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S U M M A R Y 

Recently, there has been an increasing interest in employing rotational motion measurements 
for seismic source inversion, structural imaging and ambient noise analysis. We derive reci- 
procity and representation theorems for rotational motion. The representations express the 
rotational motion inside an inhomogeneous anisotropic earth in terms of translational and 

rotational motion at the surface. The theorems contribute to the theoretical basis for rotational 
seismology methodology, such as deter mining the moment tensor of ear thquake sources. 
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 I N T RO D U C T I O N  

easurements of the seismic wave field are traditionally restricted
o three mutually perpendicular components of the particle veloc-
ty (also called translational motion). Observational studies by Igel
t al. ( 2007 ), Lin et al. ( 2011 ) and others have demonstrated the po-
ential of additionally measuring three components of the rotational

otion. Recently, researchers have been exploring the advantages of
otational seismology in source localization and inversion (Bernauer
t al. 2014 ; Donner et al. 2016 ; Li & van der Baan 2017b ; Ichi-
ose et al. 2021 ), structural imaging (Bernauer et al. 2009 ; Abreu
t al. 2023 ), ambient noise analysis (Hadziioannou et al. 2012 ; Paitz
t al. 2019 ) and exploration geophysics (Li & van der Baan 2017a ;
chmelzbach et al. 2018 ). 
Reciprocity and representation theorems for translational motion

de Hoop 1966 ; Aki & Richards 1980 ; Fokkema & van den Berg
993 ) have been employed as a theoretical basis for the development
f methodologies for seismic imaging, inverse scattering, source
haracterization, seismic holography, multiple elimination, Green’s
unction retrieval, etc. Given the current interest in rotational seis-
ology, it is opportune to derive reciprocity and representation

heorems for rotational motion. An important step in this direction
as been made by Li & van der Baan ( 2017b ). In their derivation
hey assume the medium is homogeneous and isotropic. In this
aper we derive several forms of reciprocity and representation the-
rems for translational and rotational motion in an inhomogeneous
nisotropic earth. These theorems complement the theoretical basis
or the development of methodologies for rotational seismology. 

 R E C I P RO C I T Y  T H E O R E M S  F O R  

O TAT I O NA L  S E I S M O L O G Y  

he rotational motion-rate vector in an inhomogeneous anisotropic
edium is defined as �̇ = 1 

2 ∇ × v , where v is the particle velocity
ector. This definition holds in the space–time ( x , t) domain as
C© The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ell as in the space–frequency ( x , ω) domain. In the following, all
xpressions are in the space–frequency domain. Note that for the
pecial case of a homogeneous isotropic medium, �̇ would represent
he S-wave part of v . 

Consider a spatial domain D enclosed by boundary ∂D with
utward pointing normal vector n . A reciprocity theorem for elastic
ave fields in a homogeneous isotropic medium in this domain

eads ∮ 
∂D 

ρ
[ 
c2 

P { vA ∇ · vB − vB ∇ · vA } 

+ c2 
S { vA × ∇ × vB − vB × ∇ × vA }

] 
· nd 2 x 

= iω

∫ 
D 

{ vA · fB − vB · fA }d 3 x . (1) 

ere v ( x , ω) is the particle velocity vector, f( x , ω) the force source
ector, cP and cS are the P - and S-propagation velocities, ρ is the
ass density and i the imaginary unit. Upper-case subscripts A and

B denote two independent states, which can be physical or mathe-
atical wave fields (or a combination thereof), emitted by different

ources. Eq. ( 1 ) is a slightly modified form of a theorem formulated
y Knopoff ( 1956 ). Because it explicitly contains ∇ × v = 2�̇ in
oth states, Li & van der Baan ( 2017b ) used this as the starting
oint for deriving representations for rotational seismology. A lim-
tation is that eq. ( 1 ) was derived from the elastic wave equation for
 homogeneous isotropic medium. Here we show that its derivation
an be generalized for an inhomogeneous anisotropic medium in
 , with only some restrictions on the medium parameters at the
oundary ∂D . 

