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ABSTRACT
Interferometric redatuming is a data-driven method to transform seismic responses
with sources at one level and receivers at a deeper level into virtual reflection data with
both sources and receivers at the deeper level. Although this method has tradition-
ally been applied by cross-correlation, accurate redatuming through a heterogeneous
overburden requires solving a multidimensional deconvolution problem. Input data
can be obtained either by direct observation (for instance in a horizontal borehole),
by modelling or by a novel iterative scheme that is currently being developed. The
output of interferometric redatuming can be used for imaging below the redatuming
level, resulting in a so-called interferometric image. Internal multiples from above
the redatuming level are eliminated during this process. In the past, we introduced
point-spread functions for interferometric redatuming by cross-correlation. These
point-spread functions quantify distortions in the redatumed data, caused by internal
multiple reflections in the overburden. In this paper, we define point-spread func-
tions for interferometric imaging to quantify these distortions in the image domain.
These point-spread functions are similar to conventional resolution functions for seis-
mic migration but they contain additional information on the internal multiples in
the overburden and they are partly data-driven. We show how these point-spread
functions can be visualized to diagnose image defocusing and artefacts. Finally, we
illustrate how point-spread functions can also be defined for interferometric imaging
with passive noise sources in the subsurface or with simultaneous-source acquisition
at the surface.
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INTRODUCTION

Subsurface imaging, characterization and monitoring with
seismic wavefields typically rely on the availability of a macro
velocity model. Erroneous velocity information can result in
mispositioning of seismic horizons and defocusing of a seis-
mic image. If the upper section of the subsurface is strongly
heterogeneous, transmitted wavefields can be severely dis-
torted, posing major challenges for seismic data processing.
Bakulin and Calvert (2006) overcame these problems by plac-
ing seismic receivers in a horizontal (or deviated) borehole
below the major complexities in the subsurface. Although
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seismic sources are still physically located at the earth’s sur-
face, they can be redatumed to the receiver level, creating a
virtual-source array at depth. Since the propagation response
between the surface and the borehole is actually recorded,
redatuming can be implemented accurately and without in-
formation on the propagation velocity between the surface
and the borehole. In the last decade, several related data-
driven redatuming methods have emerged in the geophysical
literature, commonly referred to as interferometric (redatum-
ing) methods (Schuster 2009). Typically, interferometric reda-
tuming is based on a cross-correlation formalism (Wapenaar
and Fokkema 2006). However, there are several assumptions
made in the underlying derivations that are not always ful-
filled in practice. Free-surface multiples and intrinsic losses
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are not accounted for (Wapenaar and Fokkema 2006) and
their presence easily results in the occurrence of spurious ar-
rivals (Draganov et al. 2010; Van der Neut 2012). Moreover,
interferometric redatuming is typically applied with one-sided
illumination (i.e., sources above the receivers only), whereas
the original theory is based on omni-sided illumination (i.e.,
sources both above and below the receivers) (Wapenaar and
Fokkema 2006). As shown by Snieder, Wapenaar and Larner
(2006), this violation of the underlying theory can result in
spurious arrivals, even for very simple configurations. In-
stead, interferometric redatuming can be applied by multi-
dimensional deconvolution (Wapenaar et al. 2011), yielding
several important benefits, which will be reviewed later in this
paper.

An interesting feature of interferometric methods is that
full wavefields, including all internal reverberations in the
overburden, are addressed, unlike in conventional (model-
driven) redatuming methods (Berryhill 1984). Recently,
Broggini, Snieder and Wapenaar (2012) and Wapenaar,
Broggini and Snieder (2012) showed how the downgoing and
upgoing wavefields at a target level in the subsurface can
be generated from surface seismic data with the help of a
smooth subsurface background model and a novel iterative
scheme. Alternatively, these responses can be estimated from
an accurate velocity model that includes reflectors. The lat-
ter approach was chosen by Vasconcelos and Rickett (2013),
who utilized the framework for interferometric redatuming
by multidimensional deconvolution to obtain virtual source
and receiver arrays (i.e., extended images) in the subsurface.
Either observed, estimated or modelled data are suitable input
for interferometric redatuming as described in this paper.

Redatumed data can be interpreted as if there were vir-
tual sources and receivers at the redatuming level. When eval-
uated at zero time-lag and zero space-lag, these data can be
interpreted as an image with accurate amplitudes at the reda-
tuming level (Wapenaar et al. 2012a). By including non-zero
space-lags, so-called extended images can be generated (Vas-
concelos and Rickett 2013), being useful input for rock- and
fluid-property estimation (De Bruin, Wapenaar and Berkhout
1990) or migration velocity analysis (Biondi 2010). A supe-
rior seismic image can theoretically be obtained by applying
interferometric redatuming to each depth level in the subsur-
face. However, computing the full Green’s function at each
depth level is computationally very intensive. For this reason,
we prefer to apply redatuming to a selected subsurface level
and proceed with conventional imaging below this level. The
combination of interferometric redatuming and imaging has
been traditionally referred to as interferometric imaging and

we have seen various applications of this concept in the past,
see Schuster (2009) for an overview.

Van der Neut et al. (2011) defined an interferomet-
ric point-spread function for interferometric redatuming by
cross-correlation, which can be interpreted as the radiation
pattern of a virtual source. The interferometric point-spread
function is closely related to the resolution function or mi-
gration point-spread function as commonly defined in seismic
migration (Schuster and Hu 2000). However, whereas the mi-
gration point-spread function is model-driven and includes
only direct wave propagation through the overburden, the
interferometric point-spread function is data-driven and in-
cludes all complexities of the overburden, including internal
reverberations.

