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INTRODUCTION

ABSTRACT

A space—frequency domain 2D depth-migration scheme is generalized for imaging in
the presence of anisotropy. The anisotropy model used is that of a transversely
isotropic (TI) medium with a symmetry axis that can be either vertical or tilted. In the
proposed scheme the anisotropy is described in terms of Thomsen parameters;
however, the scheme can accommodate a wide range of anisotropy rather than only
weak anisotropy. Short spatial convolution operators are used to extrapolate the
wavefields recursively in the space—frequency domain for both qP- and qSV-waves.
The weighted least-squares method for designing isotropic optimum operators is
extended to asymmetric optimum explicit extrapolation operators in the presence of
TI media with a tilted symmetry axis. Additionally, an efficient weighted quadratic-
programming design method is developed. The short spatial length of the derived
operators makes it possible for the proposed scheme to handle lateral inhomogene-
ities. The performance of the operators, designed by combining the weighted least-
squares and weighted quadratic-programming methods, is demonstrated by
migration impulse responses of qP and qSV propagation modes for the weak and
strong TI models with both vertical and tilted symmetry axes. Finally, a table-driven
shot-record depth-migration scheme is proposed, which is illustrated for finite-
difference modelled shot records in TI media.

Cohen 1993) or a complete loss (Martin, Ehinger and

It has been shown by theoretical studies (Levin 1979),
velocity measurements in the laboratory (Thomsen 1986) and
field studies (Crampin, Chesnokov and Hipkin 1984; Ball
1995) that many sedimentary rocks exhibit anisotropy.
Furthermore, these sedimentary rocks can be described, to a
good approximation, as being transversely isotropic (TI) with
a symmetry axis perpendicular to the bedding plane (Byun
1984). Failure to account for anisotropy in migration
algorithms may lead to large positional errors (Larner and
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Rasolofosaon 1992) of steeply dipping structures. Several
authors have recently developed migration algorithms for
anisotropic media. Sena and Tokséz (1993) and Ball (1995)
extended the isotropic Kirchhoff depth-migration scheme to
account for the anisotropy, using anisotropic ray tracing.
Alkhalifah (1995) used a Gaussian beam algorithm for post-
stack migration in 2D anisotropic media. Non-stationary
phase shift and phase-shift-plus-interpolation methods have
also been extended to TI media to accommodate lateral
velocity variations by Ferguson and Margrave (1998) and Le
Rousseau (1997), respectively. Ristow (1999) developed an
implicit 2D depth-migration scheme for transversely isotropic
media with a vertical symmetry axis (VTI) based on

optimizing the coefficients of the finite-difference equations.
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Kitchenside (1993) suggested both implicit and explicit
schemes of space-frequency domain migration for TI
media. However, his explicit scheme uses the truncated
operators that have been proved unstable for short operators
(Nautiyal et al. 1993). Based on the modified Taylor series
method (Hale 1991b) and the non-linear least-squares
method (Holberg 1988) for designing isotropic optimum
explicit extrapolation operators, Uzcategui (1995) presented
explicit extrapolation operators for 2D VTI media and
illustrated these with post-stack migrations.

Seismic wavefield extrapolation by the recursive applica-
tion of an explicit, convolutional operator in the space—
frequency domain has been proved a useful tool for depth
migration in heterogeneous, isotropic media (Holberg 1988;
Blacquiére et al. 1989; Hale 1991b; Nautiyal et al. 1993;
Thorbecke and Rietveld 1994). It may be more attractive for
the anisotropic case because, in this situation, the ray tracing
has become more complicated and time consuming. We
derive stable, explicit, short spatial convolutional operators
for TI media and then propose a 2D table-driven anisotropic
depth-migration scheme of shot records based on explicit
extrapolation operators. Here ‘table-driven’ indicates that
the depth-extrapolation process is performed by obtaining
the space-variant explicit extrapolation operators from a
pre-calculated operator table (Blacquiére et al. 1989).

