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SUMMARY 
A general one-way representation of seismic data can be obtained by substituting a 
Green’s one-way wavefield matrix into a reciprocity theorem of the convolution type 
for one-way wavefields. From this general one-way representation, several special cases 
can be derived. 

By introducing a Green’s one-way wavefield matrix for primaries, a generalized 
Bremmer series representation is obtained. Terminating this series after the first-order 
term yields a primary representation of seismic reflection data. According to this 
representation, primary seismic reflection data are proportional to a reflection operator, 
‘modified’ by primary propagators for downgoing and upgoing waves. For seismic 
imaging, these propagators need to be inverted. Stable inverse primary propagators 
can easily be obtained from a one-way reciprocity theorem of the correlation type. 

By introducing a Green’s one-way wavefield matrix for generalized primaries, an 
alternative representation is obtained in which multiple scattering is organized quite 
differently (in comparison with the generalized Bremmer series representation). 
According to the generalized primary representation, full seismic reflection data are 
proportional to a reflection operator, ‘modified’ by generalized primary propagators 
for downgoing and upgoing waves. Internal multiple scattering is fully included in the 
generalized primary propagators (either via a series expansion or in a parametrized 
way). Stable inverse generalized primary propagators can be obtained from the one- 
way reciprocity theorem of the correlation type. These inverse propagators are the 
nucleus for seismic imaging techniques that take the angle-dependent dispersion effects 
due to fine-layering into account. 
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INTRODUCTION 

A representation theorem expresses a wavefield quantity at 
some point in a medium in terms of boundary and volume 
integrals over the wavefield, the source distribution, and the 
contrast function (i.e. the difference between a reference medium 
and the actual medium). In general, a representation theorem 
can be obtained by substituting a Green’s function into a 
reciprocity theorem. Acoustic representations were introduced 
by Lord Rayleigh ( 1878); early references for the elastodynamic 
situation are Knopoff (1956) and de Hoop (1958). 

In this paper we follow a similar procedure, using as a starting 
point the reciprocity theorems for one-way wavefields, as derived 
in a companion paper (Wapenaar & Grimbergen 1996; here- 
after referred to as Paper A). The contrast function in these 
reciprocity theorems is defined in terms of one-way operators. 
These operators distinguish explicitly between propagation 
(downward/upward) and scattering (reflection/transmission). 

The reciprocity theorem of the convolution type will be 

used to derive various one-way representations in terms of a 
volume integral over a scattering operator. Since the scattering 
operator is proportional to the vertical variations of the medium 
parameters, this representation is very well suited for the 
seismic situation, where the vertical variations (due to layering) 
are much more pronounced than the horizontal variations. 
In particular we will derive a 3-D ‘generalized primary 
representation’, which accounts in a systematic way for 
propagation and reflection in continuous 3-D finely layered 
media. 

The reciprocity theorem of the correlation type will be used 
to derive inverse propagators that are the nucleus of seismic 
reflection imaging techniques, amongst others for continuous 
3-D finely layered media. 

GENERAL REPRESENTATION FOR 
ONE-WAY WAVEFIELDS 

The aim of this section is to derive a general representation for 
one-way wavefields in terms of boundary and volume integrals. 
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one-way representations. A and 6 can be partitioned as follows: 

State A 

To this end we first briefly review the one-way reciprocity 
theorems that were derived in Paper A. Next we introduce a 
Green's matrix for one-way wavefields. Finally we derive the 
general one-way representation by substituting the Green's 
one-way wavefield matrix into the one-way reciprocity theorem. 

State B 

One-way reciprocity theorems 

In this subsection we briefly review the one-way wave equation 
and the one-way reciprocity theorems for downgoing and 
upgoing waves in a lossless inhomogeneous fluid medium and 
in a lossless inhomogeneous anisotropic solid medium. We use 
a general notation that applies to the acoustic as well as to 
the elastodynamic situation. 

The medium parameters are infinitely differentiable functions 
of position, and time-invariant. The Cartesian position coordi- 
nates are denoted by the vector x = (xl, x2, x3) and the x,-axis 
is pointing downwards. The time coordinate is denoted by t, 
and the angular frequency by w. The Fourier transforms from 
t to o and vice versa are given by eqs (1) and (2) in Paper A. 
Throughout this paper all functions are in the frequency 
domain; the o-dependence is not explicitly denoted. 

We introduce a one-way wave vector P and a one-way 
source vector S, according to 

P = ( z r )  and S=(:I) 

The superscripts + and - stand for downgoing and upgoing, 
respectively. In the elastodynamic situation, P +  and P-  are 
3 x 1 vectors that can be subdivided as follows: 

( 2 )  

where @*, !Pi and Y* represent the (flux-normalized) down- 
going and upgoing quasi-P, quasi-S1 and quasi-S2 waves, 
respectively. A similar subdivision applies to the 3 x 1 vectors 
S+ and S-.  In the acoustic situation, P', P- ,  S' and S- are 
all scalars (i.e. P', P- ,  S', and S-). 

In the space-frequency domain, the one-way wave equation 
reads 

3,P - BP = s,  

B= - joA+& (4) 

b=  -i-'a,L. ( 5 )  

( 3 )  

where the one-way operator matrix B is defined as 

( j  is the imaginary unit), with 

B is a 2 x 2 (acoustic) or 6 x 6 (elastodynamic) pseudo- 
differential operator matrix (the circumflex denotes an 
operator containing 8, and &). In eq. (j), - j d  accounts for 
(downward/upward) propagation and 0 for scattering due to 
the vertical variations of the medium parameters. Note that 
both and 6 also account implicitly for the scattering due to 
the horizontal variations of the medium parameters. In the 
remainder of this paper 'scattering' stands for 'scattering due 
to the vertical variations'. 

