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S U M M A R Y  
In modelling applications, recursive Kirchhoff-Helmholtz extrapolation through a 
layered medium requires plane-wave decomposition and synthesis at the layer 
interfaces in order to take transmission effects into account. For inverse applications 
(downward extrapolation of the measured data into the subsurface), this plane-wave 
decomposition and synthesis is superfluous: transmission effects are automatically 
taken into account, since the extrapolated two-way (downgoing and upgoing) 
wavefield is continuous at layer interfaces. Two-way wavefield extrapolation, 
however, is very sensitive to errors in the model of the layered medium. Therefore, 
in practice one-way extrapolation schemes are preferred. It appears that for 
backward extrapolation of the primary upgoing wavefield, the recursive Kirchhoff- 
Helmholtz approach again accounts automatically for transmission effects at the 
layer interfaces. This approach is particularly attractive for situations where the 
contrasts at the layer interfaces are high. 

Key words: inversion, Kirchhoff-Helmholtz integrals, modelling, wavefield 
extrapolation. 

INTRODUCTION 

Consider a layered acoustic medium (Fig. 1) consisting of 
homogeneous layers separated by curved interfaces. In the 
geophysical literature, wave propagation in such a layered 
medium is often described in terms of Kirchhoff-Helmholtz 
boundary integrals (Hilterman 1970; Frazer & Sen 1985; 
Hill & Wuenschell 1985; Kampfmann 1988; Wenzel, Stenzel 
& Zimmerman 1990). 

The main problem is the connection at the interfaces of 
the down- and upgoing waves in the different layers. The  
procedure followed in general involves: decomposition into 
plane waves, application of angle-dependent plane-wave 
reflection and transmission coefficients and, finally, synthesis 
of the reflected and transmitted wavefields from the 
plane-wave constituents. Since the decomposition and 
synthesis take place at  curved interfaces, generally a 
high-frequency assumption is made. 

In this paper we propose an alternative method using 
Kirchhoff-Helmholtz integrals for wavefield extrapolation 
through a layered medium with curved interfaces. Using this 
method it is possible to  extrapolate a wavefield, measured at 
an acquisition surface, downward from layer interface to  
layer interface without the need of plane-wave decomposi- 
tion and synthesis a t  the layer interfaces. Therefore, this 
method is very simple. Moreover, the approximations 

inherent to  plane-wave decomposition and synthesis a t  
curved interfaces are avoided. 

The proposed method is not suited for modelling 
applications as the two-way (downgoing and upgoing) 
wavefield is assumed to  be known in advance at  the 
acquisition surface (or at any other interface). However, the 
method is well suited for applications in inverse problems 
such as migration (Schneider 1978; Berkhout 1985), inverse 
scattering (Bleistein 1984) or redatuming (Berryhill 1984; 
Wapenaar & Berkhout 1989). In principle the method takes 
into account all (internal) multiple reflections. It is very 
sensitive, however, to  errors in the description of the 
sources, the layer velocities and the interfaces. Therefore, 
a modification is also proposed that allows robust downward 
extrapolation of the primary upgoing waves. 

PRINCIPLE OF RECURSIVE WAVEFIELD 
EXTRAPOLATION 

Consider again the layered acoustic medium of Fig. 1. In the 
following we assume that the two-way acoustic wavefield at 
S,, is known (from measurements). This is the key for the 
simplicity of the method: suppose it is possible to  compute 
the two-way wavefield at interface S, from the two-way 
wavefield at S,,, then it is also possible to  compute the 
two-way wavefield at S, from the two-way wavefield at S, 
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Figure 1. Layered acoustic medium. 

and so on without any additional effort needed to  fulfil the 
boundary conditions at the layer interfaces. [Bear in mind 
that the two-way acoustic wavefield is continuous at layer 
interfaces. This is opposed to  one-way (downgoing or 
upgoing) wavefields, which are discontinuous at interfaces, 
hence the need for plane-wave decomposition in modelling 
applications.] 

The question is of course how to compute the two-way 
wavefield at S, (rn = 1, 2 , .  . . , M ) ,  given the two-way 
wavefield at S,,- ,. The Kirchhoff-Helmholtz integral is not 
directly suited because it pre-supposes knowledge of the 
wavefield on a closed surface. 

