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ABSTRACT

Wavefield depth extrapolation and prestack depth migration in complex anelastic
media are studied. Kjartansson’s frequency-independent Q law is used to describe
the absorption of seismic energy. The macromodel used is analogous to the
macromodel used for current migration schemes except that an additional fre-
quency-independent Q macromodel needs to be provided. Absorption in the forward
one-way propagator is introduced by assuming a complex phase velocity, and the
inverse one-way propagator is obtained using the reciprocity theorem for one-way
wavefields in dissipative media. The stability of the inverse propagator is achieved by
limiting the angle of propagation of wavefields. A table-driven explicit operator
scheme for imaging complex 2D anelastic media is presented. High-accuracy, short
convolution operators are designed by the weighted least-squares method, and two
kinds of imaging conditions are proposed. Numerical examples of depth extrapo-
lation in laterally varying media, the migration of a spatial impulse with dispersion
as well as shot record depth migration demonstrate the potential of the proposed
explicit forward operator, the explicit inverse operator and the prestack depth

migration scheme, respectively.

INTRODUCTION

Anelasticity of a medium will cause dissipation of seismic
energy, thus decreasing the amplitude and modifying the
phase. This attenuation and dispersion of the seismic wave
requires suitable treatment for imaging the reflectivity of the
subsurface with better resolution. The first attempts to treat
dissipation were directed towards the elimination of its
effects from the measured data by so-called inverse Q-filters
(Robinson 1979). Since the effects of dissipation increase
with the length of the wave path, the filters are time variant.
Rather than compensating for the effects of absorption in a
separate preprocessing step, it is more accurate and efficient
to do this during the imaging itself. This approach was
followed by Mittet, Sollie and Hokstad (1995) for explicit
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prestack migration and by Causse and Ursin (2000) for re-
verse-time migration. Moreover, the absorption effects have
been incorporated into seismic wave modelling (Emmerich
and Korn 1987; Carcione, Kosloff and Kosloff 1988; Stekl
and Pratt 1998) and inversion (Keers, Vasco and Johnson
2001).

In seismic migration, images of the subsurface are com-
monly obtained by eliminating the propagation effects from
the seismic measurements. For anelastic media, the attenu-
ation and dispersion of the seismic wave due to intrinsic
absorption should be included in this elimination of propaga-
tion effects. Hence, for prestack depth migration in anelastic
media it is necessary to develop a forward wavefield depth
extrapolation scheme that can model the attenuation and
dispersion and an inverse extrapolation scheme that can com-
pensate this attenuation and dispersion. Since the anelastic
stress—strain relationship involves time integration in the
wave equation in the time domain, frequency-domain algo-

