±( x , x F ) = W 

v,p ( x , x F ) ± 1 

ωρ0 
H 1 ( x F ) W 

v,v ( x , x F ) . (30) 

e analyse these expressions one by one. First, we consider the
lement Y 

p, −. From eqs ( 25 ) and ( 28 ) it can be seen that the super-
cript p refers to the acoustic pressure p ( x ) contained in q ( x ) and
uperscript − refers to the upgoing wavefield component p −( x F ) in
 ( x F ). Using eqs ( 9 ), ( 11 ) and ( 29 ) we obtain 

 

p, −( x , x F ) | x 3 = x 3 ,F = δ( x H − x H ,F ) , (31) 

hich is a focusing condition. Hence, we define 

 

p, −( x , x F ) = F p ( x , x F ) = W 

p,p ( x , x F ) − 1 

ωρ0 
H 1 ( x F ) W 

p,v ( x , x F ) , (32) 

ith F 

p ( x , x F ) denoting a focusing function for the acoustic pressure
 , which focuses as an upgoing field at x = x F and continues as an
pgoing field in the homogeneous upper half-space, see the lower
rame of Fig. 1 . Next, we consider the element Y 

v, −. Superscript
refers to the vertical particle velocity v 3 ( x ) contained in q ( x )

nd superscript − refers again to the upgoing wavefield component
 

−( x F ) in p ( x F ). Using eqs ( 9 ), ( 11 ) and ( 30 ) we obtain 

 

v, −( x , x F ) | x 3 = x 3 ,F = − 1 

ωρ0 
H 1 ( x F ) δ( x H − x H ,F ) , (33) 

hich is also a focusing condition, but somewhat more compli-
ated than eq. ( 31 ) because of the mix of the involv ed wav efield
omponents v 3 ( x ) and p −( x F ). Hence, we define 

 

v, −( x , x F ) = F 

v ( x , x F ) = W 

v,p ( x , x F ) − 1 

ωρ0 
H 1 ( x F ) W 

v,v ( x , x F )

(34

ith F 

v ( x , x F ) denoting the particle velocity counterpart of the fo-
using function F 

p ( x , x F ) (note that the definition of F 

v ( x , x F ) is
ifferent from that in Wapenaar ( 2022 ), to facilitate the deri v ations
elow). The focusing functions F 

p ( x , x F ) and F 

v ( x , x F ), which to-
ether form the right-hand column of matrix Y ( x , x F ), are illustrated
n the lower frame of F ig. 1 . They resemb le the focusing function
 2 introduced in previous work (Wapenaar et al. 2013 ; Slob et al.
014 ), which also focuses at the upper boundary (as opposed to the
ocusing function f 1 , which focuses inside the medium). Ho wever ,
here are also some notable differences. First, f 2 ( x , x F ) is defined in
 truncated version of the actual medium and is obtained from a su-
erposition of downgoing and upgoing components, f + 2 ( x , x F ) and

f −2 ( x , x F ) respecti vel y, at x inside the medium (at the lower bound-
ry of the truncated medium). Moreover, representations involving
f + 2 and f −2 ignore e v anescent w aves at x 3, F and x 3 . In contrast,
F 

p ( x , x F ) and F 

v ( x , x F ) are defined in the actual (i.e. untruncated)
edium and represent the full pressure and vertical particle velocity

t x of a field that focuses at x F at the upper boundary. Since they
re derived from the propagator matrix, these focusing functions ac-
ount for e v anescent w aves (this will be demonstrated below with
 numerical example). The only decomposition takes place at the
oundary ∂D F , where the medium is homogeneous. This decom-
osition, formulated by eqs ( 32 ) and ( 34 ), accounts for e v anescent
aves. Last but not least, F 

p and F 

v hold for dissipative media and
hey are normalized dif ferentl y from f 2 . 

Before we analyse the elements in the left-hand column of matrix
 ( x , x F ), we introduce an adjoint medium, with parameters κ̄( x ) =
∗( x ) and ρ̄( x ) = ρ∗( x ) . The bar denotes the adjoint medium and

he superscript asterisk denotes complex conjugation. When the
riginal medium is dissipative, the adjoint medium is effectual,
ith (for positive ω) � ( ̄κ) ≤ 0 and � ( ̄ρ) ≤ 0 . Waves propagating

hrough an effectual medium gain energy (Bojarski 1983 ; de Hoop
988 ). Adjoint media are usually associated to a computational
tate. The operator matrix Ā and the Helmholtz operator H̄ 2 of the
djoint medium are defined similarly as A and H 2 in eqs ( 4 ) and
 5 ), respecti vel y, but with κ( x ) and ρ( x ) replaced b y κ̄( x ) and ρ̄( x ) ,
especti vel y. Hence, H̄ 2 = H 

∗
2 . Analogous to eqs ( 8 ) and ( 9 ), we

efine the propagator matrix W̄ ( x , x F ) of the adjoint medium as the
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Figure 3. (a) Focusing function F p ( s 1 , x 3 , x 3, F , τ ) (for fixed s 1 = 

1/3500 m s −1 ). (b) Time-reversed focusing function F p ( s 1 , x 3 , x 3, F , −τ ). 
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solution of ∂ 3 W̄ ( x , x F ) = Ā ( x ) W̄ ( x , x F ) , with boundary condition
W̄ ( x , x F ) | x 3 = x 3 ,F = I δ( x H − x H ,F ) . In Appendix C we derive (

W̄ 

p,p W̄ 

p,v 

W̄ 

v,p W̄ 

v,v 

)
( x , x F ) = 

(
W 

p ,p ∗ −W 

p,v∗

−W 

v,p∗ W 

v ,v ∗

)
( x , x F ) (35) 

(eq. C4 ). For the square-root operator we have, similar as for the 
Helmholtz operator, 

H̄ 1 = H 

∗
1 (36) 

(Wapenaar et al. 2001 ). Using eqs ( 35 ) and ( 36 ) in eqs ( 29 )
and ( 30 ), we find Ȳ 

p, + ( x , x F ) = Y 

p, −∗( x , x F ) and Ȳ 

v, + ( x , x F ) =
−Y 

v, −∗( x , x F ) . Hence, using eqs ( 32 ) and ( 34 ), we find for the
elements in the left-hand column of matrix Y ( x , x F ) 

Y 

p, + ( x , x F ) = F̄ 

p∗( x , x F ) = W 

p,p ( x , x F ) + 

1 

ωρ0 
H 1 ( x F ) W 

p,v ( x , x F

(3

Y 

v, + ( x , x F ) = −F̄ 

v∗( x , x F ) = W 

v,p ( x , x F ) + 

1 

ωρ0 
H 1 ( x F ) W 

v,v ( x , x

(

For matrix Y ( x , x F ) we thus obtain 

Y ( x , x F ) = 

(
F̄ 

p∗ F 

p 

−F̄ 

v∗ F 

v 

)
( x , x F ) . (39) 

Note that F 

p , F 

v , F̄ 

p∗ and F̄ 

v∗ are expressed in terms of the com- 
ponents of the propagator matrix W ( x , x F ) via equations ( 32 ), ( 34 ),
( 37 ) and ( 38 ). Conversely, we can express the components of the 
propagator matrix W ( x , x F ) in terms of the focusing functions F 

p , 
F 

v , F̄ 

p∗ and F̄ 

v∗. Inverting eq. ( 26 ) yields 

W ( x , x F ) = Y ( x , x F ) L 

−1 ( x F ) , (40) 

with L 

−1 defined in eq. ( 20 ). Since operator 1 
ρ
H 1 is symmetric, 

its inverse H 

−1 
1 ρ is symmetric as well. Hence, in eq. ( 40 ) these 

operators can be taken to act on the elements of matrix Y ( x , x F ). 
This yields 

W 

p,p ( x , x F ) = 

1 

2 

(
F̄ 

p∗ + F 

p 
)
( x , x F ) , (41) 

W 

p,v ( x , x F ) = 

ωρ0 

2 
H 

−1 
1 ( x F ) 

(
F̄ 

p∗ − F 

p 
)
( x , x F ) , (42) 

W 

v,p ( x , x F ) = 

1 

2 

(−F̄ 

v∗ + F 

v 
)
( x , x F ) , (43) 

