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SUMMARY 
Acoustic reciprocity theorems have proved their usefulness in the study of forward and 
inverse scattering problems. The reciprocity theorems in the literature apply to the 
two-way (i.e. total) wavefield, and are thus not compatible with one-way wave theory, 
which is often applied in seismic exploration. By transforming the two-way wave 
equation into a coupled system of one-way wave equations for downgoing and upgoing 
waves it appears to be possible to derive ‘one-way reciprocity theorems’ along the same 
lines as the usual derivation of the ‘two-way reciprocity theorems’. However, for the 
one-way reciprocity theorems it is not directly obvious that the ‘contrast term’ vanishes 
when the medium parameters in the two different states are identical. By introducing 
a modal expansion of the Helmholtz operator, its square root can be derived, which 
appears to have a symmetric kernel. This symmetry property appears to be sufficient 
to let the contrast term vanish in the above-mentioned situation. 

The one-way reciprocity theorem of the convolution type is exact, whereas the one- 
way reciprocity theorem of the correlation type ignores evanescent wave modes. The 
extension to the elastodynamic situation is not trivial, but it can be shown relatively 
easily that similar reciprocity theorems apply if the (non-unique) decomposition of the 
elastodynamic two-way operator is done in such a way that the elastodynamic one-way 
operators satisfy similar symmetry properties to the acoustic one-way operators. 
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INTRODUCTION 

An acoustic reciprocity theorem relates the sources and wave- 
fields in two admissable acoustic states in the same domain. 
It can be obtained by inserting the acoustic wave equation 
into an extended version of Green’s theorem (Rayleigh 1878; 
Morse & Feshbach 1953). In the modern literature, reciprocity 
theorems also account for possible differences between the 
medium parameters in the two states (de Hoop 1988). 

It is possible to distinguish between convolution-type and 
correlation-type reciprocity theorems (Bojarski 1983). These 
two types of reciprocity theorems have proved their usefulness 
in the study of forward and inverse scattering problems, 
respectively. An extensive overview of reciprocity and its 
applications in seismics is given by Fokkema & van den 
Berg (1993). 

In the cited references the reciprocity theorems apply to the 
two-way (i.e. total) wavefield. Therefore in this paper we refer 
to these theorems as ‘two-way reciprocity theorems’. Obviously, 
these two-way reciprocity theorems are not compatible with 
one-way wave theory. The latter theory is particularly suited 
for those acoustic disciplines in which there is a clear preferred 
direction of propagation, such as in seismic exploration, where 

the vertical direction is the preferred propagation direction. 
For this situation the coupled one-way wave equations dis- 
tinguish explicitly between downward and upward propagation. 
The transformation from downward- to upward-propagating 
waves is described by a separate reflection operator, which is 
proportional to the vertical variations of the medium parameters. 
Note that in the seismic situation these vertical variations (due 
to layering) are much more pronounced than the horizontal 
variations. This explains why one-way wave theory is so well 
suited to seismic applications. For a recent discussion on 
reflection imaging based on this concept, see Berkhout & 
Wapenaar (1993). 

In this paper we derive reciprocity theorems of the 
convolution type and of the correlation type for acoustic one- 
way wavefields. These reciprocity theorems honour the 
natural separation between propagation and scattering in the 
one-way wave equations. They form an alternative basis for 
the study of forward and inverse scattering problems. In 
particular, they allow new data representations. In a 
companion paper (Wapenaar 1996; hereafter referred to as 
Paper B) we will derive, amongst others, a 3-D generalized 
primary representation, which appears to be very useful in 
the study of forward and inverse scattering problems in 
continuous 3-D finely layered media. 
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THE TWO-WAY WAVE EQUATION 

In this section we give the basic equations for an acoustic 
wavefield in a lossless inhomogeneous fluid medium. The 
medium parameters are infinitely differentiable functions of 
position, and time-invariant. The Cartesian position coordi- 
nates are denoted by the vector x = (xl, x,, x,) and the x,-axis 
is pointing downwards. The time coordinate is denoted by t. 
The Fourier transform with respect to time of a real function 
is defined as 

where 

and its inverse as 

u(t) = U ( a )  exp(jot) d o  , 
n 1 

where j is the imaginary unit and w denotes the angular 
frequency. Note that we consider positive frequencies only. In 
the remainder of this paper, all functions are in the frequency 
domain; the a-dependence is not explicitly denoted. 

In the space-frequency domain, the equations that govern 
linear acoustic wave propagation read 

a,p + j o @ K  = F ,  (3)  

and 

(4) 
jw a, v, + - P  = Q , K 

where P is the acoustic pressure, V, is the particle velocity, e 
is the volume density of mass, K is the compression modulus, 
F ,  is the volume source density of volume force, and Q is the 
volume source density of volume injection rate. The Latin 
subscripts take the values 1 to 3 and the summation convention 
applies to repeated subscripts. 