In the next sections we discuss two modified versions of 
the Kirchhoff-Helmholtz integral. With these two modified 
versions the downgoing or upgoing waves, respectively, can 
be computed at  S,, given the two-way wavefield at  So. 
Superposition of the results gives the two-way wavefield at 
S,, which is the input for the next recursion. 

THE KIRCHHOFF-HELMHOLTZ 
INTEGRALS WITH C A U S A L  A N D  ANTI-  
C A U S A L  GREEN'S FUNCTIONS 

We consider an inhomogeneous lossless fluid, which is 
described by the space-dependent propagation velocity c(r) 
and the mass density p ( r ) ,  where r is a shorthand notation 
for the Cartesian coordinates (x, y ,  z ) .  In  this fluid we 
consider a volume V enclosed by a surface S with an 
outward pointing normal vector n. The space- and 
frequency-dependent acoustic pressure P(r, w )  satisfies in V 

the following equation: 

pV - (k V P )  + k 2 P  = -pQ, ( la )  

where the waCenumber k(r, w )  is defined as 

k(r, w )  = w/c(r). (1b) 

Q(r, w )  represents the source distribution and w the angular 
frequency. 

We define a Green's wavefield G(r, r,, w ) ,  which satisfies 
in V the following equation: 

p v  * (j V G )  + k2G = -@(r - TA), (2) 

where rA = (x,,, y , ,  z,) denotes the Cartesian coordinates 
of an internal point A in V. For any point A in V ,  the 
acoustic pressure P(r,,, w )  may be expressed with the 
Kirchhoff-Helmholtz (KH) integral according to 

(Morse & Feshbach 1953; Burridge & Knopoff 1964; Aki & 
Richards 1980; Berkhout 1985). Note that when G(r, r,, w )  
is a solution of (2), then the complex conjugated function 
G*(r,rA,  w )  is also a solution of (2). Hence, the KH 
integral may be alternatively expressed as 

1 1 
P(rA, w )  = f [ - G * V P  - - P V G * ]  n dS + 1" G*Q dV (4) 

.s P P 

(Bojarski 1983; Wapenaar et al. 1989). Throughout this 
paper, G(r, rA, w )  is the frequency-domain representation 
of the causal (or forward propagating) Green's wavefield 
g(r, rA, t), with g(r, rA, t )  = 0 for t < 0. Consequently, 
C*(r, r,, w )  is the frequency-domain representation of the 
anti-causal (or backward propagating) Green's wavefield 
g(r, r,, - t ) .  Both versions of the KH integral are exact. KH 
integral (3) will be used to  derive an expression for forward 
extrapolation of downgoing waves; K H  integral (4) will be 
used to derive an expression for backward extrapolation of 
upgoing waves. 

Note 
For a homogeneous medium it is more convenient to  
suppress p in the right-hand sides of eqs (la) and (2). The 
terms l / p  in the right-hand sides of eqs (3) and (4) will then 
also disappear. 

FORWARD A N D  B A C K W A R D  WAVEFIELD 
EXTRAPOLATION 
We apply the KH integrals in the first layer of the acoustic 
medium depicted in Fig. 1. We construct a closed surface S 
that consists of the acquisition surface S,, (with inward 
pointing normal vector n,,), a horizontal reference surface S; 
(with outward pointing normal vector n;), just above the 
first interface S, and a cylindrical surface S, with a vertical 
axis and an infinite radius R ,  see Fig. 2. The volume 
enclosed by this surface will be denoted by V,.  For the 
moment, our aim is to  compute the downgoing and upgoing 
waves at any point A in V , ,  given the two-way wavefield at 
the acquisition surface S,,. In the next section we discuss the 
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Figure 2. The first layer of the acoustic medium of Fig. 1, 

validity of the results when point A is lowered into the 
'valleys' of the interface S,. 