W 

v,v ( x , x F ) = −ωρ0 

2 
H 

−1 
1 ( x F ) 

(
F̄ 

v∗ + F 

v 
)
( x , x F ) . (44) 

Note that up to this point the medium may be dissipative (and its 
adjoint effectual), and evanescent wave modes are accounted for, 
inside the medium as well as at the boundary ∂D F . Hence, the 
expressions in this section are more general than their counterparts 
in Wapenaar ( 2022 ), which were derived for a lossless medium, 
under the assumption that e v anescent w aves can be ignored at ∂D F . 
If we make the same assumptions here, we can omit the bars on F 

p 

and F 

v . For this situation eqs ( 41 )–( 44 ) simplify to 

W 

p,p ( x , x F ) = �{ F 

p ( x , x F ) } , (45) 

W 

p,v ( x , x F ) = −iωρ0 H 

−1 
1 ( x F ) �{ F 

p ( x , x F ) } , (46) 

W 

v,p ( x , x F ) = i�{ F 

v 
(
x , x F ) } , (47) 

W 

v,v ( x , x F ) = −ωρ0 H 

−1 
1 ( x F ) �{ F 

v ( x , x F ) } . (48) 
We illustrate the focusing function and its relation with the prop- 
agator matrix with a numerical example. Applying the transforma- 
tions of eqs ( 14 ) and ( 16 ) to eq. ( 32 ) (assuming a laterally invariant
medium), taking x F = (0, 0, x 3, F ) and s 2 = 0, we obtain 

F p ( s 1 , x 3 , x 3 ,F , τ ) = W 

p,p ( s 1 , x 3 , x 3 ,F , τ ) − s 3 , 0 
ρ0 

W 

p,v ( s 1 , x 3 , x 3 ,F , τ ) , 

(49) 

with vertical slowness s 3 , 0 = 

√ 

1 /c 2 0 − s 2 1 being the spatial Fourier 

transform of 1 
ω 
H 1 at x 3, F for the laterally invariant medium (here we 

assumed s 2 1 < 1 /c 2 0 ). Eq. ( 49 ) shows how a weighted superposition 
of the even component W 

p,p of Fig. 2 (b) and the odd component 
W 

p,v of Fig. 2 (c) yields the focusing function F 

p ( s 1 , x 3 , x 3, F , τ ).
This focusing function is shown in Fig. 3 (a) for s 1 = 1/3500 m s −1 . 
The upper trace at x 3 = x 3, F = 0 m represents the focusing condition 
F 

p ( s 1 , x 3, F , x 3, F , τ ) = δ( τ ). At and above x 3, F the focusing function
is an upgoing field. Note that, similar as in Fig. 2 , the wavefield 
tunnels through the high-velocity layer between x 3 = 760 m and x 3 
= 800 m, which confirms that this focusing function accounts for 
e v anescent w aves inside the medium. The time-reversed focusing 
function F 

p ( s 1 , x 3 , x 3, F , −τ ) is shown in Fig. 3 (b). The focusing
function of Fig. 3 (a) and its time-reversed version of Fig. 3 (b) can 
be combined to give components of the propagator matrix. To this 
end, eqs ( 45 ) and ( 46 ) are transformed to (assuming s 2 1 < 1 /c 2 0 ) 
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W 

p,p ( s 1 , x 3 , x 3 ,F , τ ) = 

1 

2 

(
F p ( −s 1 , x 3 , x 3 ,F , −τ ) + F p ( s 1 , x 3 , x 3 ,F , τ ) 

)
, (50) 

W 

p,v ( s 1 , x 3 , x 3 ,F , τ ) = 

ρ0 

2 s 3 , 0 

(
F p ( −s 1 , x 3 , x 3 ,F , −τ ) − F p ( s 1 , x 3 , x 3 ,F , τ ) 

)
. 

(51) 

or the acoustic case all components are symmetric in s 1 , that is
F 

p ( − s 1 , x 3 , x 3, F , −τ ) = F 

p ( s 1 , x 3 , x 3, F , −τ ), etc. Hence, eqs ( 50 )
nd ( 51 ) show how the even and odd components W 

p,p ( s 1 , x 3 , x 3, F ,
) and W 

p,v ( s 1 , x 3 , x 3, F , τ ) of Figs 2 (b) and (c) are obtained from
he focusing function F 

p ( s 1 , x 3 , x 3, F , τ ) and its time-reversal F 

p ( s 1 ,
 3 , x 3, F , −τ ) of Fig. 3 . 

.4 Representations with acoustic Marchenko focusing 
unctions 

ubstituting the expressions for q ( x ), p ( x F ) and Y ( x , x F ) (eqs 2 , 23
nd 39 ) into eq. ( 25 ), gives the following representations for the
coustic pressure p ( x ) and the vertical particle velocity v 3 ( x ) inside
he inhomogeneous medium 

p( x ) = 

∫ 
∂D F 

F̄ 

p∗( x , x F ) p 
+ ( x F ) d 2 x F + 

∫ 
∂D F 

F 

p ( x , x F ) p 
−( x F ) d 

2 x F

(52)

 3 ( x ) = −
∫ 

∂D F 

F̄ 

v∗( x , x F ) p 
+ ( x F ) d 2 x F + 

∫ 
∂D F 

F 

v ( x , x F ) p 
−( x F ) d 

2

(5

or x 3 ≥ x 3, F . These e xpressions are e xact and hold for dissipativ e
edia. Eq. ( 52 ) is a generalisation of eq. ( 17 ) of Wapenaar & de
idder ( 2022 ) for dissipative media. 
We use eqs ( 52 ) and ( 53 ) to derive representations for Green’s

unctions between the boundary ∂D F and any position x inside the
edium. To this end, we define a unit point source of vertical force

t x S just above ∂D F . For the downgoing field at ∂D F (i.e. just
elow the source), we then have p + ( x F ) = 

1 
2 δ( x H ,F − x H ,S ) , where

 H , S denotes the horizontal coordinates of x S . The upgoing field
t ∂D F is the reflection response to this downgoing source field,
ence p −( x F ) = 

1 
2 R( x F , x S ) . The field at x inside the medium is

he Green’s response to the source at x S , hence p ( x ) = G 

p, f ( x , x S )
nd v 3 ( x ) = G 

v, f ( x , x S ). Here the second superscript ( f ) refers to
he vertical force source at x S , whereas the first superscripts ( p and
) refer to the observed quantities (pressure and vertical particle
elocity) at x . Substitution of these expressions for p ±( x F ), p ( x ) and
 3 ( x ) into eqs ( 52 ) and ( 53 ) gives 

 G 

p, f ( x , x S ) = 

∫ 
∂D F 

F 

p ( x , x F ) R( x F , x S ) d 
2 x F + F̄ 

p∗( x , x S ) , (54) 

 G 

v, f ( x , x S ) = 

∫ 
∂D F 

F 

v ( x , x F ) R( x F , x S ) d 
2 x F − F̄ 

v∗( x , x S ) , (55) 

or x 3 ≥ x 3, F . Slob ( 2016 ) derived similar representations for de-
omposed wavefields in dissipative media. In the present derivation
e only used decomposition at the boundary ∂D F [similar as Diek-
ann & Vasconcelos ( 2021 , 2023 ) and Wapenaar et al. ( 2021 )].
his implies that inside the medium the wavefield does not need

o be decomposed into downgoing and upgoing waves and that
 v anescent w aves can be present. 

When the medium is lossless and e v anescent w av es are ne glected
t ∂D F , the bars on F 

p and F 

v in representations ( 54 ) and ( 55 ) can
e omitted. Using the Marchenko method, these focusing functions
an then be retrieved from the reflection response R ( x F , x S ) and
 smooth background model (Wapenaar et al. 2013 ; Elison et al.
020 ). Since representations ( 54 ) and ( 55 ) account for e v anescent
aves inside the medium, the retrieved focusing functions poten-

ially also account for evanescent waves inside the medium (this is
ubject of current research [Brackenhoff & Wapenaar 2023 )]. Once
he focusing functions are found, they can be used to retrieve the
reen’s functions G 

p, f ( x , x S ) and G 

v, f ( x , x S ) [from eqs ( 54 ) and
 55 )] and all components of the propagator matrix W ( x , x F ) [from
qs ( 45 ) to ( 48 )]. 

