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ABSTRACT
An imaging technique is developed which exceeds the resolution limitation prescribed
by conventional seismic imaging methods. The high-resolution imaging is obtained
by introducing a sparseness-constrained least-squares inversion into the imaging pro-
cess of prestack depth migration. This is implemented by a proposed interference
technique. In contrast to conventional depth migration, a decomposed signal or com-
bined event, instead of the source wavelet, is needed in the proposed scheme. The
proposed method aims to image a small local region with a higher resolution using
the prestack data set. It should be applied following conventional depth imaging if
a higher resolution is needed in a target zone rather than replacing the conventional
depth imaging for the entire medium. Synthetic examples demonstrate the significant
improvements in the resolution using the proposed scheme.

I N T R O D U C T I O N

Some reservoirs consist of stacked sheet sands, the thickness of
which is frequently less than one-quarter of the available seis-
mic wavelength. A high-resolution imaging scheme is there-
fore important in order to improve understanding of these
reservoirs and to optimize well placement. Deconvolution
(Robinson 1967; Claerbout 1976) is the first approach to
improving the resolution of seismic imaging. However, the
usual assumptions about the wavelet phase and the statistics
of the reflectivity restrict its applications in prestack imaging.
Theoretically, non-linear inversion schemes based on optimal-
fit-in-data-space (e.g. Jin et al. 1992) can achieve a high-
resolution imaging beyond the limitation of the scale of the
seismic wavelength. However, the computational cost of this
type of method is too high for it to be applied to compli-
cated structures, and the local minima and ill-posed problems
require further study. Deconvolution and non-linear inversion
methods are two of the usual approaches to improving the res-
olution of seismic imaging by extending the frequency-band of
seismic signals and by imaging using multiple reflected waves.
The former operation is usually carried out in deconvolution
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using the prewhitening technique (Claerbout 1976). Other
more effective but more expensive algorithms for extending
the frequency-band of seismic signals have also been proposed,
including linear programming reconstruction (Levy and Fulla-
gar 1981; Oldenburg, Scheuer and Levy 1983), autoregressive
modelling (Walker and Ulrych 1983), and minimum entropy
reconstruction (Sacchi, Velis and Cominquez 1994). On the
other hand, we aim to improve the resolution by extending
the frequency-band of the resulting reflection coefficients.

In contrast to time migration, prestack depth migration can
put each event at its true location, even in a strong laterally
varying medium. Since the sharper focusing of reflected en-
ergy is essential for high-resolution imaging in a complicated
subsurface, we prefer to follow the prestack depth-imaging
approach in order to improve the resolution. Instead of in-
creasing the available frequency-band of the seismic signal, as
is done in conventional high-resolution seismic methods, we
improve the resolution by introducing a new concept to the
imaging algorithm. As is known, prestack depth migration
is accomplished by combining wavefield extrapolation with
the imaging condition. The downward wavefield extrapola-
tion aims to remove the propagation effects of the overburden
between the recording surface and each subsurface reflector,
using one-way propagators. This is crucial for putting each
event at its true location with focusing of reflected energy, and
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it is also important for improving the resolution. Moreover,
the different imaging conditions also have different effects
on the resolution of the imaging. The correlation condition
(Claerbout 1971) produces wavelet stretch that degrades
the resolution, whereas the deconvolution imaging condition
(Claerbout 1976; Berkhout 1982) yields a band-limited reflec-
tion coefficient at each subsurface reflector by removing the
effect of the wavelet. However, the latter is implemented only if
the source wavelet has been exactly estimated. Due to the two
facts that (a) the exact source wavelet is not easily obtained
and (b) the wavelet exhibits variations along the propagation
path in the presence of (intrinsic) attenuation, a scheme that
improves the resolution without using the source wavelet will
be more useful.

Sparse inversion, as proposed by Sacchi and Ulrych (1996),
can produce a mode that consists of the minimum number of
events that can satisfy the data by introducing Cauchy regular-
ization. This linear inversion method has been widely applied
to seismic signal processing, for example, in the Radon trans-
form (Trad, Ulrych and Sacchi 2003), in the discrete Fourier
transform (Sacchi and Ulrych 1996) and in seismic wave re-
construction (Wang 2003). Since a sparse solution in the time
domain means a wider frequency-band, this method can also
serve as a tool to extend the frequency-band of the resulting
reflection coefficients. However, incorporating the sparse in-
version with prestack depth migration is not straightforward.
Following optical interferometry (Welford 1981), we have de-
veloped an interference technique to transform the imaging
of reflection coefficients into a least-squares inversion with-
out the source wavelet. Thus, a sparseness constraint can be
easily introduced into the imaging of reflection coefficients by
solving this linear inversion problem with Cauchy regulariza-
tion. As a result, the frequency-band of the resulting reflection
coefficients is extended and a higher-resolution imaging is ob-
tained. This approach represents an alternative imaging algo-
rithm in prestack depth migration. In contrast, the migration
deconvolution (Hu, Schuster and Valasek 2001) improved the
resolution by eliminating the acquisition footprint due to a
spatially undersampled and limited aperture, but remained in
the frequency-band of the reflection coefficients.