Since the volume V, is assumed homogeneous (propaga- 
tion velocity c , ,  mass density p , )  we may choose for G and 
G* the free-space solution of eq. (2) (with p suppressed in 
the right-hand side) 

1 e - i k ~  Ar 

C(r, rA, w )  = (5a) 4 n  Ar 
and 

4 A I A '  
I G  

G*(r, rA, w )  = -~ 
4 n  Ar 

w )  = JVl GQ dVi ( 6 4  

with G defined by eq. (5a). Note that the contribution over 
S, vanishes (the area of the cylindrical surface is 
proportional t o  the radius R,  the integrant is proportional to 
1/R2). Similarly, KH integral (4) may be rewritten as 

P(r.A.7 w )  = k ( r A 3  w )  + pl(rA> O) + t y ( r A >  w ) ,  (7a) 

where 

and 

with G* defined by eq. (5b). Note that in practice cl(rA, w )  
and &(rA, w )  can be computed as we assumed that P and 
VP - n,, are known on S,, (for example, at a free surface P is 
zero and VP * n,, is proportional to the normal component of 
the particle velocity, measured by the geophones). Also 
P,(rA, w )  and pv(rA, w )  can be computed if we assume that 
the source distribution Q ( r ,  w )  is known. However, 
p](rA> w )  and pl(rA, w )  cannot be computed in practice 
because no measurements of P and VP - n; are  available on 
the horizontal reference surface S;. In Appendix A it is 
shown that pl(rA? w )  and pl((rA, w )  may be written as 

(8a) 

(8b) 

pl(rA? w )  = p-(rA> w )  

and 

F,(rA, w )  = P+(rA, w ) ,  

where P- and P+ represent upgoing and downgoing 
wavefields, respectively, such that 

P(rA, w )  = P+(r,, w )  + P-(rA, w ) .  (8c) 

The condition is that the region between zA (the depth 
level of point A )  and z ,  (the depth level of the horizontal 
reference surface S ; )  is source free (the approximation in 
(8b) arises from having neglected evanescent waves). 
Hence, ignoring P- = PI in eq. (6a) yields P+ = P,, + P,, or 

where d/an,, is a shorthand notation for n,, * V. Similarly, 
ignoring P+ = PI in eq. (7a) yields P- == 8, + p, ,  or 

Equations (9a) and (9b) describe forward and backward 
extrapolation of downgoing and upgoing waves, respec- 
tively, to  any point A below the sources and above the 
horizontal reference surface S;, see Fig. 2 .  They can be 
combined, yielding the following expression for the two-way 
acoustic pressure at  A: 

The only approximation in eqs 8(b), 9(b) and 10 arises from 
having neglected evanescent waves at A (compare eqs A13 
and A14). This imposes a restriction to  the maximum 
obtainable spatial resolution (Berkhout 1984). Ignoring the 
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evanescent waves, however, has the advantage that these 
equations are unconditionally stable. In the following we 
will write =instead of = when only the evanescent waves 
are ignored. 

THE RAYLEIGH HYPOTHESIS 

So far we have assumed that point A lies above the 
horizontal reference surface S;, i.e. above the highest point 
of interface S,. An interesting question now is: is eq. (9) still 
valid when point A is lowered into the valleys of interface 
S,? Clearly the derivation given above does not apply to  the 
region below S ; .  O n  the other hand, if there was no 
contrast at S,, then S ;  could as well have been chosen just 
below S, so eq. (9) would indeed be valid in the valleys of 
S,. Apparently, as long as the interface S, does not ‘disturb’ 
the downgoing and upgoing waves, then eq. (9) is valid also 
in the valleys of the interface. Clearly there are situations 
for which eq. (9) breaks down. When multiple scattering 
occurs between the irregularities in the interface S, (see Fig. 
3) then a part of the downgoing (or upgoing) wavefield is 
not incorporated in eq. (9a) (or 9b). We may also say that a 
part of the downgoing (or upgoing) wavefield is a scattered 
(or incident) wavefield. 

In his book The theory of sound Lord Rayleigh (1878; 
reprinted in 1965) analyses the scattering by an irregular 
surface, assuming that everywhere above the surface (i.e. 
including the valleys) the incident and scattered wavefields 
may be expressed in terms of, respectively, downgoing and 
upgoing plane waves. This assumption is commonly known 
as the Rayleigh hypothesis. Van den Berg & Fokkema 
(1980) prove that under certain conditions the Rayleigh 
hypothesis holds rigorously (these conditions set limits to  
the roughness of the interface; this will not be further 
discussed in this paper). 

Hence, when interface S, satisfies the conditions for the 
validity of the Rayleigh hypothesis, multiple reflections as 

(10) describes the total two-way wavefield in the valleys of 
interface S,. 

RECURSIVE TWO-WAY KIRCHHOFF- 
HELMHOLTZ E X T R A P O L A T I O N  

In the following we assume that all interfaces satisfy the 
conditions for the validity of the Rayleigh hypothesis. 