 A C O U S T I C  T R A N S F E R  M AT R I X  A N D  

E C O M P O S E D  F O C U S I N G  F U N C T I O N S  

.1 Acoustic transfer matrix 

e introduce the transfer matrix as follows. Given the downgoing
nd upgoing fields p + ( x F ) and p −( x F ) at the boundary ∂D F , we
transfer’ these fields to downgoing and upgoing fields p + ( x ) and
 

−( x ) at any depth level x 3 inside the medium using the following
xpression: 

 ( x ) = 

∫ 
∂D F 

T ( x , x F ) p ( x F ) d 
2 x F , (56) 

or x 3 ≥ x 3, F . Vectors p ( x F ) and p ( x ) contain the downgoing and
pgoing fields at depth levels x 3, F and x 3 (eq. 23 ). We call T ( x , x F )
he transfer matrix, which we partition as follows: 

 ( x , x F ) = 

(
T + , + T + , −
T −, + T −, −

)
( x , x F ) . (57) 

or each component of this matrix, the superscripts refer to the prop-
gation direction at x and at x F , respecti vel y. Eq. ( 56 ) is illustrated
n the upper-right frame of Fig. 1 . 

For horizontally layered media, the transfer matrix is usually built
p recursi vel y from interface to interface (Born & Wolf 1965 ; Kat-
idis & Siapkas 2002 ; Elison 2020 ; Dukalski et al. 2022a , b ). Here
e follow a different approach to derive an expression for T ( x , x F )

or laterall y v arying media. Substituting eq. ( 22 ) into eq. ( 10 ) we
btain eq. ( 56 ), with 

 ( x , x F ) = L 

−1 ( x ) W ( x , x F ) L ( x F ) , (58) 

ith L ( x ) and its inverse defined in eq. ( 20 ). Eq. ( 58 ), which relates
he transfer matrix T ( x , x F ) to the propagator matrix W ( x , x F ), is
llustrated in the upper half of Fig. 1 . In the next section we show
hat the transfer matrix can be expressed in terms of decomposed

archenko focusing functions. 

.2 Relation between acoustic transfer matrix and 

ecomposed Marchenko focusing functions 

rom eqs ( 26 ) and ( 58 ) we find 

 ( x , x F ) = L 

−1 ( x ) Y ( x , x F ) . (59) 

ccording to eq. ( 39 ), the right-hand column of Y ( x , x F ) contains
F 

p ( x , x F ) and F 

v ( x , x F ), that is, the pressure and vertical particle
elocity components at x of the focusing function. Hence, analo-
ous to p ( x ) = L 

−1 ( x ) q ( x ) , we obtain for the right-hand column of
 ( x , x F ) 

F 

+ ( x , x F ) 
F 

−( x , x F ) 

)
= 

1 

2 

(
1 ωH 

−1 
1 ( x ) ρ( x ) 

1 −ωH 

−1 
1 ( x ) ρ( x ) 

)(
F 

p ( x , x F ) 
F 

v ( x , x F ) 

)
, (60) 

ith F 

+ ( x , x F ) and F 

−( x , x F ) being the downgoing and upgoing
arts at x of the focusing function F 

p ( x , x F ). 
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Figure 4. (a) Decomposed focusing function F 

−( s 1 , x 3 , x 3, F , τ ) (for fixed 
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According to eq. ( 39 ), the left-hand column of Y ( x , x F ) contains 
F̄ 

p∗( x , x F ) and −F̄ 

v∗( x , x F ) . Hence, for the left-hand column of 
T ( x , x F ) we obtain 

1 

2 

(
1 ωH 

−1 
1 ( x ) ρ( x ) 

1 −ωH 

−1 
1 ( x ) ρ( x ) 

)(
F̄ 

p∗( x , x F ) 
−F̄ 

v∗( x , x F ) 

)
, (61) 

or, using H 1 = H̄ 

∗
1 (eq. 36 ) and ρ = ρ̄∗, 

1 

2 

(
1 −ω H̄ 

−1 
1 ( x ) ̄ρ( x ) 

1 ω H̄ 

−1 
1 ( x ) ̄ρ( x ) 

)∗(
F̄ 

p ( x , x F ) 
F̄ 

v ( x , x F ) 

)∗
. (62) 

Comparing this with eq. ( 60 ) we find that this gives a vector 
with F̄ 

−∗( x , x F ) and F̄ 

+∗( x , x F ) . This is the left-hand column of
T ( x , x F ) . Hence, we have obtained 

T ( x , x F ) = 

(
F̄ 

−∗( x , x F ) F 

+ ( x , x F ) 
F̄ 

+∗( x , x F ) F 

−( x , x F ) 

)
, (63) 

see the upper-right frame of Fig. 1 . Hence, the transfer matrix for an 
inhomo geneous dissipati v e acoustic medium is e xpressed in terms 
of decomposed focusing functions of the medium and its adjoint. 

We consider the special case of a horizontally layered medium. 
Applying the transformations of eqs ( 14 ) and ( 16 ) to eq. ( 63 ), taking 
x F = (0, 0, x 3, F ), we obtain 

T ( s , x 3 , x 3 ,F , τ ) = 

(
F̄ 

−( −s , x 3 , x 3 ,F , −τ ) F 

+ ( s , x 3 , x 3 ,F , τ ) 
F̄ 

+ ( −s , x 3 , x 3 ,F , −τ ) F 

−( s , x 3 , x 3 ,F , τ ) 

)
. 

(64) 

Dukalski et al. ( 2022a , b ) used a recursive approach and obtained 
an expression similar to eq. ( 64 ). In their deri v ation they used a 
path-reversal operator P , which is equi v alent with (i) taking the 
adjoint medium, (ii) taking the complex conjugate (or in the time 
domain taking the time-reversal) and (iii) changing the sign of the 
horizontal slowness. Hence, P{ F 

±( s , x 3 , x 3 ,F , τ ) } is equi v alent with
F̄ 

±( −s , x 3 , x 3 ,F , −τ ) . 
For the lossless medium of Fig. 2 (a), the decomposed focus- 

ing functions F 

−( s 1 , x 3 , x 3, F , τ ) and F 

+ ( s 1 , x 3 , x 3, F , τ ) for s 1 =
1/3500 m s −1 and s 2 = 0 are shown in Figs 4 (a) and (b), respec- 
ti vel y. For each x 3 , the function F 

−( s 1 , x 3 , x 3, F , τ ) can be seen as
the intricate field that needs to be emitted upward from x 3 to ar- 
rive as a single upward propagating pulse at the focal depth x 3, F 

at τ = 0. For the same x 3 , the function F 

+ ( s 1 , x 3 , x 3, F , τ ) is the
downward reflected response to F 

−( s 1 , x 3 , x 3, F , τ ). Figs 4 (b) and 
(a) together form the right-hand column of the transformed trans- 
fer matrix T ( s 1 , x 3 , x 3 ,F , τ ) . Their superposition gives the focusing 
function F 

p ( s 1 , x 3 , x 3, F , τ ), shown in Fig. 3 (a). 