The explicit distinction between propagation and scattering 
will be exploited in this paper in the derivation of various 

(the + and - signs are chosen for later convenience). A' and 
k are the 1 x 1 or 3 x 3 vertical slowness operators for 
downgoing and upgoing waves; 8' and 7' are the 1 x 1 or 
3 x 3 reflection and transmission operators. 0 is a null matrix 
of appropriate size. From eqs ( 5 )  and (6) it follows that the 
reflection and transmission operators are proportional to the 
vertical variations of the medium parameters appearing in 
the composition operator i. 

Using the one-way wave equation, we derived in Paper A 
for the two states in Table 1 a reciprocity theorem of the 
convolution type: 

+ lv {PZNS, + S:NP,} d3x 

+ j y  {P?JS,+S:JPB} d3x (8) 

(7) 

[T denotes transposition; xH = (xl, x2) denotes the horizontal 
coordinates], and a reciprocity theorem of the correlation type: 

P:JP,n3d2X~ % P?Jlb,d3X Iy ly 
(H denotes transp?sition and complex conjugation). Here the 
contrast operator A is defined as 

moreover, 

N = ( "  - I  0 ' )  and J = ( '  0 -I O ) ,  

where I is an identity matrix of appropriate size. In eqs (7) 
and (8) -Ir is a volume enclosed by two infinite parallel surfaces 
normal to the x3-axis, see Fig. 1. These surfaces need not be 
physical boundaries. The combination of these surfaces is 
denoted by aY and the outward-pointing normal vector by 

Wave field 
Operator 
Source 

3. n=(O,O,- l )  dV 

V 

dV 4 n =  (o,o, 1)  

Figure 1. The configuration for the reciprocity theorems. 
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Wavefield 
Operator 
Source 

n = (0, 0, n3), with n3 = - 1 at the upper surface and n3 = + 1 
at the lower surface. 

Eq. (7) was rigorously derived in Paper A for the acoustic 
situation. It has been shown that this theorem also applies 
to the elastodynamic situation when the (non-unique) 
decomposition is done in such a way that the elastodynamic 
one-way operators satisfy similar symmetry properties to the 
acoustic one-way operators. Throughout this paper we assume 
that this condition is satisfied. Eq. (7) will be used as the basis 
for the derivation of a general representation of one-way 
wavefields. 

Eq. (8) was derived in Paper A under the condition that 
evanescent wave modes can be ignored. In this paper we use 
this theorem for the derivation of various stable inverse 
propagators for arbitrary inhomogeneous media. In the 
remainder of this paper we replace the approximation sign x 
by = whenever the only approximation concerns the neglect 
of evanescent wave modes. 

Gix, x‘) G(x, x”) 

rs(x - x’) IS(x - x”) 
B(X)  B(X)  

Green’s one-way wavefield matrix 

For the derivation of the one-way representations we need to 
replace one of the states in the reciprocity theorems by a 
one-way Green’s function and the other one by the actual 
one-way wavefield. This will be done in the next subsection. 
Here we introduce a 2 x 2 (acoustic) or 6 x 6 (elastodynamic) 
Green’s matrix G which satisfies the following one-way wave 
equation: 

83G(~, x’) - B(x)G(x, x’) = 16(~ - x’), (11) 

with 6(x) = 6(x,)6(xz)b(x,). B is some reference one-way 
operator (not necessarily related to a reference medium, see 
the next main section). The two or six columns of G(x,x’) 
represent two or six independent Green’s one-way wavefields 
at observation point x, related to two or six independent one- 
way sources at source point x’. Note that G can be partitioned 
as follows: 

(12) 
G+.’(x, x’) G+.-(x, x’) 

G-.+(x, x’) G-.-(x, x’) 
G(x, x’) = 

where the superscripts refer to the propagation direction at x 
and at x’, respectively. 

We derive a reciprocity relation for G(x,x‘) by applying 
reciprocity theorem (7) to the states in Table 2. We choose 
both the Green’s source points x’ and x” in Y .  Moreover, we 
choose a homogeneous isotropic reference medium outside Y .  
Then in both states only the outward-propagating terms of 
G are non-zero at d Y .  Hence, the interaction quantity 
GT(x, x’)NG(x, x”) vanishes at aY (see also Fig. 1 in Paper A). 

Table 2. States for deriving a reciprocity relation for G. 

Eq. (7) thus yields 

0 = Iv {GT(x, x’)NG(x - x”) + 6(x - x’)NG(x, x”)} d3x, 

(13) 

(14) 

or 

G(x’, x”) = -N-lGT(x”, x’)N. 

Using the notation of eq. (12) we obtain 

G+*+(x’, x”) G+.-(x’, x”) 

G-.+(x’, x“) G-,-(x’, x”) 

- {G-.-(x”, x ’ ) } ~  {G+--(x”, x ‘ ) } ~  ). (15) 
{G-,’(x’’, x ’ ) } ~  - {G+.+(x”, x ’ ) } ~  

For the elastodynamic situation, we can write the elements in 
for example, the lower left 3 x 3 matrix in this equation as 

G? ‘ 1  + (XI, x”) = G J 1  + (x“, x‘) . (16) 

Here the subscripts refer to the wave type at the observation 
point and at the source point, respectively (i = 1,2, 3 stands 
for quasi-P, quasi4 1 or quasi-S2, respectively). For the acoustic 
situation, eq. (16) reduces to G-.+(x‘, x”) = G-.+(x“, x’); see 
also Fig. 5 in Paper A. 