The Betti–Rayleigh reciprocity theorem for elastic wave fields in
n inhomogeneous anisotropic medium in D reads (de Hoop 1966 ;
ki & Richards 1980 ) 
∮ 

∂D 

{ vi,A τi j,B − vi,B τi j,A } n j d 
2 x = −

∫ 
D 

{ vi,A fi,B − vi,B fi,A }d 3 x . 
(2) 
oyal Astronomical Society. This is an Open Access
https://creativecommons.org/licenses/by/4.0/), which
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Here vi , τi j , fi and n j are components of the particle velocity 
vector v , stress tensor τ , force source vector f and normal vector n , 
respectively. Einstein’s summation convention applies to repeated 
lower-case subscripts. Our aim is to recast eq. ( 2 ) into the form 

of eq. ( 1 ). We start by expressing the stress at the boundary ∂D 

in terms of the particle velocity. Because the boundary integral in 
eq. ( 1 ) contains the isotropic velocities cP and cS , for our derivation 
we assume that the medium is isotropic in a vanishingly thin shell 
around ∂D . Hence, we use the isotropic stress–velocity relation 
τi j = − 1 

iω { λδi j ∂k vk + μ( ∂ j vi + ∂i v j ) } , where λ( x ) and μ( x ) are the 
Lamé parameters in the thin shell around ∂D . Substituting this into 
eq. ( 2 ) for both states, we obtain after some manipulations 

∮ 
∂D 

[ 
λ{ vA ∇ · vB − vB ∇ · vA } + 2 μ{ ( vA · ∇) vB − ( vB · ∇) vA } 

+ μ{ vA × ∇ × vB − vB × ∇ × vA }
] 

· nd 2 x 

= iω

∫ 
D 

{ vA · fB − vB · fA }d 3 x . (3) 

For a more detailed derivation see the online material. This expres- 
sion has the form of eq. ( 1 ), except for the second term on the 
left-hand side. This term can be reorganized into the form of the 
first term, using the theorem of Gauss, if we assume μ is constant 
along the boundary ∂D (see the online material for details). Using 
λ + 2 μ = ρc2 

P and μ = ρc2 
S , we thus obtain eq. ( 1 ), this time for 

an inhomogeneous anisotropic medium in D ; only in a vanishingly 
thin shell around the boundary ∂D the medium is assumed to be 
isotropic, with μ constant along ∂D . 

In order to use eq. ( 1 ) as a basis for backpropagation, we replace 
the quantities in state A by their complex-conjugates (denoted by 
asterisks), which is allowed when the medium in D is lossless. Using 
�̇ = 1 

2 ∇ × v and defining the cubic dilatation-rate as �̇ = ∇ · v we 
thus obtain ∮ 

∂D 

ρ
[ 
c2 

P { v∗
A ̇�B − vB �̇

∗
A } + 2 c2 

S { v∗
A × �̇B − vB × �̇

∗
A }

] 
· nd 2 x 

= iω

∫ 
D 

{ v∗
A · fB + vB · f∗

A }d 3 x . 
(4) 

3  R E P R E S E N TAT I O N  T H E O R E M S  F O R  

RO TAT I O NA L  S E I S M O L O G Y  

A representation theorem is obtained by choosing for one of the 
states in a reciprocity theorem a Green’s state (Gangi 1970 ). 
Hence, for state A , we replace vA by the Green’s velocity vec- 
tor Gv, fn ( x , xA , ω) , defined as the response at x to a unit force 
source in the xn -direction at xA in D , i.e., fi,A ( x , ω) = δin δ( x − xA ) . 
Moreover, we replace �̇A and �̇A by the Green’s rotational motion- 
rate vector and cubic dilatation-rate, defined as G	̇, fn ( x , xA , ω) = 

1 
2 ∇ × Gv, fn ( x , xA , ω) and G�̇ , fn ( x , xA , ω) = ∇ · Gv, fn ( x , xA , ω) .
As usual, the second subscript of a Green’s function refers to the 
source type at xA (here a force fn ), whereas the first subscript ( v, 
	̇ or �̇ ) refers to the type of response at x . For state B we take 
the actual physical state and drop the subscripts B. Choosing the 
source distribution f( x , ω) of the actual state outside D , we thus 
obtain from eq. ( 4 ) 

vn ( xA , ω) = 

1 

iω 

∮ 
∂D 

ρ
[ 
c2 

P { G∗
v, fn 

�̇ − G∗
�̇ , fn 

v } 

+ 2 c2 
S { G∗

v, fn 
× �̇ + G∗

	̇, fn 
× v }

] 
· nd 2 x . (5) 
This is a representation of the particle velocity component vn ( xA , ω) 
at xA in D , expressed in terms of the wave fields v ( x , ω) , �̇( x , ω)
and �̇ ( x , ω) at ∂D . Next, we derive a representation of the rota- 
tional motion-rate component 	̇h ( xA , ω) . Using the subscript nota- 
tion for the curl-operator, this component is defined as 	̇h ( xA , ω) = 