3.3 Representations with decomposed acoustic 
Mar chenko f ocusing functions 

Substituting the expressions for p ( x ) and T ( x , x F ) (eqs 23 and 63 )
into eq. ( 56 ), gives the following representations for the downgoing 
and upgoing components of the acoustic pressure, p + ( x ) and p −( x ), 
respecti vel y, inside the inhomogeneous medium 

p + ( x ) = 

∫ 
∂D F 

F̄ 

−∗( x , x F ) p 
+ ( x F ) d 2 x F + 

∫ 
∂D F 

F 

+ ( x , x F ) p −( x F ) d 
2 x

(6

p −( x ) = 

∫ 
∂D F 

F̄ 

+∗( x , x F ) p 
+ ( x F ) d 2 x F + 

∫ 
∂D F 

F 

−( x , x F ) p 
−( x F ) d 

2 x

(6

for x 3 ≥ x 3, F . These e xpressions are e xact and hold for dissipativ e 
media. Making similar substitutions as in Section 2.4 we obtain 
2 G 

+ , f ( x , x S ) = 

∫ 
∂D F 

F 

+ ( x , x F ) R( x F , x S ) d 
2 x F + F̄ 

−∗( x , x S ) , (67) 

2 G 

−, f ( x , x S ) = 

∫ 
∂D F 

F 

−( x , x F ) R( x F , x S ) d 
2 x F + F̄ 

+∗( x , x S ) , (68) 

for x 3 ≥ x 3, F . Here G 

±, f ( x , x S ) stands for the downgoing ( + ) and
upgoing ( −) part of the Green’s function G 

p, f ( x , x S ). 
When the medium is lossless and when e v anescent w aves are 

neglected at ∂D F and at depth level x 3 inside the medium, the 
bars on F 

+ and F 

− in representations ( 67 ) and ( 68 ) can be omitted. 
Using the Marchenko method, these decomposed focusing functions 
can then be retrieved from the reflection response R ( x F , x S ) and 
a smooth background model (Wapenaar et al. 2013 ; Slob et al. 
2014 ). Once the focusing functions are found, they can be used to 
retrieve the decomposed Green’s functions G 

+ , f ( x , x S ) and G 

−, f ( x , 
x S ) [from eqs ( 67 ) and ( 68 )] and all components of the transfer 
matrix T ( x , x F ) [from eq. ( 63 )]. 

4  C O N C LU S I O N S  

We have derived relations between acoustic propagator matrices, 
transfer matrices and Marchenko focusing functions. In the appen- 
dices we generalize the expressions for other wave phenomena. 
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ll relations hold for a heterogeneous dissipative medium below
 homogeneous upper half-space and account for propagating and
 v anescent w aves. Onl y for the transfer matrix beyond the acoustic
pproach (Appendix B ) we assume that there are no lateral vari-
tions at the depth level inside the medium where decomposition
akes place. 

The derived relations provide insight in the connections between
he propagator matrices, transfer matrices and Marchenko focus-
ng functions and may lead to new modelling algorithms for these
uantities. Moreov er, sev eral of the derived relations may be useful
o dev elop improv ed Marchenko-type wav efield retrie v al and imag-
ng schemes for dif ferent w ave phenomena, possibl y accounting for
 v anescent w aves inside the medium. 
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q = 

(
q 1 

q 2 

)
, d = 

(
d 1 

d 2 

)
, A = 

(
A 11 A 12 

A 21 A 22 

)
. 

This includes the acoustic situation (for N = 2) discussed in Secti
found in various references (Woodhouse 1974 ; Ursin 1983 ; Van St
Zhou 2006 ; Løseth & Ursin 2007 ). A comprehensive overview is gi
wav es obe ying the Schr ödinger equation ( N = 2), electromagnetic 
( N = 8), piezoelectric waves ( N = 10) and seismoelectric waves ( N
following symmetry properties 

A 

t = −N A N 

−1 , 

A 

† = −K Ā K 

−1 , 

A 

∗ = J Ā J −1 , 

with 

N = 

(
O I 
−I O 

)
, K = 

(
O I 
I O 

)
, J = 

(
I O 

O −I 

)
, 

where O and I are zero and identity matrices of appropriate size. Su
in it, with ∂ t α = −∂ α . Superscript † denotes transposition and comp
adjoint medium. For further details we refer to the aforementioned 

We show that, with some modifications, eqs ( A1 ) – ( A4 ) also hol
The Dirac equation is given by (Sakurai 1967 ) 

γ μ∂ μψ + 

mc 

� 
ψ = 0 

(summation over μ from 1 to 4), with the Dirac spinor partitioned a(
ψ 1 

)
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and with 

γ k = 

(
O −i σ k 

i σ k O 

)
( k = 1 , 2 , 3) , (A8) 

γ 4 = 

(
I O 

O −I 

)
, (A9) 

∂ 4 = 

1 

ic 
∂ t + 

eV 

� c 
, � = 

h 

2 π
, (A10) 

with V ( x ) the space-dependent potential, h Planck’s constant, c the speed of light, e the electron charge and σ 1 , σ 2 and σ 3 the Pauli matrices, 
defined as 

σ 1 = 

(
0 1 
1 0 

)
, σ 2 = 

(
0 −i 
i 0 

)
, σ 3 = 

(
1 0 
0 −1 

)
. (A11) 

Assuming a time-dependence exp ( − iEt / � ), we replace ∂ 4 by −( E − eV )/ � c . Eq. ( A6 ) can be rewritten as follows (
O −i σ k 

i σ k O 

)
∂ k 

(
ψ 1 

ψ 2 

)
−

(
I O 

O −I 

)( E − eV 

� c 

)(
ψ 1 

ψ 2 

)
+ 

mc 

� 

(
ψ 1 

ψ 2 

)
= 0 , (A12) 

or 

i σ k ∂ k ψ 2 + 

(
E − eV − mc 2 

� c 

)
ψ 1 = 0 , (A13) 

i σ k ∂ k ψ 1 + 

(
E − eV + mc 2 

� c 

)
ψ 2 = 0 . (A14) 

Pre-multiplying all terms by −i σ 3 and bringing the ∂ 3 -operators to the left-hand side, using σ 3 σ 1 = i σ 2 , σ 3 σ 2 = −i σ 1 and σ 3 σ 3 = I , yields 
a set of equations which can be recast in the form of eq. ( 1 ), with 4 × 1 vectors q and d and 4 × 4 operator matrix A partitioned as in 
eq. ( A1 ), with 

q 1 = ψ 1 , q 2 = ψ 2 , d 1 = d 2 = 0 , (A15) 

A 11 = A 22 = i( σ 1 ∂ 2 − σ 2 ∂ 1 ) , (A16) 

A 12 = i σ 3 

(
E − eV + mc 2 

� c 

)
, (A17) 

A 21 = i σ 3 

(
E − eV − mc 2 

� c 

)
. (A18) 

With these definitions of the operator submatrices, matrix A obeys symmetry relations ( A2 ) – ( A4 ), with N , K and J defined as 

N = 

(
O i σ 1 

i σ 1 O 

)
, K = 

(
O σ 3 

σ 3 O 

)
, J = 

(
σ 2 O 

O σ 2 

)
. (A19) 

Although there are no direct applications for geophysics, the Schr ödinger and Dirac equations are included in all deri v ations below, since this 
comes almost for free. When we speak of the ‘medium’, for the Schr ödinger and Dirac equations it should be understood as the ‘potential’. 

A2 Unified propagator matrix 

We define the unified N × N propagator matrix W ( x , x F ) as the solution of wave eq. ( 8 ), with boundary condition ( 9 ) and with the operator 
matrix A being the unified operator matrix discussed in Appendix A1 . Using eq. ( 10 ), the unified wave field vector q ( x ) can be propagated 
from x 3, F to any depth level x 3 , assuming there are no sources between these depth levels. We partition W ( x , x F ) as 

W ( x , x F ) = 

(
W 11 W 12 

W 21 W 22 

)
( x , x F ) , (A20) 

where W 11 , W 12 , W 21 and W 22 are N 
2 × N 

2 submatrices of W . For each of these submatrices, the second subscript refers to the wave field 
component ( q 1 or q 2 ) it acts on at x F , whereas the first subscript refers to the wave field component it contributes to at x . W ( x , x F ) obeys the 
recursive relation ( 12 ), and from eq. ( 13 ) it follows that W ( x F , x ) is the inverse of W ( x , x F ). 