Consider eq. ( lo) ,  generalized for extrapolation through 
layer m (see Fig. l ) ,  

1 c  
G(r, rA, w )  = -~ 

4n Ar ’ 

with 

Ar = Ir - rAJ (1lc) 

and 

k ,  = wlc,,,. ( 1 1 4  

Note that the volume integral need only be evaluated in 
layers containing sources (generally the first layer only). 

In the following, point A may be  any point just above 
interface S,n. P(rA, w )  thus represents the total wavefield 
just above S,,,. We can easily find the total wavefield just 
below S,,, by applying the following boundary condition for 
the acoustic pressure: 

pictured in Fig. 3 will not occur. Consequently, for this 

describe the ‘undisturbed’ downgoing and upgoing wave- 
fields, respectively, also in the valleys of interface s,. This total wavefield just below s,,, can again be used in eq. 
Similarly, for the same situation P(rA, w )  as given by eq,  (ll),  (with S,n-r and V,  replaced by S,,, and V,,,,), t o  

situation P+(r,, w )  and P-(rA, w )  as given by eq. (9), p(r, w)’ l im  p ( r 3  w ) .  (12) 
r 1 S,,, 

downgoing 
“scattered” 
wavefield 

upgoing 
“incident” 
wavefield 

Figure 3. (a) Situation for which eq. (9a) breaks down. (b) Situation for which eq. (9b) breaks down. 
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compute the total wavefield just above S,,,. For this 
purpose, however, we also need an expression for 
dP(r ,  w)/an,. From (11) we obtain 

where a/an,,, stands for n, * V,, V, being the gradient 
at rA. 

In analogy with (12), the boundary condition for the 
particle velocity a t  S,,, reads 

Equations (11) and (13) together can be used in a recursive 
mode to  extrapolate the two-way wavefield, measured at the 
surface, downward from layer interface to  layer interface. 

Note that the boundary conditions at the layer interfaces 
are extremely simple taken into account (eqs 12 and 14). 

RECURSIVE O N E - W A Y  KIRCHHOFF- 
HELMHOLTZ E X T R A P O L A T I O N  

The recursive scheme discussed in the previous section i s  
very sensitive to  errors in the description of the sources, the 
layer velocities and the interfaces. This is inherent to 
two-way extrapolation schemes, that take into account 
primary as well as multiply reflected waves. One-way 
extrapolation schemes for primary waves are much more 
robust. The use of one-way extrapolation schemes is 
validated when the surface-related multiple reflections are 
eliminated and when the internal multiple reflections are 
small (Berkhout 1986). Surface-related multiple elimination 
does not require any knowledge about the layer velocities 
and interfaces. It is sensitive, though, for the description of 
the source distribution, However, this sensitivity can be 
advantageously used for estimating the source properties 
(Verschuur, Berkhout & Wapenaar 1992). 

In the following we assume that the surface-related 
multiple reflections as well as the direct source waves have 
been eliminated. Our  aim is to  backward extrapolate the 
primary upgoing wave P-  (see Fig. 4) from layer interface 
to  layer interface. To this end we derive a one-way version 
of the recursive scheme discussed in the previous section 
(Wapenaar & Berkhout 1989). Consider eq. (9b), 
generalized for extrapolation through layer m, 

Note that we omitted the volume integral as we assumed 
that the source waves were eliminated. P(r, w )  represents 
the two-way acoustic wavefield at r on S,-,, whereas 
F ( r A ,  w )  represents the upgoing acoustic wavefield at rA 
just above S,,,. For the primary wave, this upgoing term 

represents the total wavefield just above S,,,, see Fig. 4. 
Hence, we can easily find the two-way wavefield just below 
S,,, by applying the following boundary condition for the 
acoustic pressure: 

(Note the subtle difference with eq. 12.) This total wavefield 
just below S,, (the upgoing primary wave plus its reflection 
from S,, see Fig. 4) can again be used in eq. (15), (with 
S,pt-l replaced by S,), to  compute the upgoing wavefield 
just above S,,,. As in the previous section, for this purpose 
we also need an expression for d P ( r ,  w)/an,. From (15) we 
obtain 

In analogy with (16), the boundary condition for the particle 
velocity at S, reads 

Equations (15) and (17) together can be used in a 

PI.  C I  I p  

i 

f \  

I 

Figure 4. Primary upgoing wave P in a layered acoustic medium. 
After surface-related multiple elimination, surface S,, may be 
considered reflection free. 
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recursive mode to extrapolate the one-way primary upgoing 
wavefield backward from layer interface to  layer interface. 
The procedure starts a t  the surface SO, which is considered 
reflection free as a result of the surface-related multiple- 
elimination procedure. The procedure stops when the 
interface is reached that 'generated' this primary upgoing 
wavefield. 

