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Acoustic directional snapshot wavefield decomposition
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ABSTRACT
Up–down wavefield decomposition is effectuated by a scaled addition or subtrac-
tion of the pressure and vertical particle velocity, generally on horizontal or vertical
surfaces, and works well for data given on such surfaces. The method, however, is
not applicable to decomposing a wavefield when it is given at one instance in time,
i.e. on snapshots. Such situations occur when a wavefield is modelled with meth-
ods like finite-difference techniques, for the purpose of, for example, reverse time
migration, where the entire wavefield is determined per time instance. We present
an alternative decomposition method that is exact when working on snapshots of
an acoustic wavefield in a homogeneous medium, but can easily be approximated
to heterogeneous media, and allows the wavefield to be decomposed in arbitrary
directions. Such a directional snapshot wavefield decomposition is achieved by re-
casting the acoustic system in terms of the time derivative of the pressure and the
vertical particle velocity, as opposed to the vertical derivative in up–down decom-
position for data given on a horizontal surface. As in up–down decomposition of
data given at a horizontal surface, the system can be eigenvalue decomposed and the
inverse of the eigenvector matrix decomposes the wavefield snapshot into fields of
opposite directions, including up–down decomposition. As the vertical particle ve-
locity can be rotated at will, this allows for decomposition of the wavefield into any
spatial direction; even spatially varying directions are possible. We show the power
and effectiveness of the method by synthetic examples and models of increasing
complexity.
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1 INTRODUCTI ON

Multicomponent acoustic directional wavefield decomposi-
tion separates acoustic wavefields according to their direction
of propagation. This is useful when distinguishing between
waves entering a medium from above, like surface-related
multiples from above the acquisition surface, and waves leav-
ing the medium from below, like the reflection data geophysi-
cists are often interested in. In marine seismology, acoustic
wavefield decomposition using arrays of receivers below the
water surface allows for the removal of the receiver ghost, an
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event caused by the reflection of a recorded up-going wave-
field at the sea-surface that is then recorded as a time-delayed
down-going wavefield. This process is known as receiver
deghosting (Barr and Sanders 1989). The removed receiver
ghost can then be used as an additional source wavefield in
processing, see Lu et al. (2015). Wavefield decomposition is
also an important tool in acoustic imaging, where it is either
a pre-requisite step before being able to image the subsur-
face (Wapenaar et al. 1990) or directly part of the imaging
condition (Dı́az and Sava 2015).

Historically, multicomponent wavefield decomposition is
as old as the Poynting vector (Poynting 1884), introduced to
exploration geophysics for the acoustic case by Yoon and
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Marfurt (2006). Acoustic decomposition began in the 1960s
when White (1965) developed the data-driven particle velocity
to pressure filter matching in P-Z summation. This, however,
was inexact and was followed by the development up–down
decomposition for acoustic and elastic waves along horizon-
tal recording surfaces by the likes of Frasier (1970), Aki and
Richards (1980), Ursin (1983), Kennett (1984), Dankbaar
(1985), Wapenaar et al. (1990). At the same time plane-wave
up–down decomposition along a vertical array of receivers
was developed by Suprajitno and Greenhalgh (1985) for ho-
mogeneous vertical seismic profiles in wells, shortly followed
by parametric decomposition by Leaney and Schlumberger
(1990). More recent work has focused on the use of ana-
lytic wavefields in the directional decomposition of wave-
fields, which only requires spatial Hilbert transforms in the
direction of decomposition but comes at the cost of hav-
ing to model an additional wavefield, see Shen and Albertin
(2015).

Although most of the above techniques operate in the
horizontal wavenumber–frequency domain for a constant
depth, we propose to decompose acoustic wavefields in the
full-wavenumber domain for a constant time, i.e. on snap-
shots of the wavefield. Since the decomposition is in the
full-wavenumber domain, we call it a directional decomposi-
tion. So we directionally decompose snapshots of an acoustic
wavefield as opposed to decomposing a wavefield recorded
on a horizontal interface into up- and down-going fields. To
achieve this we assume the components of the wavefield are
known everywhere, like in modelling. As in Ursin (1983),
our alternative method works by scaling a component of
the particle-velocity vector to the scalar pressure, and sub-
sequently adding or subtracting the two to effectuate the di-
rectional decomposition.

We will begin this work by discussing the scalar acous-
tic system for homogeneous time-invariant media in the
wavenumber domain. To derive purely spatial acoustic de-
composition operators we will reformulate the acoustic system
in terms of two independent linear equations. The eigenvalue
decomposition of this system will then yield eigenvectors that
allow us to directionally decompose the system.

Next we will demonstrate that decomposition is not
limited to one global decomposition direction and that the
wavefield can be decomposed at arbitrary points in arbitrary
directions by rotating the decomposition operator. We will
finish by illustrating these operations on models with increas-
ing complexity. Let us begin by reviewing the fundamentals
of acoustic wavefield decomposition for homogeneous time-
invariant media.

2 ACOUSTIC WAVEFIELD
DECOMPOSITION

The three-dimensional (3D) source-free acoustic system, for
time-invariant homogeneous media, is governed by the lin-
earized equations of continuity and motion respectively (Aki
and Richards 1980):

∂t p = −ρc2∇ · v, (1)

∂tv = − 1
ρ

∇p, (2)

where ∂t is the temporal derivative along time t, p(x, t)
is the acoustic pressure difference to the time- and space-
independent background pressure, c is the time-independent
acoustic velocity, ρ is the time-independent bulk density, ∇
is the del, or nabla, operator differentiating along all spatial
dimensions with spatial coordinates x, · denotes the vector
dot product and v(x, t) is the particle-velocity vector. Note
that vectors are denoted using bold lower-case symbols, while
matrices are upper-case and bold.