So far, the point-spread functions for interferometric re-
datuming and migration have been studied independently. In
this paper, we define a new point-spread function for the spe-
cial case where interferometric redatuming and migration are
integrated, allowing us to diagnose the consequences of vir-
tual source defocusing and internal multiples directly in the
image domain. We have divided the paper into 10 sections,
including an introduction and conclusion section. In section 2,
we show how virtual sources can be generated in a horizontal
or deviated borehole by cross-correlation of up- and down-
going wavefields. Traditionally, we cross-correlate upgoing
waves with downgoing waves, such that the generated virtual
sources radiate downwards (Mehta et al. 2007). However, if
the medium is sufficiently heterogeneous, we can also gen-
erate upward radiating virtual sources by cross-correlation of
multiply reflected downgoing waves with upgoing waves (Van
der Neut et al. 2011). This is illustrated with an example. In
section 3, we highlight several limitations of correlation-based
interferometric redatuming and we demonstrate how some of
these limitations can be mitigated by multidimensional decon-
volution. In section 4, we interpret this mitigation in terms of
the point-spread function for interferometric redatuming that
quantifies the temporal and spatial focus at a virtual source
location. The point-spread function for interferometric reda-
tuming is closely related to the point-spread function or res-
olution function as we find it in seismic migration (Schuster
and Hu 2000), which is formally introduced in section 5. Sim-
ilar relations between interferometry and migration have been
pointed out by Thorbecke and Wapenaar (2007). In section
6, we define a new point-spread function for interferometric
imaging, which is defined as the sequential application of in-
terferometric redatuming to a downhole receiver array and
migration of the redatumed data. This point-spread function
can be visualized for diagnostic purposes, as we demonstrate
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Figure 1 Configuration for interferometric redatuming and imaging.
Sources are located at xS at level ∂DS , above the overburden DS .
Receivers and virtual sources are located at locations xB and xA at
level ∂DA, above the target of our interest DA (but below DS). Surface
receivers at xZ are not necessary for interferometric redatuming. Fi-
nally, xJ is an arbitrary location in the target area of our interest and
W±

p are propagators for the primary wavefield.

in section 7. Finally, we define image-domain point-spread
functions for two special applications. The first application is
for a seismic survey with sources that act simultaneously at the
surface. A common problem with simultaneous-source acqui-
sition is posed by the cross-talk between individual sources.
We show that the point-spread function as described in sec-
tion 6 can be used to quantify this cross-talk in the image
domain. The second application is passive seismic interferom-
etry, where seismic signals are retrieved from ambient noise.
We show that imperfections in the obtained results, stemming
from non-uniform noise source distributions and mutual cor-
relations between individual noise source signatures, can be
diagnosed by our image-domain point-spread function.

INTERFEROMET R I C R EDA T UMI N G BY
CROSS -CORRELA T I ON

Consider the configuration shown in Fig. 1, where x =
(x1, x2, x3)T is a spatial location with superscript T denoting
transposition. In a conventional seismic experiment, sources
and receivers are placed at locations xS and xZ at acqui-
sition level ∂DS (the earth’s surface). To image, character-
ize or monitor the subsurface at a location xJ in the target
zone, the source and receiver wavefields should be propagated
through the overburden, being the medium between the ac-
quisition level and the target. The velocity in the overburden is

generally heterogeneous and should be known to allow accu-
rate wavefield extrapolation.

Assume now that the receivers are not placed at level ∂DS

but in a horizontal borehole at level ∂DA, below the major
complexities in the overburden. The overburden DS is defined
as the part of the medium that is located above ∂DA. The
medium below ∂DA is defined as DA. If a velocity model is
available, source locations can be redatumed from ∂DS to ∂DA

by downward continuation of the source wavefield (Berryhill
1984). However, since the propagation response between lev-
els ∂DS and ∂DA is actually measured by the receivers in the
borehole, redatuming can also be done without a velocity
model. A range of different formulations have been presented
for this purpose (Schuster and Zhou 2006), typically based
on cross-correlation. Most of these formulations can be rep-
resented by the following expression in the frequency-space
domain (indicated by the caret):

Ĉ (xB, xA, ω) =
∫

∂DS

Û (xB, xS, ω) D̂∗ (xA, xS, ω) d2xS . (1)

On the right-hand side, Û (xB, xS, ω) and D̂(xA, xS, ω) are up-
and downgoing wavefields recorded at receivers xB and xA

from source xS . Further, superscript ∗ denotes complex con-
jugation and ω stands for the angular frequency. The integral
is carried out over source locations on ∂DS . On the left-hand
side, Ĉ (xB, xA, ω) represents the correlation function, which is
generally interpreted as the response to a source at xA observed
by a receiver at xB. Alternatively, interferometric redatuming
can be applied in the τ − p domain, as shown by Tao and Sen
(2013) and Ruigrok, Campman and Wapenaar (2011). Note
that several assumptions have to be fulfilled for Ĉ to be an
exact Green’s function (Wapenaar 2006): free-surface multi-
ples should be eliminated, the medium should be sufficiently
heterogeneous to compensate for one-sided illumination and
the medium should be lossless. Further, equation (1) is subject
to a far-field high-frequency approximation (Wapenaar and
Fokkema 2006). The latter can be circumvented by rewriting
the integrand in equation (1) in terms of pseudo-differential
operators (Zheng 2010).

Interferometric redatuming of decomposed fields is
demonstrated with the following synthetic sub-salt imaging
example. We use the acoustic Sigsbee 2B velocity model,
as introduced by Paffenholz et al. (2002), inspired by the
Sigsbee Escarpment Province in the Gulf of Mexico, see
Fig. 2(a). In Fig. 2(b) we show an image that was obtained
with one-way shot-profile migration from seismic data with
monopole sources and receivers for pressure at the surface
(Thorbecke, Wapenaar and Swinnen 2004). The imaging
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Figure 2 a) The Sigsbee 2B subsurface
model. For imaging from the surface, sources
and receivers cover the earth’s surface over
the complete length of the model. For in-
terferometric imaging, the source and re-
ceiver arrays are indicated by red and black
solid lines, respectively. b) Image obtained
from surface seismic data. The black dashed
square indicates the target area.
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Figure 3 a) Local velocity model of the target area. b) Image of the target area obtained from physical sources and receivers at the surface. The
white arrow indicates an artefact.

condition is based on deconvolution. We zoom in on a target
area that is indicated by the dashed black lines. The medium
inhomogeneities in the target area are shown in Fig. 3(a). In
Fig. 3(b) we show the corresponding image, obtained from
the surface data. Several artefacts can be identified, such as
the one indicated by the white arrow. Such an event is related
to internal scattering from the salt body, as pointed out by
Thorbecke et al. (2004).