In order to reduce the computational cost and also to ob-
tain a more stabilized solution of the inverse problem, we re-
tain only the reflection events resulting from the target zone
of interest, and try to mute other events before using the in-
terference technique. The number of unknown reflection co-
efficients is thus considerably reduced and the solution of
the related inverse problem becomes easier. Hence, the pro-
posed scheme is suited to imaging a small local region with

a higher resolution, rather than replacing the conventional
depth-imaging schemes for the entire medium.

The proposed sparse inversion, together with the interfer-
ence technique, is applied to half-migrated data. It can also be
employed to improve the resolution in full-migrated data, and
even poststack data, provided that the wavelet remains sta-
tionary and both the reflected and diffracted energy are put
at their true locations in the related data sets. The reason for
using the half-migrated data here is because the wavelet re-
mains perfectly stationary in this data space when expressed
in the traveltime from the source to the subsurface reflectors
(assuming attenuation can be neglected).

The paper is organized as follows. Firstly, prestack depth mi-
gration is very briefly reviewed and a half-migration technique
is proposed to obtain a half-migrated shot gather expressed in
the time domain. The interference technique is then proposed;
this transforms the imaging process into a least-squares inver-
sion. Next, a sparse solution for the reflection coefficients is
discussed, and its numerical implementation is presented. Af-
ter this, the depth mapping is briefly discussed. Finally, two
synthetic seismic experiments are designed to test the proposed
high-resolution imaging scheme.

H A L F - M I G R AT I O N

Prestack depth migration is commonly accomplished by com-
bining downward wavefield extrapolation, i.e. removing the
propagation effects of the overburden between the record-
ing surface and each subsurface reflector, with an imaging
condition. If proper one-way propagators are used with a
correct macro velocity model, prestack depth migration can
put each event at its true location, even in a strong laterally
varying medium. This is an important advantage of prestack
depth migration in contrast to other imaging methods. If
PD(x, ω) denotes the forward extrapolated source wavefield
and PU(x, ω) denotes the inverse extrapolated shot gather in
the space–frequency domain, the imaging can be obtained by
two imaging conditions, i.e. the correlation imaging condition
(Claerbout 1971), expressed as

�c(x) =
∫

PU(x, ω){PD(x, ω)}∗dω, (1)

and the deconvolution imaging condition (Claerbout 1976;
Berkhout 1982), given by

�d(x) =
∫

PU(x, ω){PD(x, ω)}∗

PD(x, ω){PD(x, ω)}∗ + ε
dω, (2)

where the superscript ∗ denotes the complex conjugate, ε is
a small stabilization constant, x = (x, y, z) is the Cartesian
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coordinate vector, and ω is the angular frequency. �d(x) in
(2) represents the band-limited reflection coefficients of the
subsurface if the source wavelet used is exact. Unfortunately,
the exact estimation of the source wavelet is not easy.

Since the wavelet exhibits space-variance resulting from
varying velocities in an inhomogeneous medium but behaves
time-invariant (assuming attenuation can be neglected), it will
be more convenient to remove the effect of the source wavelet
in the time domain, rather than in the depth domain. There-
fore, a half-migration technique, which can obtain a half-
migrated shot gather expressed in the time domain, is pro-
posed, based on inverse wavefield extrapolation. If T(x) de-
notes the traveltimes for the source wavefield to arrive at each
spatial gridpoint and A(x) denotes the corresponding ampli-
tudes, obtained by solving the eikonal and transport equations
(e.g. Buske and Kastner 2004), the half-migrated shot gather
in the depth domain can be obtained as

�(x) =
∫

PU(x, ω)
A(x)

exp{jωT(x)} dω, (3)