If surface S,, is planar, then Kirchhoff-Helmholtz integrals 
(15) and (17) may be replaced by the following one-way 
Rayleigh integrals 

and 

Note that this simplification is useful only at a planar 
reflection-free surface So, where the total wavefield is given 
by the upgoing wavefield only. A t  interfaces S,,, (planar or 
curved) the use of full Kirchhoff-Helmholtz integrals (15) 
and (17) is preferred because these account automatically 
for transmission effects. 

EXAMPLE I 

In this first example we analyse the amplitude handling of 
the recursive one-way extrapolation scheme, discussed in 

z o = O  m 

z,=500 m 

P- 

c, =1500 m/s 
p, = 1000 kg/m3 

the previous section. For simplicity we consider two 
homogeneous half-spaces separated by a horizontal interface 
at zl =500m,  see Fig. 5(a). A 2-D acoustic wavefield is 
radiated by a line source in the lower half-space at (x = 0, 
z, = 1500 m) (note that the line source is parallel to  the 
y-axis). The upgoing wavefield at zo = 0 m is shown in the 
space-time domain in Fig. 5(b). These are the input data for 
our experiment. The upgoing wavefield at  z2 = 1000 m is 
shown in Fig. 5(c). These data serve as a reference for the 
output of our experiment. 

The data of Fig. 5(b) are Fourier transformed from the 
time domain t o  the frequency domain. For each frequency 
component the following steps are carried out: 

backward extrapolation from z,, = 0 m to z1 = 500 m, 
using eqs (19) and (20). 

Application of the boundary conditions (16) and (18) at 
z1 = 500m (which is nothing but multiplying 3Pp/& by 

Backward extrapolation from z ,  = 500 m t o  z2 = 1000 m,  
using eq. (15). 

The result, transformed back to  the time domain, is 
shown in Fig. 6(a). Fig. 6(b) shows amplitude cross-sections 
of the ideal output data in Fig. 5(c) (solid line) and of the 
recursive extrapolation result in Fig. 6(a) (dotted line). The 
perfect match confirms that our recursive procedure 
properly accounts for the angle-dependent transmission 
effects a t  the interface. 

P J P I  = 2). 

c,=3000 m/s 
p2= 2000 kg/m3 

z,=1500 m " 
0 

0 

500 

1000 

msec 

1500 I 
0 

333 

667 

1000 

Figure 5. (a) Inhomogeneous acoustic medium with a horizontal interface. (b) Upgoing wavefield at z , , .  ( c )  Upgoing wavefield at z2. 
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*X  - X  (4 
Figure 6. Recursive one-way Kirchhoff-Helmholtz extrapolation result. (a) Upgoing wavefield at z2. (b) Maximum amplitude per trace 
(dotted line) compared with the exact result (solid line). (The dotted line is hidden by the solid line.) 

I ampl .  A 

Figure 7. Non-recursive extrapolation result. (a) Upgoing wavefield at z2.  (b) Maximum amplitude per trace (dotted line) compared with the 
exact result (solid line) 

In the practice of seismic exploration, sometimes a single 
non-recursive extrapolation step is carried out (here: from 
zo = 0 m to z, = 1000 m). Non-recursive extrapolation is 
described by eq.  (4), with P replaced by P -  and with the 
volume integral omitted. Bear in mind that G in eq. (4) is 
the solution of eq. (2) for the inhomogeneous medium, 
hence it includes the transmission effects of the interface at  
z ,  = 500 m. The result of non-recursive extrapolation is 
shown in Fig. 7(a). Fig. 7(b) shows amplitude cross-sections 
of the ideal output data in Fig. 5(c) (solid line) and of the 
non-recursive extrapolation result in Fig. 7(a) (dotted line). 
Note that there is an overall amplitude loss. In Wapenaar et 
al. (1989) we show that the amplitude loss is proportional to 
the square of the reflectivity of the interface. For this 
example the reflection coefficient for normal incidence 
equals 0.6, hence the amplitude loss at  normal incidence is 
(0.6)’X 100% = 36%. 

