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SUMMARY

Recently, there has been an increasing interest in employing rotational motion measurements
for seismic source inversion, structural imaging and ambient noise analysis. We derive reci-
procity and representation theorems for rotational motion. The representations express the
rotational motion inside an inhomogeneous anisotropic earth in terms of translational and
rotational motion at the surface. The theorems contribute to the theoretical basis for rotational
seismology methodology, such as determining the moment tensor of earthquake sources.
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1 INTRODUCTION

Measurements of the seismic wave field are traditionally restricted
to three mutually perpendicular components of the particle veloc-
ity (also called translational motion). Observational studies by Igel
etal. (2007), Lin et al. (2011) and others have demonstrated the po-
tential of additionally measuring three components of the rotational
motion. Recently, researchers have been exploring the advantages of
rotational seismology in source localization and inversion (Bernauer
et al. 2014; Donner et al. 2016; Li & van der Baan 2017b; Ichi-
nose et al. 2021), structural imaging (Bernauer et al. 2009; Abreu
etal. 2023), ambient noise analysis (Hadziioannou et al. 2012; Paitz
et al. 2019) and exploration geophysics (Li & van der Baan 2017a;
Schmelzbach et al. 2018).

Reciprocity and representation theorems for translational motion
(de Hoop 1966; Aki & Richards 1980; Fokkema & van den Berg
1993) have been employed as a theoretical basis for the development
of methodologies for seismic imaging, inverse scattering, source
characterization, seismic holography, multiple elimination, Green’s
function retrieval, etc. Given the current interest in rotational seis-
mology, it is opportune to derive reciprocity and representation
theorems for rotational motion. An important step in this direction
has been made by Li & van der Baan (2017b). In their derivation
they assume the medium is homogeneous and isotropic. In this
paper we derive several forms of reciprocity and representation the-
orems for translational and rotational motion in an inhomogeneous
anisotropic earth. These theorems complement the theoretical basis
for the development of methodologies for rotational seismology.

2 RECIPROCITY THEOREMS FOR
ROTATIONAL SEISMOLOGY

The rotational motion-rate vector in an inhomogeneous anisotropic
medium is defined as £ = %V x v, where v is the particle velocity
vector. This definition holds in the space-time (x, ) domain as

well as in the space—frequency (X, @) domain. In the following, all
expressions are in the space—frequency domain. Note that for the
special case of a homogeneous isotropic medium, £ would represent
the S-wave part of v.

Consider a spatial domain D enclosed by boundary 0D with
outward pointing normal vector n. A reciprocity theorem for elastic
wave fields in a homogeneous isotropic medium in this domain
reads

f p[ci,{vAV -vg — vV vy}
aD
—I—cg{VA XV xvp—vgxVx VA}] -nd*x
= ia)/{VA . fB —Vp - fA}dBX. (1)
D

Here v(x, w) is the particle velocity vector, f(X, w) the force source
vector, cp and cg are the P- and S-propagation velocities, p is the
mass density and i the imaginary unit. Upper-case subscripts 4 and
B denote two independent states, which can be physical or mathe-
matical wave fields (or a combination thereof), emitted by different
sources. Eq. (1) is a slightly modified form of a theorem formulated
by Knopoff (1956). Because it explicitly contains V x v = 2 in
both states, Li & van der Baan (2017b) used this as the starting
point for deriving representations for rotational seismology. A lim-
itation is that eq. (1) was derived from the elastic wave equation for
a homogeneous isotropic medium. Here we show that its derivation
can be generalized for an inhomogeneous anisotropic medium in
D, with only some restrictions on the medium parameters at the
boundary 9D.

The Betti—Rayleigh reciprocity theorem for elastic wave fields in
an inhomogeneous anisotropic medium in D reads (de Hoop 1966;
Aki & Richards 1980)

¢. {vi,ATij,B - Ui,Btij,A}njdzx = - /{Ui,Afi,B - vi,Bﬁ,A}d3x-
oD D
(2)
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Here v;, 7;;, f; and n; are components of the particle velocity
vector v, stress tensor T, force source vector f and normal vector n,
respectively. Einstein’s summation convention applies to repeated
lower-case subscripts. Our aim is to recast eq. (2) into the form
of eq. (1). We start by expressing the stress at the boundary oD
in terms of the particle velocity. Because the boundary integral in
eq. (1) contains the isotropic velocities cp and cg, for our derivation
we assume that the medium is isotropic in a vanishingly thin shell
around 0. Hence, we use the isotropic stress—velocity relation
Ty = — = {A8;;0cvx + (9, v; + 0;v;)}, where A(x) and 11(x) are the
Lamé parameters in the thin shell around dD. Substituting this into
eq. (2) for both states, we obtain after some manipulations

f I:)\.{VAV Vg — VBV . VA} +2[,L{(VA . V)VB — (VB . V)VA}
aD
+u{vy x Vxvg—vp xV x VA}] - nd’x
= iw/{vA Ay — vy - f)d°x. 3)
D