Equations (1) and (2) are written in Cartesian coordi-
nates, with no preferential direction prescribed. For the fol-
lowing directional decomposition of acoustic waves, a pref-
erential direction must be chosen; in geophysics this is often
the vertical. We will denote this preferential direction with a
subscript z, denoting an arbitrary direction.

We will now transform equations (1) and (2) to the
3D wavenumber-time domain. To this end we define the 3D
wavenumber Fourier transform as the Fourier transform over
all spatial dimensions of a function f (x, t) as:

f̃ (k, t) =
∫
R3

f (x, t)eix·kdx = Fx f (x, t), (3)

where k is the vector of wavenumbers, or Fourier parameters,
corresponding to the spatial coordinates x, R

3 is the set of
real 3D coordinates and i = √−1 is the imaginary unit. Fx

denotes the forward Fourier transform operator. Note that
tildes are used to denote quantities in the 3D wavenumber-
time domain.

With these assumptions we transform the source-free
acoustic system, equations (1) and (2), to the wavenumber-
time domain, in which the system is decomposed into spatial
plane waves:

∂t p̃ = ρc2ik · ṽ, (4)

∂t ṽ = ik
ρ

p̃. (5)
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The corresponding acoustic pressure wave equation, found by
inserting equation (5) into (4), is

∂2
t p̃ = −c2k · k p̃. (6)

We now wish to decompose the wavefield into a specific
direction and its opposite direction. Usually this is accom-
plished by writing the acoustic system in terms of the pressure
and the particle velocity in the direction of decomposition, the
z direction. To express equation (4) in terms of ṽz we back
substitute ṽz from equation (5) into equation (6) and integrate
over time for a zero constant of integration:

∂t p̃ = ρc2 k · k
−ikz

ṽz for kz �= 0. (7)

Note that in this paper we do not use Einstein’s summation
convention for repeated subscripts.

Equation (7) only holds for kz �= 0; for kz = 0, waves
are travelling orthogonally to the z direction and are not ac-
counted for in ṽz. To resolve this undefined behaviour for
kz = 0 we have two options. We can zero the fraction for
kz = 0, which implicitly assumes the absence of waves trav-
elling orthogonally to the z direction as all k are assumed to
be zero for all kz = 0, which is generally not the case. Alter-
natively, we can express the fraction for kz = 0 in terms of
orthogonal wavenumber components. For the moment we as-
sume the former, however, in Subsection 2.3 we will discuss
how to include orthogonal wavenumber components.

We can now combine equation (7) with equation (5) to
find the following system in terms of p̃ and ṽz:

∂t

(
p̃

ṽz

)
=

⎛
⎜⎜⎝

0 ρc2 k · k
−ikz

ikz

ρ
0

⎞
⎟⎟⎠
(

p̃

ṽz

)
. (8)

In matrix–vector notation we can write this as:

∂tq̃z = Ãzq̃z, (9)

where

q̃z =
(

p̃

ṽz

)
, (10)

Ãz =

⎛
⎜⎜⎝

0 ρc2 k · k
−ikz

ikz

ρ
0

⎞
⎟⎟⎠, (11)

where the subscripts indicate to which particle-velocity com-
ponent q̃ and Ã are related to.

Equation (9) represents a different starting point
for directional decomposition than conventional up–down

decomposition, see Ursin (1983) for example. In conventional
decomposition the system is written with ∂zqz on the left-hand
side, whereas here we have ∂tqz.

2.1 Eigenvalue decomposition

Decomposing Ã into an eigenvalue matrix �̃ and eigenvector
matrix L̃ we have:

∂tq̃z = L̃�̃L̃−1q̃z, (12)

where we have for a judicial choice of the z direction as
the principal direction and pressure normalization of the
eigenvectors:

�̃z = ci sgn(kz)||k||
(

1 0
0 −1

)
, (13)

L̃p,z =
⎛
⎝ 1 1

1
ρc

|kz|
||k|| − 1

ρc
|kz|
||k||

⎞
⎠, (14)

where sgn() is the signum function corresponding to a quan-
tity divided by its magnitude | |. Note that the subscript z

indicates that the signs of the eigenvalues were chosen ac-
cording to the sign of kz. The subscript p is used to denote
pressure-normalized eigenvectors, as opposed to the particle-
velocity-normalized eigenvectors that are shown later in
Subsection 2.4.

We now define the decomposed fields d̃ as the result of a
general eigenvector matrix inverse L̃−1 acting on q̃:

d̃ = L̃−1q̃, (15)

where for the pressure-normalized z-direction case:

L̃−1
p,z = 1

2

⎛
⎜⎜⎜⎝

1 ρc
||k||
|kz|

1 −ρc
||k||
|kz|

⎞
⎟⎟⎟⎠. (16)

Rearranging equation (12) with the help of equation (15) and
the assumption that the medium parameters are time invariant
we find:

∂td̃ = �̃d̃. (17)

We have now decomposed the acoustic wave equation
into two first-order-in-time independent equations. Note
that in equation (17) we have not specified a direction or
normalization.