Throughout this paper the direction of preference is taken 
along the x,-axis. It is thus useful to express the vertical 
variations of the wavefield in terms of the horizontal variations 
of the same wavefield. To this end we separate the vertical 
derivatives a3P and a, V, from the horizontal derivatives, and 
we eliminate V, and V,. The resulting two equations for P and 
V, are combined into one matrix-vector equation, according 
to 

We refer to this as the two-way waoe equation. The two-way 
wave vector Q and the two-way source vector D are defined 
as 

Greek subscripts take the values 1 and 2. The two-way operator 
matrix A is defined as 

(7) 

and where c = (K/@)'/' denotes the acoustic propagation 
velocity. The circumflex denotes an operator containing 
the horizontal differentiation operators a, and a,. For later 
convenience we introduce a modified operator $,, according 
to 

2, = @-1'2(fi2@1'2. 1,  (9) 

or, using eq. (8), 

where 

(Brekhovskikh 1960; Wapenaar & Berkhout 1989; de Hoop 
1992). The structure of the Helmholtz operator 2, in eq. (10) 
is clearly simpler than the structure of H, in eq. (8). With the 
Helmholtz operator 2, we can write, instead of eq. (7), 

0 

DECOMPOSITION OF THE TWO-WAY 
OPERATOR 

Analogous to the decomposition approach in horizontally 
layered media (see Ursin 1983 for an overview), we introduce 
operator matrices A, i and i-', which satisfy the relation 

A = -juiAc-l (13) 

in such a way that A is diagonal. For an extensive list of 
references on the theoretical and numerical aspects of these 
operators, see Fishman, McCoy & Wales (1987). Some recent 
references in the seismic context were given in the previous 
section. Due to the anti-diagonal structure of A, as defined in 
eq. (12), the vertical slowness operator A and the composition 
and decomposition operators i and c-' have the following 
structures: 

A = ( A  0 - A  0 " )  

and 

where the operators A, L,  and L, satisfy the relations 
" 1 "  

-jw@ = -joL,AL;' (16) 

and 

It can be verified by substitution that for A, i,, ,$', L2 and 
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State A 

i;’ we can write 

A = w-l&l,  

State B 

(19) 
i 2 -  -(2w@)-l/2&y2, i;’ =(20)’/2(&~1/2@1/2.), (20) 

where the square-root operator &l is related to the Helmholtz 
operator &* according to 

& = 2Pl&l. (21) 
The normalization of this decomposition has been chosen such 
that it is consistent with the usual flux normalization in 
horizontally layered media (de Hoop 1992). This could only 
be accomplished as a result of the introduction of the modified 
operator &2 in eq. (9). 

cannot be written 
as a polynomial in 8,. Therefore is a so-called pseudo- 
differential operator (Kumano-go 1974). Eq. (21) is further 
evaluated in a later section. 

Unlike &2, the square-root operator 

Wavefield 
Operator 
Source 

THE ONE-WAY WAVE EQUATION 

We introduce a one-way wave vector P and a one-way source 
vector S, according to 

P A ( X ,  

B A ( 4  

S A ( 4  

p=(z: )  and S = ( i r ) .  

- jwli  

where P+ and P -  represent downgoing and upgoing waves, 
respectively, and where Sf and S -  represent source functions 
for downgoing and upgoing waves, respectively. We relate the 
one-way wave and source vectors to the two-way vectors, 
according to 

Q = b  and D = b .  (23) 
Substitution of eqs (13) and (23) into the two-way wave 
equation (5) yields the one-way wave equation 

a3P - BP = s,  

B =  - j w A + 6 ,  (25) 

6 = -i-’a, i .  (26) 

(24) 
where the one-way operator matrix B is defined as 

with 

From the structure of eqs (14), (22) and (24) to (26) it follows 
that - j w 8  accounts for (downwardJupward) propagation and 
6 for scattering due to the vertical variations of the medium 
parameters (see Table 1 ) .  Note that both A and 6 also account 
implicitly for scattering due to the horizontal variations of the 
medium parameters. In the Earth’s subsurface, the vertical 

6 I 
Propagation 
Vertical scattering 
Horizontal scattering 

X 

X 

X X 

variations are much more important than the horizontal 
variations. Therefore, in the remainder of this paper ‘scattering’ 
denotes ‘scattering due to the vertical variations’. 

The explicit distinction between propagation and scattering is 
an important advantage of the one-way wave equation (24) over 
the two-way wave equation (5). This property is exploited in 
Paper B in the derivation of the one-way primary representation 
and the one-way generalized primary representation. 

RECIPROCITY THEOREM OF THE 
CONVOLUTION TYPE 

The aim of this section is to derive a reciprocity theorem of 
the convolution type for one-way wavefields. In principle, two 
approaches can be followed. One can start with the reciprocity 
theorem for two-way wavefields and apply a decomposition 
to the wavefields appearing in this theorem. Alternatively, 
one can start with the one-way wave equation and derive the 
one-way reciprocity theorem along the same lines as de Hoop 
(1988) and Fokkema & van den Berg (1993) use in their 
derivation of the two-way reciprocity theorem. We used the 
former approach previously in the derivation of one-way 
Kirchhoff integrals (Berkhout & Wapenaar 1989; Wapenaar 
et al. 1989). In the present paper we will use the latter approach 
because it appears to yield more general results. 