To generate physical downhole synthetic data, we change
the acquisition geometry by placing 128 sources at the sur-
face and 128 receivers in a horizontal borehole below the salt
body, see Fig. 2(a). Gaussian noise has been added to the in-
put data (with a signal-to-noise ratio of 5 dB). For several
applications that are discussed below, it is critical to separate
the wavefields into upgoing and downgoing constituents. In
practice, it is often not so trivial to decompose the wavefields,
which can severely limit the accuracy when interferometric
redatuming is applied to field data, see Mehta et al. (2010)
for examples. In this example, we decompose the wavefields
by inversion, using sparsity promotion in the curvelet domain
(Van der Neut and Herrmann 2013). It can be shown that
the constructed correlation function Ĉ can be interpreted as
a band-limited version of the Green’s function with a virtual
source emitting a downgoing field at xA and a receiver sensing

an upgoing field at xB (Van der Neut et al. 2011). The re-
sponse to these virtual sources can be used to image the target
area below the receiver array in the borehole, indicated by the
solid black line in Fig. 2(a). An image is obtained by applying
the adjoint of the Born scattering operator to the redatumed
data (Plessix and Mulder 2004), see Fig. 4(a). We observe
that the resolution is lower than in Fig. 3(b). This is because
the redatumed data contain the imprint of the auto-correlated
source wavelet. If this wavelet is known, the image can be
improved by deconvolution with the source auto-spectrum
before imaging, see Fig. 4(b). Note that various artefacts that
pollute Fig. 3(b) are not observed in Fig. 4(a,b). However, a
different artefact is identified by the white arrow in Fig. 4(a),
which is also a result from internal scattering from the salt
flank. Finally, it should be emphasized that Fig. 3(b) depends
on the velocity model of the overburden. Obtaining such a
model is not trivial and errors in this model can severely dis-
tort the image. Contrary to that, the images in Fig. 4(a,b) are
independent of velocity information above the borehole.

We can also generate virtual sources that radiate up-
wards. This is effectively achieved by interchanging the up-
going and downgoing fields in expression (1):

Ĉ (xB, xA, ω) =
∫

∂DS

D̂(xB, xS, ω) Û∗ (xA, xS, ω) d2xS . (2)
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(b) Figure 4 a) Image of the target area ob-
tained from virtual source data by cross-
correlation a) without and b) with source
signature deconvolution. Virtual sources
and receivers are located in the horizontal
borehole at 6.1 km depth. Note the ref-
erence reflector at 8.3 km depth that can
also be seen in Fig. 3(a).
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Figure 5 a) Local velocity model and b) image from virtual source data in a target area above the horizontal borehole. Virtual sources and
receivers are located in the borehole at 6.1 km depth.

The causal part of the constructed correlation function Ĉ can
now be interpreted as the response to a source emitting an
upgoing field at xA, arriving as a downgoing field at xB (Van
der Neut et al. 2011). Note that the primary illumination,
to create such a virtual source, comes from scattered wave-
fields and therefore the success of this method strongly de-
pends on the heterogeneity of the medium below the receivers
(Wapenaar 2006). Since the constructed virtual sources radi-
ate upwards, they can be used for imaging the medium above
the borehole. In Fig. 5(a) the true perturbations in a target area
above the borehole in Fig. 2(a) are shown. Figure 5(b) shows
an image from upward radiating virtual sources, illuminat-
ing the salt flank ‘from below’. The salt flank, several layers
and the point diffractors can be recognized. A similar con-
cept was demonstrated by Vasconcelos, Snieder and Hornby
(2008), using velocity-filtered fields in deviated boreholes. If
surface seismic data are available, virtual sources that radiate
upwards can also be constructed by combining the reflection
responses at the surface with the downhole transmission re-
sponse. This idea was proposed by Poliannikov (2011) and
can be interpreted as a special application of source-receiver
interferometry (Curtis and Halliday 2010). Poliannikov,
Rodenay and Chen (2012) demonstrated how this method-
ology can be used to image a subducting crust from below.

Bakulin et al. (2007b) applied interferometric redatuming
using receivers in horizontal boreholes for reservoir imaging
and monitoring. Del Molino et al. (2011) applied a similar
concept to remove ice-plate flexural noise from seismic data
by redatuming sources from their actual locations on top of
an ice plate in Alaska to receiver locations below the ice at
the ocean floor. Interferometric redatuming can also be ap-
plied in vertical or deviated boreholes. By using diving waves
or multiple scattering, steep targets can be illuminated under
angles that are unseen in conventional processing. Willis et al.

(2006) utilized this concept for imaging salt flanks. Similar
studies were presented by Hornby and Yu (2007) and He et al.

(2009). Others imaged steep dikes (Brand, Hurich and Deemer
2013) or faults (Chavarria et al. 2007) with virtual sources
from vertical boreholes. If receivers xA and xB are located in
different boreholes, interferometric redatuming results in so-
called virtual crosswell data, which can be interpreted as the
response to a virtual source in one borehole, observed by a
receiver in the other borehole (Mehta et al. 2010). Byun, Yu
and Seol (2010) generated virtual crosswell data from down-
hole receivers in horizontal boreholes for CO2-sequestration
monitoring. Interferometric redatuming has been applied to
ocean-bottom cable (OBC) data to improve source repeata-
bility in time-lapse experiments (Mehta et al. 2008). In this

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 63, 1033–1049



1038 J. van der Neut and K. Wapenaar

case, sources are redatumed from the water surface to re-
ceivers at the ocean floor. By exploiting multi-component
measurements, virtual vertical and horizontal stress-sources
can be generated at ocean-bottom receiver locations (Gaiser
and Vasconcelos 2010). Similar concepts have been applied
for generating virtual S-wave sources in boreholes from P-
wave sources at the surface, see Bakulin et al. (2007a) and
Gaiser et al. (2012) for applications. Finally, various authors
have shown that equation (1) can be applied to surface data
by choosing ∂DA = ∂DS . This approach turned out useful for
interpolation of seismic wavefields. Wang, Luo and Schuster
(2009) cross-correlated streamer data with observed Green’s
functions to interpolate near-offsets. Konstantaki et al. (2013)
applied a similar idea to improve seismic imaging of scatter-
ers in landfills. To suppress artefacts, it can be useful to use
modelled Green’s functions of well-known reflectors for the
cross-correlation process, see Wang, Dong and Luo (2010)
and Hanafy and Schuster (2014). For an overview of these
and related applications, see Ramı́rez and Weglein (2009).
Care should be taken, since most applications for surface data
require the evaluation of incomplete source integrals. A po-
tential way to handle such incompleteness is interpolation in
the correlation gather, as suggested by Poliannikov and Willis
(2011). Interferometric responses at the surface tend to be
overwhelmed by surface waves (Forghani and Snieder 2010).
This observation has led to numerous applications for surface-
wave retrieval and subtraction of these retrieved waves from
exploration data (Halliday et al. 2007).