rithms, which can incorporate arbitrary absorption laws, are a
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good alternative to reverse-time extrapolation and other time-
domain migration schemes. For the frequency-domain algo-
rithms, the absorption in the forward one-way propagator in
inhomogeneous media may be introduced by allowing for a
complex phase velocity, and the inverse one-way propagator is
obtained using the reciprocity theorem for one-way wavefields
in inhomogeneous dissipative media (Wapenaar, Dillen and
Fokkema 2001). Stability is achieved by suppressing a part
of the eigenvalue spectrum of the square-root operator for the
adjoint version of the dissipative medium, which means that
we have to limit the angle of propagation of the wavefields.
The explicit extrapolation operator has proved its effective-
ness in imaging steeply dipping reflectors in the presence of
lateral velocity variations for lossless media (Holberg 1988;
Hale 1991; Zhang, Verschuur and Wapenaar 2001). This
space—frequency domain scheme also provides a good ap-
proximation for constructing the one-way forward and in-
verse propagators in an inhomogeneous dissipative medium.
The maximum angle of propagation can be controlled in the
design of the spatial convolution operators for the explicit
operator scheme. Thus it becomes efficient to suppress a part
of the eigenvalue spectrum of the corresponding square-root
operator numerically with this scheme. Furthermore, the ex-
plicit scheme requires the absorption effects to be included
only in the design of the convolution operators so that the
resulting operator can easily be incorporated in existing mi-
gration schemes. Hence, we adapt the explicit extrapolation
operator scheme to accommodate absorption for performing
forward and inverse wavefield extrapolation in anelastic in-
homogeneous media and imaging complex anelastic struc-
tures. Here, the short spatial convolution operators are
designed by adapting the weighted least-squares method
(Thorbecke and Rietveld 1994), which can derive a highly
accurate short operator at a very low computational cost.
The proposed explicit operator scheme can be applied in
general and can accommodate any frequency-dependent or
frequency-independent absorption laws. However, from the
point of view of seismic exploration, it is more practical
to obtain a macromodel that is described by a real phase
velocity, as in lossless media, and an additional frequency-
independent quality factor Q. We use Kjartansson’s (1979)
frequency-independent Q law in our wavefield extrapolation
and prestack depth migration scheme. Thus the macromodel
we use is more realistic and is closely related to the macro-
model used for current migration schemes, except that an
additional O macromodel must be provided. The Q macro-
model may be estimated, e.g. from VSP data as suggested
by Amundsen and Mittet (1994). The proposed scheme is

implemented by first precalculating an operator table using
real phase velocities at a chosen reference frequency and
quality factor Q, and then selecting the appropriate convolu-
tion operators according to the macromodel during the depth
extrapolation.

A synthetic seismic experiment is designed to test the pro-
posed prestack migration scheme. The data set is generated
by a frequency-domain finite-difference method. The accur-
acy of the proposed explicit depth extrapolation scheme is
demonstrated by comparing the results of the explicit depth
extrapolation with modelled seismograms using the fre-
quency-domain finite-difference method in laterally varying
viscoacoustic media. The performance of the derived short
convolution operators for anelastic media is illustrated by
computing migration impulse responses of a Ricker wavelet
with dispersion. The comparison of the impulse responses
with and without compensation for absorption also demon-
strates the satisfactory compensation for dispersion by the

proposed explicit scheme.

FREQUENCY-INDEPENDENT QO LAW

In the frequency domain, it is common to account for ab-
sorption by assuming a complex, frequency-dependent bulk
modulus M(w), and then the quality factor Q is defined as

O(w) = ReM(w)/ImM(w). (1)

The real and imaginary parts of M(w) must obey a Kramers—
Kronig relationship (Aki and Richards 1980). In seismic
applications, Q is often assumed to be either frequency-
independent or only slowly varying with frequency. However,
from a practical point of view of the estimation of a macro-
model for seismic migration, the choice of a frequency-
independent Q is very effective. For a frequency-independent
Q, the bulk modulus is given by (Kjartansson 1979)

M() = [M(0,)|(jo /)@@ n0 2)

where w, is an arbitrarily chosen reference (angular) fre-
quency and j is the imaginary unit. For a homogeneous
attenuating plane wave, based on the viscoacoustic wave
equation, the real phase velocity can be expressed as (Aki
and Richard 1980, equation (5.96))

_ (ReM\'*( 2(1+ 072 12
CO(w)_( p) <1Jm/1+Q2 ' )

From (2) and (3), the complex phase velocity is obtained as
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(@) 2< + 1+Q2>Co(wr)(1w/wr) (4)
Thus we can use Q and the real phase velocity at a reference
frequency to determine uniquely the frequency-dependent
complex phase velocities. By contrast, a standard linear

solid theory that has a strongly frequency-dependent O was
used by Mittet et al. (1995).