In Table 2 we introduce two different states that are dis- 
tinguished by the subscripts A and B. We will consider the 
interaction between downgoing waves in one state and upgoing 
waves in the other and vice versa (Fig. 1). To be more specific, 
we consider the one-way interaction quantity 

a,{P,’P, - P a p , + } .  (27) 

[For comparison, de Hoop (1988) and Fokkema & van 
den Berg ( 1993) consider the two-way interaction quantity 
& ( P A  V,,B - To simplify the notation, we rewrite the 
interaction quantity (27) as 

interaction interaction 
A A 

V 

no interaction 
Figure 1. Both terms of the interaction quantity for the reciprocity 
theorem of the convolution type contain waves that propagate in 
opposite directions. 
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where denotes transposition and 

N = (  -1 0 ') 
Using the one-way wave equation (24), this interaction quantity 
can be rewritten as 

In this notation the transposed operator 6: acts upon the 
quantity left of it, i.e., on Pi. In analogy with de Hoop (1988), 
we call this a local reciprocity theorem. Next we integrate both 
sides of this equation over some volume to obtain a global 
reciprocity theorem. Since we have defined the direction of 
preference along the x,-axis, a natural choice is a volume "Y-, 
enclosed by two infinite parallel surfaces perpendicular to the 
x,-axis, see Fig. 2. These surfaces need not be physical boundaries. 
The combination of these surfaces will be denoted by aY 
and the outward-pointing normal vector by n = (0, 0, n3), with 
n3 = - 1 at the upper surface and n3 = + 1 at the lower surface. 
Carrying out the volume integrations and applying Gauss's 
theorem yields 

P~NPBn3d2x, = 1- P5NhPBd3x L 
+ lV (PlNSB + Sf;NP,) d 3 X ,  (31) 

where the contrast function 8 is given by 

and xH = (xi, x2) denotes the horizontal coordinates. Note 
that this global reciprocity theorem has the usual form of a 
boundary integral over the interaction quantity on one side 
and volume integrals containing a contrast function and 
sources on the other side. The main difference with respect to 
two-way reciprocity theorems (de Hoop 1988; Fokkema & van 
den Berg 1993) is that here the wavefields are one-way wave- 
fields and that the contrast function is actually a contrast 
operator. Moreover, it is not directly obvious that the volume 
integral over this contrast operator vanishes when the medium 
parameters in state A and state B are identical. In the following 
sections we will show step by step that the contrast operator 
8 is equivalent to 6 = 6, - 8,. It is clear that in this form the 
first volume integral in eq. (31) indeed vanishes when the 
medium parameters in state A and state B are identical. 

SYMMETRY PROPERTIES O F  THE BASIC 
OPERATORS 

In order to modify the contrast operator 8 it is necessary to 
derive symmetry properties of the one-way operator 6. All 

aV f n=(O,O,-l) 

5 2  .""l 

5 3  V 

aV 4 n =  (o,o,I)  
Figure 2. The configuration for the global reciprocity theorems. 

entries in B are related in one way or other to the square-root 
operator J& which, in turn, is related to the Helmholtz 
operator according to 22 = Yk121. In this section we 
analyse the symmetry properties of the kernels of these scalar 
operators. In the next section we derive the symmetry properties 
of the kernel of the operator matrix 6. 

We start our analysis by deriving a modal expansion of the 
Helmholtz operator 22 as defined in eq. (10). We introduce the 
wavenumber k(x) = w/c'(x) and we assume that k2(x) - k&) 
[where k,(x3) is the wavenumber for the homogeneous 
embedding at x3] has finite lateral support at depth level xj. 
We can thus rewrite the Helmholtz operator as 

potential U(x , )  
& 

YkZ(x)= k$(X3)- [{k$(X3)- -2(XH,X3)}  (33) 
Y 

2-D Hamiltonian, (x3 fixed) 

The term between the rectangular brackets has the form of a 
2-D Hamiltonian, which plays an important role in non- 
relativistic quantum mechanics. In the following analysis of 
Y& we will lean upon the well-developed theory of the 
Hamiltonian. The x,-dependence is irrelevant for this analysis. 
For notational convenience we omit x3 in the remainder of 
this section. 

We introduce an eigenvalue 1 and the corresponding 2-D 
eigenfunction 4, according to 

&# =,I#. (34) 

If Yk2 is examined as an operator acting on a properly chosen 
subspace of the Hilbert space, it turns out to be self-adjoint, 
implying that all I s  in the spectrum ~(9~) are real-valued 
(Weidman 1980). Similar to the spectrum of the Hamiltonian, 
u(&) generally consists of a discrete and a continuous part: 

O($2) = Gdiscr(&) " Ocont($Z). (35) 
All that actually matters for our analysis is that this spectrum 
is real-valued. Therefore we skip its derivation. We only remark 
that it can be obtained by mirroring the spectrum of the 
Hamiltonian around the origin and shifting it to the right over 
a distance k:. As a result we find that udiscr(#2) contains a 
finite number of isolated eigenvalues on the positive real axis 
between k$ and max{ k2(xH)}, and ucont(&) covers the interval 
(- co, k$], see Fig. 3. The positive and negative eigenvalues 

Im I 

OCO, 

Figure 3. Spectrum of the Helmholtz operator 9' in the complex 
plane. 
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correspond to propagating and evanescent wave modes, 
respectively. The discrete eigenvalues correspond to guided 
modes; they vanish in a laterally homogeneous medium. 
For a more elaborate discussion on the modal decomposition 
of wavefields the reader is referred to Blok (1995) and 
Grimbergen, Wapenaar & Dessing (1996). 