For a more detailed derivation see the online material. This expres-
sion has the form of eq. (1), except for the second term on the
left-hand side. This term can be reorganized into the form of the
first term, using the theorem of Gauss, if we assume p is constant
along the boundary 9D (see the online material for details). Using
A +2u = pck and = pci, we thus obtain eq. (1), this time for
an inhomogeneous anisotropic medium in I; only in a vanishingly
thin shell around the boundary 0D the medium is assumed to be
isotropic, with u constant along 9.

In order to use eq. (1) as a basis for backpropagation, we replace
the quantities in state 4 by their complex-conjugates (denoted by
asterisks), which is allowed when the medium in D is lossless. Using
Q= %V x v and defining the cubic dilatation-rate as @ = V - v we
thus obtain

¢. p[cfg{vjé)g — VO ) + 23V x g — v X QZ}] -nd*x
aD

= ia)/‘{vj1 A5 +vp - 11dx.
D
“)

3 REPRESENTATION THEOREMS FOR
ROTATIONAL SEISMOLOGY

A representation theorem is obtained by choosing for one of the
states in a reciprocity theorem a Green’s state (Gangi 1970).
Hence, for state A, we replace v, by the Green’s velocity vec-
tor G, s, (X, X4, ), defined as the response at x to a unit force
source in the x,-direction at x4 in D, i.e., f; 4(X, ®) = 8;,8(X — X).
Moreover, we replace Q,and O, by the Green’s rotational motion-
rate vector and cubic dilatation-rate, defined as G, 4 (X, X4, ) =
%V x Gy, 5, (X, X4, w) and GG).fn X, x4, 0) =V -G, 7, (X, Xy, ®).
As usual, the second subscript of a Green’s function refers to the
source type at x4 (here a force f,), whereas the first subscript (v,
Q or ©) refers to the type of response at x. For state B we take
the actual physical state and drop the subscripts B. Choosing the
source distribution f(x, w) of the actual state outside D, we thus
obtain from eq. (4)

1 .

+2¢3{G; ;% Q+ G, % v}] - nd’x. Q)

This is a representation of the particle velocity component v, (X 4, )
at x4 in D, expressed in terms of the wave fields v(x, w), 2(x, @)
and O(x, w) at 9. Next, we derive a representation of the rota-
tional motion-rate component Q, (x4, ®). Using the subscript nota-
tion for the curl-operator, this component is defined as €;,(x4, ) =
%ehmnam, 4Un(X4, w), Where €, is the Levi-Civita symbol and
where 9,, 4 denotes differentiation with respect to x,, 4. Apply-
ing the operator ;e,,mnam’ 4 to both sides of eq. (5), interchanging
the order of integration (over x) and differentiation (with respect to
Xm.4), yields

. 1 -
Q,(xy, w) = E im P[C%{Gigh@ - G’é,nhV}

+2c§{G;Qh x Q@+ Gg g, X v}] - nd>x, 6)

where Gy ¢, (X, X4, @) = %ehmnam,AGY, 1, (X, X4, @), with subscript
T standing for v, 2 or ©. Note that here the operator €, dm 4
transforms the force-source of the Green’s function into a rota-
tional motion source (which for the special case of a homogeneous
isotropic medium would correspond to a S-wave source). A repre-
sentation of the cubic dilatation-rate G)(x 4, w) can be derived in a
similar way by applying the operator 9, 4 to both sides of eq. (5),
but this is beyond the scope of this paper.