Similarly to the isotropic case, the basic idea for designing
the optimum explicit extrapolation operators is to find a
short operator in the space—frequency domain such that its
spatial Fourier transform matches the exact phase-shift
extrapolation operator in the propagation region as accu-
rately as possible and its amplitudes in the evanescent region
are less than unity. Since the phase-shift extrapolation
operators are not symmetric in the case of TI media with a
tilted symmetry axis, we need to adapt the isotropic design
method by taking into account both that the phase velocity is
a function of the propagation angle and that the operator is
asymmetric. We design the explicit extrapolation operators
using alternative methods, i.e. weighted least-squares and
weighted quadratic-programming methods. The weighted
least-squares method is an extension of the work of
Thorbecke (1997) for the isotropic case and the weighted
quadratic-programming method is developed by introducing
appropriate linear constraints on the amplitudes in the
weighted least-squares method. In contrast to the non-linear
optimization method (Holberg 1988; Uzcategui 1995), the
weighted quadratic-programming method can obtain a stable
operator at a relatively low computational cost. Here, we use
exact phase-velocity functions expressed in terms of the

Thomsen parameters (Tsvankin 1996). Thus the resulting
scheme can accommodate a wide range of anisotropy rather
than only weak anisotropy (Thomsen 1986). The only
restriction we impose is that we discard those wavenumbers
for which dispersion curves for up- or downgoing waves are
multivalued (this may occur when the symmetry axis is tilted
and the anisotropy is strong). In addition, the exact vertical
wavenumber is obtained from the given values of the
horizontal wavenumber using the analytical solution for-
mulae of the quartic dispersion equations. The performance
of the derived operators is demonstrated by computing
migration impulse responses of qP and qSV propagation
modes for weak and strong TI models with both vertical and
tilted symmetry axes. In order to prevent the occurrence of
‘error compensation’ due to using the same extrapolation tool
in both forward and inverse processes, the proposed shot-
record migration scheme is tested by imaging a synthetic data
set obtained with a finite-difference modelling method
(Zhang and Verschuur 1999).

PHASE-SHIFT EXTRAPOLATION OPERATOR

For TI media with a symmetry axis lying in the vertical plane
and making an angle of ¢ with the vertical direction, the
phase velocities of qP- and qSV-waves can be expressed
exactly in the Thomsen notation (Tsvankin 1996) as

1726, ¢) . f

T 1+ esin®(6 — ¢ =35

o 2esin?(0 — ¢>))2_ 2(e— 8)sin22(0 — )
(122 A )

where f =1 — V%O /VIZ,O. Vpo and Vg are, respectively, the
qP- and gSV-wave velocities in the direction parallel to the
symmetry axis, & and & are the same as those used by
Thomsen (1986) but are defined here in a coordinate system
rotated through an angle ¢. With C; denoting the elastic

modulus matrix of materials, & and & are defined as &=

Cii—Cs; _ (C134C44)*—(C33—Cag)*
2C33 and 6= 2C33(C33—Cyqq)

the strength of anisotropy. The Thomsen parameters reduce

, whose values represent

to zero in the case of isotropy. In (1), the positive sign is
related to the qP-wave.

For plane waves propagating in the vertical (x,z)-plane, the
phase angle 6 is given by
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Rewriting (1) as

2 2 5
T (15 )cint 0 cost 0~ esinio - ¢>} -5

3)

and then substituting (2) into (3) yields a quartic dispersion
equation of TI media (see Appendix), which is valid for
arbitrary strength of the anisotropy and for both vertical and
tilted symmetry axes. In contrast to the approximated
solutions of k,, such as the table-driven interpolation (Le
Rousseau 1997) and the interpolating polynomial (Ferguson
and Margrave 1998), we solve k. analytically from the
quartic dispersion equation (see Appendix). The four roots of
the quartic dispersion equation are related to the down- and
upgoing qP-waves and the down- and upgoing qSV-waves,
respectively. Figure 1 shows a solution of the quartic
dispersion equation for a strong TI medium with a tilted
symmetry axis.

For every combination of w/Vpy, &, 8, Vso/Vpo and ¢,
solving k. with a positive real part (or negative imaginary
part) for given values of k, will provide the exact forward
phase-shift extrapolation operator for downgoing waves as

W (ky, 0/ Vo, &8, Vso/ Vo, §) = exp(—ik.Az). 4

Thus the inverse phase-shift extrapolation (downward
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continuation) operator for upgoing waves can be expressed as

o 1
(ke 0/ Vo, 8,8, Vso/ Vo, b) = —————
(ky, 0/ Vo, & s0/ Vo, b) 7 o)