where j is the imaginary unit. The term exp{jωT(x)} in (3) ap-
plies a time-shift to the inverse extrapolated wavefield for com-
pensating the traveltime from the source to the subsurface re-
flectors, and the frequency-independent amplitude A(x) com-
pensates for the geometrical spreading of the source wavefield.
Furthermore, we can obtain the half-migrated shot gather
�′(x, y, t), expressed in the time domain, by replacing depth
z with the related traveltime t = T(x, y, z) for each receiver
position (x, y). From the point of view of reciprocity, each
trace in �′(x, y, t) can be understood as a record that would
be measured at the source position (in the time-domain) when
all reflectors along the depth direction at the related receiver
position simultaneously excited the same wavelet (without the
geometrical spreading), as illustrated in Fig. 1. We therefore re-
fer to this proposed migration scheme as ‘half-migration’. The
high-resolution imaging scheme will be developed following
the half-migrated result because it is natural to get a perfect
stationary wavelet in this data space. There are two reasons for
the half-migrated shot gather to be expressed in terms of the
traveltime from the source to the subsurface reflectors rather
than in the vertical traveltime. The first is that this traveltime
has already been obtained in the half-migration process, so
no additional calculation is required to obtain the traveltime
of each subsurface point. The second is that the wavelet can
remain stationary better in this time domain. This can be ex-
plained by assuming a homogeneous medium in Fig. 1. From
the geometry shown in Fig. 1, we obtain

c�Tv ≈ c�T sin θ + cT�θ cos θ, (4)

θ
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c∆T
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Figure 1 Illustration of the half-migration technique. The half-
migrated shot gather can be understood as a record that would be
measured at the source position when reflectors 1, etc., along the
depth direction simultaneously excite the same wavelet. The medium
is assumed to be homogeneous so that the rays from the source to the
subsurface reflectors are straight. c is the P-wave velocity, �T is the
true duration of the wavelet, and �Tv is the duration of the wavelet
when expressed in terms of the one-way vertical traveltime.

where c is the P-wave velocity and �T is the true duration
of the source wavelet. When the half-migrated result is ex-
pressed in terms of the one-way vertical traveltime, the dura-
tion of the wavelet is given by �Tv, whereas the duration of
the wavelet becomes �T when the same half-migrated result
is expressed in terms of the traveltime from the source to the
subsurface reflectors, as illustrated in Fig. 1. We know from
(4) that �Tv exhibits slight variations for the reflectors at the
different depths. In contrast, the duration of the wavelet in
the proposed time domain (i.e. time from the source to the
subsurface reflectors), �T, remains stationary.

The proposed half-migration technique may encounter the
multipath arrival problem in complex media as a result of
using ray theory in the forward extrapolation of the source
wavefield. Usually, this problem can be well handled by using
the maximum energy arrival rather than the first arrival in the
calculation of the traveltime. Alternatively, if the maximum en-
ergy scheme fails to obtain a desirable half-migrated result, we
can obtain the half-migrated shot gather in the depth domain
by replacing the source wavelet in (2) with an impulse at zero
time. This means that we also calculate A(x) exp{−jωT(x)}
using the wave-equation-based algorithm. However, an addi-
tional computation to get the (maximum energy) traveltime
from the source to each point (x, y, z), i.e. T(x), is then
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required for expressing the half-migrated shot gather in the
time domain.

I N T E R F E R E N C E T E C H N I Q U E

Provided that (intrinsic) attenuation is neglected, each trace in
the half-migrated shot gather can be expressed in the frequency
domain as

�̂′(x, y, ω) =
n∑

i=1

ri S(ω) exp(−jωti ), (5)

where S(ω) is the spectrum of the source wavelet, ti is the
traveltime from the point at the horizontal position (x, y) at
the ith reflector (along the depth direction, see Fig. 1) to the
source position, ri is the reflection coefficient at the related
point of the ith reflector, and n is the total number of reflectors
along the depth direction at the horizontal position (x, y). If
we further assume that all angles of incidence are less than the
corresponding critical angles (which is a common assumption
in seismic processing), all the reflection coefficients ri will be
real in (5). By following optical interferometry (Welford 1981),
one of the arrivals, e.g. a1(ω) = r1S(ω) exp(−jωt1), is defined as
the reference arrival. This reference arrival can be obtained by
decomposing the corresponding trace using time–frequency
spectral analysis (e.g. Pinnegar and Mansinha 2003) or by
decomposing the related half-migrated shot gather using the
generalized Randon transform (e.g. Trad et al. 2003). We then
define the interference between the reference arrival and the
related trace as follows:

j
(
�̂′ · a∗

1 − �̂′∗ · a1

)
= 2a1a∗

1

n∑
i=2

(ri/r1) sin[ω(ti − t1)]. (6)

Rewriting (6) as

n∑
i=2

r̄i sin[ω(ti − t1)] = j
(
�̂′ · a∗

1 − �̂′∗ · a1

)
/2a1a∗

1 = y(ω), (7)

where y(ω) is a known real-valued function obtained from the
half-migrated shot gather and r̄i = ri

/
r1 is a relative reflec-

tion coefficient, we obtain a new equation for the reflection
coefficients from the proposed interference technique. Instead
of solving (7) by the discrete Fourier series (considering ω as
a variable), which will again produce band-limited reflection
coefficients, a sparse inversion is introduced to solve (7). This
sparse inversion represents an alternative imaging algorithm,
in comparison with (1) or (2), used in conventional depth
migration.