The representations of eqs (5) and (6) are exact. In practice, how-
ever, measurements are not available on a closed boundary but, say,
on a horizontal boundary 9D, (with upwards pointing normal vector
n = (0,0, —1)), see Fig. 1. We define a second horizontal boundary
oD, between x, and the source distribution f(x, w) of the actual
state. The boundaries 0D, and 0D, (together with a cylindrical
boundary with a vertical axis through x4 and infinite radius) form
the closed boundary dD. Because measurements are available only
on 9Dy, in practice we neglect the integral over 0D, and approximate
eq. (6) by an integral over dIDy. This is a suitable approximation for
backpropagation of the wave field from 01D, to x 4. It is illustrated in
Fig. 1(a), where the downwards pointing arrows represent the com-
plex conjugated (i.e., backpropagating) Green’s functions. These
Green’s functions are defined in the inhomogeneous anisotropic
medium in D, but for simplicity they are visualized by straight rays.
Since the integral over dD; is neglected, evanescent waves are ig-
nored, internal multiples are erroneously handled and the recovered
primary wave field at x4 contains small amplitude errors, propor-
tional to the amplitudes of internal multiples (Wapenaar & Haimé
1990). For a weakly scattering medium these approximations are
acceptable and of the same order as those of the standard elastody-
namic Kirchhoff-Helmholtz integral for backpropagation (Kuo &
Dai 1984; Hokstad 2000).

Although we have achieved our goal (i.e. deriving a represen-
tation in terms of translational and rotational motion for an in-
homogeneous anisotropic medium), eq. (6) (with 0D replaced by
dDy) is still rather complex. This expression simplifies signifi-
cantly when the medium at and above 0Dy is homogeneous and
isotropic. At and above 0Dy we express the particle velocity as
vV=— Z%V@ + %ZYV x 2, see the online material for details. Note
that here © and @ are scaled versions of P- and S-wave poten-
tials. We substitute this expression, and a similar expression for
G, g, into the right-hand side of eq. (6). Using the fact that the ac-
tual wave field and the Green’s functions are upwards propagating
at 0Dy (and hence the complex conjugated Green’s functions are
downwards propagating at dDy), we can use one-way wave equa-
tions for P- and S-waves at dDD, to simplify the right-hand side of
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Figure 1. (a) Illustration of eq. (6) (with dD replaced by 91Dy) for backpropagation. (b) Illustration of eqs (7) and (8). The amplitude of the “converted” Green’s
function G ¢, (X, X4, w) (light-grey) is one order of magnitude lower than that of the “non-converted” Green’s function G, ¢, (X, X4, ®).

eq. (6). This yields (ignoring evanescent waves)

. 2 . .
Qp(xy, ) = e /mo p[c‘},(83 Gﬂé,gh)@) + 4c§(83G;‘.2’Qh) . SZ]d2x,
(7

see the online material for a detailed derivation. This expression is
illustrated in Fig. 1(b) (a similar expression was previously derived
in a somewhat different way for P- and S-wave potentials by Wape-
naar & Haimé 1990). Note that the Green’s function GG)’Qh (X, X4, @)
stands for the cubic dilatation-rate at x in response to a rotational mo-
tion source at x 4. The amplitude of this “converted” Green’s func-
tion is one order of magnitude lower than that of the “non-converted”
Green’s function Gg, ¢, (X, X4, @) (and in a homogeneous isotropic
medium it would completely vanish). Hence, in a weakly scattering
medium we can ignore the term containing G, ¢, (X, X4, @), which
leaves

. 8 .
Qh(xA,w)zﬂ f pst8:Gg g, (X, X, )} - X, 0)d’x.  (8)
g

This very simple Rayleigh-type integral formulates backpropaga-
tion of rotational motion-rate measurements $2(x, @) from the acqui-
sition boundary 9Dy, through a weakly scattering inhomogeneous
anistropic medium, towards sources below dDy.

4 CONCLUSIONS

We have derived reciprocity and representation theorems for the
translational and rotational components of a seismic wave field.
Eq. (6) (with 0D replaced by dDy) is an expression for backprop-
agation of measurements at the boundary D, towards real or sec-
ondary sources in the inhomogeneous anisotropic medium below
dDy. The medium is assumed to be isotropic in a vanishingly thin
shell around 9Dy, with & constant along dIDy. This representation
does not rely on a specific propagation direction of the wave field
at dDDy, hence, the medium above 0D, can also be inhomogeneous
and anisotropic, or 0Dy can be a free surface. This generality comes
with complexity. When the medium above 9D is homogeneous and
isotropic, the wave fields at 91D, propagate upwards, which leads to
the significantly more simple representation of eq. (7) or, when the
medium below 9Dy is only weakly scattering, to the very simple
Rayleigh-type integral of eq. (8).