=W (ke =] = [W (—ky, 0/ Vpo, 2,8 Vso/Veo, D),

)

where the superscript ~ denotes the complex conjugate, and
the superscripts + and — refer to downgoing and upgoing
waves, respectively. Equation (5) is exact for propagating
waves only. Note that in the space domain the relationship
between the forward and inverse operators becomes

F~(x,0/Vpo, &, 8, Vso/Vro, $)

~ [WH(x, 0/ Vro, &8, Vso/Vro, D)1 (6)

OPERATOR DESIGN

Finding a short convolutional operator by matching its
spatial Fourier transform with the exact phase-shift extra-
polation operator over the propagation region will make it
possible to extrapolate wavefields in lateral inhomogeneous
media. Of course, this explicit extrapolation operator also
should decay the evanescent energy. Due to the fact that the
explicit extrapolation operator is used recursively from one
depth level to the next, the stability becomes a crucial
problem in the design of the operator. Strictly speaking, the
stability analysis of the extrapolation operators should be
carried out with a singular-value decomposition when they
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Figure 1 Dispersion relationships of qP- and qSV-waves for a TI medium with a symmetry axis making an angle of 30° with the vertical direction.
The solid lines denote the real part of k, and the dashed lines the imaginary part of k.. The medium has a qP-wave velocity of 2700 m/s and a
qSV-wave velocity of 1500 m/s in the direction parallel to the symmetry axis with the Thomsen parameters £ = 0.2 and § = 0.5. The frequency

is 25 Hz.
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are used in laterally varying media (Etgen 1994). However,
from the point of view of operator design, an efficient way to
achieve stability is to limit all amplitudes of the spatial
Fourier transform of the operator so that they do not exceed
unity, which for practical purposes means that the operator is
stable for recursive applications in laterally homogeneous
media. Fortunately, in most cases, the operator derived in this
way can lead to a stable result when it is applied recursively
in laterally inhomogeneous media (Etgen 1994). In the
following, the discussions on stability refer to that of an
operator used in the laterally homogeneous case, not the
stability of those used in different heterogeneous media.
Holberg (1988) used a non-linear constrained least-squares
optimization method to derive an accurate stable explicit
extrapolation operator. Hale (1991b) proposed a modified
Taylor series method to guarantee that the operator would be
stable. Nautiyal ef al. (1993) designed an explicit extrapola-
tion operator by windowing with a taper function. The
methods of Hale (1991b) and Nautiyal et al. (1993) are both
more efficient but less accurate than Holbergs (1988)
method. Based on finding suitable weighting factors for
components inside and outside the propagation region, the
weighted least-squares method (Thorbecke and Rietveld
1994; Thorbecke 1997), although without constraints on
the amplitudes, can obtain a stable explicit extrapolation
operator at a very low computational cost. Due to oscillation,
phase and amplitude errors partly compensate each other in
waves propagating through inhomogeneous media, and thus
in practice the weighted least-squares method has high
accuracy.

Here we first extend the weighted least-squares method to
TI media and then we propose a weighted quadratic-
programming method. The latter is derived by introducing
linear constraints on the amplitudes, instead of quadratic
ones, in the weighted least-squares method. The linear
constraints on the amplitudes used here transform the
original non-linear optimization problem of operator
design (Holberg 1988; Uzcategui 1995) into a quadratic-
programming problem. Quadratic programming has been
comprehensively studied (Fletcher 1981), and the computa-
tional cost of carrying out quadratic programming is much
lower than that of non-linear optimization. This can be
verified from the fact that one of the current algorithms for
performing non-linear optimization transforms the non-
linear optimization problem into a series of quadratic-
programming problems which can be solved by many
available algorithms (Fletcher 1981). Thus the weighted
quadratic-programming method can derive a stable operator

at a relatively low computational cost in contrast to the non-

linear optimization methods.