A3 Relation between unified propagator matrix and Marchenko focusing functions 

We assume again that the medium at and above ∂D F is homogeneous and may be dissipative. The medium below ∂D F may be inhomogeneous 
and dissipative, and it is source-free. In preparation for defining the focusing functions, in the upper half-space (i.e., at and above ∂D F ) we 
appl y eigenv alue decomposition to matrix ˜ A (the spatial Fourier transform of operator matrix A ), as follows 

˜ A = 

˜ L ̃

 � ̃

 L 

−1 , (A21) 
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with 

˜ � = 

(
iωS 

+ 
3 O 

O −iωS 

−
3 

)
, ˜ L = 

(
˜ L 

+ 
1 

˜ L 

−
1 

˜ L 

+ 
2 

˜ L 

−
2 

)
, (A22) 

with S 

+ 
3 and S 

−
3 being diagonal matrices containing vertical slownesses for downgoing and upgoing w aves, respecti vel y. We express the 

Fourier transformed wave field vector ˜ q ( s , x 3 ) in terms of downgoing and upgoing waves ˜ p 

+ ( s , x 3 ) and ˜ p 

−( s , x 3 ) via 

˜ q ( s , x 3 ) = 

˜ L ( s , x 3 ) ̃ p ( s , x 3 ) , (A23) 

with 

˜ p ( s , x 3 ) = 

(
˜ p 

+ 

˜ p 

−

)
( s , x 3 ) . (A24) 

Note that these equations imply ˜ q 1 = 

˜ L 

+ 
1 ˜ p 

+ + 

˜ L 

−
1 ˜ p 

−. Similar as in Section 2.3 , eq. ( 24 ), we continue with downgoing and upgoing waves ˜ q 

+ 
1 

and ˜ q 

−
1 which are field-normalized such that ˜ q 1 = 

˜ q 

+ 
1 + 

˜ q 

−
1 . To this end, we define ˜ q 

±
1 = 

˜ L 

±
1 ˜ p 

± and we replace eq. ( A23 ) by 

˜ q ( s , x 3 ) = 

˜ D ( s , x 3 ) ̃ b ( s , x 3 ) , (A25) 

where 

˜ D ( s , x 3 ) = 

(
I I 

˜ D 

+ 
1 

˜ D 

−
1 

)
( s , x 3 ) , (A26) 

˜ b ( s , x 3 ) = 

(
˜ q 

+ 
1 

˜ q 

−
1 

)
( s , x 3 ) , (A27) 

with 

˜ D 

±
1 = 

˜ L 

±
2 ( ̃  L 

±
1 ) 

−1 . (A28) 

Whereas there is ambiguity in the normalization of the matrices ˜ L 

±
1 and ˜ L 

±
2 , the matrix ˜ D 

±
1 is uniquely defined (for each wave phenomenon). 

Note that for the acoustic situation we have ˜ L 

±
1 = 1 , hence ˜ D 

±
1 = 

˜ L 

±
2 = ±s 3 , 0 /ρ0 . Consequently, ˜ D = 

˜ L and ˜ b = 

˜ p . Some other examples of 
matrix ˜ D 

±
1 (for electromagnetic and elastodynamic waves) are given by Wapenaar ( 2022 ). In Appendix C we derive for any wave phenomenon 

˜ D̄ 

±
1 ( s , x 3 ) = J 22 { ̃  D 

∓
1 ( −s , x 3 ) } ∗J −1 

11 , (A29) 

with J 11 and J 22 being the N 
2 × N 

2 submatrices of N × N matrix J . From eq. ( A5 ) we have for all wave phenomena except for the Dirac 
equation J 11 = −J 22 = I , and from eq. ( A19 ) we have for the Dirac equation J 11 = J 22 = σ 2 . 

We use eq. ( A25 ) at ∂D F and the properties of matrix ˜ D̄ 

±
1 ( s , x 3 ) to derive unified focusing functions and express them in the components 

of the unified propagator matrix and vice-versa. First we aim to substitute eq. ( A25 ) for x 3 = x 3, F into a transformed version of eq. ( 10 ). 
This equation contains the propagator matrix W ( x , x F ). For a function of two space variables, u ( x , x F ) (with x F at ∂D F ), we define the spatial 
Fourier transformation along the horizontal components of the second space variable as 

˜ u ( x , s , x 3 ,F ) = 

∫ 
R 2 

u ( x , x H ,F , x 3 ,F ) exp { iωs · x H ,F } d 2 x H ,F (A30) 

and its inverse as 

u ( x , x H ,F , x 3 ,F ) = 

ω 

2 

4 π 2 

∫ 
R 2 

˜ u ( x , s , x 3 ,F ) exp {−iωs · x H ,F } d 2 s . (A31) 

Note that the sign in the exponential of eq. ( A30 ) is opposite to that in eq. ( 14 ). Using these definitions and Parse v al’s theorem, we re write 
eq. ( 10 ) as 

q ( x ) = 

ω 

2 

4 π 2 

∫ 
R 2 

˜ W ( x , s , x 3 ,F ) ̃ q ( s , x 3 ,F ) d 
2 s , (A32) 

with ˜ W ( x , s , x 3 ,F ) obeying the boundary condition 

˜ W ( x , s , x 3 ,F ) | x 3 = x 3 ,F = I exp { iωs · x H } . (A33) 

Substitution of eq. ( A25 ) into eq. ( A32 ) gives 

q ( x ) = 

ω 

2 

4 π 2 

∫ 
R 2 

˜ Y ( x , s , x 3 ,F ) ̃ b ( s , x 3 ,F ) d 
2 s (A34) 

for x 3 ≥ x 3, F , with 

˜ Y ( x , s , x 3 ,F ) = 

˜ W ( x , s , x 3 ,F ) ̃  D ( s , x 3 ,F ) . (A35) 

We partition matrix ˜ Y ( x , s , x 3 ,F ) as follows 

˜ Y ( x , s , x 3 ,F ) = 

(
˜ Y 

+ 
1 

˜ Y 

−
1 

˜ Y 

+ 
2 

˜ Y 

−
2 

)
( x , s , x 3 ,F ) . (A36) 
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Using equation ( A26 ) and the spatial Fourier transform of eq. ( A20 ), we obtain 

˜ Y 

±
1 ( x , s , x 3 ,F ) = 

˜ W 11 ( x , s , x 3 ,F ) + 

˜ W 12 ( x , s , x 3 ,F ) ̃  D 

±
1 ( s , x 3 ,F ) , (A37) 

˜ Y 

±
2 ( x , s , x 3 ,F ) = 

˜ W 21 ( x , s , x 3 ,F ) + 

˜ W 22 ( x , s , x 3 ,F ) ̃  D 

±
1 ( s , x 3 ,F ) . (A38) 

We analyse these expressions one by one. First consider ˜ Y 

−
1 ( x , s , x 3 ,F ) . Via eq. ( A34 ) it can be seen that subscript 1 refers to wavefield 

component q 1 at x and superscript − refers to the upgoing wavefield component ˜ q 

−
1 at x 3, F . Moreover, for x 3 = x 3, F we obtain, using equation 

( A33 ), ˜ Y 

−
1 ( x , s , x 3 ,F ) | x 3 = x 3 ,F = I exp { iωs · x H } , or , applying the in verse spatial Fourier transformation defined in eq. ( A31 ), Y 

−
1 ( x , x F ) | x 3 = x 3 ,F = 

I δ( x H − x H ,F ) , which is a focusing condition. Hence, we define 

˜ Y 

−
1 ( x , s , x 3 ,F ) = 

˜ F 1 ( x , s , x 3 ,F ) = 

˜ W 11 ( x , s , x 3 ,F ) + 

˜ W 12 ( x , s , x 3 ,F ) ̃  D 

−
1 ( s , x 3 ,F ) , (A39) 

with ˜ F 1 ( x , s , x 3 ,F ) denoting the spatial Fourier transform of the focusing function F 1 ( x , x F ) for wavefield component q 1 , which focuses as an 
upgoing field at x = x F and continues as an upgoing field in the homogeneous upper half-space. Note that the focusing function is a N 

2 × N 
2 

matrix. Next, we consider ˜ Y 

−
2 ( x , s , x 3 ,F ) . Subscript 2 refers to wavefield component q 2 at x and superscript − refers again to the upgoing 

wavefield component ˜ q 

−
1 at x 3, F . For x 3 = x 3, F we obtain, using eq. ( A33 ), ˜ Y 

−
2 ( x , s , x 3 ,F ) | x 3 = x 3 ,F = 

˜ D 

−
1 ( s , x 3 ,F ) exp { iωs · x H } , which is a 

focusing condition, but somewhat more complicated than for ˜ Y 

−
1 ( x , s , x 3 ,F ) because of the mix of wavefield components q 2 and ˜ q 

−
1 . Hence, 

we define 

˜ Y 

−
2 ( x , s , x 3 ,F ) = 

˜ F 2 ( x , s , x 3 ,F ) = 

˜ W 21 ( x , s , x 3 ,F ) + 

˜ W 22 ( x , s , x 3 ,F ) ̃  D 

−
1 ( s , x 3 ,F ) , (A40) 

with ˜ F 2 ( x , s , x 3 ,F ) denoting the spatial Fourier transform of the focusing function F 2 ( x , x F ) for wavefield component q 2 , which focuses as 
an upgoing field at x = x F and continues as an upgoing field in the homogeneous upper half-space (note that the definition of ˜ F 2 is different 
from that in Wapenaar ( 2022 ), to facilitate the deri v ations below). The focusing functions ˜ F 1 ( x , s , x 3 ,F ) and ˜ F 2 ( x , s , x 3 ,F ) together form the 
right-hand column of matrix ˜ Y ( x , s , x 3 ,F ) . 