Note that it is not necessary for the reference arrival to be
a reflection from a single reflector. A combined reflection, e.g.
the reflection from a ‘thin bed’, can also serve as a reference

arrival. The reflection from a ‘thin bed’ is given by a1(ω) =
r1jω�t1S(ω) exp(−jωt1) . Here �t1 denotes the difference in
the traveltime between the upper and lower surfaces of the
‘thin bed’. Taking this combined reflection as a reference ar-
rival and defining a new formulation for the interference as in
the following, we have

�̂′ · a∗
1 + �̂′∗ · a1 = 2a1a∗

1

n∑
i=2

(ri/r1�t1)
1
ω

sin[ω(ti − t1)]. (8)

This equation is similar to (7). If we further rewrite each trace
in the half-migrated shot gather as a summation of the reflec-
tions from many ‘thin beds’ (which is true for some reservoirs
that consist of stacked sheet sands), we obtain

�̂′(x, y, ω) =
n∑

i=1

ri�ti jωS(ω) exp(−jωti ), (9)

where �ti is determined by the thickness of each ‘thin bed’ and
n is the number of ‘thin beds’ rather than that of the reflectors.
Substituting the reference arrival of the reflection from a ‘thin
bed’ and (9) into the left-hand side of (6) leads to

j(�̂′ · a∗
1 − �̂′∗ · a1) = 2a1a∗

1

n∑
i=2

(ri�ti/r1�t1) sin[ω(ti − t1)].
(10)

We obtain an equation exactly the same as (7). Equations 8
and 10 demonstrate the flexibility of the choice of the refer-
ence arrival in the proposed interference technique. Equation
(10) also means that we do not need to distinguish the upper
and lower surfaces of each ‘thin bed’ in the imaging. This is
very important when a ‘thin bed’ becomes too thin to be dis-
tinguished, even using the sparse inversion. Since (8) is similar
to (7), and (10) is the same as (7) with r̄i = ri�ti/r1�t1, we
only discuss the solution of the sparse inversion of (7) in the
following.

S PA R S E I N V E R S I O N

Define the real vector R as the unknown reflection series with
its mth component denoting the relative reflection coefficient
at time t1 + t0 + m�t . Here t1 is the traveltime of the reference
arrival, t0 is the estimated smallest time difference between
the reference arrival and other available arrivals, and m varies
from 1 to N. The number N is determined by the estimated
largest time difference between the reference arrival and other
available arrivals. t0 is introduced to reduce the number of
the unknown relative reflection coefficients. Equation (7) can
then be rewritten as

ΓR = Y, (11)
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where the component {Y}k of the real vector Y is defined
as y[ωmin + (k − 1)�ω], and the element {Γ}km of the real
matrix Γ is defined as sin{[ωmin + (k − 1)�ω](t0 + m�t)}.
Here ωmin is the minimum frequency of the seismic signals,
and k varies from 1 to M with M = int{(ωmax − ωmin)/�ω}
(ωmax is the maximum frequency of the seismic signals). In the
following, all discussions on the reflection coefficients refer
to the relative reflection coefficients expressed in (7). Except
for the case N = M, equation (11) is either underdetermined
or overdetermined. Therefore, the solution of (11) should be
transformed into a least-squares problem expressed by

min
{
J(R) = (RTΓT − YT)ΛTΛ(ΓR − Y) + RTWR

}
, (12)

where W is a real-valued diagonal matrix whose elements
are determined by the regularized mode for overcoming non-
uniqueness of the solution, and Λ is a real-valued diagonal
matrix whose elements denote the weight factors for different
frequencies. Here, the diagonal elements of Λ are defined as
{Λ}kk = ωmin + (k − 1)�ω for weighting the high-frequency
components. The solution of (12) is obtained as

R = (ΓTΛTΛΓ + W)−1ΓTΛTΛY. (13)

It can be seen that (13) needs the inversion of an N × N matrix.
If N > M, using the identity,

(ΓTΛTΛΓ + W)W−1ΓTΛT ≡ ΓTΛT(ΛΓW−1ΓTΛT + I), (14)

we can rewrite (13) as

R = W−1ΓTΛT(ΛΓW−1ΓTΛT + I)−1ΛY, (15)

where I is an M × M identity matrix. Equation (15) requires
the inversion of an M × M matrix, instead of an N × N matrix.
The computational cost is therefore reduced for the situation
N > M.