FORWARD AND INVERSE ONE-WAY
WAVEFIELD PROPAGATORS

In the space—frequency domain (x,w), the viscoacoustic wave
equation in an inhomogeneous dissipative medium, in the
absence of sources, can be expressed for the pressure P(x,m)

as follows:

w?

pV - (%VP) *omaP =0 (5)

where ¢(x,w) is the complex phase velocity, p(x) is the dens-
ity, and x=(x,y,z) is the Cartesian coordinate vector; the
z-axis points vertically downwards. We divide the inhomo-
geneous medium into thin horizontal layers according to the
vertical variation of the medium parameters, and we assume
that the medium parameters are independent of z in each thin
layer. Next we discuss one-way wavefield propagators for a
vertically invariant layer with its upper horizontal surface
defined as X at z=2zo and its lower horizontal surface de-
fined as X; at z=gz;. Following Wapenaar and Berkhout
(1989), we can derive the one-way wave equation from (5)

in this vertically invariant layer as
(:)zPi(X,(,L)) = q:]I:Il Pi(xv w)’ (6)

where P*(x,w) and P™(x,w) are the one-way wavefields that
propagate in the positive and negative z-directions, respect-
ively, and H; is the so-called square-root operator. The
square-root operator is related to the Helmholtz operator
H,, as follows:

H, = HiH;. )

In a 2D configuration, the velocity and density in the thin
layer are now given by c¢=c(x,w) and p = p(x) and the Car-
tesian coordinate vector reduces tox = (x,z). The Helmholtz
operator may then be written as

2 o 3(836,0)2 aip

_ %P | 2
2T 2(x0) 4p? + 2p + 0 (8)

Here, we use the one-way reciprocity theorem to derive the
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inverse wavefield propagator. For this purpose, it is useful
to introduce an adjoint (effective) version of the dissipative
medium. The bulk modulus for the effective medium is
defined as

M/(x7w) = {M(wi)}*? (9)

where the superscript * denotes the complex conjugate. Ef-
fective media are usually associated with a computational
state. When the medium in one state is the adjoint effective
version of the dissipative medium in the other state, the
correlation type reciprocity theorem for one-way wavefields
in dissipative media can be reduced to (Wapenaar et al. 2001)

LD ((PL)'P; — (Py)' Py Judx
- JD ((PL)'SE — (PR)'Sy + (S3)'Pf — (S3)" Py dx,  (10)

where 0D =XyUZX, is the surface enclosing the domain D
occupied by the thin layer, 7, is the component in the
z-direction of the outward pointing normal vector to 9D
with n,=—1 for z=zg and n,=+1 for 2=z, and Si and
SE are, respectively, one-way sources for the two states. The
subscripts B and A refer to the actual dissipative medium and
the adjoint (effective) version of the dissipative medium,
respectively.

Consider sources S§ =d(x—x), Sy =0, S =d(x—x")
and S5 = 0 for the two states, respectively. If we choose x’
and x” such that both are outside D, (10) can be rewritten as

| (@rps - o pyyax

= | eprpg - ey pya (1)
0

Let x' and x” be positioned at the horizontal surface g,

where ¥ lies just above Zg (it is defined by z; =z0 — ¢,
where ¢ is a vanishing positive constant). We then have

Pr(x,x)=d6(x—-%x), Pyxx)=0,
f( //) ( //) f(x X//) X C X, (123)
Pi(x,x") =0(x—x"), Pp(x,x")=0,

Pt N =W, ! Py =0

A(X7XN) lA(X?XH)7 f(x’ X// ’ XC El’ (12b)
Pg(x7x):\x/§(x7x), Py (x,x") =0,

where W} (x,x') and W} (x,x") denote the forward propaga-
tors for downgoing waves, i.e. the Green’s functions of the
one-way wave equation (6) for the two states. Substituting
(12) into (11) leads to

L {Wi(x,x)} Wy (x,x")dx = 6(x' — x"). (13)
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From (13), the inverse propagator Fj (x',x) for downgoing
waves in the dissipative medium (state B) can be expressed as