For the analysis of the submatrices in the left-hand column of ˜ Y ( x , s , x 3 ,F ) , we use symmetry relation ( A29 ) and we need a similar relation 
for the submatrices of ˜ W ( x , s , x 3 ,F ) . In Appendix C we derive 

W̄ ( x , x F ) = JW 

∗( x , x F ) J 
−1 . (A41) 

From the spatial Fourier transform of this equation we obtain for the submatrices of ˜ W ( x , s , x 3 ,F ) 

˜ W̄ αβ ( x , s , x 3 ,F ) = J αα
˜ W 

∗
αβ( x , −s , x 3 ,F ) J 

−1 
ββ (A42) 

(no summation for repeated subscripts). Substituting eqs ( A29 ) and ( A42 ) into eqs ( A37 ) and ( A38 ) yields 

˜ Ȳ 

+ 
1 ( x , s , x 3 ,F ) = J 11 ̃  Y 

−∗
1 ( x , −s , x 3 ,F ) J 

−1 
11 , (A43) 

˜ Ȳ 

+ 
2 ( x , s , x 3 ,F ) = J 22 ̃  Y 

−∗
2 ( x , −s , x 3 ,F ) J 

−1 
11 . (A44) 

Hence, using eqs ( A39 ) and ( A40 ), we find for the submatrices in the left-hand column of ˜ Y ( x , s , x 3 ,F ) 

˜ Y 

+ 
1 ( x , s , x 3 ,F ) = J 11 ̃

 F̄ 

∗
1 ( x , −s , x 3 ,F ) J 

−1 
11 , (A45) 

˜ Y 

+ 
2 ( x , s , x 3 ,F ) = J 22 ̃

 F̄ 

∗
2 ( x , −s , x 3 ,F ) J 

−1 
11 . (A46) 

Hence, matrix ˜ Y ( x , s , x 3 ,F ) becomes 

˜ Y ( x , s , x 3 ,F ) = 

( 

J 11 ̃
 F̄ 

∗
1 ( x , −s , x 3 ,F ) J 

−1 
11 

˜ F 1 ( x , s , x 3 ,F ) 

J 22 ̃
 F̄ 

∗
2 ( x , −s , x 3 ,F ) J 

−1 
11 

˜ F 2 ( x , s , x 3 ,F ) 

) 

, (A47) 

or, using the inverse Fourier transformation defined in eq. ( A31 ), 

Y ( x , x F ) = 

(
J 11 ̄F 

∗
1 ( x , x F ) J 

−1 
11 F 1 ( x , x F ) 

J 22 ̄F 

∗
2 ( x , x F ) J 

−1 
11 F 2 ( x , x F ) 

)
. (A48) 

This is a generalisation of eq. ( 39 ). Note that ˜ F 1 , ˜ F 2 , ˜ F̄ 

∗
1 and ˜ F̄ 

∗
2 are expressed in terms of the submatrices of the propagator matrix ˜ W ( x , s , x 3 ,F ) 

via eqs ( A37 ) – ( A40 ), ( A45 ) and ( A46 ). Conversely, we can express the submatrices of the propagator matrix ˜ W ( x , s , x 3 ,F ) in terms of the 

focusing functions ˜ F 1 , ˜ F 2 , ˜ F̄ 

∗
1 and ˜ F̄ 

∗
2 . To this end, we start with inverting eq. ( A35 ), according to 

˜ W ( x , s , x 3 ,F ) = 

˜ Y ( x , s , x 3 ,F ) { ̃  D ( s , x 3 ,F ) } −1 , (A49) 

with 

{ ̃  D ( s , x 3 ) } −1 = 

(−( ̃  � 1 ) −1 ˜ D 

−
1 ( ̃  � 1 ) −1 

( ̃  � 1 ) −1 ˜ D 

+ 
1 −( ̃  � 1 ) −1 

)
( s , x 3 ) , (A50) 

˜ � 1 = 

˜ D 

+ 
1 − ˜ D 

−
1 . (A51) 

Using eqs ( A47 ) and ( A50 ), we obtain 

˜ W α1 ( x , s , x 3 ,F ) = −J αα
˜ F̄ 

∗
α( x , −s , x 3 ,F ) J 

−1 
11 { ̃  � 1 ( s , x 3 ,F ) } −1 ˜ D 

−
1 ( s , x 3 ,F ) + 

˜ F α( x , s , x 3 ,F ) { ̃  � 1 ( s , x 3 ,F ) } −1 ˜ D 

+ 
1 ( s , x 3 ,F ) , (A52) 
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1416 K. Wapenaar et al . 

˜ W α2 ( x , s , x 3 ,F ) = J αα
˜ F̄ 

∗
α( x , −s , x 3 ,F ) J 

−1 
11 { ̃  � 1 ( s , x 3 ,F ) } −1 − ˜ F α( x , s , x 3 ,F ) { ̃  � 1 ( s , x 3 ,F ) } −1 (A53) 

(no summation for repeated subscripts). These expressions are a generalisation of eqs ( 41 ) – ( 44 ). Those equations follow as a special case 
from eqs ( A52 ) and ( A53 ) by substituting J 11 = −J 22 = 1, ˜ D 

±
1 ( s , x 3 ,F ) = ±s 3 , 0 / ρ0 , { ̃  � 1 ( s , x 3 ,F ) } −1 = ρ0 / 2 s 3 , 0 , and applying an inverse spatial 

Fourier transformation, which involves replacing s 3, 0 by operator 1 
ω 
H 1 ( x F ) . 

A4 Representations with unified Marchenko focusing functions 

Appl ying Parse v al’s theorem to eq. ( A34 ) and substituting the expressions for q ( x ), b ( x F ) and Y ( x , x F ) (eqs ( A1 ), ( A27 ) and ( A48 )), gives 
the following representation for the quantities q 1 ( x ) and q 2 ( x ) inside the inhomogeneous medium 

q α( x ) = 

∫ 
∂D F 

J ααF̄ 

∗
α( x , x F ) J 

−1 
11 q 

+ 
1 ( x F ) d 

2 x F + 

∫ 
∂D F 

F α( x , x F ) q 

−
1 ( x F ) d 

2 x F (A54) 

(no summation for repeated subscripts) for x 3 ≥ x 3, F . This is a generalisation of eqs ( 52 ) and ( 53 ). 
We use eq. ( A54 ) to derive representations for Green’s functions between the boundary ∂D F and any position x inside the medium. We 

define a unit d 2 -type source (see eq. ( A1 )) at x S just above ∂D F . The N 
2 × N 

2 Green’s matrix G 12 ( x , x S ) stands for the q 1 -type field observed 
at x , in response to this source. The spatial Fourier transform of the downgoing component at ∂D F (i.e., just below the source) is proportional 
to the upper-right submatrix of the decomposition operator of eq. ( A50 ), according to 

˜ G 

+ 
12 ( x F , s , x 3 ,S ) = { ̃  � 1 ( s , x 3 ,F ) } −1 exp { iωs · x H ,F } (A55) 

(Wapenaar 2022 ). To compensate for the effects of the inverse matrix { ̃  � 1 ( s , x 3 ,F ) } −1 , we define a modified Green’s matrix as 