By setting W = µI, where µ is a small positive constant,
Gaussian regularization is imposed and a smoothed solution
is obtained from either (13) or (15). This smoothed solution
again represents band-limited reflection coefficients without
a significant improvement in the resolution. If Cauchy regu-
larization, as proposed by Sacchi and Ulrych (1996), is intro-
duced to the least-squares problem, a sparse solution, i.e. the
solution that is able to satisfy the data with the smallest num-
ber of reflection events, can be obtained from either (13) or
(15). This sparse solution represents a higher-resolution result
in the time domain. The related diagonal matrix W defined by
Cauchy regularization is therefore referred as the sparseness
constraint.

The sparseness constraint matrix W (diagonal matrix) is
determined according to a priori information about the so-

lution, that is, the diagonal elements related to the reflection
events should be small whereas the other diagonal elements
will be large enough to suppress the appearance of significant
values. The optimal choice for the sparseness constraint re-
mains a topic of research. Sacchi and Ulrych (1996) suggested
an iterative algorithm where W is bootstrapped from the re-
sult of a previous iteration. Wang (2003) defined a sparseness
constraint by taking the smoothed solution as a priori infor-
mation following a similar formulation to that suggested by
Sacchi and Ulrych (1996). Here, we also construct the sparse-
ness constraint matrix according to the smoothed solution,
obtained by setting W = µI in either (13) or (15). However,
unlike Sacchi and Ulrych (1996) and Wang (2003), we allow
the diagonal elements of W to vary following an exponential
function expressed as

{W}mm = αmax (αmin/αmax)
|rm|−βmin

βmax−βmin , (16)

where || denotes the modulus, rm is mth component of the
smoothed R, βmax = max{|rm|, m = 1, N}, βmin = min{|rm|,
m = 1,N}, αmax is the prescribed maximum factor to sup-
press the appearance of unwanted reflections, and αmin is
the prescribed minimum factor to boost the reflected events.
Equation (16) means that the maximum smoothed solution
is related to the minimum factor αmin, whereas the minimum
smoothed solution is related to the maximum factor αmax. By
using the sparseness constraint defined in (16), a desirable
sparse solution can be obtained.

If some arrivals, which do not result from the target zone of
interest, are muted in advance, the number of the unknown re-
flection coefficients, i.e. N, can be greatly reduced. As a result,
the solution of (11) becomes easy and a more stabilized result
can be obtained from either (13) or (15). Due to the small trav-
eltime differences between those arrivals included in (5) in this
case, two additional benefits are also achieved. In particular
the time-variance of the wavelet due to (intrinsic) attenuation
can be neglected in (5), and the geometrical spreading factors,
i.e. the amplitude A(x) used in (3), can be taken as a constant.
Thus, the calculation of amplitudes by solving the transport
equation can be omitted in the half-migration processing. We
therefore prefer to obtain higher-resolution imaging in a local
target zone of interest by following this muting processing.
Many techniques, e.g. Radon transform and time–frequency
spectral analysis, can be used to mute the events that are not
of interest. It should be pointed out that the reference arrival
does not need to be a reflection resulting from the target zone
of interest. A time-shift technique can be used if the travel-
time difference between the reference arrival and the reflection
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Figure 2 Vertical velocity profile in a laterally invariant model. The
thicknesses of the high-velocity thin layers are 17.3 m and 26.0 m,
respectively.
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Figure 3 A trace of the shot record at offset 500 m. The direct wave
(D) and the reflected waves as well as internal multiples (R) are all
included.

events of interest is too large. Moreover, it is unnecessary for
the reference arrival to be exactly a reflection from a single
reflector (see discussion below (10)).

The proposed sparse inversion, together with the interfer-
ence technique, is not confined only to the half-migrated data.
It can serve as a tool to improve the resolution of full-migrated
data, and even of poststack data, provided that the wavelet
remains stationary. In contrast to other available sparse-spike
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Figure 4 Reference arrival and reflections from the target zone. A
time-shift and amplitude scaling have been applied to transform the
direct wave into a reference arrival.
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Figure 5 Result of the interference expressed in the frequency do-
main, showing the interference between the reference arrival and the
reflections from the target zone, and the amplitude spectrum of the
reference arrival.

inversion techniques (Levy and Fullagar 1981; Oldenburg
et al. 1983; Sacchi et al. 1994), the proposed scheme requires
an extraction of the reference arrival, instead of an appraisal
deconvolution, to be applied in advance. Furthermore, the
sparse-spike inversion schemes in Levy and Fullagar (1981),
Oldenburg et al. (1983) and Sacchi et al. (1994) used the

C© 2006 European Association of Geoscientists & Engineers, Geophysical Prospecting, 54, 49–62



High-resolution depth imaging with sparseness-constrained inversion 55

0.55 0.575 0.6 0.625 0.65 0.675 0.7

–0.2

–0.1

0

0.1

0.2

0.3

Time (s)