General representation of the convolution type 

Consider a one-way wavefield vector P, related to a one-way 
source distribution S .  Our aim is to find a representation for P 
at some observation point x’. To this end, we apply reciprocity 
theorem (7) to the two states in Table 3 and we make use of 
reciprocity relation (14). 

We thus obtain 

x(x’)P(x’) = G(x’, x)S(x) d3x 

- LY GW, x)P(x)n3(x) dZXH 

+ IV G(x‘, x)&x)P(x) d3x, (17) 

where the characteristic function x is defined as 

[ I  forx’ E Y 

o for XI Y U ~ V  

(18) 

and the contrast operator as 

A(,) = B(x) - B(x) . (19) 

Note that the right-hand side of eq. (17) contains, respectively, 

Table 3. States for the general representation. 

State A State B 

Operator 
Source 16(x - x’) 
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State A 

a direct wave contribution, a boundary integral over the inter- 
action quantity GP, and a volume integral over the contrast 
operator 6. 

From this general one-way representation, several well-known 
representations can be derived as special cases. 

When V is source-free and B equals B throughout V ,  then 
the two volume integrals vanish. If in addition one of the half- 
spaces outside V is chosen to be source-free and homogeneous, 
then only one boundary integral over a single surface remains. 
The resulting expression thus describes one-way wavefield 
extrapolation, as it is commonly named in the literature on 
seismic exploration (see for example, for the acoustic situation, 
Claerbout 1976; Berkhout 1982; Berkhout & Wapenaar 1989; 
and, for the elastodynamic situation, Wapenaar & Berkhout 
1989). This will not be discussed further in this paper. 

On the other hand, the boundary integral in eq. (17) vanishes 
when V is taken equal to R3. The remaining volume integral 
representation reduces to some well-known results when a 
special choice is made for the reference operator B. This will 
be extensively discussed in the next main section. In the section 
after that, a new one-way representation will be introduced, 
based on an alternative choice for the reference operator B. 

State B 

NON-LINEAR A N D  LINEARIZED 
REPRESENTATIONS 

The aim of this section is to derive non-linear and linearized 
volume integral representations from eq. (17). To this end we 
first introduce a Green’s matrix for primaries. Next we use this 
matrix in the derivation of a generalized Bremmer series 
representation from which the primary representation follows 
immediately as a special case. Finally we derive inverse primary 
propagators, which form the basis for seismic reflection imaging 
techniques. 

Green’s matrix for primaries 

In analogy with eq. (4), the reference operator B in eq. (11) is 
defined as B = - j d  + 0. This operator allows an independent 
choice of 1? (propagation) and 6 (scattering). In this section 
we choose 

. L m  

= (i.e. propagation in the actual medium) 1201 

0 = o (i.e. no scattering). (21) 

and 

As a consequence, the reference operator B = - j w i  accounts 
for primary propagation in the actual medium (note that this 
is quite different from choosing a reference medium, as is 
usually done in two-way representations). Substituting this 
(block-) diagonal reference operator into eq. (11) yields 

83Gp(x, x‘) +jwA(x)G,(x, x’) = 16(x - x’), (22) 
where G,(x, x’) is the Green’s matrix for primaries. By choosing 
the appropriate boundary conditions (i.e. outgoing waves for 
x3 + - co and for x3 + co), it follows that this Green’s matrix 
has the following structure: 

- H(x; - X3)WP (x, x’) 
G,(x, x’) = 

t I 
I I 1 

Wavefield 
Operator 
Source 

where H ( x 3 )  is the Heaviside step function (the + and - signs 
are chosen for later convenience). W,’ (x, x’) and W; (x, x’) will 
be referred to as the propagators for the primary downgoing 
and upgoing waves. In the elastodynamic situation, W,‘ (x, x‘) 
and W; (x, x’) are 3 x 3 matrices; in the acoustic situation they 
are scalars (i.e. W,’ and W; ). From eqs (15) and (23) it follows 
that 

W,’(x,x‘)= {W,(X’ ,X)}T .  (24) 

This primary propagator is further discussed in Appendix A. 

Generalized Bremmer series representation 

We use the Green’s primary matrix to derive a generalized 
Bremmer series representation. For, the two states in Table 4 
we find that the contrast operator A reads 

A = B - (-jwA) = 0 .  

We thus obtain, instead of eq. (17), 

(25) 
1 -  . L A  

x(x’)P(x’) = G,(x’, x)S(X) d3x sy 
- ly  Gp(X( ,  x)P(x)n,(x) dZXH 

+ lV G,(x’, x)&(x)P(x) d3x. (26) 

For the special case that V is taken to be equal to R3, the 
boundary integral vanishes. The remaining expression was 
derived previously by Corones (1975), who proposed (in a 
different notation) the following series expansion: 

,. 

This result may be seen as a generalized Bremmer series 
(generalized geometrical optics, see Brekhovskikh 1960). Each 
term fully accounts for one order of multiple scattering (unlike 
in the Neumann series expansion associated with the two-way 
wave equation). Its convergence is shown by de Hoop (1992) 
for wavefields in fluids. A convergence analysis for wavefields 
in solids is beyond the scope of this paper. 