Fi (¥, x) = {W (x,x)}", (14)

where W} (x,x) is the forward propagator in the adjoint

(effective) medium. From reciprocity we also have

Fg(x’,x) = Fg()gx/), WX(X,X/) = \X/g(x/,x)7 (15)

and thus the inverse (downward continuation) propagator
for upgoing waves is obtained as

Fy (x,x) = { W, (x',x)}". (16)

Equations (14) and (16) show that the inverse propagators in
a dissipative medium are expressed as the complex conjugate
of the forward propagators in the adjoint (effective) medium.
For prestack migration in a dissipative medium, downward
extrapolation of the upgoing receiver wavefield should be
performed with the inverse propagator Fj (x,x’) for the dis-
sipative medium. Downward extrapolation of the downgoing
source wavefield could be performed either with the forward
propagator W3 (x,x') in the dissipative medium or with
W3 (x,x') in the effective medium, depending on the choice
of imaging condition, see (19) and (20) below.

For lossless, laterally varying media, Grimbergen, Dessing
and Wapenaar (1998) constructed expressions for W7 in
terms of eigenvalues and eigenfunctions of the self-adjoint
Helmholtz operator. For arbitrary laterally varying layers,
these eigenvalues and eigenfunctions were obtained numeric-
ally. A similar approach could be followed for dissipative
laterally varying media. However, because the theory for
operators that are not self-adjoint has many pitfalls and
because the numerical solution of eigenvalues and eigenfunc-
tions is expensive, we introduce instead an approximate
solution in the next section. We conclude this section by
considering the special case of a dissipative laterally invariant
medium. For this situation we can solve the forward prop-
agators for the two states from (6) for @ >0 as

Wy (x,21;%",20)

- jexpukxx) exp{—j(z1 — 20)\/ 7 (ke)} exp(—ikyx')dks,

Im( )»B(kx)) <0 (17a)

Wi (%', 203 %, 21)

- jexpukxx) expj(z0 — 21)1/7n (ko) } expl(—jker)dks,

Im( )»A(kx)) >0 (17b)

A increasing K

Figure 1 Example of eigenvalue spectra (in the complex plane) of the
square-root operator for a dissipative medium (y/Ag(ky)) and its
adjoint effective version (y/Aa(kx)). The dashed line denotes the
dissipative medium, the solid line denotes the effective medium,
and the dotted line denotes the modified eigenvalue spectrum of the
effective medium.

where Ap(k,) and Aa(k,) are, respectively, eigenvalue spectra
of the Helmholtz operator for a dissipative medium and its

adjoint effective version, given by

ia(ks) = 0 [{H (@)} — kg,
(18)

Ip(ky) = 0?/F (o) — B2,

where c() is the complex phase velocity as expressed in (4).
The square roots of the eigenvalue spectra (i.e. the eigenvalue
spectra of the square-root operator) are illustrated in Fig. 1.
It can be seen that W tends to infinity, as does Fy, when |k,
is large. This shows the instability of the inverse propagator
in the dissipative medium. For stabilization, we need to
suppress the eigenvalue spectrum for lk,| exceeding a given
frequency-dependent k.. After this suppression, we get a new
eigenvalue spectrum for the corresponding square-root oper-
ator shown by the dotted line in Fig. 1. We can thus obtain a
modified inverse propagator Fy, which is conditionally stable
for a finite number of extrapolation steps.

EXPLICIT DEPTH EXTRAPOLATION

The explicit extrapolation operator scheme provides an ap-
proximation to determine the forward and inverse propaga-
tors in a laterally varying medium. The assumption is made
that the medium is homogeneous within the spatial extent of
the propagator. Thus we can derive a local propagator from
(17) as in a laterally invariant medium, with the medium
parameters equal to the values at the central gridpoint of
the aperture of the propagator, and we let that specific prop-
agator be used only for that gridpoint. For other gridpoints,

the propagator is obtained using the corresponding medium
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parameters. Thus we can obtain approximate solutions for
the propagators at all gridpoints for the laterally varying
medium. The experience in lossless media has proved the
effectiveness (Holberg 1988) and limitations (Etgen 1994)
of this approximation.