Weighted least-squares method

If the complex vector y denotes the desired short convolu-
tional operator, the discretized values of its spatial Fourier
transform can be expressed as § = I'y. Here the elements I',,,,,

of the matrix I'" are defined as

Ly =exp(mAkunAx), n=—-N,--- N, m=—-M, - M,

where (2N + 1)Ax is the length of the operator, and MAk, is
the maximum horizontal wavenumber. Defining the sum-of-

squares error as
e= T - §HATY - 3.), (7)

where the superscript H denotes transposition and complex
conjugation, we can transform the design of the optimum
operator into an unconstrained optimization problem, i.e.
minimizing e. Here the complex vector y. contains the
discretized values of the exact phase-shift extrapolation
operator for ky = —MAky, ---, MAk,, and the weight matrix
A is a real diagonal matrix, whose elements are determined
from a weighting function described by the required range of
angles of propagation and the weighting factor (Thorbecke
1997). Thus, from (7), we can solve the explicit extrapolation

operator as
y = [TMAT] 'THAy. ®)

Normally, a simple box function with a weight of 1.0 inside
the required range of angles of propagation and a small value
(e.g. 107%) outside this band will be helpful in deriving a
stable operator. Figure 2 shows a wavenumber spectrum for
the 39-point explicit extrapolation operator (i.e. N = 19).
Although some of these amplitudes are greater than unity,
they do not exceed 1.001, which guarantees that application
of this operator for 400 steps of extrapolation in a
homogeneous medium will magnify amplitudes by no more
than 1.5.

Weighted quadratic-programming method

The asymmetry of the phase-shift extrapolation operator for
TI media makes the design of the operators more compli-
cated. Sometimes it is difficult for the weighted least-squares
method to derive an operator having amplitudes less than a
given maximum value, such as 1.001, especially in the high-

frequency case. Therefore we have to introduce constraints
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Figure 2 Wavenumber spectrum for a 39-point explicit extrapolation
operator designed by the weighted least-squares method (solid lines).
The required range of angles of propagation is —90° to 90°. (a) shows
a detailed view of the propagation region. The dotted lines are related
to the spectrum of the exact phase-shift extrapolation operator. The
normalized frequency is 0.24 cycles. The operator corresponds to a
TI medium with a tilted symmetry axis.

on the amplitudes in the weighted least-squares method.
Conventionally, the constraints can be formulated as

\/ az(kx) + bz(kx) < g, kmin = kx = kmax: (9)
\/@2(ky) 4+ B (ky) < 1.0, Ry < Bmin  and By > kmax,  (10)

where g is the assigned maximum value of the amplitudes,
kmax and ki, are, respectively, the maximum and minimum
horizontal wavenumbers inside the required range of angles
of propagation, a(k,) and b(k,) are, respectively, the real and
imaginary parts of the spatial Fourier transform of the desired
short operator at k, = mAk,, and we have

a(WlAkx) + lb(MAkx) = {Fm(—N)7 Y Fm07 Y F;nz\’}Y'

Note that only constraints outside the required range of
angles of propagation (similar to (10)) are introduced by
Holberg (1988) and Uzcategui (1995).

Unfortunately, the non-linear constraints of (9) and (10)
will transform the design of the optimum operator into a
non-linear constrained optimization problem. This leads
to a high computational cost (Thorbecke 1997). Since the
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sum-of-squares error given by (7) is a quadratic function of
the vector y, a more efficient algorithm based on quadratic
programming may be obtained if the constraints of (9) and
(10) can be transformed into linear constraints on the vector
y. To achieve this, we make a distinction between the
constraints inside and outside the required range of angles of
propagation.

First the constraint of (9) is considered. It is known that the
spatial Fourier transform of the desired short operator
approaches the exact phase-shift extrapolation operator
inside the required range of angles of propagation (a basic
requirement for the design of the optimum operator), and
we thus can approximate the constraints using the first-
order Taylor series inside the required range of angles of

propagation as follows:

V) + 02k = \[7k) + (k)
\/ T (x) + 75 (k)

b IR gy~ 5 k)

\/Fa (k) + 52 (Ry)

= &er(kx)a(kx) + &ei(kx)b(kx% (1 1)

+ (a(kx) - jer(kx))

where j..(k;) and 9¥,(k,) are, respectively, the real and
imaginary parts of the exact phase-shift operator at %, =
mAk,.

Next, the second constraint of (10) is adapted. It can be
seen that the highest possibility of the amplitudes of the
spatial Fourier transform of the desired short operator
exceeding unity outside the required range of angles of
propagation occurs when its real part is greater than a
positive value or its imaginary part is less than a negative
value. Since the only reason for setting the constraints outside
the required range of angles of propagation is to ensure that
the amplitudes are less than 1.0, i.e. to decay the high-dip
angle and evanescent energies, we can substitute the
constraints of (10) and obtain

a(mAky) < Asexp(—a(mAky, — ke)?), (12)
and
b(mAky) > —B+/1.0 — a?(mAk,)

= —B\/l.O — A% exp(—2a(mAk, — ky)?), (13)

where k.. is equivalent to either ki, (when mAk, < kpi,) or
kmax (When mAk, > knay), Ao = Jo(ky), @ is a parameter
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selected according to the decay requirement for the ampli-
tudes, and B is a parameter that is selected in the range 0.7 <
B=1.0.