To better understand equation (17) let us look at its com-
ponents in more detail for the case of choosing the signs ac-
cording to the z direction. We can rewrite equation (13) as
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the following by expressing ||k|| in terms of |kz| and the acute
angle θ̃z between them:

�̃z = ikz
c

cos(θ̃z)

(
1 0
0 −1

)
, (18)

where

i sgn(kz)||k|| = ikz

cos(θ̃z)
, (19)

and

θ̃z = arctan3(kx, |kz|), (20)

where − π

2
< θ̃z ≤ π

2
,

where we define arctan3(), which is similar to the common
arctan2() variant, to be the following variant of the arctangent:

arctan3(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

arctan( x
z ) if z > 0,

arctan( x
z ) + π if z < 0 and x ≥ 0,

arctan( x
z ) − π if z < 0 and x < 0,

+ π
2 if z = 0 and x �= 0,

undefined if z = 0 and x = 0.

(21)

Again care must be taken for waves travelling in the or-
thogonal directions, as for these cos(θ̃i ) = 0 or undefined at
the origin in the wavenumber domain, where the pressure and
particle velocity must be zero. The pressure p must be zero
since we assumed that it is measured with respect to the homo-
geneous time-invariant background pressure and the particle
velocity must be zero such that the system as a whole is at rest,
as this was assumed when deriving the acoustic wave equation
(Aki and Richards 1980). We again zero the operation, like
for equation (7), for kz = 0.

Based on equation (18), �̃ corresponds to a modified
derivative in the space domain in the z direction, due to the ikz,
however via equation (17) the action of �̃ is also equivalent to
the time derivative. �̃ evidently expresses the time derivative
in terms of spatial derivatives.

With the judicious choice of normalization for L̃p,z in
equation (16), the decomposed fields d̃p,z, equation (15), can
be interpreted as pressure wavefields:

d̃p,z =
(

p̃+
z

p̃−
z

)
= 1

2

⎛
⎜⎜⎜⎝

1 ρc
||k||
|kz|

1 −ρc
||k||
|kz|

⎞
⎟⎟⎟⎠
(

p̃

ṽz

)
. (22)

Because the pressure-normalized form of the eigenvectors is
used we denote the decomposed fields in terms of the pressure

Figure 1 Acoustic wavefield decomposition scale factor for the z com-
ponent of the particle velocity to the pressure with respect to the angle
the corresponding plane wave makes with the z direction. To aid the
reader the scale factors of 1.125, 1.25, 1.5, 2, 3, 5 and 9 times the
specific acoustic impedance ρc are indicated in grey.

wavefields p+
z and p−

z . We can further express equation (22)
in terms of θ̃i via equation (19) as:

(
p̃+

z

p̃−
z

)
= 1

2

⎛
⎜⎜⎝

1
ρc

cos(θ̃z)

1 − ρc

cos(θ̃z)

⎞
⎟⎟⎠
(

p̃

ṽz

)
. (23)

To better understand equation (23) consider Fig. 1, which
shows how the scale factor of the decomposition depends
on the angle θ̃ . For waves travelling at small angles to the z

direction the scale factor is dominated by the local specific
acoustic impedance, however as the wave begins to travel
more and more obliquely to the z direction the scale factor
grows asymptotically to infinity.

This asymptotic behaviour is due to the fact that we chose
to approximate the acoustic system in terms of one component
of the particle velocity. We can however recast the system in
a more stable form that accounts for the asymptotic scaling
by writing the system in terms of the magnitude of the full
particle-velocity vector.

2.2 Formulation in terms of the full particle-velocity vector

The asymptotic behaviour and the associated singularities in
Fig. 1 are due to the fraction in equation (22). We now wish
to write the action of the wavenumber fraction on ṽz in terms
of the magnitude of the particle-velocity vector. To do so we
write the scaled z component of the particle velocity in in
equation (22) in terms of its sign and absolute value:

||k||
|kz|

ṽz = sgn(ṽz)
∣∣∣∣
∣∣∣∣ k
kz

ṽz

∣∣∣∣
∣∣∣∣ . (24)
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Note that the signum of a complex quantity is that quantity
divided by its magnitude. To interpret the magnitude term we
return to the linearized equation of motion, equation (5), and
solve for the pressure in terms of the jth and kth component
of the particle velocity:

p̃ = ρ

ikj
∂t ṽ j = ρ

ikk
∂t ṽk for kj �= 0 and kk �= 0. (25)

Note that the second term in equation (25) is not valid for
kj = 0, while the last term is not valid for kk = 0. Evidently
different particle-velocity components, which are not neces-
sarily orthogonal, can account for wavenumber components
that another cannot account for and vice versa.

We can use equation (25) to write the particle-velocity
vector in terms of the z component:

ṽ = k
kz

ṽz for kz �= 0. (26)

Based on the above it becomes evident that the magnitude
term in equation (24) corresponds to the magnitude of the
particle-velocity vector:

||k||
|kz|

ṽz = sgn(ṽz)||ṽ||. (27)

With this equation we can remove the asymptotic behaviour
from equation (22) by writing it in terms of the magnitude of
the particle velocity:(

p̃+
z

p̃−
z

)
= 1

2

(
1 ρc

1 −ρc

)(
p̃

sgn(ṽz)||ṽ||

)
. (28)

Equation (28) now does not show any singular behaviour and
is unconditionally stable.

2.3 Accounting for kz = 0

Recall that for equation (7) we chose to zero the operator
for kz = 0. This implicitly excludes the part of the wavefield
where kz = 0 but k �= 0, where 0 is the null vector. The conse-
quence of this is that the eigenvalue decomposition does not
hold for kz = 0, because our sign choice for the eigenvalues is
incomplete. Furthermore the elements in the second column of
the matrix in equation (16) are zero, causing wavefields travel-
ling orthogonally to the z direction to be equally split between
the decomposed fields for kz = 0. This remains a problem in
equation (28) as ṽz = 0 where kz = 0. We will now correct
for this by including the absent orthogonal information in
equation (7).