Comparing Figs 6 and 7, we may conclude that the 
amplitude handling of the proposed recursive one-way 
Kirchhoff-Helmholtz extrapolation scheme is superior. 

EXAMPLE I1 

In this second example we consider a somewhat more 
complicated configuration. The medium consists of two 
homogeneous half-spaces separated by an interface at 

z ,  = 200 m, with an anticlinal structure centred around 
x = 0, see Fig. 8. A 2-D acoustic wavefield is radiated by a 
line source in the lower half-space at  (x  = 0, z1 = 1200 m). 
The upgoing wavefield at z , ,=Om is shown in the 
space-time domain in Fig. 9. These are the input data for 
our experiment. The second arrival is due to  an internal 
reflection in the anticlinal structure (bear in mind that for 
the validity of eq. (9) there should be n o  multiple reflections 
in the valleys above the reflector; the internal reflection 
below the anticline should cause no problems). 

The result of recursive one-way Kirchhoff-Helmholtz 
extrapolation from z(, = 0 m via the interface to  z2 = 400 m is 
shown in Fig. 10. Note that the second arrival vanished 
almost completely (the remaining artefacts are due t o  the 
aperture limitations). This result confirms that our recursive 
procedure properly accounts for the complicated phenom- 
ena related to  a curved interface. For comparison, Fig. 11 
shows the result of recursively applying the one-way 
Rayleigh integral (eq. 19), in accordance with the common 
practice of seismic exploration. The strength of the 
non-physical arrival is significant. 

CONCLUSIONS 

In modelling applications, recursive Kirchhoff-Helmholtz 
extrapolation through a layered acoustic medium requires 



452 C. P. A .  Wapenaar 

c1= 2000 m/s 

p1 = 1000 kg/m 3 

2, = 0 m _.._..._._.... ~ ....... ~ ............................................... ~ ............................ 

2, = 200 m 

Z3 = 1200 m 

Figure 8. Inhomogeneous medium with an anticlinal structure 
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Figure 9. Upgoing wavefield at z(, 
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Figure 10. Recursive one-way Kirchhoff-Helmholtz extrapolation result (from Peels 1988). 

plane-wave decomposition and synthesis at the layer satisfy the conditions for the validity of the Rayleigh 
interfaces in order to take transmission effects into account hypothesis (van den Berg & Fokkema 1980). Moreover, 
(Hill & Wuenschel 1985; Wenzel et al. 1990). both inverse approaches (with or without plane-wave 

In principle the same approach can be used for inverse decomposition and synthesis) ignore evanescent waves 
applications, however, the plane-wave decomposition and (which is necessary for stability reasons and which restricts 
synthesis is superfluous, as was shown in this paper. The the maximum-obtainable spatial resolution). The advantage 
forward and inverse approaches require that the interfaces of the recursive approaches proposed in this paper is that 
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Figure 11. Recursive one-way Rayleigh extrapolation result (from Peels 1988) 



454 C. P. A .  Wapeizaar 

the plane-wave decomposition and synthesis at the 
interfaces is avoided and therefore it is simple and no 
additional assumptions or approximations are  made. 

Two different versions of recursive KH extrapolation have 
been proposed. The two-way version (eqs 11 and 13) is 
applied directly to  the measured surface data (e.g. the 
normal component of the particle velocity a t  a free surface 
Stl) and takes into account all primary as well as multiply 
reflected waves. This two-way version, however, is very 
sensitive to small errors in the description of the source, the 
layer velocities and the layer interfaces. (Using this 
sensitivity for macro model estimation is subject of current 
research.) The one-way version (eqs 15 and 17), on the 
other hand, is applied to  the upgoing wavefield after 
surface-related multiple elimination. This method ignores 
internal multiple reflections and is therefore robust with 
respect to  small errors in the description of the layered 
medium. 