Primary representation for seismic reflection data 

For k = 1, eq. (27) describes primary scattered data. In this 
subsection we consider the reflection response of an inhomo- 
geneous (anisotropic) lower half-space x3 > x ~ , ~ ,  probed by a 
one-way source at xs and a one-way detector at xD, both in a 
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homogeneous isotropic upper half-space x3 2 x3,,,. Using the 
following partitioning of Pcl) and S ,  

(where 0 is the null vector) and using the partitioning of 6 
and G, as described in eqs (6) and (23) we find the primary 
upgoing response { P-  (xD)}(l) from eqs (27) and (28): 

{P-(XD)}(l)= Ja w,(X,,x)a+(x)w,‘(x,x~)s,.(x~)d3X, 

(30) 

where SZ denotes the lower half-space x3 > x3,,,. Eq. (30) is a 
straightforward one-way representation of primary reflection 
data. It was introduced in a discrete formulation by Berkhout 
(1982) for acoustic one-way wavefields in fluids, and modified 
by Wapenaar & Berkhout (1989) for elastodynamic one-way 
wavefields in solids. 

An attractive feature of representation (30) is that the 
reflection operator R’ is proportional to the vertical variations 
of the medium parameters (see eqs 5 and 6). Hence, for each 
‘reflector’ this operator has a compact support in depth 
[opposed to the contrast function for the usual (two-way) 
Born approximation; see Fig. 2 for a very simple example]. 
This makes the one-way representation particularly suited 
to seismic applications, where the main cause of scattering is 
given by the contrasts between the different layers in the 
subsurface (rather than by the contrasts between the actual 
and the background medium). 

In a later section we will see that this simple representation 
may account for internal multiple scattering as well, when the 
primary propagators W i  and W; are replaced by generalized 
primary propagators. 

Finally, note that the assumptions made at the beginning of 
this subsection are far from realistic for seismic applications: 
the Earth’s surface (x3=x3.,,) is a strongly reflecting free 

One-way representations of seismic data 

7’ 

Figure2. Illustration of the compactness in depth of the reflection 
operator in an acoustic medium. (a) Vertical cross-section of one 
medium parameter (compression modulus). (b) Contrast function for 
the usual (two-way) Born approximation. (c) Reflection operator for 
the one-way representation. 

boundary, the (multi-component) seismic vibrators induce tensile 
and shear stresses at this surface, and the (multi-component) 
geophones register the particle velocity of the two-way 
wavefield at the surface. Hence, for the validity of eq. (30) in 
practical situations the following two pre-processing steps 
are required 

(1) decomposition of the physical measurements into 

(2) elimination of multiple reflections related to the free 
one-way wavefields; 

surface. 

This so-called surface-related pre-processing procedure is 
described in detail in Berkhout (1982), Verschuur, Berkhout 
& Wapenaar (1992), Carvalho, Weglein & Stolt (1982) and 
Fokkema & van den Berg (1993) for acoustic waves in fluids 
and by Wapenaar & Berkhout (1989) for elastodynamic waves 
in solids. 

Inverse primary propagator 

The primary representation (30) shows that primary seismic 
reflection data are proportional to the reflection operator a’, 
modified by the propagators W i  and W;. Hence, inversion 
of the propagators W,’ and W; plays an essential role in 
reflection imaging. A full discussion of reflection imaging is 
beyond the scope of this paper. Here we restrict ourselves to 
the derivation of the inverse propagators F,’ and FP. We 
introduce two horizontal reference levels C,, and Z,,,, defined 
by x3 =x3,,, and X ~ = X ~ , ~ > X ~ , , , ,  respectively. For any Zm 
below C,, the inverse propagators F,’ and F; ideally satisfy 
the following relations: 

F,’(x’, x)W,’ (x, x”) d2XH = I S ( X ~  - x;) (31) s,. 
Lm 
and 

W; (x”, x)F; (x, x’) d2xH = 16(xk - xk) (32) 

for x‘ and x” at Z,, (and x at Cm), where 6(xH)=6(x1)6(x2). 
Note that 

F,‘(x‘,x)= {F;(x,x’)}~ (33) 

on account of eqs (24), (31) and (32). 
In order to derive explicit expressions for the inverse 

propagators we apply reciprocity theorem (8) to the states 
in Table 5. 

Since both one-way operators are the same, the first volume 
integral on the right-hand side of eq. (8) vanishes. Unlike in 
eq. (7), the boundary integral on the left-hand side of eq. (8) 
does not vanish when x‘ and x” are chosen in V (see also 
Fig. 6 in Paper A). Instead, we choose x‘ and x” both to be 
outside W .  As a result, the second volume integral on the 

Table 5.  States for deriving the inverse primary propagators. 

State A State B 

Operator -jwA(x) 
Source l6(x - x’) 16(x - x”) 
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right-hand side of eq. (8) also vanishes. This leaves 
r 
J G;(X, x’)JG,(x, x”)T~~(x) d2xH = 0. 

a y  
(34) 

In the following we let 3.Y consist of two horizontal reference 
levels C: and C,, where C: lies just below C, (it is defined 
by x3 = x3,, + E ,  with E a vanishing positive constant). Hence, 
we obtain from eq. (34) 

P r 

J GF(x, x‘)JG,(x, x”) d2x - GF(x, x’)JG,(x, x”) d2xH 
Z.n H- J, 

(35) 

for x’ and x” at C, (i.e. just outside 3.Y). In analogy with eqs 
(23) and (A2) we can write 

W,’(x, x’) 0 
G,(x,x’)= ( ” o) 

for x’ at & and x at C,,,, and 

0 
G,(x, x’) = (37) 

for x’ at C, and x at C:. Using these expressions in eq. (35) 
yields 

{W,’ (x, X’)}HW,’ (x, x”) d2XH = Is(xg - XG), (38) I- 
for x’ and x” at Co. Comparing this result with eq. (31) we 
find, for the inverse propagator for primary waves, 

Fp’ (x’, X) = {W,’ (x, x ’ ) } ~ .  