To introduce the orthogonal wavefield information into
equation (7), we recall from equation (25) that although no

individual component of the particle velocity can properly ac-
count for the total pressure field, an orthogonal set of particle-
velocity components can. Noting that the equation of motion,
equation (5), dictates that any component of the particle ve-
locity is zero where its corresponding wavenumber is zero,
we now seek an equivalent to the z component of the particle
velocity that where kz = 0 is equal to the other components
of the particle velocity.

To do so we must make a choice on how to order the
dimensions. We introduce a generalized particle velocity ν̃z

that is equal to ṽz everywhere where kz �= 0. When kz = 0,
ν̃z is equal to the first orthogonal component ṽx as long as
kx �= 0, at which point ν̃z is equal to ṽy. At the origin in the
wavenumber domain the generalized particle velocity is zero
as each component of the particle velocity at the origin must
be zero such that the acoustic system as a whole is at rest.
The choice of how to order the particle velocity components
where kz = 0 is important because it defines how orthogonally
travelling waves are mapped into the decomposed fields. Note
that we should indicate either in the subscript or superscript
of ν̃z how the dimensions are ordered; we will assume that the
ordering is always chosen using the same system and hence
will not indicate the order of dimensions.

We now define the generalized particle velocity ν̃z in three
orthogonal dimensions (x, y, z) as:

ν̃z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṽz if kz �= 0,

ṽx if kx �= 0 and kz = 0,

ṽy if ky �= 0 and kz = kx = 0,

0 if k = 0.

(29)

The wavenumber κz associated with this generalized par-
ticle velocity that accounts for the orthogonal components we
define as:

κz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kz if kz �= 0
kx if kx �= 0 and kz = 0,

ky if ky �= 0 and kz = kx = 0,

0 if k = 0.

(30)

Note that division by κz is still poorly defined at the origin
in the wavenumber domain. When either the pressure or a
particle-velocity component is divided by κz the result at the
origin is assumed to be zero. This comes from our definition
of the pressure being measured with respect to the time- and
space-invariant background pressure. The particle velocity on
the other hand must be zero at the origin in the wavenum-
ber domain such that the acoustic system is globally at rest
and not travelling as a whole in some direction, which would
invalidate the original derivation of the acoustic system.
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We can now, analogously to equation (26), fully express
any particle-velocity component in terms of this generalized
particle velocity ν̃z and its associated wavenumber κz via:

ṽ = k
κz

ν̃z. (31)

In order to find the acoustic system in terms of the gen-
eralized particle velocity ν̃z we insert equation (31) into equa-
tions (4) and (5):

∂t p̃ = ρc2 k · k
−iκz

ν̃z, (32)

∂t ν̃z = iκz

ρ
p̃. (33)

Note that equation (32) is now well defined everywhere.
From here the derivation of wavefield decomposition is

identical to the earlier derivation in terms of ṽz and will not be
repeated here. The only difference is that we replace ṽz with
ν̃z and kz with κz.

In terms of the generalized particle-velocity vector, the
pressure-normalized decomposition, equation (22), reads:

(
p̃+

z

p̃−
z

)
= 1

2

⎛
⎜⎜⎜⎝

1 ρc
||k||
|κz|

1 −ρc
||k||
|κz|

⎞
⎟⎟⎟⎠
(

p̃

ν̃z

)
. (34)

The decomposition operator is now no longer undefined
where kz = 0.

We can remove the wavenumber scaling from equation
(34) by writing it in terms of the magnitude of the particle-
velocity vector:(

p̃+
z

p̃−
z

)
= 1

2

(
1 ρc

1 −ρc

)(
p̃

sgn(ν̃z)||ṽ||

)
. (35)

This form of the decomposition is unconditionally stable and
fully satisfies equation (17) with the eigenvalue matrix from
equation (13), but now in terms of κz, where the eigenvalues
additionally account for orthogonally travelling waves.

The only major difference between decomposition in
terms of ṽz and ν̃z is how orthogonally travelling waves are
decomposed, which occur where kz = 0. These are decom-
posed according to the orthogonal directions. This means that
if z corresponds to the vertical direction, then the orthogo-
nally travelling waves are for example left-right decomposed,
instead of being neglected and equally split up between the
decomposed fields, as occurs in the previous derivation, see
Fig. 2.

This warrants a new nomenclature for the decomposition
operators as the notion of up–down decomposition is inher-
ently non-unique for kz = 0. We choose to speak of (up-left)-
(down-right) decomposition as opposed to simple up–down
decomposition. In (up-left)-(down-right) decomposition we
would map the purely left-going waves to the ‘up-going’ de-
composed field, while purely right going waves get mapped to
the ‘down-going’ field, or vice versa for (up-right)-(down-left)
decomposition.

2.4 Particle-velocity-normalized decomposition

When we applied eigenvalue decomposition to equation (9)
in Subsection 2.1 we chose to normalize the eigenvectors such
that the inverse of the eigenvector matrix scaled the particle ve-
locity to the pressure, hence the name pressure-normalized de-
composition. It is also possible to choose the eigenvectors such
that the pressure is scaled to the particle velocity. The resulting
decomposition is known as the particle-velocity-normalized
decomposition:

d̃ν,z =
(

ν̃+
z

ν̃−
z

)
= 1

2

⎛
⎜⎜⎜⎝

1
ρc

|κz|
||k|| 1

− 1
ρc

|κz|
||k|| 1

⎞
⎟⎟⎟⎠
(

p̃

ν̃z

)
. (36)

Note that equation (36) in conjunction with equation (22)
implicitly means that we can change between pressure- and
particle-velocity-normalized decomposed wavefields:(

ν̃+
z

ν̃−
z

)
= |κz|

ρc||k||

(
1 0
0 −1

)(
p̃+

z

p̃−
z

)
. (37)

These normalizations play an important role later in Fig. 7,
where they are indirectly used to decompose already decom-
posed fields along another direction.