Recursive one-way KH extrapolation is proposed as the 
basis for true amplitude migration or redatuming, particu- 
larly for situations where the contrasts a t  the layer interfaces 
are high. 
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APPENDIX A: EVALUATION OF P,  A N D  P, 

We analyse eq.  (6c), which may be rewritten as 
zz 

where z1 is the depth of the horizontal reference surface S ; .  
Define the 2-D spatial Fourier transform of P(x,  y ,  z ;  w )  
according to  

r 

Similarly, define the 2-D spatial Fourier transform of 
G(x, y ,  z ;  x A ,  yA, z,; w )  according to 

G ( k r ,  k,, z ;xA,y , ,  2,; W )  

= [I G ( x ,  y ,  z ;  x A ,  y,, z,; w)e' (krx-tkvY) dx dy. (A2b) 
-7z  

Applying the following version of Parseval's theorem 

1 

= (')*!I A(-k,, -k,)B(k,, k,) dk, dk, 
- m  

2 n  

to the integral in the right-hand side of eq. ( A l )  yields 
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or, upon substitution of eq. (Sa) into (A2b) 
e-lkz,llz-zAl 

(A4b) G - e-l(kx.YA+kyYA) 
0 - 

2ikz,I ' 

where 

kz . l  4 f q k :  - k: - k: for k: -k k: 5 k: (A4c) 

k z , l  0 - j q k :  f k: - k :  for k: + k: 2 k:, ( '444  

aG, 

and 

see Berkhout (1985, Appendix F). Note that 

-= T j k z , , G o  for z SzA.  

Similarly, if p is defined as a superposition of downgoing 
and upgoing waves, according to 

('45) 32 

p = p + + p -  (A6a) 

then we may write for a f " / d z  in layer 1 outside the source 
region 

Substitution of (A4), (AS) and (A6) into (A3) yields 

(A7a) x e - l ( k x * A + k v . V ~ )  d k  dk 
X Y  

where 

F-(k,,  k y ,  zA; w )  = e-Jkal(zl-zA)p-  (krl k , ,  zi; w ) ,  (A7b) 

(Berkhout & Wapenaar 1989). According to eq. (A7a), 
Pl(xA,yA, zA;-w) is given by the inverse spatial Fourier 
transform of P-(k, ,  k,, zA; w ) ,  where, according to (A7b), 
F-(k, ,  k,, z,; w )  represents the upgoing wavefield at depth 
level zA (assuming the region between zA and zl is source 
free). Hence, 

P~(xA,YA, 2,; w )  p-(xA,yA, LA; 0). ('48) 

Next, we analyse eq. (7c), which may be rewritten as 

Applying the following version of Parseval's theorem 

Q 

to the integral in the right-hand side of eq. (AY) yields 

where 

(Al la )  

with 

k Z . , = k , , ,  for k : + k ; s k :  (Al lb)  

and 

k,". , = - k z ,  for k: f k t  > k:,  (Allc) 

see also eqs (A4c) and (A4d). Hence 

- f jk , . ,G '*  for Z Z Z ,  and k : + k : s k :  (A12a) 
aG* -- 
dZ 

whereas 

- f j k , . , G *  for 
aG* -- 
32 

z 2 zA and k: f k:  > k:.  (A12b) 

A l l )  and (Al2) into (A10) yields 

d k ,  dk,., w)e -j (k  +A + k ,  YA) x J j  p - ( k , ,  k, ,  2,; 

k f + k+ k i 
(A13a) 

where 

p + ( k , ,  k,, z,; w )  = e / k z ~ ' ( z l - Z A ) p + ( k , ,  k y ,  z1; w )  

and 
for k: + k:  5 k :  (A13b) 

p - ( k , ,  k,, zA; 0 )  = e ~ ~ k ~ . l ( z l - z A ) ~ ~  (kxt k,, 21; w )  

for k: + k: > k: (A13c) 

(Wapenaar et nl. 1989). Assuming that evanescent waves 
may be neglected at A, the second integral in (A13a) may 
be omitted and the integration area for the first integral may 
be extended to infinity, yielding 

where 

p + ( k , ,  k , ,  z,; W) = e'kz l ( z l - z " ) p + ( k x ,  k , ,  z,; W) 

for all ( k r ,  k y ) .  (A14b) 

Hence, according to (Al4a), pl(xA,y,,, z,; w )  is approxim- 
ately given by the inverse spatial Fourier transform 
of p + ( k , ,  k,, z,; w ) ,  where, according to (A14b), 
p + ( k , ,  k , ,  z,; w )  represents the downgoing wavefield at 
depth level zA (assuming the region between zA and zl is 
source free). Hence, 

Pi(xA7yA, 2,; w ) ~ P + ( x A , Y A ,  zA; w). ('415) 