Fp (x, x’) = { W, (x’, x ) } ~ .  

(39) 

(40) 

With eq. (33) we find, for the inverse propagator in eq. ( 3 2 ) ,  

Eqs (39) and (40) formulate very simple relations between the 
forward wavefield propagators that appear in the primary 
representation (30) and the inverse propagators that are 
essential for reflection imaging. This result can be seen as a 
generalization of the so-called ‘matched filter’ for inverse 
wavefield extrapolation (Berkhout 1982; Wapenaar & Berkhout 
1989). The present expressions apply to flux-normalized waves 
in arbitrary inhomogeneous media (for comparison, in the 
cited references it was assumed that there are no lateral 
variations at Co and Em). 

Since eqs (39) and (40) are based on reciprocity theorem 
(S), evanescent wave modes are erroneously handled. Although 
this limits the maximum obtainable spatial resolution, it 
also ensures stability since the evanescent wave modes are 
suppressed instead of amplified (see also Appendix A). 

GENERALIZED L I N E A R  
R E P R E S E N T A T I O N ,  I N C L U D I N G  
MULTIPLE S C A T T E R I N G  

The aim of this section is to derive a representation of the 
form of eq. (30), with internal multiple scattering included in 
a consistent manner in the propagators. We will call this the 
3-D generalized primary representation. The term generalized 
primary was introduced by Hubral, Treitel& Gutowski (1980) 
for 1-D acoustic wave propagation through 1-D discretely 

layered fluids and adopted by Resnick, Lerche & Shuey (1986) 
for 1-D acoustic wave propagation through 1-D continuously 
layered fluids. 

We first introduce a Green’s matrix for generalized primaries. 
Next we use this matrix in the derivation of a generalized 
linear representation from which the generalized primary 
representation follows immediately. Finally, we derive inverse 
generalized primary propagators, which form the basis for 
reflection imaging techniques, generalized for continuous 3-D 
finely layered media. 

Green’s matrix for generalized primaries 

In this subsection we introduce a Green’s matrix that accounts 
for multiple scattering in the half-space x3 < [, where, for the 
moment, [ denotes an arbitrary depth level. Again we exploit 
the natural distinction between propagation and scattering in 
the one-way reference operator B = - j o d  + 6. This time we 
choose 

L . .  

= A (i.e. propagation in the actual medium) (41) 

(42) 

and 

0 = H ( [  - x3)6  

B(xli)= -jw8(x)+H(c-x3)$(x). (43) 

(i.e. scattering only for x3 < l). 
For the reference operator we thus obtain 

For x3 < [ this operator is equal to B(x1, defined in the actual 
medium. For x3 > the coupling term O(x) is missing. Hence, 
&XI[) applies to a configuration that is identical to the actual 
medium for the upper half-space x3 < [ and that is scatter-free 
for the lower half-space x3 > [. In analogy with eq. ( l l ) ,  we let 
this operator govern a Green’s matrix G(x,x”l[). We can 
express this matrix in terms of the Green’s primary matrix by 
applying reciprocity theorem (7) to the two states in Table 6, 
taking 9‘“ equal to R3 and using reciprocity relation (14) for 
G,. We thus obtain 

G(x’, x”I[) = G,(x‘, x”) 

H([  - x,)G,(x’, x)&(x)G(x, x”l() d3x. (44) 

We consider the special situation for which the half-space 
x3 5 x3,, is homogeneous and isotropic. Moreover, we choose 
[ = x i  > x i  = x3,,. With these choices, the half-spaces above 
xl; as well as below x i  are scatter-free. Hence, in analogy with 
eq. (23), G(x’, x”Ixj) now has the following structure: 

+ l R 3  

W,’(X‘, x”) 

0 
G(x’, X”]X;) = 

Table 6. States for deriving a representation for G(x, x”lc). 

(45) 

State A State B 
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similarly, from - 00 to co, and using G(x’, x”I - co) = Gp(x’, x”) yields 

G(x’, x‘’I CO)  = G,(x’, x”) 

+ lR3 G(x’, xIx3)&(x)G(x, x”Ix3) d3x. (51) 

Note that G(x’, XI’( CQ) represents the Green’s matrix in the 
actual medium. Multiplying both sides from the right by S(x”) 
and integrating over X” yields 

0 -W,(X”,X’) 
G(x”, x’lxj) = 

W l  (x’, x”) and W, (x”, x’) will be referred to as the propagators 
for the generalized primary downgoing and upgoing waves in 
the actual medium between depth levels x; and xj. In the 
elastodynamic situation, Wp’ (x‘, x”) and Wg (x”, x’) are 3 x 3 
matrices; in the acoustic situation they are scalars (i.e. W,’ 
and W,-). From eqs (15), (45) and (46) it follows that 

wp‘ (x’, x”) = {W, (x”, X’)}T. (47) 

This generalized primary propagator is further discussed in 
Appendix B. 

Generalized linear representation 

We use the Green’s generalized primary matrix to derive 
a generalized linear representation. To this end we apply 
reciprocity theorem (7) to the two states in Table 7, 
taking V equal to R3. Using, in analogy with eq. (14), 
G(x’, x”l() = -N-’GT(x”, x‘l()N, we thus obtain 

G(~‘,x”l[ ’ ) -G(x’,~”l[)  

G(x’, xl[){k(xl[’)- B(xl[)}G(x, xffl[’) d3x. 

Next we choose [‘ = [ + d[ and we take the limit for d( 

(48) 

0. 