1 
2 εhmn ∂m,A vn ( xA , ω) , where εhmn is the Levi-Civita symbol and 
where ∂m,A denotes differentiation with respect to xm,A . Apply- 
ing the operator 1 

2 εhmn ∂m,A to both sides of eq. ( 5 ), interchanging 
the order of integration (over x ) and differentiation (with respect to 
xm,A ), yields 

	̇h ( xA , ω) = 

1 

iω 

∮ 
∂D 

ρ
[ 
c2 

P { G∗
v,	̇h 

�̇ − G∗
�̇ ,	̇h 

v } 

+ 2 c2 
S { G∗

v,	̇h 
× �̇ + G∗

	̇,	̇h 
× v }

] 
· nd 2 x , (6) 

where Gϒ̇ ,	̇h 
( x , xA , ω) = 1 

2 εhmn ∂m,A Gϒ̇ , fn ( x , xA , ω) , with subscript 
ϒ̇ standing for v, 	̇ or �̇ . Note that here the operator 1 

2 εhmn ∂m,A 

transforms the force-source of the Green’s function into a rota- 
tional motion source (which for the special case of a homogeneous 
isotropic medium would correspond to a S-wave source). A repre- 
sentation of the cubic dilatation-rate �̇ ( xA , ω) can be derived in a 
similar way by applying the operator ∂n,A to both sides of eq. ( 5 ), 
but this is beyond the scope of this paper. 

The representations of eqs ( 5 ) and ( 6 ) are exact. In practice, how- 
ever, measurements are not available on a closed boundary but, say, 
on a horizontal boundary ∂D0 (with upwards pointing normal vector 
n = (0 , 0 , −1) ), see Fig. 1 . We define a second horizontal boundary 
∂D1 between xA and the source distribution f( x , ω) of the actual 
state. The boundaries ∂D0 and ∂D1 (together with a cylindrical 
boundary with a vertical axis through xA and infinite radius) form 

the closed boundary ∂D . Because measurements are available only 
on ∂D0 , in practice we neglect the integral over ∂D1 and approximate 
eq. ( 6 ) by an integral over ∂D0 . This is a suitable approximation for 
backpropagation of the wave field from ∂D0 to xA . It is illustrated in 
Fig. 1 (a), where the downwards pointing arrows represent the com- 
plex conjugated (i.e., backpropagating) Green’s functions. These 
Green’s functions are defined in the inhomogeneous anisotropic 
medium in D , but for simplicity they are visualized by straight rays. 
Since the integral over ∂D1 is neglected, evanescent waves are ig- 
nored, internal multiples are erroneously handled and the recovered 
primary wave field at xA contains small amplitude errors, propor- 
tional to the amplitudes of internal multiples (Wapenaar & Haimé 
1990 ). For a weakly scattering medium these approximations are 
acceptable and of the same order as those of the standard elastody- 
namic Kirchhoff–Helmholtz integral for backpropagation (Kuo & 

Dai 1984 ; Hokstad 2000 ). 
Although we have achieved our goal (i.e. deriving a represen- 

tation in terms of translational and rotational motion for an in- 
homogeneous anisotropic medium), eq. ( 6 ) (with ∂D replaced by 
∂D0 ) is still rather complex. This expression simplifies signifi- 
cantly when the medium at and above ∂D0 is homogeneous and 
isotropic. At and above ∂D0 we express the particle velocity as 

v = − c2 
P 

ω2 ∇�̇ + 2 c2 
S 

ω2 ∇ × �̇, see the online material for details. Note 

that here �̇ and �̇ are scaled versions of P - and S-wave poten- 
tials. We substitute this expression, and a similar expression for 
Gv,	̇h 

, into the right-hand side of eq. ( 6 ). Using the fact that the ac- 
tual wave field and the Green’s functions are upwards propagating 
at ∂D0 (and hence the complex conjugated Green’s functions are 
downwards propagating at ∂D0 ), we can use one-way wave equa- 
tions for P - and S-waves at ∂D0 to simplify the right-hand side of 
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Figure 1. (a) Illustration of eq. ( 6 ) (with ∂D replaced by ∂D0 ) for backpropagation. (b) Illustration of eqs ( 7 ) and ( 8 ). The amplitude of the “converted” Green’s 
function G�̇ ,	̇h 