As a result of the spectral theorem for self-adjoint operators 
(Reed & Simon 1972; Weidman 1980), the eigenfunctions 4 of 
& constitute a complete orthonormal basis in 2-D space. This 
means that we can expand an arbitrary function F(xH) in the 
chosen subspace in terms of these eigenfunctions, according to 
(Reed & Simon 1979; Section XI.6): 

F ( X H ) =  jR2 #(XH, K)F(K) d2K + C 4( i ) (XH)F(1) ,  (36) 
adisor 

where K = ( K ~ ,  icZ) denotes a vector which relates the eigen- 
functions 4(xH, K) to the corresponding eigenvalues in the 
continuous spectrum via 

A(K) = kg - K , K , ,  1 E o,,,~. (37) 
In eq. (36), the first term on the right-hand side is under- 
stood in the distribution sense (analogous to a Fourier 
transformation). The expansion coefficients F(K) and FCi) can 
be seen as a representation of F(xH) in the modal domain, 
which is defined as the space constituted by the eigenfunctions 
of .A?z. The transformation to this domain is given by 

F ( K ) =  F(XH)$*(XH, K)d2XH, (38) 
J R 2  

F(i) = IR2 ~ x H ) ~ ) ( x H ) d z x H ~  (39) 

where * denotes complex conjugation [the eigenfunctions $ ( i ) ( ~ H )  

corresponding to the discrete eigenvalues ,Ii are real-valued]. 
Since k'z and i are real-valued, the eigenfunctions 4(xH, K) 

can be chosen to be either complex- or real-valued. We discuss 
these choices for a laterally invariant medium. For this situation 
we obtain 

d ( x H ,  K) = (2nI-l exp(-jK,x,) (40) 
or 

d ( x H ,  K) = (nJi i -1  COS(K,x, - n/4), (41) 
respectively. With the former choice, eqs (36) and (38) 
represent, respectively, inverse and forward 2-D spatial Fourier 
transformations. With the latter choice they represent inverse 
and forward 2-D spatial Hartley transformations (Bracewell 
1986). 

We return to the situation of laterally variant media. The 
modal expansion of &z is now obtained by applying 22 to 
the left- and right-hand sides of eq. (36), which yields (using 
eq. 34) 

2Z(XH)F(XH) = jRz l(K)d(xH, K)F(K) dZK 

$- Ai (b ( i ) (xH)F( i ) .  (42) 
#discr 

Upon substitution of eqs (38) and (39) (with xH replaced 
by xk), we obtain 

2Z(XH)F(XH)= IRz %(xH; xh)F(xh) d2XH, (43) 
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(44) 

We denote a kernel by omitting the circumflex and by replacing 
(xH) by (xH; xh). Eq. (44) and other expressions for kernels 
given below should be understood in the sense of generalized 
functions. 

Analogous to eq. (43), we introduce the kernel of the 
square-root operator 2l via 

&(XH)F(XH)= jRz % ( x H ;  xh)F(xh) (45) 

The kernels Ye, and Xl are related to each other, according 
to 

X~(X,; xH) = X ~ ( X H ;  x$)%~(x$; xL) d3&. (46) L 
From eqs (44) and (46) and the orthonormality property of 
the eigenfunctions 4 it now follows that for Xl(xH; xh) we can 
write 

$(XH, K)1"'(K)$*(Xh, K) d Z K  

+ C , $ ( i ) (x  H )  11/Z i 4 ( 0  (~4). (47) 
udiscr 

For the sign of the square root of L we choose (in accordance 
with the homogeneous situation) 

2 0 for 1 2 0 (propagating wave modes), (48) 

Ym(A1/') < 0 for A < 0 (evanescent wave modes), (49) 

where 3, can stand for L ( K )  or ii. The location of the possible 
values of L1/' in the complex plane is shown in Fig. 4. 

From eqs (44) and (47) we find the following symmetry 
relations for the kernels of &z and 21: 
$2(xh; xH)  = *Z(xH; xh) (50) 

Figure4. Spectrum of the square-root operator 
plane. 

in the complex 
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and 

21(xk;xH)=sl(xH;xk). (51) 

This is most easily seen if we choose the eigenfunctions 
&xH, K) real-valued [if we choose complex-valued eigen- 
functions, we need to make use of the symmetry properties 

is not self-adjoint since its 
spectrum is not real-valued. However, the symmetry property 
(51) of the kernel .Ye, will turn out to be sufficient for the 
modification of the contrast operator in the reciprocity 
theorem (31). 