The derived reciprocity and representation theorems contribute
to the theoretical basis for rotational seismology methodology. The
representations of eqs (6)—(8) can be used to generate virtual ro-
tational motion sensors inside the medium, closer to the area of
interest than the physical sensors at the surface. Together with vir-
tual translational motion sensors, these can be used to improve the
determination of the moment tensor of earthquake sources (Donner
et al. 2016; Li & van der Baan 2017a; Ichinose et al. 2021) or to
improve the efficiency of (local) structural imaging (Bernauer et al.
2009). Note that by rotating the configurations of Fig. 1 by 90 de-
grees, similar representations can be formulated for measurements
in a vertical borehole.
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Appendices

Kees Wapenaar

Department of Geoscience and Engineering, Delft University of Technology, The Netherlands

Derivations for section 2

The basic equations in the (x,w) domain for elastic wave fields in an inhomogeneous anisotropic
medium read

0;Tij +iwpv; = —fi, (1)
WTi; + Cijklalvk = 0. (2)
Here v;(x,w), 7;(x,w) and f;(x,w) are the components of the particle velocity vector v(x,w),
the stress tensor 7(x,w) and the source vector f(x,w), respectively; p(x) is the mass density
and c;;r(x) the stiffness. Einstein’s summation convention applies to repeated lower-case

subscripts. Consider a spatial domain D enclosed by boundary 0. For this configuration, the
Betti-Rayleigh reciprocity theorem reads

?gﬂ){vi,ATij,B — v pTij A dix = — /D{vz‘,Afz‘,B — v pfi.atd®x, (3)

where upper-case subscripts A and B denote two independent states and n; stands for the
components of the outward pointing normal vector n on JD.

We recast equation (3) into a form that contains the rotational motion-rate vector %V XV
in states A and B. To this end we assume that the medium is isotropic in a vanishingly thin
shell around the boundary 0D, hence

Cijkl = M0ijOw + (indj1 + dudjn), (4)
where A(x) and u(x) are the Lamé parameters in the vanishingly thin shell around oD.

Substituting equation (4) into equation (2) gives

Tij:—

1
E (Aéij&gvk + ,u(ﬁjw + awj)). (5)
Next, substituting equation (5) into equation (3) yields
j{ [)‘{Uj,AakUk,B — v;,B0kvE, A} + p{vi, a(0jvi, B + Oiv;.B) — vi,B(Djvi 4 + Oivj )} |njd*x
oD

= iw/{vi,Afi,B — v pfiayd3x. (6)
D
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Using
v A0k = {vaV-vg}j, (7)
vi,A(aijB + aﬂ)]’73) = {Q(VA . V)VB + vy xV X VB}]'7
viafip = va-fp, (8)

and similar expressions with A and B interchanged, equation (6) can be rewritten as
72 [)\{VAV vp—vpV v}t +2u{(va-V)vg — (vp-V)va}
D
+p{va XV xvp —vp x V xva}| -nd’x = iw/{vA fp —vp - fa}d3x. (9)
D

This is equation (3) in the main text.

Next, we aim to combine the first two terms on the left-hand side into a single term.
Assuming p is constant along the boundary 0D, we can take it outside the integral and use
the theorem of Gauss to reorganize the second term into the form of the first term, according
to

2M}<{9D{(VA -V)ve — (ve-V)va}-nd*x = QM/DV A(va-V)ve — (vp - V)vald3x
= ZM/DV AvaV -vp — vV -va}d3x = 2u jiD{VAV v —vpV -va}-nd’x. (10)
Using equation (10) in equation (9) we obtain
?éﬂ)p[c?;{vAV -vp—vpV-va} —I—C%{VA xVxvg—vp xV X VA}} -nd?x
:iw/D{vA'fBVB-fA}d?’x, (11)
with P- and S-propagation velocities cp = /(A +2u)/p and cs = /i/p at OD. This is

equation (1) in the main text, but for an inhomogeneous anisotropic medium in D; only at
the boundary JD the medium is assumed to be isotropic, with p constant along 0D. Using

© = V-v, (12)
Q = %VXV, (13)

equation (11) can be rewritten as

j(I{ p[c%;{vA(;)B—VB@A}—i—Qc%{VAXQB—VBXQA} -nd2x—iw/{vA-fB—VB-fA}dSX.
oD D
(14

We derive a similar expression with complex-conjugated fields in one of the states. Assum-
ing the medium is lossless (i.e., assuming p and c;ji; are real-valued), complex conjugation of
equations (1) and (2) yields