By reducing the spatial extent of the propagator, we gain
the following: (i) the computational cost of the spatial con-
volution during the depth extrapolation is reduced; (ii) the
assumption we made becomes more acceptable. Hence, for
an explicit extrapolation operator scheme, it is necessary to
design a short convolution operator in the space—frequency
domain such that its spatial Fourier transform matches
exp{—jAz+\/7n(ke)} or exp{—jAz\/2a(ky)} as accurately as
possible for |kl less than a given value k. and that its ampli-
tudes decay for k, outside this range.

Different design methods exist for short operators
(Holberg 1988; Hale 1991; Soubaras 1996). Mittet et al.
(1995) (1988)

method to design short convolution operators. However,

used Holberg’s non-linear least-squares
this method has a high computational cost, whereas Hale’s
(1991) Taylor series expansion method is more efficient
but less accurate (in the latter method, the errors are un-
necessarily small for small wavenumbers and grow rapidly
with increasing wavenumbers). The weighted least-squares
method (Thorbecke and Rietveld 1994), although without
constraints on the amplitudes, can be used to derive a stable,
highly accurate 1D convolution operator at a very low com-
putational cost in a lossless medium. Here, we adapt the
weighted least-squares method to design short convolution
operators for dissipative media. Since the amplitude of the
inverse operator in dissipative media should exceed 1.0 and
its magnitude increases as the angle of propagation increases,
we must first determine a maximum angle of propagation in
order to guarantee that application of the operators will
magnify amplitudes by no more than an accepted maximum
magnitude. This means that the proposed scheme puts a
limitation on the migration dip. For real data, the maximum
angle of propagation is determined, based on the maximum
frequency of the data, the magnitude of Q and its distribu-
tion in the macromodel, the approximated number of ex-
trapolation steps and the accepted maximum magnitude.
Based on the maximum angle of propagation, we can
determine the value of k. (for suppressing the eigenvalue
spectra) at each frequency and define the weight to be a
very small value (e.g. 107°) for |k, > k.. Moreover, we
change the spectrum of the exact propagators for |k.l> k.
to a smooth function that decays to zero. Thus we can derive

a conditionally stable, highly accurate short operator in
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dissipative media by the weighted least-squares method.
Figure 2 shows an amplitude spectrum in the wavenumber
domain for a 25-point explicit inverse operator, where
Az=12m, w/2n=29Hz, w/2n=25Hz, co(w,)=2000m/s,
QO =50, and we assume the accepted maximum amplitude
of the operator is 1.03. Thus k. is obtained as 0.08 (here
Ax =30.0), which is related to a maximum angle of propa-
gation of 60°. From Fig. 2 we find that the derived explicit
inverse operator matches the exact inverse operator well in
the range bounded by the maximum angle of propagation.
Furthermore, the comparison of the amplitude spectrum of
the exact inverse operator with the derived short operator
illustrates the stabilizing effect of the proposed scheme. It
should be noted that the fact that the maximum amplitude of
the derived operator does not approach 1.03 in Fig. 2 is due
to the fact that the frequency corresponding to this operator
is 0.77wmax instead of wpay. Figure 3 shows further the
difference between the phase spectra for dissipative and

lossless media for the exact inverse operators, where the
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Figure 2 Amplitude spectrum for a derived 25-point explicit inverse
operator (solid lines). The dotted lines represent the spectrum of the
exact inverse extrapolation operator. The top figure shows a detailed
view around 1.015. The quality factor related to the operator is 50.
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Figure 3 The difference between the phase spectra for the dissipative
and lossless media for the exact inverse operators. The solid line de-
notes the case of w/2r=w/2r=35Hz and Q=3, the dotted line
denotes the case of w/2n = w,/2n =35Hz and QO = 50, and the dashed
line denotes the case of w/2x =35 Hz, w/2x =25Hz and Q = 50.

magnitude of the difference is defined by (¢ — ¢o)/po. Here
¢1 denotes the phase spectrum of the inverse operator for
the dissipative medium and ¢, denotes the phase spectrum
of the inverse operator for the lossless medium. Three cases
are illustrated in Fig. 3: (i) w/2n=w/2n=35Hz and Q=3;
(ii) w2n=w/2n=35Hz and Q = 50; (iii) w/2n =35Hz, o,/
21 =25Hz and Q =50.