Finally we derive symmetry relations for the kernels of El, 
i;', ez and I!,;' as defined in eqs (19) and (20). These 
operators are all defined in terms of A??'/'. In a similar way 
to the above, we obtain for the kernel of this operator 

~ ( X H ,  -K) = ~*(XH,  K) and L'/'(-K) = n"'(K)]. 
Note that the operator 

'$(XH, K)n"'4(K)$*(Xh, K) d 2 K  

where 

udissr 

Note that the root-singularity that occurs for , I (K)=O is 
integrable. For the kernels of el, & I ,  ez and e;' we can 
write 

(53) 

(54) 

LZ(XH; xk) = C2w@(xH)1-'iZ2+l/Z(xH; XL) 

LY(XH; XL) = (2w)1izf l-  $/2(xH; xk)@"'(xL), 

(55) 

and 

(56) 

respectively. Here L y  denotes the kernel of the inverse operator e;' for v = 1,2. It is now easily seen that the symmetry 
relations for these kernels read 

(57) 1 inv Ll(x',; xH)= ZLZ (XH; $ I )  

and 

(58) 1 inv LZ(xk; xH)= iLl (XH; &). 

For notational convenience we have dropped x3 through- 
out this section. Of course the symmetry relations (SO), 
(51), (57) and (58) apply for any x,. In the remainder of this 
paper we include x, again in the notation, according to 
*z(xL, x3; XH) = 22(xH, x3; xh), etc. 

S Y M M E T R Y  PROPERTIES OF THE 
O N E - W A Y  W A V E  EQUATION 

We use the results of the previous section to derive the 
symmetry properties of the acoustic one-way wave equation. 
To this end, we rewrite eq. (24) as follows: 

a 3 p ( X )  - jRz B ( ~ H ,  X3; xH)P(xk, X3) dzXL = s(X), (59) 

and 

O(XH, x,; xL)= - Linv(xH, ~ 3 ;  xh)a,L(x&, x,; xL) d2Xh. s,, 
(61) 

Here LinV denotes the kernel of the inverse operator i-'. L'"' 
is related to L according to 

where 6(xH) = 6(xl)6(x,) and I is the 2 x 2 identity matrix. On 
account of eqs (14), (15), (18), (51), (57) and (58) we find the 
following symmetry properties for A and L: 

A(xk, ~ 3 ;  xH)=NxH, ~ 3 ;  xL) (63) 

and 

LT(xL, x,; xH) = -NLinv(xH, x,; x',)N-'. (64) 

To derive the symmetry property of 0 we first transpose both 
sides of eq. (61), yielding 

@T(XH,X3;Xk)= - JRz {a3L(G,x3;xL)IT 

x {LinV(xH, x,; x;I)IT d2x&.  (65) 

Interchanging x;l with xH and substitution of the symmetry 
property (64) gives 

On account of eq. (62) we can write 

jR2 8, {Linv(xH, x,; xh)L(x$, x,; xk)} d'xh = 0 ,  (67) 

where 0 is the 2 x 2 null matrix. Applying the product rule 
for differentiation to eq. (67), using the result in eq. (66) and 
comparing the resulting expression for OT(xL, x3; xH) with 
eq. (61) yields 

OT(xL, x,; xH)= -NO(xH, x,; xL)N-'. (68) 

To derive the symmetry property of 6 we first note that, due 
to the special structure of A, its symmetry property (63) can 
be replaced by 

AT(xL, ~ 3 ;  xH) = -NA(xH, ~ 3 ;  x;i)N-'. (69) 

Hence, on account of eqs (60), (68) and (69) we now easily 
find 
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RECIPROCITY THEOREM OF THE 
CONVOLUTION TYPE: REVISITED 

Using the kernel notation introduced in the previous sections 
we can rewrite the local reciprocity theorem (30) as follows: 

a3 (x)NPB (x) 1 

= jR2 p;(Xh, X,)B;(XH, X3; x h ) N p ~ ( x ~ ,  X3) d2Xh 

f IR2 p:(xH, X3)NBB(XH3 x 3 ;  xh)PB(xh, x 3 )  d2xh 

+ P;(x)NSB(X) + S;(x)NP,(x). (71) 
Note that the symmetry relation (70) is not sufficient to let 
the integrals cancel when the medium parameters in state A 
and state B are identical. Therefore we integrate eq. (71) again 
over volume Y. We can thus interchange xH with xh in the 
term containing B;. This yields the global reciprocity theorem 

LY P~(x)NPB(x)n3(x)  d2XH 

r r 

= J, d3x J Pi(x,, X ~ ) N A ( X H ,  x3; xh)P~(xh, x3) d2xh 
R2 

+ I P ; ( ~ ) N s B ( ~ )  + S ; ( X ) N P B ( ~ ) I  d 3 X ,  (72) 

where 

A ( x , , x ~ ; x ~ ) =  BB(xH,x~;x;~)-[-N-~B;(x;I,x~;xH)N]. 

(73) 
Unlike in eqs (30) and (32), where operator Bz acts by 
definition upon the quantity left of it (i.e., on P;), B i  in eq. (73) 
simply denotes a transposed kernel matrix, with no particular 
connection to the quantity it acts upon. Substituting symmetry 
relation (70) into (73) we obtain 

A(xH, ~ 3 ;  $11 = BB(XH, ~ 3 ;  $11 - B,(x,, ~ 3 ;  xh). (74) 
Since B, and BE in eq. (74) are the kernels of the operators 
B, and BE, reciprocity theorem (72) is equivalent to reciprocity 
theorem (31), with 8 = b, - b,. Hence, we have achieved 
what we aimed for. 