˜ � 12 ( x , s , x 3 ,S ) = 

˜ G 12 ( x , s , x 3 ,S ) ̃  � 1 ( s , x 3 ,F ) , (A56) 

such that its downgoing component at ∂D F is given by 

˜ � 

+ 
12 ( x F , s , x 3 ,S ) = I exp { iωs · x H ,F } , (A57) 

or, after applying an inverse spatial Fourier transformation 

� 

+ 
12 ( x F , x S ) = I δ( x H ,F − x H ,S ) . (A58) 

The upgoing response at ∂D F to this downgoing source field is by definition the reflection response, hence 

� 

−
12 ( x F , x S ) = R( x F , x S ) . (A59) 

The field at x inside the medium consists of � 12 ( x , x S ) and � 22 ( x , x S ), where ˜ � 22 ( x , s , x 3 ,S ) = 

˜ G 22 ( x , s , x 3 ,S ) ̃  � 1 ( s , x 3 ,F ) , with ˜ G 22 ( x , s , x 3 ,S ) 
being the Green’s function for the q 2 -type field observed at x . Substituting q α( x ) = � α2 ( x , x S ) and q 

±
1 ( x F ) = � 

±
12 ( x F , x S ) into eq. ( A54 ), using 

eqs ( A58 ) and ( A59 ), we obtain 

� α2 ( x , x S ) = 

∫ 
∂D F 

F α( x , x F ) R( x F , x S ) d 
2 x F + J ααF̄ 

∗
α( x , x S ) J 

−1 
11 , (A60) 

(no summation for repeated subscripts) for x 3 ≥ x 3, F . This is a generalisation of eqs ( 54 ) and ( 55 ) and a starting point for developing a unified 
Marchenko method for full wave fields, accounting for e v anescent w aves inside the medium. Once the focusing functions are found, they can 
be used to retrieve the Green’s matrices � α2 ( x , x S ) for α = 1, 2 (from eq. ( A60 )) and all components of the propagator matrix W ( x , x F ) (from 

eqs ( A52 ) and ( A53 )). 

A P P E N D I X  B :  U N I F I E D  T R A N S F E R  M AT R I X  A N D  D E C O M P O S E D  F O C U S I N G  

F U N C T I O N S  

In this appendix, we extend the theory of Section 3 to unified wave fields. 

B1 Unified transfer matrix 

We introduce the unified transfer matrix as follows. Given the downgoing and upgoing fields q 

+ ( x F ) and q 

−( x F ) contained in vector b ( x F ) at 
the boundary ∂D F , we transfer these fields to depth level x 3 via 

b ( x ) = 

∫ 
∂D F 

T ( x , x F ) b ( x F ) d 
2 x F , (B1) 

for x 3 ≥ x 3, F . The unified transfer matrix T ( x , x F ) is partitioned as follows 

T ( x , x F ) = 

(
T 

+ , + T 

+ , −

T 

−, + T 

−, −

)
( x , x F ) , (B2) 
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with T 

±, ± being N 
2 × N 

2 submatrices. Analogous to eq. ( 58 ), matrix T ( x , x F ) is related to the unified propagator matrix W ( x , x F ) of eq. ( A20 ) 
via 

T ( x , x F ) = D 

−1 ( x ) W ( x , x F ) D ( x F ) , (B3) 

with D ( x F ) and D 

−1 ( x ) being the inverse spatial Fourier transforms of ˜ D ( s , x 3 ,F ) and { ̃  D ( s , x 3 ) } −1 , defined in eqs ( A26 ) and ( A50 ), 
respecti vel y. Unlike in the acoustic situation, where L ( x F ) and L 

−1 ( x ) in eq. ( 58 ) account for lateral variations of the medium param- 
eters, the unified matrices ˜ D ( s , x 3 ,F ) and { ̃  D ( s , x 3 ) } −1 are defined for laterall y inv ariant medium parameters at depths x 3, F and x 3 . For 
˜ D ( s , x 3 ,F ) this is not a restriction, since x 3, F is the depth of the boundary ∂D F between the inhomogeneous medium and the homoge- 
neous upper half-space. Ho wever , for { ̃  D ( s , x 3 ) } −1 it implies that this operator can only be applied at depths where no lateral variations 
occur. 

B2 Relation between unified transfer matrix and decomposed Marchenko focusing functions 

Assuming there are no lateral variations at a specific depth level x 3 , we use the spatial Fourier transformation defined in eq. ( 14 ) along the 
horizontal components of the first space variable to express the transfer matrix (analogous to eq. ( 59 )) as 

˜ T ( s , x 3 , x F ) = { ̃  D ( s , x 3 ) } −1 ˜ Y ( s , x 3 , x F ) , (B4) 

with { ̃  D ( s , x 3 ) } −1 defined in eq. ( A50 ) and ˜ Y ( s , x 3 , x F ) being the Fourier transform of Y ( x , x F ) defined in eq. ( A48 ). Analogous to eq. ( 60 ), 
we obtain for the right-hand column of ˜ T ( s , x 3 , x F ) (

˜ F 

+ ( s , x 3 , x F ) 
˜ F 

−( s , x 3 , x F ) 

)
= 

(−( ̃  � 1 ) −1 ˜ D 

−
1 ( ̃  � 1 ) −1 

( ̃  � 1 ) −1 ˜ D 

+ 
1 −( ̃  � 1 ) −1 

)
( s , x 3 ) 

(
˜ F 1 ( s , x 3 , x F ) 
˜ F 2 ( s , x 3 , x F ) 

)
, (B5) 

with ˜ F 

+ ( s , x 3 , x F ) and ˜ F 

−( s , x 3 , x F ) being the downgoing and upgoing parts at x 3 of ˜ F 1 ( s , x 3 , x F ) . For the left-hand column of ˜ T ( s , x 3 , x F ) 
we analyse the following expression (−( ̃  � 1 ) −1 ˜ D 

−
1 ( ̃  � 1 ) −1 

( ̃  � 1 ) −1 ˜ D 

+ 
1 −( ̃  � 1 ) −1 

)
( s , x 3 ) 

( 

J 11 ̃
 F̄ 

∗
1 ( −s , x 3 , x F ) J 

−1 
11 

J 22 ̃
 F̄ 

∗
2 ( −s , x 3 , x F ) J 

−1 
11 

) 

. (B6) 

Using eqs ( A29 ) and ( C16 ) in eq. ( B6 ) gives ( 

J 11 ( ̃  �̄ 

∗
1 ) 

−1 ( ̃  D̄ 

+ 
1 ) 

∗J −1 
11 −J 11 ( ̃  �̄ 

∗
1 ) 

−1 J −1 
22 

−J 11 ( ̃  �̄ 

∗
1 ) 

−1 ( ̃  D̄ 

−
1 ) 

∗J −1 
11 J 11 ( ̃  �̄ 

∗
1 ) 

−1 J −1 
22 

) 

( −s , x 3 ) 

( 

J 11 ̃
 F̄ 

∗
1 ( −s , x 3 , x F ) J 

−1 
11 

J 22 ̃
 F̄ 

∗
2 ( −s , x 3 , x F ) J 

−1 
11 

) 

. (B7) 

By comparing this with eq. ( B5 ) we find that the expression in eq. ( B7 ) is equal to ( 

J 11 { ̃  F̄ 

−
( −s , x 3 , x F ) } ∗J −1 

11 

J 11 { ̃  F̄ 

+ 
( −s , x 3 , x F ) } ∗J −1 

11 

) 

. (B8) 

Combining the right-hand column (eq. B5 ) and the left-hand column (eq. B8 ), we obtain the following expression for the unified transfer 
matrix 

˜ T ( s , x 3 , x F ) = 

( 

J 11 { ̃  F̄ 

−
( −s , x 3 , x F ) } ∗J −1 

11 
˜ F 

+ ( s , x 3 , x F ) 

J 11 { ̃  F̄ 

+ 
( −s , x 3 , x F ) } ∗J −1 

11 
˜ F 

−( s , x 3 , x F ) 

) 

, (B9) 

or, in the space domain, 

T ( x , x F ) = 

(
J 11 { ̄F 

−( x , x F ) } ∗J −1 
11 F 

+ ( x , x F ) 
J 11 { ̄F 

+ ( x , x F ) } ∗J −1 
11 F 

−( x , x F ) 

)
. (B10) 

This is the generalisation of eq. ( 63 ). 