The depth extrapolation scheme is performed by precalcu-
lating an operator table and then selecting the appropriate
space-variant operator during the depth extrapolation pro-
cess. From (4) we find that the value of w*/c*(w) is deter-
mined by o'?/co(w,), where b= (1/n)arctanQ "', and the
quality factor Q (we assume o, is constant). Therefore the
operator table should be constructed separately for different
Q. This is done by first determining the maximum and
minimum real phase velocities for the media that have the

same Q, then calculating the short convolution operators

for each value of ®'™®/cy varying from ®!-0/(co), . tO
@10 /(o) min in @ given interval based on the quality factor

Q, and finally storing them in the part of the operator table
corresponding to this Q. In this way, different gridpoints in
the medium at different frequencies can use the same oper-
ator only if they have the same Q and if their »'/c, values
are equal. A lossless medium can be considered as a medium
with infinite Q. It can be seen that the operator table
constructed here is easy to access during the depth extrapo-
lation process.

IMAGING

There are two kinds of imaging conditions that can be
used for imaging an anelastic medium. One is obtained by

adapting that of the lossless case as

[ PY(x,0){P°(x,w)}"
O(x) = J PD(x, ) {PP(x, )} +

Edw, (19)

where PP(x,w) is the one-way forward extrapolated down-
going source wavefield in the dissipative medium, PY(x,w)
the one-way inverse extrapolated upgoing receiver wavefield
in the dissipative medium, and ¢ is a small stabilization
constant. The other imaging condition is developed by
designing a forward wavefield propagator in the adjoint
effective medium that magnifies wavefields rather than at-
tenuating them. Fortunately, this forward propagator can
be easily obtained by taking the complex conjugate of
the corresponding inverse propagator (see equation (14)).
With [PP(x,w)] denoting the one-way forward extrapolated

50 T r
— Medium a
- Medium b
45
s
[}
8
2> 40r
©
3
e]
3Br
30 . . . . . . .
1600 1200 800 400 0 400 800 1200 1600
3000
2500
Q
E
22000 ]
o
o
[}
>
1500 E
— Medium a
- Medium b
1000 ! !

1600 1200 800 400 0 400 800 1200 1600
Lateral distance (m)

Figure 4 Lateral real phase velocity and quality factor profiles of two
media a and b. The top figure shows the quality factor.
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Figure 5 Comparison of the result of

explicit depth extrapolation with that 0—1§00 -1200
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downgoing source wavefield in the adjoint effective medium,
the second imaging condition can be expressed as
0(x) = [P [PP(x,0) ) o (20)
The imaging condition of (20) was first proposed by Mittet
et al. (1995) and was subsequently proved mathematically by
Causse and Ursin (1999).

The imaging condition of (19) can give clearer deep im-
aging with little increase in noise in contrast to that of (20).

Furthermore, the noise can be much reduced by common-

depth-point stacking. However, for the imaging condition of

(20), only one operator table, instead of two, needs to be
constructed. This reduces the computational cost. In the
following, we refer to (19) as the two-operator imaging
condition, and to (20) as the one-operator imaging condition.