In Paper B we derive several one-way representations from 
reciprocity theorem (31). Here we consider a special situation, 
to illustrate a fundamental property of one-way wavefields. 
Consider Fig.2 and assume that outside Y the medium is 
homogeneous and source-free in both states. Then, at the 
upper surface there are no downgoing waves ( P i  = PJ = 0) 
and at the lower surface there are no upgoing waves 
(Pa = P i  = 0). Hence, the interaction quantity (27) vanishes 
at aY, and, consequently, the boundary integral in eq. (31) 
vanishes. Furthermore, assume that the medium parameters in 
Y are identical in both states. Then the first volume integral 
on the right-hand side of eq. (31) also vanishes. Finally, assume 
that the one-way sources in both states are point sources in 
Y at x A  and xB,  respectively. Hence 

s,4(x) = sA,O(x)G(x - x A )  > x A  E “f (75) 

sB(x) = sB,O(x)G(x - x B )  > x B  > (76) 

and 

where S(x) = S(x,)S(x,)S(x,). Reciprocity theorem (3 1) thus 
yields 

P~(xB)NSB,O(xB) = -S~,O(xA)NPB(xA) 7 (77) 

or 

p i  (xB)Si,o(xB) - P i  (xB)S&(xB) 

= -Si,0(x.4)pB ( x A )  + Si,O(xA)pB’ ( x A ) ’  (78) 

[For comparison, Fokkema & van den Berg (1993) obtain the 
following two-way source-receiver reciprocity relation: 

P A  ( X B ) Q B ( X B )  - &,A (XB)FW(XBI 

= - F . ~ . A ( X A ) V ~ , B ( X A )  + Q A ( X A ) P B ( X A ) . ]  

For the special situation that the sources for the upgoing 
waves are zero we obtain 

pi ( x A ) / S J , O ( x B )  = Pa ( x B ) / S i , O ( x A ) ,  (79) 

see Fig. 5. For this situation we conclude that the one-way 
sources for downgoing waves and the one-way receivers for 
upgoing waves are interchangeable. Note that three other 
situations could be considered that lead to comparable 
conclusions, 

RECIPROCITY THEOREM O F  THE 
CORRELATION TYPE 

We derive a reciprocity theorem of the correlation type for 
one-way wavefields. Again we consider the interaction between 
downgoing waves in one state and upgoing waves in the other 
and vice versa. However, this time we use the property that 
complex conjugation of a wavefield changes its propagation 
direction from downgoing to upgoing and vice versa (Fig. 6). 
To be more specific, we consider the interaction quantity 

a3 { ( P i  )*P,’ - ( P i  ) * P i  } . (80) 
To simplify the notation, we rewrite this interaction quantity 

Figure 5. Illustration of reciprocity for one-way sources for down- 
going waves and one-way receivers for upgoing waves. 

interaction 
4- 

interaction 
rJ-7 

v L 
no interaction 

Figure 6. Both terms of the interaction quantity for the reciprocity 
theorem of the correlation type contain waves that propagate in 
opposite directions. 
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as 

83P2JPB1, 
where 

J = ( l  0 -1 O ) .  

denotes transposition and complex conjugation 

Using the one-way wave equation (24) and integrating the 
result over the volume -Y of Fig. 2 yields 

P5JP,n3 d2xH = P2J8PB d3x L L 
+ IY (PYJS, + S;JP,} d3x, (83) 

where the contrast operator 8 is given by 
n . .  

A = B, - (- J - I B ~ J ) .  (84) 
Here the complex conjugate transposed operator Bf acts upon 
the quantity to the left of it, i.e. on P?. We could modify this 
contrast operator in a similar way to that described in the 
previous sections if the kernel of the square-root operator 
obeyed the symmetry relation *:(xL, x,; xH) = zl(xH, x3; XL). 
However, this relation is only approximately valid, since @'I2)* 

is equal to A''2 only for 1 2 0  (i.e., for propagating wave 
modes). Using 

m?(xh, x3; XH) ml(xH, x3; (85) 

AH(xL, ~ 3 ;  xH) z JA(xH, ~ 3 ;  xL)J-', (86) 

LH(xL, ~ 3 ;  XU) z JLinv(xH, ~ 3 ;  x;~)(JN)-' (87) 

BH(xL, ~ 3 ;  xH)  z -JB(xH, ~ 3 ;  xL)J-'. 

we find 

and 

(88) 
Using the same reasoning as in the previous section we finally 
obtain 
L a  

A z B,- B A .  (89) 
In Paper B we use reciprocity theorem (83), with the contrast 
function defined in eq. (89), to derive approximate but stable 
inverse propagators for one-way wavefields in arbitrary 
inhomogeneous media. The stability of these inverse propagators 
arises from the fact that the 'erroneously handled' evanescent 
wave modes are suppressed instead of amplified. 

EXTENSION TO THE ELASTODYNAMIC 
SITUATION 

For the elastodynamic situation, the derivation of one-way 
reciprocity theorems (with vanishing contrast operators when 
the medium parameters in both states are identical) is quite 
involved. Therefore we only derive the conditions that should 
be posed to the (non-unique) decomposition of the elasto- 
dynamic two-way operator such that reciprocity theorems of 
the form of eqs (31) and (83) hold true for the elastodynamic 
situation. 