( x , xA , ω ) (light-g rey) is one order of magnitude lower than that of the “non-converted” Green’s function G	̇,	̇h 
( x , xA , ω) . 
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q. ( 6 ). This yields (ignoring evanescent waves) 

˙
h ( xA , ω ) ≈ 2 

iω3 

∫ 
∂D0 

ρ
[ 
c4 

P ( ∂3 G
∗
�̇ ,	̇h 

)�̇ + 4 c4 
S ( ∂3 G

∗
	̇,	̇h 

) · �̇
] 
d 2 x , 

(7

ee the online material for a detailed derivation. This expression is
llustrated in Fig. 1 (b) (a similar expression was previously derived
n a somewhat different way for P - and S-wave potentials by Wape-
aar & Haimé 1990 ). Note that the Green’s function G�̇ ,	̇h 

( x , xA , ω)
tands for the cubic dilatation-rate at x in response to a rotational mo-
ion source at xA . The amplitude of this “converted” Green’s func-
ion is one order of magnitude lower than that of the “non-converted”
reen’s function G	̇,	̇h 

( x , xA , ω) (and in a homogeneous isotropic
edium it would completely vanish). Hence, in a weakly scattering
edium we can ignore the term containing G�̇ ,	̇h 

( x , xA , ω) , which
eaves 

˙
h ( xA , ω ) ≈ 8 

iω3 

∫ 
∂D0 

ρc4 
S { ∂3 G

∗
	̇,	̇h 

( x , xA , ω ) } · �̇( x , ω)d 2 x . (8) 

his very simple Rayleigh-type integral formulates backpropaga-
ion of rotational motion-rate measurements �̇( x , ω) from the acqui-
ition boundary ∂D0 , through a weakly scattering inhomogeneous
nistropic medium, towards sources below ∂D0 . 

 C O N C LU S I O N S  

e have derived reciprocity and representation theorems for the
ranslational and rotational components of a seismic wave field.
q. ( 6 ) (with ∂D replaced by ∂D0 ) is an expression for backprop-
gation of measurements at the boundary ∂D0 towards real or sec-
ndary sources in the inhomogeneous anisotropic medium below
D0 . The medium is assumed to be isotropic in a vanishingly thin
hell around ∂D0 , with μ constant along ∂D0 . This representation
oes not rely on a specific propagation direction of the wave field
t ∂D0 , hence, the medium above ∂D0 can also be inhomogeneous
nd anisotropic, or ∂D0 can be a free surface. This generality comes
ith complexity. When the medium above ∂D0 is homogeneous and

sotropic, the wave fields at ∂D0 propagate upwards, which leads to
he significantly more simple representation of eq. ( 7 ) or, when the

edium below ∂D0 is only weakly scattering, to the very simple
ayleigh-type integral of eq. ( 8 ). 
The derived reciprocity and representation theorems contribute
o the theoretical basis for rotational seismology methodology. The
epresentations of eqs ( 6 )–( 8 ) can be used to generate virtual ro-
ational motion sensors inside the medium, closer to the area of
nterest than the physical sensors at the surface. Together with vir-
ual translational motion sensors, these can be used to improve the
etermination of the moment tensor of earthquake sources (Donner
t al. 2016 ; Li & van der Baan 2017a ; Ichinose et al. 2021 ) or to
mprove the efficiency of (local) structural imaging (Bernauer et al.
009 ). Note that by rotating the configurations of Fig. 1 by 90 de-
rees, similar representations can be formulated for measurements
n a vertical borehole. 
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Derivations for section 2

The basic equations in the (x, ω) domain for elastic wave fields in an inhomogeneous anisotropic
medium read

∂jτij + iωρvi = −fi, (1)

iωτij + cijkl∂lvk = 0. (2)

Here vi(x, ω), τij(x, ω) and fi(x, ω) are the components of the particle velocity vector v(x, ω),
the stress tensor τ (x, ω) and the source vector f(x, ω), respectively; ρ(x) is the mass density
and cijkl(x) the stiffness. Einstein’s summation convention applies to repeated lower-case
subscripts. Consider a spatial domain D enclosed by boundary ∂D. For this configuration, the
Betti-Rayleigh reciprocity theorem reads∮

∂D
{vi,Aτij,B − vi,Bτij,A}njd

2x = −
∫
D
{vi,Afi,B − vi,Bfi,A}d3x, (3)

where upper-case subscripts A and B denote two independent states and nj stands for the
components of the outward pointing normal vector n on ∂D.