NUMERICAL EXAMPLES
Depth extrapolation

The proposed explicit depth extrapolation scheme is now
compared with a frequency-domain finite-difference model-

ling of the two-way viscoacoustic equation. For this purpose

© 2002 European Association of Geoscientists & Engineers, Geophysical Prospecting, 50, 629-643
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we make use of media that are dependent only on the lateral
coordinate. The lateral velocity (real phase velocity) and Q
profiles of two media (a and b) are illustrated in Fig. 4.
Medium a denotes a stronger laterally varying case, where
the length of the disturbance is about three times the central
wavelength. A vertically downgoing plane wave is introduced
into the media. Recording takes place at a 1000-m depth
level. The results of the numerical experiment in media a
and b are shown in Figs 5 and 6. Although some numerical
dispersion exists in the finite-difference modelling results due
to a large discretized spatial sampling of Ax =9.0 m, the two

results agree well for both media a and b. This observation

confirms that the proposed explicit depth extrapolation
scheme is accurate for laterally varying dissipative media.
Here the horizontal spacing for explicit extrapolation is
Ax=27.0m, a 25-point explicit forward operator is used,
and the wavelet contains frequencies up to 28 Hz. The differ-
ence in the positions of the peak of the wave curves for the
flat parts in Figs 5 and 6 originates from the fact that
we chose different reference frequencies for the two media.
The reference frequency is w/2n=35.0Hz for Fig. 5 and
w/2nr=20.0Hz for Fig. 6. This experiment reveals that
the absorption can influence the propagation velocity of the

wavefront.
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Figure 7 Comparison of migration im-
pulse responses for a spatial impulse with
dispersion. The top figure shows a result 0
obtained for the acoustic case (i.e. no ab-
sorption compensation). The bottom
figure is the result obtained by accounting 500

for compensation for absorption. The

maximum amplitude for the bottom figure g 1000

is about 7.5 times that for the top figure. =

A 39-point explicit operator with a max- %

imum angle of propagation of 57° is used. 0 1500
2000

Depth (m)

Migration impulse response

The performance of the derived short explicit inverse
operators is demonstrated by a study of migration impulse
responses. For further testing of its compensation for absorp-
tion and dispersion, we design a spatial impulse by introdu-
cing dispersion to a Ricker wavelet, taking Q=350. The
wavelet contains frequencies up to 85 Hz. A 39-point explicit
inverse operator with a maximum angle of propagation of
57° (due to stability) is used. Figure 7 compares the impulse
response obtained with a real phase velocity of 2000 m/s and
O =50 with that obtained under the acoustic assumption
with ¢, =2000 m/s, i.e. neglecting compensation for attenu-
ation and dispersion. The same spatial impulse is used for the
two impulse responses. The maximum amplitude for the
impulse response of Q=350 is about 7.5 times that of
the acoustic case. Figure 8 shows local detailed views of the
comparison of the two impulse responses to illustrate the
compensation for dispersion by the proposed explicit scheme.
A total of 400 recursive applications of the explicit inverse
operator from one depth level to the next, with depth steps of

—-2000
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Lateral Distance (m)

—-1000 0 1000 2000

6 m, are carried out. The good imaging quality demonstrates

the effectiveness of the explicit extrapolation scheme.

Prestack depth migration

A synthetic seismic experiment is designed to test the pro-
posed prestack migration scheme. The seismic data set is
generated using a 2D frequency-domain finite-difference
scheme of the two-way viscoacoustic equation. The subsur-
face velocity and Q models are shown in Fig. 9. In total, 46
shot records with shots moving from 828 m to 3258 m and
a shot interval of 54 m are generated. A typical shot gather
for the source positioned at 1800 m is shown in Fig. 10. To
enhance the visibility of the figure, the data have been scaled
with #2. A sampling interval of Ax=9.0m is used in the
modelling. For shot record migration, 25-point explicit
operators with a maximum angle of propagation of 60°
are designed. The horizontal spacing for migration is
Ax=27.0m.