R
ef

le
ct

ed
 c

oe
ffi

ci
en

t

Smoothed
Sparse

Figure 6 Comparison between the sparse and smoothed solutions.
Note that in the sparse solution the four reflections from the closely
spaced reflectors are well separated with correct polarity. The internal
multiples included in the shot record explain the poor estimation of
the magnitude of the 4th spike.
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Figure 7 Noisy reference arrival and reflection data. The display is
obtained by adding white noise to both the reference arrival and the
reflections from the target zone shown in Figure 4. The ratio of the
rms of the noise to the maximum value of the signal is 0.08 for both
the reference arrival and the reflection data.
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Figure 8 Sparse and smoothed solutions for the noisy data. The same
computational procedure as used to obtain the result of Figure 6 is
applied. Note that a sparse solution similar to that in Figure 6, with
the spikes in the same positions, is obtained in spite of the significant
noise in the data.

limited frequency-band output of the appraisal deconvolution
as the constraints of the optimization problem. The output of
the appraisal deconvolution will therefore fully govern the fi-
nal results of the sparse-spike inversion. That is, the errors in
the output of the appraisal deconvolution will not be modified
by the sparse-spike inversion techniques. Moreover, an itera-
tion scheme has to be used for solving the resulting constrained
(non-linear) optimization problems in the above-mentioned
sparse-spike inversion techniques.

N U M E R I C A L I M P L E M E N TAT I O N

The numerical implementation of the proposed sparse inver-
sion, together with the interference technique, is illustrated
with a synthetic shot record resulting from a model with two
closely spaced thin layers. Due to the laterally homogeneous
medium, the half-migration processing, which is similar to
conventional prestack depth migration, is omitted. Figures 2
and 3 show a laterally invariant velocity model and a trace of
the shot record at offset 500 m, respectively. A Ricker wavelet
point source with a peak frequency of 20 Hz is used in gener-
ating the shot record. Both the direct and reflected (including
internal multiples) waves are included in Fig. 3. For this
particular case, the direct wave is taken as the reference arrival
and the muting processing is easily accomplished by removing
the direct wave, as illustrated in Fig. 4, where a time-shift and
amplitude scaling have been applied to the reference arrival
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Figure 9 Subsurface velocity model including a sand wedge. The light
shading (including the sand) denotes a velocity of 2200 m/s and the
dark shading denotes a velocity of 3400 m/s.
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Figure 10 Exact and approximated source wavelets. The synthetic
data set is generated using the exact wavelet.
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Figure 11 High-resolution imaging obtained by the proposed scheme.
In total, 8 shot gathers with shots moving from –80 m to 200 m and
a shot interval of 40 m are applied. The solid-line wedge denotes the
interfaces of the sand wedge.

(i.e. direct wave). Figure 5 illustrates the result of the interfer-
ence, expressed in the frequency domain, where the solid line
denotes the interference between the reference arrival and the
reflections from the target zone, and the dotted line denotes
the amplitude spectrum of the reference arrival, i.e. a1a∗

1 in
(6). The time-shift can change the result of the interference;
therefore, it can serve as an efficient tool for achieving a sta-
bilized solution by changing the cost function in (12) (Zhang
1994).

Figure 6 shows a comparison between the sparse and
smoothed solutions obtained using (13). The smoothed solu-
tion is obtained from W = µI with µ = 0.0005dmax, based
on the data shown in Fig. 5. Here, dmax is the maximum
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Figure 12 Conventional prestack depth-migration results obtained using the same data set as used in Figure 11. (a) The result obtained using
the exact wavelet; (b) the result obtained using an approximated wavelet. The solid-line wedge denotes the interfaces of the sand wedge.

modulus among all the diagonal elements of the matrix
ΓTΛTΛΓ. The sparse inversion is solved using a sparseness-
constraint matrix W, obtained from the smoothed solution
using (16) with αmax = 2.0 and αmin = 0.0001. Figure 6 shows
that the sparseness constraint obviously improves the resolu-
tion of the resulting reflection coefficients. Comparing Fig. 6
with Figs 2 and 3, we find that the reflections from the closely
spaced reflectors are well separated with correct polarity. The
internal multiples included in the shot record explain the ap-
pearance of small values in the sparse solution.

To assess the robustness of the proposed algorithm under
noisy conditions, we add white noise to the reference arrival
and reflection data shown in Fig. 4, as illustrated in Fig. 7.
Here, the ratio of the rms of the noise to the maximum value
of the signal is 0.08 for both the reference arrival and reflection
data. The same computational procedure as used to obtain the
result in Fig. 6 is applied to the resulting noisy data. The sparse

and smoothed solutions for the noisy data are shown in Fig. 8.
Compared with the sparse solution in Fig. 6, we find that a
similar sparse solution with the spikes in the same positions is
obtained, despite the significant noise in the reference arrival
and reflection data. The noise explains the small changes in
the magnitudes of the spikes in Fig. 8. This experiment demon-
strates the robustness of the proposed algorithm, especially for
the positions of the spikes. This result also means that an ap-
proximated reference arrival will be sufficient for obtaining
high-resolution imaging.