We recast equation (3) into a form that contains the rotational motion-rate vector 1
2∇×v

in states A and B. To this end we assume that the medium is isotropic in a vanishingly thin
shell around the boundary ∂D, hence

cijkl = λδijδkl + µ(δikδjl + δilδjk), (4)

where λ(x) and µ(x) are the Lamé parameters in the vanishingly thin shell around ∂D.
Substituting equation (4) into equation (2) gives

τij = − 1

iω

(
λδij∂kvk + µ(∂jvi + ∂ivj)

)
. (5)

Next, substituting equation (5) into equation (3) yields∮
∂D

[
λ{vj,A∂kvk,B − vj,B∂kvk,A}+ µ{vi,A(∂jvi,B + ∂ivj,B)− vi,B(∂jvi,A + ∂ivj,A)}

]
njd

2x

= iω

∫
D
{vi,Afi,B − vi,Bfi,A}d3x. (6)
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Using

vj,A∂kvk,B = {vA∇ · vB}j , (7)

vi,A(∂jvi,B + ∂ivj,B) = {2(vA · ∇)vB + vA ×∇× vB}j ,
vi,Afi,B = vA · fB, (8)

and similar expressions with A and B interchanged, equation (6) can be rewritten as∮
∂D

[
λ{vA∇ · vB − vB∇ · vA}+ 2µ{(vA · ∇)vB − (vB · ∇)vA}

+µ{vA ×∇× vB − vB ×∇× vA}
]
· nd2x = iω

∫
D
{vA · fB − vB · fA}d3x. (9)

This is equation (3) in the main text.

Next, we aim to combine the first two terms on the left-hand side into a single term.
Assuming µ is constant along the boundary ∂D, we can take it outside the integral and use
the theorem of Gauss to reorganize the second term into the form of the first term, according
to

2µ

∮
∂D

{(vA · ∇)vB − (vB · ∇)vA} · nd2x = 2µ

∫
D
∇ · {(vA · ∇)vB − (vB · ∇)vA}d3x

= 2µ

∫
D
∇ · {vA∇ · vB − vB∇ · vA}d3x = 2µ

∮
∂D

{vA∇ · vB − vB∇ · vA} · nd2x. (10)

Using equation (10) in equation (9) we obtain∮
∂D

ρ
[
c2P {vA∇ · vB − vB∇ · vA}+ c2S{vA ×∇× vB − vB ×∇× vA}

]
· nd2x

= iω

∫
D
{vA · fB − vB · fA}d3x, (11)

with P - and S-propagation velocities cP =
√

(λ+ 2µ)/ρ and cS =
√
µ/ρ at ∂D. This is

equation (1) in the main text, but for an inhomogeneous anisotropic medium in D; only at
the boundary ∂D the medium is assumed to be isotropic, with µ constant along ∂D. Using

Θ̇ = ∇ · v, (12)

Ω̇ =
1

2
∇× v, (13)

equation (11) can be rewritten as∮
∂D

ρ
[
c2P {vAΘ̇B − vBΘ̇A}+ 2c2S{vA × Ω̇B − vB × Ω̇A}

]
· nd2x = iω

∫
D
{vA · fB − vB · fA}d3x.

(14)

We derive a similar expression with complex-conjugated fields in one of the states. Assum-
ing the medium is lossless (i.e., assuming ρ and cijkl are real-valued), complex conjugation of
equations (1) and (2) yields

−∂jτ
∗
ij + iωρv∗i = f∗

i , (15)

−iωτ∗ij + cijkl∂lv
∗
k = 0, (16)

where the asterisk denotes complex conjugation. Hence, since v∗i , −τ∗ij and −f∗
i obey the

same equations as vi, τij and fi, the Betti-Rayleigh reciprocity theorem of equation (3) can
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be modified into∮
∂D

{v∗i,Aτij,B + vi,Bτ
∗
ij,A}njd

2x = −
∫
D
{v∗i,Afi,B + vi,Bf

∗
i,A}d3x. (17)

Following the same derivation as above, we obtain∮
∂D

ρ
[
c2P {v∗

AΘ̇B − vBΘ̇
∗
A}+ 2c2S{v∗

A × Ω̇B − vB × Ω̇∗
A}

]
· nd2x = iω

∫
D
{v∗

A · fB + vB · f∗A}d3x.