INTERFEROME T R I C R EDA T UMI N G BY
MULTIDIMENSI ON A L D EC ON V OL UT I ON

For a variety of reasons, interferometric redatuming by cross-
correlation does not always give an optimal result. It has al-
ready been mentioned that intrinsic losses should be negligible
and that a far-field approximation be applied (Wapenaar and
Fokkema 2006). Moreover, the free surface has not been ac-
counted for and surface-related multiples should be removed
prior to redatuming (Van der Neut 2012). Finally, the method
is generally applied with one-sided illumination, which can be
compensated only if the medium is sufficiently heterogeneous
below the receiver level (Wapenaar 2006). Depending on the
configuration, spurious events can populate the retrieved gath-
ers (Snieder et al. 2006). Some non-physical arrivals can con-
tain useful information, as has been demonstrated by various
authors. Draganov et al. (2010) utilized such arrivals to es-
timate intrinsic attenuation. King, Curtis and Poole (2011)
used them for velocity analysis. Dong, Sheng and Schuster

(2006) and Mikesell et al. (2009) studied the virtual refrac-
tion, a spurious event that has later been used for downhole
reservoir monitoring (Tatanova, Mehta and Kashtan 2009).
King and Curtis (2012) convolved interferometric data with a
Green’s function to turn spurious events into physical events.
A similar concept can be applied to virtual refractions to
enhance first arrivals in seismic gathers (Bharadwaj et al.

2011).
Multidimensional deconvolution has been introduced as

a tool to remove spurious events from the retrieved responses
(Wapenaar et al. 2011) and to improve virtual source repeata-
bility (Van der Neut 2012). This approach is based on a for-
ward problem that can be represented in the frequency-space
domain as:

Û (xB, xS, ω) =
∫

∂DA

Ĝ0 (xB, xA, ω) D̂(xA, xS, ω) d2xA. (3)

Note that the integral in equation (3) is over the receiver
array ∂DA, whereas the integral in equation (1) is over the
source array ∂DS . The integrand contains the convolution
of the unknown Green’s function Ĝ0 and the downgoing
field D̂. The left-hand side contains the upgoing field Û.
The unknown Green’s function has to be retrieved from
equation (3) by inversion. The retrieved Green’s function
Ĝ0 contains no contributions from the part of the medium
above the receiver array. It is as if the virtual experiment
were conducted in a medium with an infinite homogeneous
half-space above the receiver level. This special property of
Ĝ0 is well exploited in related applications for free-surface
multiple elimination that are based on a similar formalism
(Amundsen 2001).

Interferometric redatuming by multidimensional decon-
volution involves the inversion of equation (3). This process
should not be confused with interferometric redatuming by
single-trace deconvolution, as presented by Vasconcelos and
Snieder (2008). Although both processes enjoy various simi-
lar advantages, the underlying representations are essentially
different. Interferometry by single-trace deconvolution is gen-
erally described as a summation process of deconvolved traces,
whereas interferometry by multidimensional deconvolution is
a multi-trace inversion process.

Since solving equation (3) is an ill-posed problem without
a unique solution, we generally solve this problem either by
least-squares inversion (Van der Neut et al. 2011), singular-
value decomposition (Minato et al. 2011) or sparse inversion
(Van der Neut and Herrmann 2013). We apply multidimen-
sional deconvolution to the synthetic example that was dis-
cussed in the previous section. In Fig. 6, we show the migrated
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Point-spread functions for interferometric imaging 1039

Horizontal location (km)

V
er

tic
al

 lo
ca

tio
n 

(k
m

)

11 12 13 14 15

6.1

7.1

8.1

Figure 6 Image of the target area obtained from virtual source data
by multidimensional deconvolution. Virtual sources and receivers are
located in the horizontal borehole at 6.1 km depth. Note the reference
reflector at 8.3 km depth that can also be seen in Fig. 3(a).

image that was obtained after interferometric redatuming by
multidimensional deconvolution. We observe that the image
is free of artefacts that stem from internal multiple reflections
and that the resolution has improved to some extent.

A POINT-SPREAD FUNCTION FOR
INTERFEROMET R I C R ED A T UM I N G

It can be shown theoretically that the least-squares solution
of equation (3) obeys the normal equation (Menke 1989; Van
der Neut et al. 2011) that can be written as:

Ĉ(xB, x′
A, ω) =

∫
∂DA

Ĝ0(xB, xA, ω)�̂I (xA, x′
A, ω)d2xA, (4)

where x′
A is introduced as another receiver location in array

∂DA and subscript I stands for ‘Interferometric’. The left-hand
side contains the correlation function Ĉ, as defined in equation
(1), with xA replaced by x′

A. The right-hand side contains the
interferometric point-spread function �I that is defined as:

�̂I (xA, x′
A, ω) =

∫
∂DS

D̂(xA, xS, ω)D̂∗(x′
A, xS, ω)d2xS . (5)

According to equation (4), the correlation function Ĉ can be
interpreted as a multidimensional convolution of the desired
Green’s function Ĝ0 with the point-spread function �̂I . The
point-spread function can be interpreted as the source func-
tion of the retrieved data, when interferometric redatuming
is applied by cross-correlation. This is illustrated for the ex-
ample that we discussed before. In Fig. 7(a), we show the
point-spread function for a virtual source in the centre of the
array. We observe clearly that the virtual source is focused at
zero time-lag. However, we also observe several events at non-

zero time-lags, due to free-surface and internal multiples in the
downgoing wavefield. By inverting equation (4), we remove
these internal multiples from the redatumed data. In Fig. 7(b),
we show the point-spread function at the same virtual source
location in the frequency-wavenumber domain. This repre-
sentation can be interpreted as the radiation pattern of the
virtual source, which can be used to diagnose virtual source
defocusing.

A POINT-SPREAD FUNCTION FOR S EISMIC
MIGRATION

Consider that we know the Green’s function Ĝ0 (xB, xA, ω)
at level ∂DA. This Green’s function can be interpreted by the
following primary forward model (Wapenaar and Berkhout
1993):

Ĝ0 (xB, xA, ω) ≈
∫

DA

Ŵ−
p (xB, xJ , ω) R̂ (xJ , ω)

×Ŵ+
p (xJ , xA, ω) d3xJ . (6)

Here, Ŵ+
p (xJ , xA) and Ŵ−

p (xB, xJ ) are downward (superscript
+) and upward (superscript −) extrapolators of the primary
(subscript p) wavefield from the virtual acquistion surface
∂DA to potential reflection points xJ in the target area and
vice versa. These operators can be computed from a back-
ground velocity model of the target area or from the reflec-
tion data itself, as in Common Focal Point (CFP) technol-
ogy (Berkhout 1997; Thorbecke 1997). The reflection oper-
ator R̂ (xJ , ω) characterizes the angle-dependent reflectivity
at location xJ (De Bruin et al. 1990). The integral is car-
ried out over volume DA below the acquisition level ∂DA (see
Fig. 1).