Using (11), (12) and (13), we can transform the non-linear
constraints on the amplitudes into a linear one, expressed in
matrix form as Py < q, for m = —M, ---, M. Thus the design
of the optimum operator is reformulated, as minimizing the

error function e, given by

e= T — §HATY - 3o, (14)
subject to the linear constraints

Py <q. (15)

The quadratic programming of (14) and (15) can be solved
efficiently with many available algorithms (Fletcher 1981).
The behaviour of the weighted quadratic-programming
method is illustrated in Fig. 3, where the same weighting
functions are used for both the weighted quadratic-program-
ming and the weighted least-squares methods. It can be seen
that the amplitudes of the operator derived by the weighted
least-squares method (i.e. the dashed line) exceed 1.0025.
This will magnify amplitudes by more than 2.7 when this
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Figure 3 Comparison of the wavenumber spectra for 39-point explicit
extrapolation operators designed by the weighted least-squares
method (dashed line) and weighted quadratic-programming method
(solid line). (a) shows a detailed view of the propagation region. The
dotted line is related to the spectrum of the exact phase-shift
extrapolation operator. The required range of angles of propagation
is —90° to 90°. The normalized frequency is 0.43 cycles.

operator is applied for 400 steps of extrapolation in a
homogeneous medium. On the other hand, the amplitudes
of the operator derived using the weighted quadratic-
programming method are still less than 1.001. This is why
it is sometimes necessary to use the weighted quadratic-
programming method to design operators. For the results
shown in Fig. 3, the computational cost of the weighted
quadratic-programming method is about eight times that of
the weighted least-squares method. It should also be
mentioned that, in the isotropic case, the computational
cost of the non-linear optimization method is over 500 times
that of the weighted least-squares method (Thorbecke 1997).

Here, the operators are designed by combining the
weighted least-squares and weighted quadratic-programming
methods, i.e. the operator is derived by first applying the
weighted least-squares method and then the weighted
quadratic-programming method, if the former fails to give
amplitudes of less than a given value.

MIGRATION IMPULSE RESPONSE

The performance of the derived explicit extrapolation
operators can best be exemplified through a study of
migration impulse responses. The space—frequency domain
post-stack depth-migration scheme for isotropic media
(Berkhout 1982) was used here. The wavefield downward-
continuation is performed in the space—frequency domain by
a space-variant convolution of the data performed recursively
using the operator designed for qP or qSV propagation modes
as discussed in the previous section. Existing laboratory and
field data indicate that the horizontal velocity of the qP-wave
is usually larger than the vertical velocity, i.e. the parameter &
is predominantly positive (Thomsen 1986). Also, most
measurements made for transversely isotropic formations at
seismic frequencies indicate that &> 6 (Thomsen 1986;
Sayers 1994; Tsvankin and Thomsen 1994). Hence, we take
£=0.2 and §=0.1 as an example of weak anisotropy and
e=0.4 and 6=0.2 as an example of strong anisotropy.
Figure 4 illustrates impulse responses of qP and qSV
propagation modes in a VTI medium for both weak and
strong anisotropy cases, where a 39-point explicit extrapola-
tion operator (i.e. N = 19) designed for angles of propaga-
tion of —90° to 90° is used for inverse extrapolation of the qP
or qSV wavefield. Figure 5 shows impulse responses of qP
and qSV propagation modes in the same TI model as used in
Fig. 4, except that the symmetry axis makes an angle of 30°
with the vertical direction. Unlike the situation in Fig. 4, for
which we used a symmetric operator, an asymmetric 39-point
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Figure 4 Migration impulse responses using symmetric 39-point explicit extrapolation operators for qP and qSV modes in a VIT medium with Vpy = 2000 m/s and Vg9 = 1500 m/s.
(a) and (b) are impulse responses of the qP propagation mode, (c) and (d) of the gSV mode. The Thomsen parameters are ¢ = 0.2 and § = 0.1 for (a) and (c) and e= 0.4 and § = 0.2
for (b) and (d).
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Figure 5 Migration impulse responses in a TI medium with a tilted symmetry axis. All parameters are the same as those in Fig. 4, except that the symmetry axis makes an angle of 30°
with the vertical direction. Asymmetric 39-point explicit extrapolation operators are used in the migrations. (a) and (b) are impulse responses of the qP propagation mode, (c) and (d)
of the SV mode. The Thomsen parameters are £ = 0.2 and § = 0.1 for (a) and (c) and € = 0.4 and § = 0.2 for (b) and (d).
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explicit operator designed for angles of propagation of —90°
to 90° is now used for inverse extrapolation of the wavefield.
The same zero-offset section, which contains three spatial
impulses at x =0 at regular time intervals, is used in all
computations. Here we define the normalized frequency as
f =fAx/Vpg for the gP mode and f = fAx/ Vs for the qSV
mode. In these tests, the normalized frequency of the impulse
function varies from 0 to 0.5 cycles (note that the maximum
normalized frequency is 0.3 cycles in Uzcategui (1995)), and
200 recursive applications of the explicit extrapolation
operator from one depth to the next, with depth steps of
13 m for the gP mode and 9.8 m for the qSV mode, are
carried out. Figures 4 and 5 show that the amplitudes over a
wide range of angles of propagation (approximately 80°) are
well preserved. The good imaging quality in Figs 4 and §
demonstrates the effectiveness of the design method proposed
here. Although the same design methods are used, by
comparing Fig. 4 with Fig. 5 it can be seen that the artefacts
of the asymmetric operator are stronger than those of the
symmetric one. This observation illustrates the difficulty in
extending the isotropic design method to TI media.