(18)

This is equation (4) in the main text.

Derivations for section 3

Consider the boundary integral of equation (6) in the main text, with ∂D replaced by the
horizontal boundary ∂D0, i.e.,∫

∂D0

ρ
[
c2P {G∗

v,Ω̇h
Θ̇−G∗

Θ̇,Ω̇h
v}+ 2c2S{G∗

v,Ω̇h
× Ω̇+G∗

Ω̇,Ω̇h
× v}

]
· nd2x, (19)

with n = (0, 0,−1) at ∂D0. Our aim is to reorganize this integral for the situation that the
medium at and above ∂D0 is homogeneous, isotropic and source-free. At and above ∂D0, the
velocity vector v(x, ω) obeys the following wave equation

c2P∇(∇ · v)− c2S∇×∇× v + ω2v = 0. (20)

For the homogeneous, isotropic medium at and above ∂D0 we write

v = a∇Θ̇ + b∇× Ω̇, (21)

where a and b still need to be determined. Comparing this expression with v = ∇Φ+∇×Ψ,
where Φ and Ψ are the P - and S-wave potentials, it follows that Θ̇ and Ω̇ are proportional
to the P - and S-wave potentials. Note that

∇ · v = a∇2Θ̇, (22)

∇× v = b∇×∇× Ω̇. (23)

Substitution of equations (21) – (23) into equation (20) gives

ac2P∇
(
∇2Θ̇ +

ω2

c2P
Θ̇
)
+ bc2S∇×

(
−∇×∇× Ω̇+

ω2

c2S
Ω̇
)
= 0. (24)

The decomposition of this equation into independent equations for Θ̇ and Ω̇ is not unique. A
convenient choice is

∇2Θ̇ +
ω2

c2P
Θ̇ = 0, (25)

−∇×∇× Ω̇+
ω2

c2S
Ω̇ = 0. (26)

Equation (26) implies ∇ · Ω̇ = 0 (for ω ̸= 0). Using the fundamental property

−∇×∇× Ω̇+∇(∇ · Ω̇) = ∇2Ω̇, (27)
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equation (26) can be rewritten as

∇2Ω̇+
ω2

c2S
Ω̇ = 0, with ∇ · Ω̇ = 0. (28)

From equations (12), (22) and (25) we obtain

a = −
c2P
ω2

. (29)

Similarly, from equations (13), (23) and (26) we obtain

b =
2c2S
ω2

. (30)

Substitution into equation (21) gives

v = −
c2P
ω2

∇Θ̇ +
2c2S
ω2

∇× Ω̇. (31)

We express the Green’s velocity vector in a similar way, according to

Gv,Ω̇h
= −

c2P
ω2

∇GΘ̇,Ω̇h
+

2c2S
ω2

∇×GΩ̇,Ω̇h
. (32)

Substitution of equations (31) and (32) into the boundary integral of equation (19) yields

ρ

ω2

∫
∂D0

[
c2P

(
−(c2P∇GΘ̇,Ω̇h

− 2c2S∇×GΩ̇,Ω̇h
)∗Θ̇ +G∗

Θ̇,Ω̇h
(c2P∇Θ̇− 2c2S∇× Ω̇)

)
−2c2S

(
(c2P∇GΘ̇,Ω̇h

− 2c2S∇×GΩ̇,Ω̇h
)∗ × Ω̇+G∗

Ω̇,Ω̇h
× (c2P∇Θ̇− 2c2S∇× Ω̇)

)]
· nd2x. (33)

The medium at and above ∂D0 is homogeneous, isotropic and source-free. The source of the
Green’s function (at xA) and the source distribution f(x, ω) of the actual field are below the
boundary ∂D0, hence, the Green’s function and the actual field propagate upward at ∂D0. In
the following we make explicitly use of this. To this end, we first rewrite the boundary integral
in equation (33) as∫