Seismic migration can be interpreted as a double focusing
operation followed by a summation over the range of avail-
able frequencies �. Following this interpretation, the migrated
data MG at location x′

J in the target area can be obtained as
(Berkhout and Wapenaar 1993):

MG

(
x′

J

) =
∫

�

∫
∂DA

∫
∂DA

{Ŵ+
p (x′

J , xB, ω)}∗Ĝ0(xB, xA, ω)

×{Ŵ−
p (xA, x′

J , ω)}∗d2xAd2xBdω. (7)

By substituting equation (6) into equation (7), it can be
shown that migration yields a blurred image of the reflection
operator:

MG(x′
J ) ≈

∫
�

∫
DA

R̂(xJ , ω)�̂M(xJ , x′
J , ω)d3xJ dω, (8)
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Figure 7 Point-spread function for a virtual source in the centre of the array ∂DA in a) the time-space domain and b) the frequency-wavenumber
domain.

where �̂M(xJ , x′
J ) is the migration point-spread function

(Schuster and Hu 2000) (also known as the resolution
function):

�̂M(xJ , x′
J , ω) =

∫
∂DA

∫
∂DA

{Ŵ+
p (x′

J , xB, ω)}∗Ŵ−
p

(
xB, xJ , ω

)
×Ŵ+

p (xJ , xA, ω){Ŵ−
p (xA, x′

J , ω)}∗d2xAd2xB. (9)

Subscript M stands for ‘Migration’. An image can also be
obtained by inversion of the forward model. By doing that,
we effectively deconvolve the migration point-spread function
from the migrated data. This approach has been referred to
as image restoration (Berkhout and Wapenaar 1993).

A POINT-SPREAD FUNCTION FOR
INTERFEROMET R I C IMA GI N G

When interferometric redatuming and imaging are sequen-
tially applied, we refer to the result as an interferometric
image. In the following, we consider the case where the cor-
relation function Ĉ (xB, xA, ω) is retrieved by evaluation of
equation (1) and interpreted as the reflection response as if
there were a source at xA and a receiver at xB. This corre-
lation function is migrated in the target zone DA (see Fig. 1).
Analogous to equation (7), we interpret such a migrated image
as:

MC(x′
J ) =

∫
�

∫
∂DA

∫
∂DA

{Ŵ+
p (x′

J , xB, ω)}∗Ĉ(xB, x′
A, ω)

×{Ŵ−
p (x′

A, x′
J , ω)}∗d2x′

Ad2xBdω. (10)

By substituting equations (4) and (6) into equation (10), it
follows that:

MC(x′
J ) ≈

∫
�

∫
DA

R̂(xJ , ω)�̂I M(xJ , x′
J , ω)d3xJ dω, (11)

with

�̂I M(xJ , x′
J , ω) =

∫
∂DA

∫
∂DA

{Ŵ+
p (x′

J , xB, ω)}∗Ŵ−
p (xB, xJ , ω)

×
[ ∫

∂DA

Ŵ+
p (xJ , xA, ω)�̂I (xA, x′

A, ω)d2xA

]

×{Ŵ−
p (x′

A, x′
J , ω)}∗d2x′

Ad2xB. (12)

From equation (11) it can be concluded that the interferomet-
ric image is not blurred by �̂M but by �̂I M, carrying an addi-
tional imprint of the interferometric point-spread function �̂I .
We refer to �̂I M as the interferometric migration point-spread
function. This point-spread function can be used to diagnose
the resolution of an interferometric image, as is illustrated in
the following section.

ILLUMINATION DIAGNOSIS IN THE IMAGE
D O M A I N

The theory that was derived in the previous section can be
used for illumination diagnosis in the image domain. For il-
lustrative purposes, we consider the synthetic Sigsbee model
example that was discussed in the previous sections. In Fig.
4(a), we show an image of the target area that was obtained
from cross-correlated data Ĉ. To diagnose the interferometric
migration point-spread function for this problem, a grid of
point scatterers is added to a smooth version of the velocity
model of the target area DA below the receivers, see Fig. 8(a).
These point scatterers represent trial image points. Our aim is
to analyse the migration point-spread function and the inter-
ferometric migration point-spread function at these trial image
points. First, we assume that physical sources are located in
the borehole at the positions of the receivers. We compute
Green’s functions Ĝδ (xB, xA, ω) for the medium with point
scatterers, where xA and xB are source and receiver locations
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Figure 8 a) Background velocity model of the target area with an additional grid of point scatterers. b) Image of the point scatterers obtained
with physical sources in the horizontal borehole.

in the borehole. In practice, the Green’s function is replaced
by a band-limited version P̂δ = ŜĜδ, where Ŝ is the Fourier
transform of a wavelet. We assume that the reflectivity of the
background medium with point scatterers can be described as
a superposition of delta functions, where absolute amplitudes
are not considered:

R̂δ (xJ , ω) ≈
∑

n

δ(xJ − xn). (13)

In this expression, n is the index of the point-scatterer and xn

is its location. The Green’s function Ĝδ can be explained by a
primary forward model, analogous to equation (6):

Ĝδ (xB, xA, ω) ≈
∫

DA

Ŵ−
p (xB, xJ , ω) R̂δ (xJ , ω)

Ŵ+
p (xJ , xA, ω) d3xJ . (14)

We migrate the response Ĝδ, analogous to equation (7), that
is

MGδ(x
′
J ) =

∫
�

∫
∂DA

∫
∂DA

{Ŵ+
p (x′

J , xB, ω)}∗Ĝδ(xB, xA, ω)

×{Ŵ−
p (xA, x′

J , ω)}∗d2xAd2xBdω. (15)

In Fig. 8(b), we show the image MGδ for the Sigsbee ex-
ample with physical sources and receivers in the borehole. To
interpret this result, we substitute equations (13) and (14) into
equation (15), yielding:

MGδ(x
′
J ) ≈

∑
n

∫
�

∫
∂DA

∫
∂DA

{Ŵ+
p (x′

J , xB, ω)}∗Ŵ−
p (xB, xn, ω)

×{Ŵ+
p (xn, xA, ω){Ŵ−

p (xA, x′
J , ω)}∗d2xAd2xBdω.(16)

Or, with the help of equation (9):

MGδ(x
′
J ) ≈

∑
n

∫
�

�̂M(xn, x′
J , ω)dω. (17)

Thus, MGδ can be interpreted as a superposition of blurred
image points xn, where the blurring is quantified by �̂M. This
type of image can be used to diagnose the illumination con-
ditions in the image domain. In Fig. 8(b), the image points
are relatively well focused, except at the edges of the image
domain. Note that the image contains an additional imprint
of the wavelet Ŝ, since we used P̂δ instead of Ĝδ for this anal-
ysis. In Fig. 8(b), we visualized the illumination of trial image
points by physical sources in the borehole. Next, we will re-
peat this experiment for the interferometric data, generated
from physical sources at the surface and virtual sources in the
borehole.