= l R 3  
This yields 

aiG(x’, x“I[) = G(x’, xl[){ai6(x14‘)}G(x, x”l() d3x, (49) 

where a, denotes differentiation with respect to [. Using eq. (43) 
we obtain 

diG(x’, x“I[) = 

s,, 
L {G(x‘, xl[)&(x)G(x, ~ ” l ( ) } ~ , = ~  d2X,. 

(50) 

This equation quantifies the changes in the Green’s matrix due 
to variations of the depth level [. In this sense, it resembles 
the method of invariant imbedding for initial-value problems 
(Bellman & Wing 1975; Fishman, McCoy & Wales 1987). To 
see this, we consider again the special situation for which the 
half-space x3 5 x3,0 is homogeneous and isotropic. Moreover, 
this time we choose x j  = x; = x ~ , ~ .  For this situation, eq. (50) 
for the lower left 1 x 1 or 3 x 3 sub-matrix G-.+(X’,X’’~() is 
identical to eq. (34) in Fishman et al. (1987) for the same sub- 
matrix (in a different notation). The latter authors use their 
eq. (34) as the starting point for a numerical modelling algorithm. 
In this paper we use our eq. (50) to derive a generalized linear 
representation (for arbitrary media and arbitrary x i  and xg). 

Replacing ( by x3, integrating both sides with respect to x3 

Table 7. States for the generalized linear representation. 

P(x’) = jR3 Gp(x’, x”)S(x”) d3x” 

,. 
+ J G(x’, xlx3)&(x)P(xlx3) d3x, 

R3 

where 

G(x, x“lx3)S(x”) d3x” (53) 

Note that eqs (52) and (53) very much resemble eqs (27) and 
(28) for the generalized Bremmer series. However, multiple 
scattering is organized quite differently. In eqs (52) and (53) 
the multiple scattering effects are fully included in G(x, x”lx,) 
and G(x’, xIx3): see eq. (44) and Appendix B. Hence, implicitly 
eqs (52) and (53) are non-linear in the scattering operator 
&(x). However, in its explicit form, the system of eqs (52) and 
(53) is linear in &(x). The consequences will be discussed in 
the next subsection. 

Generalized primary representation for seismic reflection 
data 

In this subsection we consider the reflection response of an 
inhomogeneous (anisotropic) lower half-space x3 > x ~ , ~ ,  probed 
by a one-way source at xs and a one-way detector at xD, both 
in a homogeneous isotropic upper half-space x3 x, ,~.  Using 
the partitioning of P, 0, S, and G as described in eqs (l),  (6), 
(29), (45) and (46) we find, from eqs (52) and (53), the total 
upgoing response 

P-  (xD) = W, (xD, x)Rf (x)W,’. (x, xS)S,f (xS) d3x, (54) l* 
see Fig. 3, where SZ denotes the lower half-space x3 > x3.,,. 

Note that this representation is almost identical to eq. (30), 
except that the primary upgoing wavefield {P-(xD)}(’) in 
eq. (30) has been replaced by the full upgoing wavefield P- (xD) 
in eq. (54), hence the name generalized primary representation. 

Following a similar argument to that used for the pri- 
mary representation, it can be seen that the generalized pri- 
mary representation (54) accurately describes the seismic 
reflection data after decomposition and surface-related multiple 
elimination. 

Internal multiple scattering is included in the propagators 
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Figure 3. Configuration for the generalized primary representation. 
Wl(x,  xs) and W, (xD, x) are defined in the actual medium between 
x3,0 and x3 and a scatter-free half-space below x3. P-(x,) is the 
response of the actual medium. 

W i  and W; (see also Appendix B). Hence, eq. (54) is implicitly 
non-linear in the scattering operators 8’ and 7’. However, 
eq. (54) has been organized such that it distinguishes clearly 
between generalized propagation (W:) and linear reflection 

We briefly discuss the consequences for 3-D finely layered 
(R+). 

media. 

(1) The main effect of fine-layering on the propagators 
W$ is an angle-dependent dispersion. These dispersion effects 
can be approximately accounted for by parametrizing W$ , 
or by defining W$ in a 3-D extended macro model with 
anisotropic anelastic losses. 

(2) Since eq. (54) in its explicit form is linear in R’, this 
operator can be spatially low-pass-filtered, without changing 
the response P-. The pass band is related to the maximum 
temporal frequency of the seismic source via the minimum 
macro propagation velocity. 

Hence, in W: and in 8’ the fine-layering parameters can be 
‘upscale8 in two independent ways. For a more elaborate 
discussion and the consequences for 3-D reflection imaging, 
see Wapenaar (1996). 

Inverse generalized primary propagator 

Inversion of the propagators W: and W; plays an essential 
role in reflection imaging in finely layered media. A full 
discussion is beyond the scope of this paper. Here we restrict 
ourselves to the derivation of the inverse propagators F: and 
F i  . We consider again two horizontal reference levels Co and 
C,, defined by x3 = x3,0 and x3 = x3,,, > x3,,, respectively. For 
any C, below C,, the inverse propagators F: and Fg ideally 
satisfy the following relations: 

F,’(X‘j X)W: (X, X”) dZXH = I6(Xh - Xk) (55) J’, 
and 

W, (X”, X)F; (X, X’) d2XH = IS(Xh - Xk) (56) h 
for x’ and x” at Zo. Note that 

F i  (x’, X) = (F; (x, x ’ ) } ~  (57) 

on account of eqs (47), (55) and (56). In order to derive explicit 

expressions for the inverse propagators, we apply reciprocity 
theorem (8) to the states in Table 7, with [ = [‘ = x ~ , ~ .  We let 
8.Y- again consist of two horizontal reference levels CL and 
C,, where .EL lies just below Co (it is defined by x3 = x3,0 + E, 

with R a vanishing positive constant). This yields the following 
modified form of eq. (35): 