DEPTH MIGRATION OF SHOT RECORDS

A shot record is an actual recording of a physical experiment.
Since some conventional processing methods, such as normal
moveout (NMO) and dip moveout (DMO), become more
complicated and time consuming in the presence of aniso-
tropy, it will be useful to perform a depth migration of
individual shot records followed by common-depth-point
stacking (Berkhout 1982) in anisotropic media. In our case
the explicit extrapolation operators are calculated in advance
and stored in a table. This table-driven extrapolation scheme
is also suitable for shot-record migration because we can use
the same table for wavefield extrapolation of individual shot
records.

Here, the qP mode extrapolation operator table is built
using the following steps: first sort a few groups of typical &,
8, Vso/Vpo and ¢ values from the known macro velocity
model and define each group as a medium type; then assign
a heterogeneous medium to each type and determine
the maximum and minimum qP-wave velocities from the
medium related to that type; finally, for each type calculate
the optimum explicit extrapolation operators for each value
of f/Vpo varying from fyin/(Vr0)max 0 fimax/(VP0)min in a
given interval based on the parameters, €, 8, Vso/Vpo and ¢,
corresponding to this type and store them in the table. The
isotropic medium is classified as a special type. The effect of

Depth migration of shot records 295

the parameter Vso/Vpp on the operators is determined by the
strength of anisotropy. For weak anisotropy, we can neglect
the differences in Vgg/Vpo in classifying the medium type. A
different medium at a different frequency can use the same
operator only if they belong to the same type and their f/Vpo
values are equal. During the depth-extrapolation process, the
heterogeneous velocity model can be handled using space-
variant operators obtained by picking two neighbouring
operators according to the type of the local medium and the
value of f/Vpo and then carrying out a linear interpolation.

The same space—frequency domain shot-record migration
scheme as in the isotropic case (Berkhout 1982) was used
here, except that the forward and inverse extrapolations of
wavefields are performed using the table-driven depth-
extrapolation scheme described above. With Y +iY;
denoting the forward extrapolation operator in the space—
frequency domain, from (6) we know that the inverse
extrapolation operator can be given by Y; —iY,. Hence
only the forward extrapolator operator table need be
calculated and stored, even for TI media with a tilted
symmetry axis. Here a synthetic example is used to illustrate
the shot-record migration scheme. The subsurface velocity
model is shown in Fig. 6, where the second (anisotropic) layer
is a VIT medium with Vpy =2000m/s, Vso = 50m/s, e =
0.2 and 8 = 0.1. The synthetic data set is generated using a
finite-difference-based scheme of the two-way elastic wave
equation (Zhang and Verschuur 1999), thus ‘error compen-
sations’ due to using the same extrapolation tool in both
forward and inverse processes are avoided. In order to
produce an acoustic data set, we set the Vg or Vs of all media
at zero in the numerical modelling. Two typical shot gathers
are shown in Figs 7(a) and 8(a). The migration results of these
shot records are shown in Figs 7(b) and 8(b). In contrast, the
migration results of the corresponding shot records obtained
using the velocity model neglecting the anisotropy, i.e.
extrapolating wavefields using isotropic extrapolation opera-
tors of Vp = Vpy, are shown in Figs 7(c) and 8(c). The
common-depth-point stacked sections of 17 migrated shot