To simulate how the trial image points would be illu-
minated by virtual sources, we convolve Ĝδ with the inter-
ferometric point-spread functions that were observed from
physical sources at the surface, analogous to equation (4):

Ĉδ(xB, x′
A, ω) =

∫
∂DA

Ĝδ (xB, xA, ω) �̂I (xA, x′
A, ω)d2xA. (18)

The correlation function Ĉδ is migrated, as in equation (10),
yielding:

MCδ(x
′
J ) =

∫
�

∫
∂DA

∫
∂DA

{Ŵ+
p (x′

J , xB, ω)}∗Ĉδ(xB, x′
A, ω)

×{Ŵ−
p (x′

A, x′
J , ω)}∗d2x′

Ad2xBdω. (19)

By substitution of equations (18), (13) and (14) into equation
(19), it follows that:

MCδ(x
′
J ) ≈

∑
n

∫
�

∫
∂DA

∫
∂DA

{Ŵ+
p (x′

J , xB, ω)}∗Ŵ−
p (xB, xn, ω)

×
[ ∫

∂DA

Ŵ+
p (xn, xA, ω)�̂I (xA, x′

A, ω)d2xA

]

×{Ŵ−
p (x′

A, x′
J , ω)}∗d2x′

Ad2xBdω. (20)
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Figure 9 a) Image of the point scatterers obtained with virtual sources retrieved by a) cross-correlation and b) multidimensional deconvolution.

Or, with the help of equation (12):

MCδ(x
′
J ) ≈

∑
n

∫
�

�̂I M(xn, x′
J , ω)dω. (21)

Thus, MCδ can be interpreted as a superposition of blurred trial
image points, where the blurring is quantified by the interfero-
metric migration point-spread function �̂I M. The constructed
image MCδ for the Sigsbee example (with illumination by vir-
tual sources in the borehole, being constructed from physical
sources at the surface) is shown in Fig. 9(a). Note that illumi-
nating the image points with virtual sources results in stronger
blurring than illuminating them with physical sources in the
borehole. The image points at the right side of the grid in
Fig. 9(a) have a stronger imprint than those at the left side,
which is consistent with our observation that the right side of
the borehole has been under-illuminated.

Finally, the effects of multidimensional deconvolution are
analysed. For this purpose, we repeat the procedure with
a point-spread function that is deconvolved by itself (with
regularization). The result is shown in Fig. 9(b). Note that
the imprint of �̂I has been largely removed. As a result,
the interferometric image has improved, as we have seen in
Fig. 6.

In this example, the image points have been illuminated
well, such that multidimensional deconvolution could be ap-
plied. This is not always the case. In some situations, the point-
spread functions have strong directional imprints and cannot
be inverted due to notches in the illuminated spectrum. The
interferometric migration point-spread function can be used
to analyse such directivity, see Loureiro et al. (2012) for an ex-
ample. Alternatively, this imprint can be analysed by singular
value decomposition of the matrix that defines convolution
with the downgoing field in the forward problem of multi-
dimensional deconvolution (equation (3)). Poor illumination
leads to a large number of zeros among the singular values,

making the inverse problem poorly conditioned, see Minato,
Matsuoka and Tsuji (2013) for an illustration.

It should be emphasized that illumination diagnosis in
the image domain can be carried out without velocity infor-
mation from the overburden. We could replace the grid of
point scatterers by any other object to analyse how such an
object would be imaged by physical sources or virtual sources.
Lecomte (2008) and Toxopeus et al. (2008) showed that seis-
mic images can be simulated by filtering a geological model
with the migration point-spread function. In a similar way,
interferometric images can be simulated by filtering a geo-
logical model with the interferometric migration point-spread
function.

A POINT-SPREAD FUNCTION FOR
S I M U L T A N E O U S - S O U R C E A C Q U I S I T I O N

The last decade has seen an increasing popularity of
simultaneous-source (or blended) acquisition (Berkhout
2008). Overlapping sources can decrease acquisition time
(Hampson, Stefani and Herkenhoff 2008) and speed-up com-
putational processes (Neelamani et al. 2010). Wapenaar, Van
der Neut and Torbecke (2012) presented the following for-
ward model for simultaneous-source acquisition:

Û0(xB, σ
(m)
S , ω) =

∫
∂DA

Ĝ0(xB, xA, ω)B̂(xA, σ
(m)
S , ω)d2xA. (22)

In this representation, Û0(xB, σ
(m)
S , ω) is the upgoing

wavefield from a source group σ
(m)
S that is recorded at xB,

where both σ
(m)
S and xB are located at the earth’s surface,

which we define here as ∂DA. We assume that the medium
has no free surface, which is indicated with subscript 0. In
equation (22), Û0 is described as a multidimensional convolu-
tion of the Green’s function Ĝ0 (xB, xA, ω) with a single source
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(b) Figure 10 a) Density model for the synthetic
example. The red circles denote trial image
points and the blue rectangle denotes an area
where passive locations are situated in a later
example. b) Blended shot record, where 451
sources are fired simultaneously with excita-
tion times varying randomly between 0–2 s.
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(b) Figure 11 Image of a) the subsurface and
b) the trial image points, obtained by
sequential-source acquisition.

at xA and a receiver at xB (both located at the acquisition sur-
face) with the blending function:

B̂(xA, σ
(m)
S , ω) =

∑
a∈σ

(m)
S

exp
(− jωt(a)

)
δ(xA − x(a)

A ). (23)

Here, σ
(m)
S denotes groups of simultaneous sources, with

m being the source group number. Each source group con-
tains several individual sources, indicated by index number a.
Each individual source is fired at a specific location x(a)

A with
a specific delay time t(a). Wapenaar et al. (2012) showed that
equation (22) is closely related to the forward model that we
presented in equation (3). This can be easily verified by choos-
ing ∂DA in equation (3) just below the acquisition surface in a
medium that is homogeneous above this surface, such that the
downgoing field can be represented directly by the blending
function. Following similar reasoning as we applied to equa-
tion (3), we find that normal equation (4) is satisfied, with the
correlation function:

Ĉ(xB, x′
A, ω) =

∑
m

Û0(xB, σ
(m)
S , ω)B̂∗(x′

A, σ
(m)
S , ω) (24)

and the interferometric point-spread function:

�̂I (xA, x′
A, ω) =

∑
m

B̂(xA, σ
(m)
S , ω)B̂∗(x′

A, σ
(m)
S , ω). (25)

The cross-correlated data Ĉ are often referred to as
pseudo-deblended data (Mahdad, Doulgeris and Blacquière
2011). From equation (4), we can see that the pseudo-
deblended data inherit an imprint of �̂I , causing undesired
effects that are often referred to as cross-talk.