The common-depth-point stacked section using the two-
operator imaging condition is shown in Fig. 11, which is
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Figure 8 A local detailed view of Fig. 7.
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constructed by superimposing the migrated section on the
velocity model used in migration. From this figure we find
that all reflectors are imaged and positioned at the correct
locations. Moreover, the polarity reversal of the waveform,
due to the fact that the wave is incident from a high velocity
layer to a low velocity layer, is seen clearly at the location
denoted by A. The results of Fig. 11 show that the proposed

prestack migration scheme can image heterogeneous dissipa-
tive structures accurately.

A comparison of the migration result of the two-operator
imaging condition with that of the one-operator imaging
condition is shown in Fig. 12. It can be seen from this figure
that the deep image is clearer using the two-operator imaging
condition.
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Figure 10 Shot gather for the source pos-

itioned at 1800m. The shot gather is 600

obtained using a frequency-domain finite-
difference scheme. The data have been
scaled with # for display purposes.

Time (s)

A comparison with the acoustic migration result that takes
no absorption into account (taking all Q in Fig. 9 to be
positive infinite) is shown in Fig. 13. Both results are
obtained using the two-operator imaging condition. The dif-
ference between them is distinct: the deep reflectors are
imaged ambiguously with low amplitudes for acoustic
imaging. This demonstrates the importance of including ab-
sorption in migration.

Q=20cy,=1700m/s

Offsets (m)

1200 1800 2400 3000 3600

CONCLUSION

Methods for wavefield depth extrapolation and prestack
imaging in complex anelastic media have been presented.
The reciprocity theorem for one-way wavefields in dissipa-
tive media was applied to derive the inverse one-way prop-
agator in inhomogeneous dissipative media. The resulting

inverse propagator, which is stabilized by suppressing a part
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Figure 11 Prestack depth migration result obtained using the two-operator imaging condition. In total, 46 shot records with a shot interval of

54 m are applied. 25-point explicit operators with a maximum angle of propagation of 60° are used. The background is the velocity model used

in migration.

of the eigenvalue spectrum of the associated square-root
operator, can compensate well for attenuation and dispersion
of seismic waves. Because of the need to limit the angle of
propagation for stability, the explicit extrapolation operator
scheme appears to be well suited for migration in inhomo-
geneous dissipative media. The macromodel we use is com-
posed of a real phase velocity model, the same as the velocity
model used in current migration schemes for lossless media,
and an additional frequency-independent quality factor
macromodel. The proposed explicit scheme is performed by
precalculating an operator table and then selecting the space-
variant convolution operator at each gridpoint according to
the real phase velocity and quality factor at this gridpoint
and the temporal frequency during the depth-extrapolation
process. The absorption effects influence only the design of
the convolution operators. Hence, the resulting algorithm

can easily be incorporated in existing migration schemes.

The short convolution operators are designed by adapting
the weighted least-squares method, which can derive a highly
accurate short operator at a very low computational cost.

The accuracy of the proposed explicit depth extrapolation
scheme was demonstrated by comparing the results of
the explicit depth extrapolation with those of the finite-
difference method for modelling the transmission response
of a laterally varying medium. The potential of the derived
explicit inverse operators was further illustrated by the
migration impulse response of a spatial impulse with disper-
sion. Finally, a synthetic data set, obtained by a finite-
difference method based on the two-way viscoacoustic
wave equation, was used to test the proposed prestack
depth migration scheme. The numerical example shows a
significant improvement in the images when migrating with
compensation for absorption, as compared with images
obtained by neglecting the absorption.
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Figure 12 Comparison of the prestack depth migration result of the two-operator imaging condition with that of the one-operator imaging
condition. The top figure shows the result of the one-operator imaging condition.
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Figure 13 Comparison of the prestack depth migration results with and without compensation for absorption. The top figure shows the
prestack depth migration result obtained without compensation for absorption, that is, the velocity model of Fig. 9 is used but the quality
factors are assumed to be infinite. The two-operator imaging condition was used for obtaining both results.
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