=0T +iwpv; = f} (15)

—iwT; + cijrdvy, = 0, (16)
where the asterisk denotes complex conjugation. Hence, since v, —7'2-’; and —f obey the
same equations as v;, 7;; and f;, the Betti-Rayleigh reciprocity theorem of equation (3) can
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be modified into
jéD{UZATij,B +0i,BT;; Aty d7x = — /D{UZAfi,B + v, fi st x. (17)
Following the same derivation as above, we obtain

?{ p[cQP{v”;\@B —vpOhL} + 23 {vi x Qp — vy x Q4 }| -nd’x = iw/{vﬁ‘ fp 4+ vp - £ 1d3x.
oD D
(18)

This is equation (4) in the main text.

Derivations for section 3
Consider the boundary integral of equation (6) in the main text, with 9D replaced by the
horizontal boundary 9Dy, i.e.,

2 * . * 2 * - * 2
/aDO p[CP{Gv,Qh@ — G@,th} + QCS{G’U,Qh X Q + GQ,Qh X V} . nd X, (19)

with n = (0,0, —1) at 9Dy. Our aim is to reorganize this integral for the situation that the
medium at and above dDy is homogeneous, isotropic and source-free. At and above dDg, the
velocity vector v(x,w) obeys the following wave equation

AV(V-v) = AV XV xv+w?v=0. (20)
For the homogeneous, isotropic medium at and above dDy we write
v =aVO + bV x Q, (21)

where a and b still need to be determined. Comparing this expression with v.=V® +V x ¥,
where ® and ¥ are the P- and S-wave potentials, it follows that © and 2 are proportional
to the P- and S-wave potentials. Note that

V-v = aVQG, (22)
Vxv = bV xVxQ. (23)
Substitution of equations (21) — (23) into equation (20) gives
. 2 . . 2 .
achV (V26 +256) +bdV x (-V x V x 2+ 5.0 =0, (24)
P 3

The decomposition of this equation into independent equations for © and € is not unique. A
convenient choice is

9./ w2 .
cp
2

VXV XxQ+ 20 = 0 (26)
Cs

Equation (26) implies V - Q = 0 (for w # 0). Using the fundamental property
—VxVxQ+V(V-Q)=VQ, (27)
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equation (26) can be rewritten as
. wz . .
V2Q+ 502 =0, with V-Q=0. (28)
Cs
From equations (12), (22) and (25) we obtain

Similarly, from equations (13), (23) and (26) we obtain

2c2
b= 2. 30
- (30)
Substitution into equation (21) gives
2 2
c . 2c .
v=—"LVO+ S5V xQ (31)
w w
We express the Green’s velocity vector in a similar way, according to
2 2
ch 2cq
G”U,Qh = _EVGG,Qh + 7&)2 V x GQth (32)

Substitution of equations (31) and (32) into the boundary integral of equation (19) yields

w2

/8 ) [ (VG g, — 23V x Gy )6 + G, (FVO 22V x )
0
—2(:%(((:%3VG’QQ}z —2¢%V x Ggg,)" % 0+ GS,Qh x (¢HVO — 2¢3V x Q))} -nd?x. (33)

The medium at and above dDg is homogeneous, isotropic and source-free. The source of the
Green’s function (at x4) and the source distribution f(x,w) of the actual field are below the
boundary 0Dy, hence, the Green’s function and the actual field propagate upward at dDg. In
the following we make explicitly use of this. To this end, we first rewrite the boundary integral
in equation (33) as

@J”YM%:AJJW;M%E ”

where R is the set of real numbers, x3¢ is the depth of boundary 0Dy and xg denotes the
horizontal coordinate vector, defined as xpg = (z1,22). We define the 2D spatial Fourier
transform of a quantity A(xp,z30,w) as

A(kn, 3,0, w) —/ A(xp, 3,0, w) exp{ —iky - xg }d?xy, (35)
R2

with ky denoting the horizontal wave vector, according to ky = (k1, k2). Using equation (34)
and Parseval’s theorem