Normal equation (4) can be used to predict the cross-
talk from simultaneous-source acquisition when pseudo-
deblending is applied. We will illustrate this concept with a
synthetic example. In Fig. 10(a), we show the density model,
where the grey colour corresponds to 1500 kg/m3 and the
black colour to 2000 kg/m3. For convenience, the velocity is
kept constant at 2000 m/s. At the surface, 451 sources and
451 receivers are deployed with 10 m spacing. We model and
migrate the data with conventional sequential-source acqui-
sition, see Fig. 11(a). Next, we repeat the experiment for an
extreme case of simultaneous-source acquisition by blending
all 451 sources in a single record of 4 s, with excitation times
varying randomly between 0–2 s. The blended shot record is
shown in Fig. 10(b). We apply pseudo-deblending with equa-
tion (24) and migrate the result, see Fig. 12(a). Note that
the cross-talk manifests itself mostly as background noise,
whereas the two reflectors that exist in the model can still be
recognized well.

Remember from equation (11) that the image in Fig. 12(a)
should be interpreted as a convolution of the true reflectivity
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(b)Figure 12 Image of a) the subsurface and
b) the trial image points, obtained by
simultaneous-source acquisition

Figure 13 Configuration for passive interferometric imaging. Noise
sources are located at xS inside the volume DA. Receivers are located
at xA and xB at the surface, where receiver xA is transformed into
a virtual source. The retrieved data are connected to the reflection
operator R at image point xJ through the downward and upward
propagators for primaries W±

p .

with the interferometric migration point-spread functions. To
visualize these point-spread functions, we model the reflection
response from a grid of point scatterers that are indicated by
red circles in Fig. 10(a), representing trial image points. An
image of these point scatterers with sequential-source acqui-
sition is shown in Fig. 11(b). This result should be interpreted
as a superposition of the migration point-spread functions at
the trial image points under sequential-source acquisition. We
repeat the experiment but prior to migration we convolve the
Green’s functions with the point-spread functions for pseudo-
deblending as computed with equation (25). The result, shown
in Fig. 12(b), should be interpreted as a superposition of
the interferometric migration point-spread functions at the
trial image points under simultaneous-source acquisition. It is
clear that the cross-talk produces incoherent noise above and
below the image points, whereas the image points themselves
are still properly focused.

To remove the imprint of the simultaneous-source ac-
quisition is not trivial. One approach is to remove the cross-
talk by prediction-and-subtraction (Mahdad et al. 2011). Al-

ternatively, the forward problem can be inverted. Unfortu-
nately, this inverse problem is underdetermined and additional
sparseness or coherency constraints should be imposed to ob-
tain a stable solution (Neelamani et al. 2010). In the special
case where the source groups are small and contain adjacent,
densely sampled sources, deblending can be implemented by
least-squares inversion if an additional spatial filter is applied
(Wapenaar et al. 2012b).

A POINT-SPREAD FUNCTION FOR PASS IVE
SE ISMIC INTERFEROMETRY

Claerbout (1968) showed that auto-correlating the transmis-
sion response at the surface of a single noise source below a
set of reflectors in a 1D medium provides a 1D reflection
response. Wapenaar and Fokkema (2006) generalized this
concept. They derived that the reflection response of a 3D het-
erogeneous medium can be retrieved by cross-correlating sur-
face recordings of simultaneously-acting uncorrelated noise
sources in the subsurface. The theory has been tested numer-
ically and has been applied to exploration-scale field data
(Draganov et al. 2009). Others applied a similar methodology
for imaging crustal-scale discontinuities (Poli, Campillo and
Pedersen 2012). Several studies have pointed out that ambi-
ent noise fields are often directive, causing complications for
Green’s function retrieval (Weaver, Froment and Campillo
2009). Various correctional filters have been proposed to re-
move the imprint of non-isotropic source distributions, see
Curtis and Halliday (2010) and Gallot et al. (2012) for
examples.

Alternatively, passive interferometry can be interpreted
as an inverse problem that can be solved by multidimen-
sional deconvolution (Wapenaar, Van der Neut and Ruigrok
2008) or sparse inversion (Van Groenestijn and Verschuur
2010). The configuration for this problem is shown in
Fig. 13. Unlike in conventional interferometric redatuming
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(b) Figure 14 a) Image of the subsurface ob-
tained by passive interferometry. b) Image
of a grid of point scatterers when illumi-
nated by virtual sources (obtained by pas-
sive interferometry in the physical medium).
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(a) (b) Figure 15 a) Reference medium with two
horizontal reflectors. b) Image of the refer-
ence medium when illuminated by virtual
sources (obtained by passive interferometry
in the physical medium).

(see Fig. 1), the sources are located inside the integration vol-
ume DA. Moreover, the source locations are generally un-
known, source signatures can be complex and sources can be
acting simultaneously. To allow multidimensional deconvo-
lution for this specific configuration, it is required to define a
reference medium (indicated with subscript 0), which is iden-
tical to the physical medium, with the free surface replaced by
a homogeneous half-space above ∂DA (i.e., absorbing bound-
aries). Wapenaar et al. (2008) derived the following forward
model for this situation:

V̂ (xB, ω) − V̂0 (xB, ω)=
∫

∂DA

Ĝd (xB, xA, ω) P̂0 (xA, ω) d2xA.(26)

In this model, V̂ (xB, ω) is the recorded particle velocity
response at sensor xB at the earth’s surface from a collec-
tion of noise sources in the subsurface, whereas V̂0 (xB, ω) and
P̂0 (xA, ω) are the particle velocity and pressure responses that
would be recorded in the absence of a free surface. Note that
these fields are the result of an arbitrary selection of noise
sources throughout the subsurface that may or may not be si-
multaneously acting with possibly complex signatures. Hence,
the dependence on source location xS can no longer be spec-
ified. Further, Ĝd (xB, xA) is the desired Green’s function in a
medium with a free surface, as if there were a dipole (indi-
cated by subscript d) virtual source at xA at the surface and a
receiver at xB. The normal equation (4) is once more satisfied