2.5 Rotating the decomposition direction

So far decomposition only occurred along the arbitrary z di-
rection, along which the particle velocity was also recorded.
We now wish to decompose the wavefield in some other di-
rection defined by the angle vector φ′ with respect to the z

direction. We have two options to achieve this: (1) We rotate
the coordinate system such that the z direction points in the
desired direction, which means that we also rotate the particle-
velocity vector, and apply the same decomposition operator
again, but in the new coordinate system. Or, (2) we can ro-
tate the decomposition operator to decompose in the desired
direction.

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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(a) (b)

(c) (d)

(e) (f)

Figure 2 (a) (z, x) and (b) (t, x) gathers of a three-
dimensional wavefield, for t = 0 and z = 0 respectively.
Arrows indicate local propagation direction, and the
dashed lines indicate their intersection. (c) and (d) show
the down-going wavefields in (a) and (b) respectively, after
decomposing without properly taking into account hori-
zontally travelling waves. (e) and (f) are properly (up-left)-
(down-right) decomposed versions of (a) and (b). Note
how the horizontally travelling plane waves are both in-
cluded with half amplitude in (c) and (d) and have un-
known propagation directions, indicated by ?s. In (e) and
(f), however, only the right-going plane wave is included
and has a known propagation direction. Note that data
at the spatial origin have been muted and that the coordi-
nate system displayed in (e) applies to (a, c and e) and the
coordinate system in (f) applies to (b, d and f).

For the first option we need to rotate the wavefield vector
q̃z, with generalized particle-velocity component νz, to point in
the rotated z′ direction. We recall that equation (25) allowed
us to express not necessarily orthogonal components of the
particle velocity in terms of each other. We can also use it to
rotate the generalized particle velocity as follows:

ν̃z′ = κz′

κz
ν̃z, (38)

where we chose to rotate k by φ′ to find kz′ and the associated
κz′ . Rotating q̃z to q̃z′ then is

q̃z′ =
(

p̃

ν̃z′

)
=
⎛
⎝1 0

0
κz′

κz

⎞
⎠( p̃

ν̃z′

)
= R̃q̃z. (39)

Note that if equation (39) is transformed back to the space
domain it simply corresponds to only rotating the particle-
velocity vector, leaving the pressure untouched as it is direc-
tion independent.

When we decompose the acoustic system again using
the new coordinate system and signing the magnitude of the
particle-velocity vector according to κz′ instead of κz then we

decompose along the z′ direction. Mathematically we write the
decomposition, analogously to equation (15), in the rotated
coordinate system as:

d̃z′ = L̃−1
z′ q̃z′ . (40)

To rotate the decomposition operator instead of the par-
ticle velocity we back substitute equation (39) into (40) to
find:

d̃z′ = L̃−1
z′ R̃q̃z. (41)

We can now include the rotation operator into the decom-
position operator to find the rotated decomposition operator,
which is a function of the angle vector φ as it works for any an-
gle. For the pressure normalized case, equation (16), it would
be:

L̃−1
p,z(φ) = L̃−1

p,z′ R̃ = 1
2

⎛
⎜⎜⎜⎝

1 ρc
sgn(κ(φ))||k||

sgn(κz)|κz|

1 −ρc
sgn(κ(φ))||k||

sgn(κz)|κz|

⎞
⎟⎟⎟⎠, (42)
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where κ(φ) is the rotated κz in the new coordinate system.
We have now rotated the decomposition operator such that it
uses a particle-velocity component pointing in one direction
but directionally decomposes the wavefield along another.

Equation (42) also demonstrates that the decomposition
direction is purely determined by the sign choice for |k|, and
not by the chosen particle-velocity component, which is ac-
counted for in the denominators.

We can also use equation (42) to make the a priori choice
of the decomposition direction a posterior choice by extend-
ing the dimensionality of the operator output to additionally
depend on the decomposition direction:

d̃(k, t, φ) = L̃−1
z (k,φ)q̃z(k, t). (43)

Now the decomposed wavefields d̃ are decomposed along all
possible directions. We effectively treat the inherent direc-
tional ambiguity of the decomposition in terms of additional
dimensions and at the cost of associated work. Note that this
does not fully treat the ambiguity in sign choice for |κz| as we
only deal with the subset of sign choices that leads to direc-
tionally decomposed wavefields. Furthermore for each φ the
decomposition is still a global operation in space. In the next
section we discuss spatially varying decomposition directions.

2.6 Spatially varying decomposition directions

To have spatially varying decomposition directions we need
to transform the decomposition back to the space domain
and then choose a different decomposition direction at each
point in the space domain. Note that this also means that the
decomposition direction can change in time.

This is trivial with equation (43). One can transform the
decomposed results back to the space domain and then choose
a different decomposition direction for every point in space
and time. Mathematically this corresponds to extracting a
φ = φ′(x, t) surface from the decomposed result of equation
(43) in the space domain.

Taking things step by step we first need to transform
equation (43) back to the space domain:

d(x, t,φ) = F−1
x L̃−1

z (k, φ)Fxqz(x, t). (44)

To be able to extract a φ′ surface from equation (44) we
need to make the decomposition direction a function of space
and time. A simple static-in-time two-dimensional directional
surface could be the radial direction away from some point,
the origin for simplicity:

φ′(x, z) = arctan2(x, z), (45)

where arctan2 is the following variant of the arctangent:

arctan2(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan( x
z ) if z > 0,

arctan( x
z ) + π if z < 0 and x ≥ 0,

arctan( x
z ) − π if z < 0 and x < 0,

+ π
2 if z = 0 and x > 0,

− π
2 if z = 0 and x < 0,

undefined if z = 0 and x = 0.