D E P T H M A P P I N G

The half-migrated shot gather is expressed in the traveltime
from the source to each spatial gridpoint. Correspondingly,
the high-resolution imaging of the reflection coefficients (i.e.
reflection series), obtained according to this half-migrated
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Figure 13 Subsurface velocity model with several thin sands. The
maximum thickness of each of the sands is 30 m. The light shad-
ing (including the sands) denotes a velocity of 2200 m/s and the dark
shading denotes a velocity of 3400 m/s.

gather by sparse inversion, is also expressed in the same
traveltime. Hence, it is necessary to map the resulting high-
resolution image from the time domain to the depth domain
for common-depth-point stacking. This mapped result rep-
resents a high-resolution migrated shot gather. Based on the
previously calculated T(x) in the half-migration process, the
depth mapping can be easily accomplished by relating each
discretized time point to each depth at each lateral position.
Since the peaks are not usually exactly coincident at the same
depth points for different migrated shot gathers, due to the
approximation in wavefield extrapolation, an interpolation is
needed during common-depth-point stacking. The extrapola-
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Figure 14 Shot gather for the source positioned at x = 0. The shot
gather is obtained using an acoustic finite-difference scheme. The di-
rect wave has been removed.

tion and stacking used may slightly degrade the resolution of
the resulting imaging but can suppress the noise.

N U M E R I C A L E X A M P L E S

Wedge model

A 2D wedge model is now used to evaluate the improve-
ment in the resolution of the proposed imaging technique.
The subsurface velocity model is illustrated in Fig. 9, where a
flat reflector is well separated from the sand wedge to make
it easy to decompose the signal into a reference arrival and
a target reflection. The reflection resulting from the flat re-
flector is taken as the reference arrival. The synthetic data
set is generated using an acoustic finite-difference scheme
(Zhang 2004) with a wavelet with a peak frequency of 20 Hz,
as shown by the solid line in Fig. 10. The high-resolution
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Figure 15 Half-migrated shot gather (a) and the corresponding high-resolution reflection series (b). (b) is obtained by sparse inversion based on
the interferences of the data in (a). The time represents the traveltimes from the source to each depth point at the related lateral position.

imaging obtained by the proposed scheme is shown in Fig. 11,
where the solid-line wedge denotes the interfaces of the sand
wedge. This high-resolution imaging is a common-depth-point
stacked section of eight high-resolution migrated shot gathers
with shots moving from –80 m to 200 m and a shot interval of
40 m. The downward wavefield extrapolation for obtaining
the half-migrated shot gathers is carried out using the explicit
operator scheme (Zhang et al. 2001) with a horizontal spacing
of 20 m and a vertical step of 4.33 m. In contrast, two conven-
tional prestack depth-migration results obtained by the same
explicit operator scheme with the same data set are shown in
Fig. 12, where (a) is obtained using the exact wavelet (solid
line in Fig. 10), and (b) is the result using an approximated
wavelet (dotted line in Fig. 10).

It can be observed in Fig. 11 that the effect of the source
wavelet is almost fully removed and the resolution is signif-
icantly improved. Except for the tip region, the peaks of the

reflection series lie exactly on the interfaces of the sand wedge.
The inaccurate position of the peaks of the reflection series in
the tip region, as shown in Fig. 11, occurs because the down-
ward wavefield extrapolation cannot account for the small-
scale velocity variation in this area in the half-migration pro-
cessing. Although an exact wavelet is used in Fig. 12(a), only
the reflection coefficients with a narrow frequency-band are
obtained as would be expected. This leads to a more ambigu-
ous imaging of the interfaces of the sand wedge than in Fig. 11.
Figure 12(b) shows poorer imaging in spite of a reasonable es-
timation of the source wavelet. Moreover, it can be seen, by
comparing Fig. 11 with Fig. 12, that the coherent noise orig-
inating from the internal multiples is almost fully suppressed
by the proposed high-resolution imaging scheme (owing to the
sparseness constraint). This experiment demonstrates the sig-
nificant improvement in the resolution obtained by using the
proposed scheme.
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Figure 16 High-resolution imaging obtained by the proposed scheme.
In total, 7 shot gathers with shots moving from –120 m to 120 m and a
shot interval of 40 m are applied. The solid lines denote the interfaces
of the three sands.