B3 Representations with decomposed unified Marchenko focusing functions 

Substituting the expressions for b ( x ) and T ( x , x F ) into eq. ( B1 ) gives the following representations for the downgoing and upgoing fields, 
q 

+ 
1 ( x ) and q 

−
1 ( x ) respecti vel y, inside the inhomogeneous medium 

q 

+ 
1 ( x ) = 

∫ 
∂D F 

J 11 { ̄F 

−( x , x F ) } ∗J −1 
11 q 

+ 
1 ( x F ) d 

2 x F + 

∫ 
∂D F 

F 

+ ( x , x F ) q 

−
1 ( x F ) d 

2 x F , (B11) 

q 

−
1 ( x ) = 

∫ 
∂D F 

J 11 { ̄F 

+ ( x , x F ) } ∗J −1 
11 q 

+ 
1 ( x F ) d 

2 x F + 

∫ 
∂D F 

F 

−( x , x F ) q 

−
1 ( x F ) d 

2 x F , (B12) 

for x 3 ≥ x 3, F . These expressions are exact and hold for dissipative media. Making similar substitutions as in Section A4 we obtain 

� 

+ 
12 ( x , x S ) = 

∫ 
∂D F 

F 

+ ( x , x F ) R( x F , x S ) d 
2 x F + J 11 { ̄F 

−( x , x S ) } ∗J −1 
11 , (B13) 
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� 

−
12 ( x , x S ) = 

∫ 
∂D F 

F 

−( x , x F ) R( x F , x S ) d 
2 x F + J 11 { ̄F 

+ ( x , x S ) } ∗J −1 
11 , (B14) 

for x 3 ≥ x 3, F . Here � 

+ 
12 ( x , x S ) and � 

−
12 ( x , x S ) stand for the downgoing and upgoing part of the Green’s function � 12 ( x , x S ). These equations are 

generalisations of eqs ( 67 ) and ( 68 ) and form a starting point for developing a unified Marchenko method for decomposed wave fields. 
Once the focusing functions are found, they can be used to retrieve the decomposed Green’s functions � 

+ 
12 ( x , x S ) and � 

−
12 ( x , x S ) (from 

eqs ( B13 ) and ( B14 )) and all components of the transfer matrix T ( x , x F ) (from eq. ( B10 )). Versions of the Marchenko method based 
on expressions similar to eqs ( B13 ) and ( B14 ) have already been implemented for the retrie v al of decomposed elastodynamic Green’s 
functions in lossless media, ignoring e v anescent w aves (Wapenaar & Slob 2014 ; da Costa Filho et al. 2014 ; Reinicke & Wapenaar 2019 ; 
Reinicke et al. 2020 ). 

A P P E N D I X  C :  S Y M M E T RY  P RO P E RT I E S  O F  T H E  P RO PA G AT O R  A N D  

D E C O M P O S I T I O N  M AT R I C E S  

Let N × N propagator matrices W ( x , x A ) and W ( x , x B ) be two independent solutions of eq. ( 8 ) (with unified operator matrix 
A ( x ) defined in eq. ( A1 )), with boundary condition ( 9 ), modified for coordinate vectors x A and x B . We show that the quantity ∫ 
R 2 

W 

t ( x H , x 3 , x A ) NW ( x H , x 3 , x B ) d 
2 x H is a ‘propagation invariant’, meaning that it is independent of x 3 (Haines 1988 ; Kennett et al. 1990 ; 

Kok etsu et al. 1991 ; Tak enaka et al. 1993 ). To this end we take the deri v ati ve in the x 3 -direction, appl y the product rule for differentiation, 
use eq. ( 8 ) and symmetry relation ( A2 ), according to 

∂ 3 

∫ 
R 2 

W 

t ( x , x A ) NW ( x , x B ) d 
2 x H = 

∫ 
R 2 

W 

t ( x , x A ) 
(
A 

t N + N A ︸ ︷︷ ︸ 
O 

)
W ( x , x B ) d 

2 x H = O . (C1) 

This confirms that the integral is a propagation invariant. In a similar way, using symmetry relation ( A3 ), it can be shown that ∫ 
R 2 

W̄ 

† ( x H , x 3 , x A ) KW ( x H , x 3 , x B ) d 
2 x H is also a propagation invariant. Using boundary condition ( 9 ), modified for x 3 = x 3, A and x 3 = 

x 3, B , we find from the first propagation invariant 

W 

t ( x B , x A ) = NW ( x A , x B ) N 

−1 (C2) 

and from the second propagation invariant 

W̄ 

† ( x B , x A ) = KW ( x A , x B ) K 

−1 . (C3) 

From eqs ( C2 ) and ( C3 ), using KN 

−1 = J , we find 

W̄ ( x B , x A ) = JW 

∗( x B , x A ) J 
−1 . (C4) 

This equation is used in Section 2.3 and Appendix A3 in the deri v ation of the relation between the propagator matrix and the Marchenko 
focusing functions. 

To derive a symmetr y proper ty for ˜ D 

±
1 = 

˜ L 

±
2 ( ̃  L 

±
1 ) 

−1 (eq. ( A28 )), we start by Fourier transforming symmetry relations ( A2 ) – ( A4 ), assuming 
the medium is laterally invariant at the depth level where the transformation is applied. This gives 

˜ A 

t ( −s , x 3 ) = −N ̃

 A ( s , x 3 ) N 

−1 , (C5) 

˜ A 

† ( s , x 3 ) = −K ̃

 Ā ( s , x 3 ) K 

−1 , (C6) 

˜ A 

∗( −s , x 3 ) = J ̃  Ā ( s , x 3 ) J 
−1 . (C7) 

The eigenvalue decomposition of matrix ˜ A is defined in eq. ( A21 ), with the partitioning of ˜ � and ˜ L defined in eq. ( A22 ). For all wave 
phenomena mentioned in Appendix A1 , the eigenvalue matrix ˜ � obeys the following symmetry relations 

˜ � 

t 
( −s , x 3 ) = −N ̃

 � ( s , x 3 ) N 

−1 , (C8) 

˜ � 

† 
( s , x 3 ) = −J ̃  �̄ ( s , x 3 ) J 

−1 . (C9) 

Given eqs ( A21 ) and ( C5 ) – ( C9 ), matrix ˜ L can be normalized such that 

˜ L 

t ( −s , x 3 ) = −N ̃

 L 

−1 ( s , x 3 ) N 

−1 , (C10) 

˜ L 

† ( s , x 3 ) = J ̃  L̄ 

−1 
( s , x 3 ) K 

−1 . (C11) 

From the latter two equations, we obtain 

˜ L 

∗( s , x 3 ) = J ̃  L̄ ( −s , x 3 ) K, (C12) 

or, using the partitioning of ˜ L as defined in eq. ( A22 ), {
˜ L 

±
1 ( s , x 3 ) 

}∗ = J 11 ̃
 L̄ 

∓
1 ( −s , x 3 ) K 12 , (C13) 
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{
˜ L 

±
2 ( s , x 3 ) 

}∗ = J 22 ̃
 L̄ 

∓
2 ( −s , x 3 ) K 12 , (C14) 

with J 11 and J 22 being the upper-left and lower-right submatrices of matrix J , and K 12 being the upper-right ( = lower-left) submatrix of matrix 
K . From eqs ( C13 ) and ( C14 ) it follows that ˜ D 

±
1 as defined in eq. ( A28 ) obeys the following symmetry relation 

˜ D̄ 

±
1 ( s , x 3 ) = J 22 { ̃  D 

∓
1 ( −s , x 3 ) } ∗J −1 

11 . (C15) 

Finally, using ˜ � 1 = 

˜ D 

+ 
1 − ˜ D 

−
1 (equation A51 ), we obtain { 

˜ �̄ 1 ( s , x 3 ) 
} −1 

= −J 11 

{ 
˜ � 

∗
1 ( −s , x 3 ) 

} −1 
J −1 

22 . (C16) 

C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. 
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