(46)

Note that at the wavenumber-domain origin, where φ′ is un-
defined, we are free to define φ′ to point in any direction, for
example the z direction.

Note that any other conceivable, not necessarily smooth,
surface is also acceptable. This particular choice of directional
surface is of interest, though, because it decomposes wave-
fields into a wavefield collapsing towards a point and a wave-
field expanding away from said point. If we now extract this
surface from equation (44) we find:

dφ′ (x, t) = d(x, t, φ′(x, t)). (47)

Note that depending on how orthogonal directions are treated
in the decomposition, waves travelling at a given point tan-
gential to the clockwise direction around the centre be-
long to the outward-going wavefield, while waves travel-
ling counter-clockwise belong to the inward-going wavefield.
Notice that we no longer speak of down- and up-going
waves; we now have to speak of waves going inwards and
waves going outwards due to our choice of decomposition
direction.

This example is demonstrated in Fig. 3, in which an ex-
panding and a collapsing wavefield (Fig. 3a) are separated by
decomposing the wavefield into a wavefield travelling towards
the centre and one travelling away from it (Fig. 3c). To aid
in the visual inspection of the decomposition, the impedance-
scaled particle velocity ρcvφ′ measured in the directions de-
fined by φ′ is also included in Fig. 3(b). The associated desired
decomposition angles are shown in Fig. 3(d).

The workflow for decomposing snapshots of an acoustic
wavefield using spatially and possibly temporally varying
wavefields is illustrated in Fig 4. The basic idea is to
decompose snapshots of a wavefield everywhere in space
for all desired decomposition directions, and then from
the result to extract the desired decomposed fields in space
and time. Note that extraction in other domains, like the
wavenumber and/or frequency domains, may be fruitful,
although the results may no longer be perfectly directionally
decomposed.
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(a) (b)

(c) (d)

Figure 3 Directional decomposition of a pressure
snapshot (a), consisting of an expanding wavefield
(inner circle) and a collapsing wavefield (outer cir-
cle), by scaling the radial particle velocity (b) to (a),
according to the desired decomposition direction (d),
and adding the two to find the expanding pressure
wavefield (c). Note that at the centre the wavefields
were (up-left)-(down-right) decomposed and that the
coordinate system displayed in (c) applies to all
panels.

Figure 4 Concept behind having locally different decomposition
directions.

2.7 Approximation for locally homogeneous media

Now that we have derived the decomposition for globally ho-
mogeneous media we extend it, in an approximate sense, to lo-
cally homogeneous media. To do this we apply the wavenum-
ber scaling of the decomposition in the wavenumber domain
and multiply with the local specific acoustic impedance in the
space domain. We achieve this by transforming the decom-
position operator in equation (34) back to the space domain.
As the medium parameters are assumed to be globally homo-
geneous we can pull the Fourier transforms into the decom-
position operator, equation (34), where they cancel for the

first column, and sandwich the wavenumber fraction in the
second:

Lp,z = 1
2

⎛
⎜⎜⎜⎝

1 ρcF−1
x

||k||
|κz|

Fx

1 −ρcF−1
x

||k||
|κz|

Fx

⎞
⎟⎟⎟⎠. (48)

We can now let ρc = ρ(x)c(x) vary spatially in an approxima-
tion to decomposition in heterogeneous media. The decom-
position is then as follows:

(
p+

z

p−
z

)
= 1

2

⎛
⎜⎜⎜⎝

1 ρ(x)c(x)F−1
x

||k||
|κz|

Fx

1 −ρ(x)c(x)F−1
x

||k||
|κz|

Fx

⎞
⎟⎟⎟⎠
(

p

νz

)
. (49)

This approximation appears to be a relatively accurate de-
composition that mimics plane-wave decomposition for het-
erogeneous media, as will be shown using synthetic examples
later. It, however, does not take scattering properly into ac-
count, nevertheless it works very well for locally homogeneous
media as we will demonstrate using synthetic examples in
Section 4.

2.8 Steering the decomposition direction according
to medium parameters

Allowing medium parameters to vary locally suggests that
the decomposition direction could, in conjunction with
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(a)

(b)

(c)

Figure 5 (a) Marmosui velocity model
smoothed using a 10 × 10 grid-
points moving-average filter (b) with as-
sociated downwards-pointing gradient-
direction vectors, taken from decompo-
sition direction map (c) used to steer di-
rectional wavefield decomposition.

Subsection 2.6, be tied to medium parameter variations. This
for example would allow the decomposition direction to be
normal to medium interfaces. This has ramifications for many
acoustic processing techniques like imaging.

Given a snapshot of a wavefield in a known medium
and Subsection 2.6, it is now possible to steer the decompo-
sition based on local medium parameter gradients at a point
to ensure that the decomposition direction is always parallel
to variations in medium parameters. To do so one computes
the gradients of the acoustic velocity and the density, from
which one derives two normalized direction maps by dividing
by the magnitude of the respective gradients. These direction
maps can then be used to steer the decomposition, however,
the direction based on these two maps may be multivalued as
the gradients in the bulk density and medium velocity are not
necessarily aligned. This can approximately be accounted for
by calculating specific-acoustic-impedance-based directions as
follows:

n = ∇ρc
||∇ρc|| , (50)

where the vector n is the normalized local specific-acoustic-
impedance-based direction that can be expressed in terms of
angles. Note that the decomposition direction is ill-defined
where the gradient is zero. In this case the decomposition
direction must be explicitly chosen.