records with a shot interval of 160 m and 35 migrated shot

Distance (m)
-1_’?00—1250-10(:”] -¥50 -500 -250 O 250 500 750 1000 1250 1500

W =1500mis
VTV, =2000m/s e=0.2 5=0.1
i R R .

Depth (m)

Figure 6 Subsurface velocity model with an anisotropic layer.
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1000-

Figure 7 One shot-record result for the source positioned at x = 0. (a)
is the shot gather obtained by the finite-difference method; (b) is the
depth-migration result of this shot record using the exact velocity
model; (c) is the depth-migration result using the same velocity model
but neglecting the anisotropy. The backgrounds in (b) and (c) are the
velocity models used.

records with a shot interval of 80 m are shown in Figs 9(a)
and (b), respectively. Also, a stacked section of the isotropic
migration results, such as Figs 7(c) and 8(c), is shown in
Fig. 10. It can be seen by comparing Figs 7(b) and 8(b) with
Figs 7(c) and 8(c) that the steep structure is in the wrong
position and the third flat reflector has become curved, due to
neglecting anisotropy. This leads to the structures underneath
the anisotropic layer becoming ambiguous in the stacked
section, as observed by comparing Fig. 9(b) with Fig. 10. In
Figs 7, 8, 9 and 10, the velocity model is overlain by the
migrated sections. It can be seen that the peaks of the wave

Distance (m})
<2000 -1500 -1000 -500 1] 500 1000

1500 2000

Distance (m)
-1000 -750 -EJPD -250 L] 250 500 750 1000

Distance (m)
-1000 -750 -500 -250 O 250 500 750 1000

Figure 8 One shot-record result for the shot positioned at x = 320 m.
(a) is the shot gather obtained by the finite-difference method; (b) is
the depth-migration result of this shot record using the exact velocity
model; (c) is the depth-migration result using the same velocity model
but neglecting the anisotropy. The backgrounds in (b) and (c) are the
velocity models used.

curves lie exactly on the interfaces when the correct velocity
model is used. These observations verify that the proposed
table-driven depth-extrapolation scheme for heterogeneous
TI media is accurate. In all the above examples, 39-point
extrapolation operators (i.e. N = 19) designed for angles of
propagation of —85° to 85° are used.

CONCLUSIONS

Seismic wavefield depth extrapolation using the recursive
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Figure 9 Prestack depth-migration result obtained using symmetric
39-point explicit extrapolation operators. The correct anisotropic
velocity model is used in both examples. (a) shows the result using 17
shot records with a shot interval of 160 m; (b) shows the result for 35
shot records with a shot interval of 80 m. The background in (a) and
(b) is the velocity model of Fig. 6 that is used in migrations.

application of spatial convolution operators has been
extended to anisotropic media. The operator coefficients
are pre-computed and made accessible in a table so that the
local medium parameters and the temporal frequency are
used to determine the space-variant operator at each
gridpoint during the depth-extrapolation process. This
table-driven depth-extrapolation scheme is especially suitable
for imaging heterogeneous anisotropic media, because the
added computational cost is related only to the calculation of
the operator table. Moreover, the computational cost of
deriving the operators for VIT media is almost the same as in
the isotropic case. The methods for designing the isotropic
explicit operators can be extended to anisotropic media, by
bearing in mind that the desired short operator and its spatial
Fourier transform are asymmetric in the presence of TI media

with a tilted symmetry axis.