Starting with the basic equations, it is possible to derive a 
two-way wave equation of the form of eq. (5) for arbitrary 
inhomogeneous anisotropic media, in which Q is a 6 x 1 two- 
way wave vector containing the 3 x 1 traction and particle 

velocity vectors, D is a 6 x 1 two-way source vector and A a 
6 x 6 two-way operator matrix (Woodhouse 1974; Wapenaar 
& Berkhout 1989). We assume that A can be decomposed 
analogously to eq. (13), hence A: -jc&L-'. In general the 
6 x 6 vertical slowness operator A will not be purely diagonal, 
but it will have a block-diagonal structure, according to 

where 0 i s  a 3 x 3 nul! matrix. The off-diagonal elements in 
the 3 x 3 submatrices A +  and -k account for wave con- 
version due to the lateral variations of the medium parameters. 
Moreover, in general A+ will be different from A- due to the 
absence of up/down symmetry in arbitrary anisotropic media. 

With this decomposition, a one-way wave equation of the 
form of eq. (24) is obtained, in which B is a 6 x 6 one-way 
operator matrix and P is a 6 x 1 one-way wave vector con- 
taining 3 x 1 downgoing and upgoing wave vectors, according 
to 

/Df \ i@*\ 
P = ( b )  with P'= Y' 

!y+ i 
Here @*, Y' and Y' represent the (flux-normalized) down- 
going and upgoing quasi-P, quasi-S1 and quasi-S2 waves, 
respectively. A similar subdivision applies for the 6 x 1 one-way 
source vector S. 

We introduce an interaction quantity of the form of eq. (28), 
with N a 6 x 6 matrix containing two 3 x 3 null matrices and 
two 3 x 3 identity matrices, analogous to eq. (29). Local and 
global reciprocity theorems of the form of eqs (30) and (31) 
are thus obtained, with the contrast operator A, as defined in 
eq. (32). We derive the conditions for the modific:tio? of this 
contrast operator into the more suitable form A = Be - B A .  

To this end, the kernel A(~H,xg;x;i) of operator A(x) is 
introduced via 

A(x)F(xH) = JRz A(xH, x3; xL) F(xL)d2xL, (92) 

where 

A(x,, ~ 3 ;  x;i) = A(x)~(x, - xL) .  (93) 
From the latter equation and the definition of A it can be 
shown that this kernel obeys the symmetry relation 

This kernel is related to the kernels of c, A and c-', according 
to 

AT(xL, x,; xH) = -NA(xH, ~ 3 ;  xL)N-'. (94) 

x3; & ) =  - jw IRz JR2 L(xH, x3; xH) 

x A(xk, x,; x&')Linv(xg, x,; x;i) d2x$ d2x;;'. 

(95) 
Transposition of both sides of this equation, and interchanging 
x;i with xH and xg with xb in the result, yields 

r r  

x AT(x;;', x3; xL)LT(xL, x3; x;;') d2x$ d2x;;'. 

(96) 
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This result is consistent with eqs (94) and (95) if L and A 
satisfy symmetry relations of the form of eqs (64) and (69). 
Finally, if these symmetry relations apply, then in a similar 
way to the acoustic situation, we find that the contrast operator 
6 obtains the desired form 6 = B, - 8,. 

Similarly, if L and A satisfy the symmetry relations of the 
form of eqs (87) and (86) as well, then the reciprocity theorem 
of the correlation type (83) also holds true, with 6 z B, - B,. 

We conclude this section by demonstrating the validity of 
the symmetry relation (69) for A for the special case of a 
laterally invariant arbitrary anisotropic medium. In this case we 
can express A(xH, x,; x;1) via an inverse Fourier transformation 
as 

where p = ( p l ,  p 2 ) ,  p 1  and p z  being the horizontal slownesses, 
and where 

A(P,x,)=diag(q,f,q,:,q,:,'-q;, - G 1 3  -4Sz)(P9X,), (98) 

q* being the vertical slownesses for the different wave types. 
Even in a medium without up/down symmetry [i.e. in a 
medium where q*(p) #qF(p)], we still have q+(p) = q+(-p) 
for each wave type (Garmany 1983; Fryer & Frazer 1984). 
Hence, 

AT(-p, x,) = -NA(p, x 3 ) N - l ,  (99) 

or, using eq. (97): 

AT(&, ~ 3 ;  xH) = -NA(x,, ~ 3 ;  xL)N-'. (100) 

CONCLUSIONS 

We have derived reciprocity theorems of the convolution type 
(eq. 31) and of the correlation type (eq. 83), both for acoustic 
one-way wavefields. The former theorem is exact, the latter 
ignores evanescent waves. It has been shown that theorems of 
the same form also apply to the elastodynamic situation, 
provided that the decomposition of the elastodynamic two- 
way operator matrix can be done in such a way that the 
elastodynamic one-way operator kernels satisfy symmetry 
relations that have the same form as those for the acoustic 
one-way operator kernels (eqs 64, 69, 86 and 87). 