Let us illustrate the concept with an example.
Figure 5(a) shows the constant-density Marmousi velocity
model (Brougois et al. 1990), and below it a smoothed version
to avoid discontinuous decomposition directions (Fig. 5b),
based on which ideal decomposition directions may be read-
ily computed (Fig. 5c). Note that wherever the gradient was
zero the decomposition direction was chosen to point down-
wards. The vector field in Fig. 5(b) shows coarsely the decom-
position directions in Fig. 5(c), demonstrating that they are
quasi-normal to velocity interfaces.

By tying the decomposition direction to local variations
in medium parameters we can now approximately ensure that
wavefields are decomposed into in- and out-going wavefields
at an interfaces. This can improve acoustic processing tech-
niques, like imaging, by ensuring that decomposition is always
normal to medium interfaces.
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Figure 6 Workflow of directionally steered snapshot wavefield
decomposition.

3 NUMERICAL I MPLEME N T A T I ON

Implementation of snapshot wavefield decomposition for ho-
mogeneous media is simple in the wavenumber domain and
can be used as an approximation for heterogeneous media.
The general decomposition workflow, Fig. 6, for multicom-
ponent homogeneous media data in a three-dimensional (3D)
volume, is to transform the data to the 3D wavenumber-time
domain. Then for each desired decomposition direction, not
all decomposition directions as in Subsection 2.6, the wave-
field is iteratively decomposed for each desired direction, af-
ter which the decomposed wavefields are transformed back
to the space domain. At the end of each iteration only those
points at which the current decomposition direction matches
the desired decomposition at said point are kept. Thus the de-
sired decomposed fields corresponding to the spatially vary-
ing decomposition direction is built up. This requires two

forward spatial Fourier transforms, followed for each itera-
tion by multiplication of the pressure and particle velocity
with large diagonal operations to scale the transformed fields
to each other for decomposition, depending on normalization,
and two inverse Fourier transforms, followed by extracting
desired decomposed points. Based on Fig. 6 this seems simple
to implement, there are, however, some caveats.

In Subsection 2.6 we described how to achieve spatially
varying decomposition directions. This required decomposing
the wavefield according to all possible decomposition direc-
tions. This is numerically expensive. Hence, we suggest to
precompute a list of desired decomposition directions, based
on an impedance model for example. This list, if the decom-
position direction angles are not strictly acute, is then scanned
to eliminate decomposition directions pointing in opposite di-
rections, as these can be computed simultaneously. To further
reduce the workload the list of decomposition directions can
be binned; later the decomposition results are then interpo-
lated between their nearest bin centres.

It should be noted here that equation (50) can become
numerically unstable if the gradient is very small due to the
inherent limited numerical precision of floating point num-
bers on computers. For the case where the medium is homo-
geneous we suggest to define a desired direction. For regions
where the direction may be numerically imprecise we suggest
to either increase the floating point precision of the compu-
tation or to interpolate these values based on neighbours to
at least ensure a smoothly varying decomposition direction.
For our examples the used models were stored using 32-bit
IEEE 754 floating-point numbers, while the gradient compu-
tations were done by increasing the precision of these numbers
to double-precision 64-bit IEEE 754 floating-point numbers.
This avoided numerical precision problems in computing the
gradient.

For the interpretation of decomposed snapshots we sug-
gest that the decomposition direction map is spatially smooth.
The employed algorithm, however, can handle both smooth
and non-smooth decomposition direction maps. Using
smooth decomposition direction maps avoids sharp contrasts
in decomposed amplitudes, while decomposed events remain
continuous. This aids greatly in the visual inspection and
interpretation of decomposed snapshots. Smooth decompo-
sition direction maps can be computed with equation (50)
by either using a smooth impedance model, as we have done
in our examples, or by smoothing the direction map after
computing it.

Note that the decompositions require Fourier transforms,
which for discrete data are generally formulated as finite dense
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circulant matrices acting on the whole domain under the as-
sumption that the domain is periodic. This is generally inac-
curate as it is implicitly assumed that the signal is periodic
in space, suggesting the need for tapering at domain edges to
avoid step discontinuities at model boundaries in the space
domain and associated aliasing in the wavenumber domain.
As we will demonstrate with the synthetic examples in Sec-
tion 4 this is not strictly necessary but may improve results. In
contrast to the Fourier transform the rotation and scaling op-
erators are diagonal matrices and only suffer from incorrectly
scaling spatially aliased signals.

Furthermore, for discrete data when the wavefield com-
ponents do not lie on the same space-time grid it is imperative
for best results that the two components are interpolated to
lie on the same grid. This ensures that the associated temporal
and spatial phase shifts between the signals do not contam-
inate the decomposition. We found for our synthetic finite
difference examples that it was often acceptable to have the
fields not on the same time grid, but they had to be on the
same space grid. This is a function of the signal bandwidth
in the wavenumber and frequency domains. The wider the
bandwidth and the closer these were to modelling limits, like
the Courant number, the larger the error grew.