1
/ A*(xq, 73,0, w) B(XH, 23,0, w)d*xy =
]RZ

w2 |, A*(ky, 23,0, w) B(kn, 73,0, w)d’ky, (36)
R

we rewrite the expression of equation (33) as

p - S s . L
in%? /Rg (3 (~(hVGo g, — 28V x Gy, )0 + G g (VO — 24V x Q) —
26%((6%6697Qh - 26%6 X GQaﬂh)* X é + G’S Q; X (C%’@é - 20%@ X é))] . ndeH, (37)

x3,0
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with
ik
V = | ko (38)
03
Equations (25) and (28) read in the spatial Fourier domain
'Y w2 Irt
20 = — (2 — ky - kH>®, (39)
cp
e 2 e e e 'Y
(9%9 = — <w2 —ky - kH> Q, with k1Qq + koo + 0303 = 0. (40)
cp

Given that © and Q are propagating upward at x3 = 239, we can use the following one-way
wave equations

030 = —iks pO, (41)
(93{2 = —’ikasé, with iklél—i-ikgf}g:ikg,ség, (42)
where

€
o

1/%—kH-kH, for kaHS

2
ksp = p 43
iv/kn kg —%,  for kg kn> %, ()
P P
\/%Q—kH'kH, for kpy-ky < %,
kss = = > “ (44)
Z',/kH-kH—LZT, for kH~kH><:7.
S S

Note that for kg - ky < w?/c% and for ky - kg > w?/c%, equation (41) describes upward
propagating and upward decaying evanescent P-waves, respectively. Similarly, for ky - ki <
w?/c% and for kg - ky > w?/c%, equation (42) describes upward propagating and upward
decaying evanescent S-waves, respectively. Analogous to equations (41) and (42) we have

(3G 0,)" = ik5pGhg . (45)
(83G’Q7Qh>* = ik§7ng7Qh, with — ileBth — ikQGE%Qh = _Zk;SGSJ,Qh (46)

(éQk ¢, being the k-component of GQ Qh), where, according to equations (43) and (44),

€
[N

k3. p, for kg -ky <

—k37p, for kyg-kg >

ksp = (47)

k3 s, for kyg-kg <

(48)
—k375, for kg - kg >

‘Emnw‘ Em “uﬁw‘ EM“UQM‘

*
kS,S -

Q
wmiy
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Using equations (38) and (41) — (46), we can reorganize the expression of equation (37) as

14 ~ A % ~
e /R [eh(~(@Go 0,0+ G, 0:0)

—i-QC%;C% ((ikléQ27Q}L — ik2é91,ﬂh)*9 — é*@,flh (ileQ — ik‘ng)

(k1 G, o + (ihaGo 6, ) 01 — Gy g 120 + Gy iF16)

—I—4C§((ik‘2é93nh — agéQQ’Qh)*QQ — (63@(21,9’1 — ikléQ&Qh)*Ql

+G, ¢ (P50 — iki Q) — Gy (ks — ang))} Wd?kH
p

=L /R 2 (chliks,p + k5 p)Gg ¢, © + Ack ((iks,s + k5 5) (G, ¢, 01 + Gy ()

Gy, g, (10 + ko) + (i1 Gy o+ koGl o )05 ) | dPkn

Q1,8 3.0

_ P 4 (; .7 % % -
4202 /Rz [CP(Zk?”P * Zk?”P)G@,Qh@
ek ((iks,s + k5 5) (G, , 01 + Gy g Qo+ égmhﬂg))} ik (49)

From equations (47) and (48) it follows that the integrand of equation (49) vanishes for the
evanescent wave regimes. By restricting the integrals to the propagating wave regimes, we
obtain (using again equations (45) and (46))

2p 4 ~ ~ 9
22 [ /kH.kH< , [eP(93G5 4, )0,  kn + /

we
°p

[4¢5(05G, g, ) - 9] md?kH] . (50)

Up to this point we have made no approximations, hence, the expression in equation (50) is

identical to that in equation (19). Next, we want to apply Parseval’s theorem again to obtain

a space-domain integral. To this end, we first extend the integration intervals in equation (50)

to R?, according to
2p 4 ~ = 4 ~ - 2

3,0

This is a reasonable approximation, since the wave fields under the extended integral are neg-
ligible in the evanescent wave regimes. Using Parseval’s theorem (equation (36)) and equation
(34) (without the inner product with n), we finally obtain

2p
w?

/8 ) [ch(05G% 6,00 + 445G, ) - 2] . (52)
0

Substituting this for the boundary integral of equation (6) in the main text (with 0D replaced
by 0Dp), we obtain equation (7) in the main text.
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