The contrast function in both reciprocity theorems is 
defined in terms of the one-way operator matrices B, and 
B,. These operators distinguish explicitly between propagation 
(downward/upward) and scattering (reflection/transmission). 
This property can be exploited in the analysis of forward and 
inverse scattering problems for which there is a clear preferred 
direction of propagation. In particular, the reciprocity theorem 
of the convolution type (31) will be used in Paper B as the 
basis for the derivation of several one-way representations 
of seismic data. In these representations, propagation and 
scattering are naturally separated. The reciprocity theorem of 
the correlation type (83) will be used in Paper B as the basis 
for the derivation of stable inverse propagators for downgoing 
and upgoing waves. These inverse propagators are the basis 
for a true amplitude seismic reflection imaging technique that 
fully accounts for the scattering losses due to fine-layering. 

ACKNOWLEDGMENTS 

The authors would like to thank Professors A. J. Berkhout, 
N. Bleistein, H. Blok, J. T. Fokkema and A. T. de Hoop as 
well as Dr B. de Pagter and Drs F. J. Dessing for many fruitful 
discussions. Also, the constructive comments of the reviewers 
(Dr M. Tygel and an anonymous reviewer) are much 
appreciated. 

REFERENCES 

Berkhout, A.J. & Wapenaar, C.P.A., 1989. One-way versions of the 
Kirchhoff integral, Geophysics, 54, 460-467. 

Berkhout, A.J. & Wapenaar, C.P.A., 1993. A unified approach to 
acoustical reflection imaging. Part 11: The inverse problem, J.  acoust. 
SOC. Am., 93, 2017-2023. 

Blok, H., 1995. Theory of Electromagnetic Waveguides, Vol. I, Lecture 
notes, Delft University of Technology, Delft. 

Bojarski, N.N., 1983. Generalized reaction principles and reciprocity 
theorems for the wave equations, and the relationship between the 
time-advanced and time-retarded fields, J .  acoust. Soc. Am., 74, 
281-285. 

Bracewell, R.N., 1986. The Fourier Transform and its Applications, 
McGraw-Hill International Editions, New York, NY. 

Brekhovskikh, L.M., 1960. Waves in layered media, Academic Press, 
New York, NY. 

de Hoop, A.T., 1988. Time-domain reciprocity theorems for acoustic 
wave fields in fluids with relaxation, J .  acoust. Soc. Am., 84, 

de Hoop, M.V., 1992. Directional decomposition of transient acoustic 
wave fields, PhD thesis, Delft University of Technology, Delft. 

Fishman, L., McCoy, J.J. & Wales, S.C., 1987. Factorization and path 
integration of the Helmholtz equation: Numerical algorithms, 
J.  acoust. Soc. Am., 81, 1355-1376. 

Fokkema, J.T. & van den Berg, P.M., 1993. Seismic applications of 
acoustic reciprocity, Elsevier, Amsterdam. 

Fryer, G.J. & Frazer, L.N., 1984. Seismic waves in stratified anisotropic 
media, Geophys. J.  R. astr. Soc., 78, 691-710. 

Garmany, J., 1983. Some properties of elastodynamic eigensolutions 
in stratified media, Geophys. J. R. astr. Soc., 75, 565-569. 

Grimbergen, J.L.T., Wapenaar, C.P.A. & Dessing, F.J., 1996. Modal 
expansion of one-way operators in laterally varying media, 
Geophysics, submitted. 

Kumano-go, H., 1974. Pseudo-diferential Operators, MIT Press, 
Boston, MA. 

Morse, P.M. & Feshbach, H., 1953. Methods of Theoretical Physics, 
Vol. I, McGraw-Hill Book Company Inc., New York, NY. 

Rayleigh, J.W.S., 1878. The Theory of Sound, Vol. 11, Dover 
Publications Inc, New York, NY (reprinted in 1945). 

Reed, M. & Simon, B., 1972. Methods of Modern Mathematical Physics. 
I .  Functional Analysis, Academic Press, New York, NY. 

Reed, M. & Simon, B., 1979. Methods of Modern Mathematical Physics. 
I l l .  Scattering Theory, Academic Press, New York, NY. 

Ursin, B., 1983. Review of elastic and electromagnetic wave 
propagation in horizontally layered media, Geophysics, 48, 

Wapenaar, C.P.A., 1996. One-way representations of seismic data, 
Geophys. J.  Int., 127, 178-188 (this issue, Paper B). 

Wapenaar, C.P.A. & Berkhout, A.J., 1989. Elastic Wave Field 
Extrapolation, Elsevier, Amsterdam. 

Wapenaar, C.P.A., Peels, G.L., Budejicky, V. & Berkhout, A.J., 1989. 
Inverse extrapolation of primary seismic waves, Geophysics, 54, 

Weidman, J., 1980. Linear Operators in Hilbert Spaces, Springer-Verlag. 

Woodhouse, J.H., 1974. Surface waves in a laterally varying layered 

1877-1882. 

1063-1081. 

853-863. 

New York, NY. 

structure, Geophys. J. R. astr. Soc., 37, 461-490. 

0 1996 RAS, GJI 127, 169-177 