Multi-thin-sand model

A slightly more complicated 2D synthetic seismic experiment is
designed to test the proposed high-resolution imaging scheme
further. The subsurface velocity model is shown in Fig. 13,
where the maximum thickness of each of the sands is 30 m.
Since research on the decomposition of reflection events (per-
formed, for example, by Radon transform or time-frequency
spectral analysis) is beyond the scope of this paper, we in-
clude a flat reflector well separated from the thin sands, and
do not include other curved reflectors in this model. This
leads to a simple decomposition and muting processing (i.e.
no arrivals need to be muted). Thus, the experiment can fo-

cus on testing the proposed high-resolution imaging scheme.
In practice, when the correct decomposition and the corre-
sponding muting processing are employed, it is possible to re-
duce the realistic structure into an analogue model, as shown
in Fig. 13. The reflection resulting from the flat reflector is
taken as the reference arrival. In total, seven shot records with
shots moving from –120 m to 120 m and a shot interval of
40 m are generated with an acoustic finite-difference scheme
(Zhang 2004). The wavelet used is the same as that used in
the foregoing example, i.e. the solid line shown in Fig. 10,
with a peak frequency of 20 Hz. Thus, the dominant wave-
length of the seismic signals is 110 m in the relevant sands and
170 m in the background medium. A typical shot gather for
the source positioned at x = 0 is shown in Fig. 14, where the
direct wave has been removed. A horizontal spacing of 20 m
and a vertical step of 4.33 m are used in the half-migration
processing.

A half-migrated shot gather and the corresponding high-
resolution reflection series are shown in Fig. 15 for the source
positioned at x = 0 . The explicit operator scheme (Zhang et al.
2001) is used in the half-migration process, and the values µ =
0.006dmax, αmax = 100.0 and αmin = 0.006 are used to obtain
the smoothed and sparse solutions. The common-depth-point
stacked section of a total of seven high-resolution migrated
shot gathers is shown in Fig. 16, where the solid lines denote
the three thin sands. In this figure, we see that the effect of the
source wavelet is almost fully removed and the resolution is
significantly improved. It can also be seen that the peaks of the
reflection series lie exactly on the interfaces of the thin sands
with correct polarity. The internal multiples included in the
shot records explain the fact that the reflection coefficients at
parts of the reflectors are a little lower in Fig. 16.

In contrast, two conventional prestack depth migration re-
sults obtained by the same explicit operator scheme with the
same data set are shown in Fig. 17, where (a) is obtained using
the exact wavelet (solid line in Fig. 10), and (b) is the result us-
ing an approximated wavelet (dotted line in Fig. 10). The flat
bottom of the lowest sand is ambiguous in Fig. 17, whereas a
flat reflector is visible in Fig. 16. Also, the separations of the
sands are clearer in Fig. 16 than in Fig. 17. Compared with the
high-resolution imaging of Fig. 16, the shapes of the sands are
inaccurate in Fig. 17(a) despite the fact that an exact wavelet
is used, and they are even poorer in Fig. 17(b), although a
reasonable estimated wavelet is used. Comparing Fig. 16 with
Fig. 17, we also see that the proposed high-resolution imaging
scheme efficiently suppresses the coherent noise originating
from the internal multiples. These comparisons demonstrate
the quality of the proposed scheme. This experiment shows
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Figure 17 Conventional prestack depth-migration results obtained using the same data set as used in Figure 16. (a) is the result obtained using
the exact wavelet, and (b) is obtained using an approximated wavelet.

that it is possible to use the proposed scheme to image stacked
sheet sand structures.

C O N C L U S I O N S

An imaging technique for improving the resolution of thin lay-
ers has been presented. An interference technique is proposed,
which replaces the imaging process of depth migration by a
least-squares inversion, and a proposed sparse constraint is
introduced for improving the resolution of the resulting imag-
ing. The proposed scheme needs to be used after application of
a decomposition algorithm, e.g. a Radon transform or time-
frequency spectral analysis, which helps to obtain a decom-
posed signal or combined event and to mute reflections result-
ing from reflectors other than the target zone of interest. In
contrast to conventional depth imaging schemes, a reference
arrival, instead of a source wavelet, is required, and in con-

trast to current sparse-spike inversion techniques, a decompo-
sition algorithm, instead of the appraisal deconvolution, has
to be applied in advance. The proposed scheme should be used
following conventional depth imaging if higher resolution is
needed in a target zone, rather than replacing the conventional
imaging schemes for the entire medium.

The good performance of the proposed sparse inversion al-
gorithm has been demonstrated by a computed point-source
response from a model with two closely spaced thin layers un-
der noise-free as well as noisy conditions. Synthetic data sets,
obtained by an acoustic finite-difference method, were used
to test the proposed imaging scheme. The numerical exam-
ples show a significant improvement in resolution when imag-
ing is carried out with the proposed high-resolution scheme,
compared with the imaging obtained by conventional prestack
depth-migration schemes using either an exact or an approx-
imated source wavelet.
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