Distance (m)
-1500-1250-1000 750 -500 250 O 250 500 750 1000 1250 1500

I,1_|nmmmm]])m]]ummmmtmu_,

Figure 10 Effect of neglecting the anisotropy in migration. The image
is the prestack depth-migration result of 35 shot records, as in
Fig. 9(b), except that a velocity model neglecting anisotropy is used in
the migration. Note the poor representation of the synclinal
boundary and the artefacts in the third reflector.
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Two design methods, weighted least squares and weighted
quadratic programming, have been presented. They can
design a stable explicit extrapolation operator for a low
computational cost. The migration impulse responses show
that the derived 39-point operators are capable of propagat-
ing waves at angles of up to 80°. Also, the artefacts produced
by the 39-point operator are small. The proposed design
methods are independent of the phase-shift extrapolation
operator. Thus they can be used to derive the explicit
extrapolation operators of arbitrary anisotropic media,
including the operators for isotropic media.

All types of processing methods based on wave equations,
such as post-stack depth migration and depth migration of
shot records, can easily be extended to the anisotropic
situation by using the table-driven depth-extrapolation
scheme. The space-frequency domain depth migration of
shot records is performed and is strongly recommended for
imaging anisotropic structures. The numerical examples
demonstrate that the proposed shot-record migration scheme
can obtain an accurate subsurface structure with a sparse
distribution of shot records. The examples illustrate that the
structures underneath the anisotropic layer may be ambig-
uous when the anisotropy is neglected in the macro velocity
model.

For VTI media, the 2D scheme presented here can readily
be extended to accommodate full 3D processing by using
McClellan transformations following Hale (1991a). For 3D
depth migration in the case of TI media with an arbitrary
tilted symmetry axis, we need to extend the proposed
operator design method to 2D and then design asymmetric
2D explicit convolutional operators based on the 3D
dispersion equation of TI media.
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APPENDIX A

Quartic dispersion equation and its solutions
The quartic dispersion equation of TI media is expressed as
K+ a3k} + axk? + arks +ag = 0, (A1)

where

az = [f(e — 8)sindd +2&(1 — f)sin 2k, /a4

as=f—1+2e(f - 1)sin2¢f§<a* 9)sin’ 2¢

a
PO

2
bok? + <Vi) Q2+ 2esin® ¢ — f)} Jas

by = f(e— 8)sin®2¢ — 2(1 — f)(1 + &) — 2f(e — ) cos® 2¢

/as

ai

2
{blki ~ 2esin 2¢><VL> k
PO

b1 =2&(1 — f)sin2¢ — f(e — d)sin4d¢p

ay = b()/a4

2 4
_ 202\ 2 (2
by =2+ 2ecos” ¢ f)(VPO) k (Vpo)
- [(1 — A+ 2&cos® $) +]%(s — 8)sin? z¢] R

The analytical solutions of (A1) can be obtained by
decomposing the quartic equation into two quadratic

equations (Abramowitz and Stegun 1970):

B+ (a3/2+ \/a§/4+R—a2)kz+R/2

+ /R4 —ay =0, (A2)
K+ (a3/2 —\/&/4+R— az)kz—l—R/Z
TR 4 —ag=0, (A3)
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where R is a real root of the cubic equation, 1 5 1, ) 1
r=—--a +5a] +5a0a3 — 5@ — —-a1a24a;3.
N ., 27T T NG Ty 6
R’ — & R" + (a1a3 — 4a9)R — (a7 + apaz — 4apay) = 0,
Then
(A4)
a
and should give real coefficients in the quadratic equations Ri = (s1+9) +?7 (A6)
(A2) and (A3) and satisfy
Rim—taamr 2B (A7)
a3R/2 = a1 % /(@ /4 + R — ax)(R/4 — ap) = 0. (As) 2T Tgurmsma T
Th : : 1 @ i3
e three roots of (A4) are given as follows (Abramowitz Ri=——(s1+5)+———(s51 — 52). (A8)
2 3 2
and Stegun 1970):
Let When the negative sign makes (AS) valid, the signs in (A2)
and (A3) should be, respectively, + and —, otherwise the
s1=[r+( + rz)%]%7 H=[r—(+ rz)%]%7 signs should be — and +. Thus, the four roots of (A2) and
where (A3) are exactly the roots of the quartic equation (A1). The
four roots of the quartic dispersion equation are related to the
1, 4 down- and upgoing qP-waves and the down- and upgoing
1=3ms = g®H 390 qSV-waves, respectively.
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