(where Ĝ0 should be replaced by Ĝd), with the correlation
function:

Ĉ(xB, x′
A, ω) = [V̂ (xB, ω) − V̂0 (xB, ω)]P̂∗

0 (x′
A, ω) (27)

and the interferometric point-spread function:

�̂I (xA, x′
A, ω) = P̂0 (xA, ω) P̂∗

0 (x′
A, ω). (28)

In practice, long ensemble averages of noise are eval-
uated to capture sufficient noise sources in the subsurface.
The pressure response P̂0 can be estimated from V̂0 through
P̂0 ≈ V̂0 (where amplitude-versus angle characteristics are
not preserved). However, in practice it is hard to estimate
V̂0, since the data without free surface cannot be recorded.
Wapenaar et al. (2008) suggested to separate V̂0 by time-gating
the first arrivals in raw passive recordings. However, this ap-
proach cannot be applied if noise sources are acting simulta-
neously. For this reason, Van der Neut (2012) suggested to
cross-correlate the full recordings V̂ and to interpret the con-
tributions around zero time-lag as �̂I and the contributions
at causal time-lags as Ĉ. In this paper, we go one step further
by interpreting the full cross-correlated wavefield both as �̂I

and Ĉ. This means that inversion of normal equation (4) is no
longer possible. This can easily be seen, since such an inversion
would lead to a trivial solution Ĝ (xB, xA, ω) = δ̂ (xB − xA),
being a Dirac delta function. However, this approach still
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(b)Figure 16 a) Image as in Fig. 15(b), where the
physical medium (as in Fig. 10 a) is used as a
reference medium. b) Result after subtracting
the image in Fig. 16(a) from the image in Fig.
14(a).

allows us to analyse the interferometric migration point-
spread function in the image domain in some situations.

To illustrate the use of the previous representations, we
place 100 simultaneously acting noise sources that are active
for 10 minutes in a local area of 100 m x 100 m, which
is indicated by the blue box in Fig. 10(a). Finite-difference
modelling is conducted with the help of a software package
that was developed by Thorbecke and Draganov (2011). Data
are collected at the surface, cross-correlated and migrated,
yielding the image in Fig. 14(a). Note that no time-gating was
applied. Hence, the cross-correlated data contain not only
reflections stemming from correlations of V̂ and V̂0 but also
correlations of V̂0 and V̂0. Since the recording times are short
and the sources are distributed very locally in this example, the
interferometric image is far from perfect and various artefacts
can be identified. Note for instance the ghost image of the
lowest reflector, being caused by so-called spurious arrivals
(Snieder et al. 2006).

We visualize the interferometric migration point-spread
functions by convolving the retrieved data (representing the
interferometric point-spread functions in this case) with the
impulse response of a grid of point-scatterers (represent-
ing trial image points) that are indicated by the red circles
in Fig. 10(a). The result is migrated, yielding the image in
Fig. 14(b). We can clearly observe that the trial image points
at positive horizontal locations surrounding the source area
have been focused well, whereas the trial image points at neg-
ative horizontal locations are relatively defocused. Moreover,
we observe several events surrounding the point-scatterers,
giving rise to the spurious events that we observed before.

Figure 14(b) can be interpreted as an image of the point
scatterers as they would be seen by passive interferometry un-
der the given source distribution. We can replace the reflection
response of the point scatterers with the reflection response
of an arbitrary reference medium, for instance a medium with

two horizontal reflectors as indicated in Fig. 15(a), and repeat
the exercise. To do so, we model the response of the reference
medium, convolve with the cross-correlated data from the
noise sources and migrate the result, yielding the image in Fig.
15(b). This result should be interpreted as an image of the
reference medium when illuminated by the passive sources.
This type of analysis can provide insights into the artefacts
to expect from any observed passive source distribution if
Fig. 15(a) would be the subsurface model.

We repeat the experiment with the reflectors in the ref-
erence medium placed at their correct positions. That is, we
compute reflection data in the physical medium with sources
and receivers at the surface, convolve with the cross-correlated
data from the passive sources and migrate. The result is shown
in Fig. 16(a). Comparing Fig. 16(a) and Fig. 14(a), we clearly
observe that various spurious events that obscure the inter-
ferometric image have been predicted well. However, various
artefacts in Fig. 14(a) cannot be found in Fig. 16(a). This is
especially clear when we subtract both images, see Fig. 16(b).
All artefacts in this figure occur because the full wavefields
have been correlated (including correlations of V̂0 and V̂0)
and migrated, while the desired Ĉ should contain only cor-
relations of V̂ and V̂0. As such, the interferometric image in
Fig. 14(a) should be interpreted as a superposition of the pre-
dicted artefacts in Fig. 16(a) and additional artefacts stemming
from not separating V̂ and V̂0.

The proposed analysis can provide insight into the accu-
racy of an interferometric image. Given any passive data set as
observed in the field and a trial reflectivity model of the sub-
surface, artefacts in the interferometric image can be predicted
and possibly identified to enhance interpretation. Potentially,
the interferometric image can be improved by removing the
point-spread function with multidimensional deconvolution
but this is not always a trivial excercise, especially not if con-
tributions of V̂ and V̂0 cannot be separated well.
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CONCLUSION

With seismic interferometry, a physical receiver can be ef-
fectively transformed into a virtual source, either by cross-
correlation or by multidimensional deconvolution. A virtual
source can radiate either downwards or upwards, depend-
ing on the type of waves that are cross-correlated or decon-
volved. Interferometric imaging is defined as sequentially ap-
plying seismic interferometry and imaging. We showed that
an interferometric image can contain artefacts that are ef-
fectively described by the interferometric migration point-
spread function. We showed how this function can be vi-
sualized and how spurious events in the interferometric im-
age can be predicted in cases where an estimate of the
subsurface reflectivity is available. The interferometric im-
age can be improved by applying multidimensional decon-
volution prior to imaging. However, this approach is not
always feasible in practice. Alternatively, we may deconvolve
the interferometric migration point-spread function in the im-
age domain. The formulations in this paper may provide use-
ful forward models to do so in the future. Although these
formulations have been inspired by acquisition systems with
downhole receivers, the required Green’s functions for in-
terferometric redatuming can also be modelled or obtained
with an iterative scheme that is currently being developed
(so-called Marchenko redatuming). Also for these scenarios,
the point-spread functions that are described in this paper
can be used for an image-domain diagnosis (and potentially
removal) of artefacts caused by internal multiples from the
overburden.
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