∂D0

[
· · ·

]
· nd2x =

∫
R2

[
· · ·

]
x3,0

· nd2xH, (34)

where R is the set of real numbers, x3,0 is the depth of boundary ∂D0 and xH denotes the
horizontal coordinate vector, defined as xH = (x1, x2). We define the 2D spatial Fourier
transform of a quantity A(xH, x3,0, ω) as

Ã(kH, x3,0, ω) =

∫
R2

A(xH, x3,0, ω) exp{−ikH · xH}d2xH, (35)

with kH denoting the horizontal wave vector, according to kH = (k1, k2). Using equation (34)
and Parseval’s theorem∫

R2

A∗(xH, x3,0, ω)B(xH, x3,0, ω)d
2xH =

1

4π2

∫
R2

Ã∗(kH, x3,0, ω)B̃(kH, x3,0, ω)d
2kH, (36)

we rewrite the expression of equation (33) as

ρ

4π2ω2

∫
R2

[
c2P

(
−(c2P ∇̃G̃Θ̇,Ω̇h

− 2c2S∇̃ × G̃Ω̇,Ω̇h
)∗ ˜̇Θ + G̃∗

Θ̇,Ω̇h
(c2P ∇̃

˜̇Θ− 2c2S∇̃ × ˜̇Ω)
)
−

2c2S

(
(c2P ∇̃G̃Θ̇,Ω̇h

− 2c2S∇̃ × G̃Ω̇,Ω̇h
)∗ × ˜̇Ω+ G̃∗

Ω̇,Ω̇h
× (c2P ∇̃

˜̇Θ− 2c2S∇̃ × ˜̇Ω)
)]

x3,0

· nd2kH, (37)
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with

∇̃ =

ik1
ik2
∂3

 . (38)

Equations (25) and (28) read in the spatial Fourier domain

∂2
3
˜̇Θ = −

(
ω2

c2P
− kH · kH

)
˜̇Θ, (39)

∂2
3
˜̇Ω = −

(
ω2

c2P
− kH · kH

)
˜̇Ω, with ik1

˜̇Ω1 + ik2
˜̇Ω2 + ∂3

˜̇Ω3 = 0. (40)

Given that ˜̇Θ and ˜̇Ω are propagating upward at x3 = x3,0, we can use the following one-way
wave equations

∂3
˜̇Θ = −ik3,P

˜̇Θ, (41)

∂3
˜̇Ω = −ik3,S

˜̇Ω, with ik1
˜̇Ω1 + ik2

˜̇Ω2 = ik3,S
˜̇Ω3, (42)

where

k3,P =


√

ω2

c2P
− kH · kH, for kH · kH ≤ ω2

c2P
,

i
√
kH · kH − ω2

c2P
, for kH · kH > ω2

c2P
,

(43)

k3,S =


√

ω2

c2S
− kH · kH, for kH · kH ≤ ω2

c2S
,

i
√

kH · kH − ω2

c2S
, for kH · kH > ω2

c2S
.

(44)

Note that for kH · kH ≤ ω2/c2P and for kH · kH > ω2/c2P , equation (41) describes upward
propagating and upward decaying evanescent P -waves, respectively. Similarly, for kH · kH ≤
ω2/c2S and for kH · kH > ω2/c2S , equation (42) describes upward propagating and upward
decaying evanescent S-waves, respectively. Analogous to equations (41) and (42) we have

(∂3G̃Θ̇,Ω̇h
)∗ = ik∗3,P G̃

∗
Θ̇,Ω̇h

, (45)

(∂3G̃Ω̇,Ω̇h
)∗ = ik∗3,SG̃

∗
Ω̇,Ω̇h

, with − ik1G̃
∗
Ω̇1,Ω̇h

− ik2G̃
∗
Ω̇2,Ω̇h

= −ik∗3,SG̃
∗
Ω̇3,Ω̇h

(46)

(G̃Ω̇k,Ω̇h
being the k-component of G̃Ω̇,Ω̇h

), where, according to equations (43) and (44),

k∗3,P =

k3,P , for kH · kH ≤ ω2

c2P
,

−k3,P , for kH · kH > ω2

c2P
,

(47)

k∗3,S =

k3,S , for kH · kH ≤ ω2

c2S
,

−k3,S , for kH · kH > ω2

c2S
.