GH(x> x’lx3,m)JG(x, ~ ” 1 ~ 3 . m )  d 2 x ~  s, 
- s, - GH(X, x’Ix~,,,)JG(x, X”IX3,,,) d2XH (58) 

for x’ and x” at Co (i.e. just outside 8 V ) .  With reference to 
Fig. 4 we write 

for x’ at Co and x at .Em (compare with eq. 36) and 

for x’ at Zo and x at C; (compare with eq. 37). Using these 
expressions in eq. (58) yields 

{W:(x, x‘)lHW:(x, x’’) d 2 x ~  

= IS(xg - XH) - C(X’, X”lX3,m), (61) 
where 

c(x’, X“1X3,,) = {G-*+(x, X’IX3,,)}HG”’(~, X”(x3,,,) d2XH s, 
(62) 

for x’ and x” at C,. In comparison with eq. (38), the correlation 
function C on the right-hand side of eq.(61) is extra. Both 
terms G - ’ +  contributing to this correlation function represent 
scattered waves (see Fig. 4), hence this function is proportional 
to multiply scattered waves and is therefore two orders of 
magnitude lower than the integral on the left-hand side of 
eq. (61). Hence, for a weakly scattering medium this correlation 
function can be ignored, so that, by analogy with eqs (39) and 
(40) we obtain 

F:(x‘,x)= {W:(X,X’)}~, (63) 

F; (x, x‘) = {W; (x’, x ) } ~ .  

and 

(64) 

Figure 4. Schematic representation of the Green’s sub-matrices 
Wi(x, x’) and G-”(x, X ‘ I X ~ , ~ ) .  
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For a finely layered medium, however, this approximation 
breaks down and another approach must be followed (see also 
Wapenaar & Berkhout 1989, Chapters 9 and 10). Substituting 
the left-hand side of eq. (55) for 16(xh - x&) in eq. (61) and 
reordering some terms yields 

Lm F;(x’, x)W,‘ (x, x”) d2x, 

{W,’(X, x’))~W,’(X, x”) d2XH + C(X’, ~“Ixj,,)  (65) 
= h. 

for x’ and X” at C,. Applying the inverse propagator 
F~(x”,x”’), with x”‘ at C,, to the right of each term and 
integrating along x; yields 

F,’(x’, x”’) = {W,’(X”‘, x ’ ) } ~  

+ lzo C(X’, x”~x,,,)F~(x“, x”’) d2X& (66) 

for x‘ at C, and x”’ at C,. This is an integral equation of the 
second kind for F,’. In the following, we replace x”’ by x for 
notational convenience. An iterative solution can thus be 
formulated as 

{F ,~(x ’ ,x ) } ‘~ ’=  { F ~ ( X ’ ,  x)}“’ 

C(x’, x”~x3,,)(F,f(x”, ~ ) ) ( ~ - ‘ ) d ~ x ’ ’  H (67) 
+ Lo 

and 

{F,’(x’, x)}“’= {W,’(X, x’)}” (68) 

for x‘ at Co and x at C,. Hence, the inverse generalized 
primary propagator is given by the matched filter, modified 
by a correction operator containing the correlation function 
C(x’, x”Ix3,,). Note that in practice C can be estimated from 
the spatial cross-correlation of the reflection measurements- 
see eq. (62) and Fig. 4. An expression similar to eq. (67) could 
be formulated for Fg . It is more straightforward, however, to 
relate Fp to F,’ via reciprocity relation (57). 

By applying the inverse propagators F,‘ and Fp to seismic 
reflection data (as represented by eq. 54), one eliminates the 
downward and upward propagation effects, including the 
complicated anisotropic dispersion effects due to fine-layering. 
This forms the nucleus of seismic reflection imaging in 3-D 
finely layered media (see also Wapenaar & Herrmann 1996). 

C O N C L U S I O N S  

Using the results of Paper A, we have derived a general 
representation of the convolution type for one-way wave- 
fields (eq. 17). We have used this to derive, amongst others, 
a primary representation (eq. 30) and a generalized primary 
representation (eq. 54)  of seismic reflection data (after 
surface-related pre-processing). These representations can be 
summarized as 

P-(x,)= s, w-(X,,x)R+(x)W+(x,xs)S,+(xs)d3X, (69) 

where W’ may stand for the primary or for the generalized 
primary propagator. Accordingly, P-  (xD) represents the pri- 

mary upgoing or the full upgoing wavefield at the detector 
location xD. In both cases, the reflection operator R’ is pro- 
portional to the vertical oariations of the medium parameters. 
This makes these one-way representations particularly suited 
for seismic applications, where the vertical variations (due to 
layering) are much more pronounced than the horizontal 
variations. In the generalized primary representation, internal 
multiple scattering is included in the propagators W$. We 
have briefly argued that for 3-D finely layered media the fine- 
layering parameters may be ‘upscaled’ in two independent 
ways in W$ and 8’. 

Due to its simple form, the one-way representation (69) 
is an excellent starting point for the derivation of reflection 
imaging techniques. The nucleus of these techniques is the 
elimination of the one-way (generalized) propagation effects 
described by W +  and W- . To this end we derived inverse 
propagators Ft  and F - .  We showed that for the primary 
representation these propagators are simply defined as the 
complex conjugate transpose of the forward propagators (eqs 
39 and 40). For the generalized primary representation, these 
inverse propagators have been modified (eqs 57 and 67) in 
order to account for the dispersion effects due to fine-layering. 
The required modification can be estimated from the spatial 
cross-correlation of the reflection measurements. 
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APPENDIX A: THE PRIMARY 
PROPAGATOR 

Upon substitution of eq. (23) into (22), using eq. (6), it follows 
that the primary propagator W$ (x, x’) satisfies the following 
one-way wave equation: 

J,w;(x, x’) = TjwA’(x)~:(x, x’), 

w;(x, x’) = 16(XH - xh). 

(A1 1 
where, for x3 = xi, 

(A2) 

Using a Taylor series expansion (see Wapenaar & Berkhout 
1989, Chapter 3) we obtain 

w t  (x, x’) = w$ (x, x;)6(XH - xh), (‘43) 

where 

with 

A’(x)= H , + _ l ( ~ ) A ~ ( x ) ~ ( j w ) - ’ ~ , H ~ ~ , ( ~ )  (A5) 

A$(x)=I. (A61 

for n > 0 and 

According to eq. (A3), the propagator W$(x, x’) may be seen as 
the kernel of an operator W: (x, xi). Note that the propagator 
can be built up recursively, according to 

W; (x, x”) = W$ (x, x’)W$ (x‘, x”) d2&, (‘47) L 
for x 3  3 x; 2 x;. For sufficiently small recursion steps (i.e. for 
sufficiently small Ixj - x i ! )  it is justified to ignore the vertical 
derivative of the medium parameters (bear in mind that we 
are considering flux-normalized primary waves). In that case 
we have H’(x) = {A*(x)}’, and eq. (A4) can be rewritten as 

for x3 2 x i .  We evaluate this result for the special situation of 
an acoustic medium. In this case reduces to the scalar 
operator w-’A?’., , where A?‘l is the square-root operator-see 

Paper A. Hence 

W: (x, xi)  = exp { -j1x3 - X;I 9’1(xH, xi)) , (A9) 

for x j  2 x;. Using the results of Paper A, we can express the 
kernel of J?‘~ in terms of eigenfunctions, according to 

flul(xH> x&;xh)=$I(xH, $3)6(xH-Xh) 

= IR2 4(xH, K)JWM*(XA, K) d2K 

+ c p ( X H ) p p ( x ~ ) ,  (A101 
At udircr 

where the signs of the square roots have been chosen as 

28 2 0 for I >  0 (propagating wave modes), ( A l l )  

&~(k’/’) < 0 for < 0 (evanescent wave modes). (A12) 

Using the orthonormality property of the eigenfunctions, we 
obtain the following expression for the kernel W,’(x, x’) from 
eqs (A9) and (A10): 

w,’(x, x‘) = W:(x, X;)6(XH - xh) 

4(xH, K) exp{ - j l x3  - x;~J’/~(K)}#*(x~, K) d ’ ~  
= s,, 

+ 1 (b(i)(~H) exp { - j \ x 3  - X ~ I I ~ ’ ~ } @ ~ ) ( X ~ ) ,  
udiscr 

(A131 

for x 3 2 x ; ;  see Grimbergen, Wapenaar & Dessing (1996), 
also for numerical examples. Note that, given the signs of A’” 
as defined in eqs ( A l l )  and (A12), both W,’(x,x‘) and 
{V: (x, x’)}* are unconditionally stable. 

APPENDIX B: THE GENERALIZED 
PRIMARY PROPAGATOR 

Using a Bremmer series expansion analogous to eq. (27), we 
can write, instead of eq. (44), 

G(x’, x‘‘I[) = G,(x‘, x”) 
c 

+ J H ( [  - x,)G,(x’, x)&(x)G,(x, x”) d3x 
1 3  

c 

+ J H ( [  - x3)G,(x’, x)&(x) d3x 
1 3  

x jR3 H ( [  - x;”)G,(x, X’”)&(X”~) 

x G,(x”‘, x“) d3x”’ + ... . (B1) 

Eq. (Bl) contains reflection and transmission contributions. 
Here we will analyse eq. ( B l )  for the transmission response 
in a configuration for which the half-space ~ ~ 1 x 3 , ~  is 
homogeneous and isotropic. Moreover, we choose 
x i  = [ > x; = x ~ , ~ .  With these choices, the half-spaces above 
x; as well as below x;  are scatter-free. Upon substitution of 
eqs (6) and (23) into eq. (Bl) we thus obtain the following 
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expression for W l  (x’, x”) as defined in eq. (45): 

w; (x’, x“) = w; (x’, x”) 

W,f(X’, X)T+ (x)W,’(x, x”) d3X 
+ S,. 

s,. 
+ j-& w; (x’, X)f+ (x) d3X 

S,I 

+ W,’(X‘, x)B-(x) d3X 

w, (x, x”’)R + (x’”)w; (x”’, x”) d3X”’ 

W,’(X, xfrf)T+ (X’’’)Wi (x”’, x”) d3x“‘ + ”. , 

where Qtot, 0, and 0, denote 3-D volumes, according to 

Qtot:x E R3)x3,, < x3 < x;, 

Q1:x”’ E IW31x,<x;”<x;, (B3) 

0, : x”’ E IW3 I x3,0 < xy’ < x3 . 

For 1-D finely layered media, eq. (B2) leads in a straightfor- 
ward manner (via a Rytov expansion) to the continuous 
counterpart of the O’Doherty-Anstey expressions for the trans- 
mission response (ODoherty & Anstey 1971). The further 
analysis of eq. (B2) for 3-D finely layered media is the subject 
of current research. 
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