(48)
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Using equations (38) and (41) – (46), we can reorganize the expression of equation (37) as

− ρ

4π2ω2

∫
R2

[
c4P

(
−(∂3G̃Θ̇,Ω̇h

)∗ ˜̇Θ + G̃∗
Θ̇,Ω̇h

∂3
˜̇Θ
)

+2c2P c
2
S

(
(ik1G̃Ω̇2,Ω̇h

− ik2G̃Ω̇1,Ω̇h
)∗ ˜̇Θ− G̃∗

Θ̇,Ω̇h
(ik1

˜̇Ω2 − ik2
˜̇Ω1)

−(ik1G̃Θ̇,Ω̇h
)∗ ˜̇Ω2 + (ik2G̃Θ̇,Ω̇h

)∗ ˜̇Ω1 − G̃∗
Ω̇1,Ω̇h

ik2
˜̇Θ + G̃∗

Ω̇2,Ω̇h
ik1

˜̇Θ
)

+4c4S

(
(ik2G̃Ω̇3,Ω̇h

− ∂3G̃Ω̇2,Ω̇h
)∗ ˜̇Ω2 − (∂3G̃Ω̇1,Ω̇h

− ik1G̃Ω̇3,Ω̇h
)∗ ˜̇Ω1

+G̃∗
Ω̇1,Ω̇h

(∂3
˜̇Ω1 − ik1

˜̇Ω3)− G̃∗
Ω̇2,Ω̇h

(ik2
˜̇Ω3 − ∂3

˜̇Ω1)
)]

x3,0

d2kH

=
ρ

4π2ω2

∫
R2

[
c4P (ik3,P + ik∗3,P )G̃

∗
Θ̇,Ω̇h

˜̇Θ + 4c4S

(
(ik3,S + ik∗3,S)(G̃

∗
Ω̇1,Ω̇h

˜̇Ω1 + G̃∗
Ω̇2,Ω̇h

˜̇Ω2)

+G̃∗
Ω̇3,Ω̇h

(ik1
˜̇Ω1 + ik2

˜̇Ω2) + (ik1G̃
∗
Ω̇1,Ω̇h

+ ik2G̃
∗
Ω̇2,Ω̇h

) ˜̇Ω3

)]
x3,0

d2kH

=
ρ

4π2ω2

∫
R2

[
c4P (ik3,P + ik∗3,P )G̃

∗
Θ̇,Ω̇h

˜̇Θ

+4c4S

(
(ik3,S + ik∗3,S)(G̃

∗
Ω̇1,Ω̇h

˜̇Ω1 + G̃∗
Ω̇2,Ω̇h

˜̇Ω2 + G̃∗
Ω̇3,Ω̇h

˜̇Ω3)
)]

x3,0

d2kH. (49)

From equations (47) and (48) it follows that the integrand of equation (49) vanishes for the
evanescent wave regimes. By restricting the integrals to the propagating wave regimes, we
obtain (using again equations (45) and (46))

2ρ

4π2ω2

[∫
kH·kH≤ ω2

c2
P

[
c4P (∂3G̃

∗
Θ̇,Ω̇h

) ˜̇Θ
]
x3,0

d2kH +

∫
kH·kH≤ω2

c2
S

[
4c4S(∂3G̃

∗
Ω̇,Ω̇h

) · ˜̇Ω
]
x3,0

d2kH

]
. (50)

Up to this point we have made no approximations, hence, the expression in equation (50) is
identical to that in equation (19). Next, we want to apply Parseval’s theorem again to obtain
a space-domain integral. To this end, we first extend the integration intervals in equation (50)
to R2, according to

2ρ

4π2ω2

∫
R2

[
c4P (∂3G̃

∗
Θ̇,Ω̇h

) ˜̇Θ + 4c4S(∂3G̃
∗
Ω̇,Ω̇h

) · ˜̇Ω
]
x3,0

d2kH. (51)

This is a reasonable approximation, since the wave fields under the extended integral are neg-
ligible in the evanescent wave regimes. Using Parseval’s theorem (equation (36)) and equation
(34) (without the inner product with n), we finally obtain

2ρ

ω2

∫
∂D0

[
c4P (∂3G

∗
Θ̇,Ω̇h

)Θ̇ + 4c4S(∂3G
∗
Ω̇,Ω̇h

) · Ω̇
]
d2x. (52)

Substituting this for the boundary integral of equation (6) in the main text (with ∂D replaced
by ∂D0), we obtain equation (7) in the main text.
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