For all the figures in this work we shifted the particle ve-
locities onto the pressure grid in the wavenumber domain by
multiplying in two spatial dimensions the horizontal particle
velocity by exp(−ikx	x/2), where 	x is the horizontal grid
spacing, and the vertical particle velocity by exp(−ikz	z/2),
where 	z is the vertical grid spacing. We also found that it was
often also acceptable to simply linearly interpolate the parti-
cle velocities onto the pressure grid. This can be significantly
faster and does not suffer from the inherent wrap-around ef-
fect of most discrete Fourier transforms, the resulting am-
plitudes however are often less accurate. To interpolate the
particle velocity to the same time grid we used half the time
derivative of the particle velocity at every time instance, which
is a by-product of using a staggered finite difference scheme to
step wavefields forward in time. As we often found that this
is unnecessary for acceptable results in practice, all figures in
this work show decomposed results without interpolating ei-
ther the pressure or particle velocities onto the same time grid.
Note that we do not suggest to shift staggered wavefields onto
the same time grid in the frequency domain as this removes
the advantage of this method of being able to act exclusively
on snapshots of a wavefield.

For waves travelling at near-right angles to the decom-
position direction, the wavenumber scaling in, for example,
equation (22) may become numerically unstable. In this case it

is advantageous to cast the problem in terms of the magnitude
of the particle-velocity vector, equation (28). Using the mag-
nitude of the particle velocity in two dimensions (2D) comes
at the cost of requiring an additional spatial Fourier transform
over the other component of the particle velocity.

We would like to conclude this section with a discus-
sion on the numerical aspects of the decomposition algo-
rithm, which is dominated by the Fourier transforms. In our
case these were implemented through the FFTW 3.3.6-pl2 li-
brary (Frigo and Johnson 2005). The compute time of the Fast
Fourier Transforms (FFT) are expected to scale with n log(n),
where n is the number of data points to be Fourier trans-
formed. As such we expect the compute time of the decom-
position algorithm, when decomposing along one direction,
to scale in the same fashion. When decomposing along many
directions the compute time is expected to linearly increase
with the number of directions to decompose along, as an ad-
ditional Fourier transform is needed per additional direction.
Although all examples in this work are in two spatial dimen-
sions, decomposition in three spatial dimensions is also feasi-
ble. This comes at the cost that the algorithms compute time
is expected to increases approximately proportionally to n3,
the number of elements in the third spatial dimension, with
respect to a two-dimensional model that has the same size in
the first two dimensions. When decomposing while modelling
in a high-performance computing setting, the decomposition
step can be offloaded to other compute nodes or dedicated
FFT hardware to reduce the impact of the decomposition on
the modelling time, when decomposing while modelling. Al-
ternatively the decomposition operator can be reduced in size,
written in the space domain and then iteratively convolved
with the snapshot to decompose it. This reduces accuracy,
especially for waves travelling nearly perpendicular to the de-
composition direction.

In order to compare compute times, the average decom-
position times for 100 one-dimensional (1D), 2D and 3D snap-
shots were determined, where each dimension had a size of
1000 points. We used a single thread without vectorization
on a stock Xeon E5-2680 v3 central processing unit. The
system’s random access memory consisted of eight 32 GB
Samsung M393A4K40BB1-CRC modules at 2133 MHz with
default settings in a dual channel configuration. The average
compute times for the 1D, 2D and 3D snapshots are 6 μs,
15 ms and 29 s respectively. Between the 1D and 2D cases
we expected a 2000 fold increase, while between the 2D and
3D cases we expected a 1500 fold increase. The above tests
were assuming only one decomposition direction, but when
99 additional decomposition directions are also included, the
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(a) (b) (c) (d)

(e)

Figure 7 Homogeneous acoustic wavefield decomposition on a 500 m × 500 m 1 km s−1 homogeneous model. The top row of (a)–(d) shows
the total pressure snapshots decomposed into down-going snapshots below. (e) shows a snapshot of the total pressure at 1.75 s directionally
decomposed into quadrants. (f) displays the corresponding wavenumber spectra, with the images centred on the origin. Note that the wavefields
were decomposed in the wavenumber domain, and therefore low wavenumber decomposition artefacts can be observed as vertical and horizontal
bands. Furthermore the coordinate displayed coordinate systems in (a) also apply to (b, c and d), while the coordinate systems in the upper left
panels of (e) and (f) apply to all panels in (e) and (f) respectively.

compute times increase accordingly. Assuming we take 100
different directions, requiring 101 Fourier transforms, the av-
erage compute time of the 2D snapshots increased to 754 ms.
For the 3D case the average compute time was 1460 s. Note
that these values are only indicative and can vary between
compute systems.

4 S YNTHETIC EXAMPLES

We now show synthetic examples to illustrate the theory and
concepts discussed earlier. We begin with a constant-density
constant-acoustic-velocity example and move on from there
to a layered model, with velocity and density variations, and

from there to the heterogeneous velocity Marmousi model.
We demonstrate on these models the various decompositions
and their characteristics.

4.1 Constant-parameter model

To illustrate the simplest case of decomposition, we choose
a model where the density is constant at 1000 kg m−3 and
the medium velocity is 1 km s−1. The grid is 500 m × 500 m
discretized with a 1 m sampling rate, and a 60 Hz peak fre-
quency Ricker wavelet, sampled every 0.5 ms, is injected as
a volume injection source at the centre of the model with
a 0.0175 s time delay. Figure 7 displays snapshots of said
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wavefield. Figures 7(a-d) show advancing snapshots of the
wavefield, decomposed into down-going wavefields below.
Figure 7(e) shows a snapshot between Figures 7(c,d) in time
on the left. Now, however, the snapshot has not only been
up–down decomposed but also left–right, as indicated by the
arrows in the different panels. To the right of the decomposed
snapshots are the corresponding amplitudes of the snapshots
around the origin in the wavenumber domain.

The total wavefields, the central panels in Fig. 7(e,f),
were first decomposed using equation (23), zeroing the hor-
izontal or vertical wavenumbers as applicable. To compute
the wavefields travelling in quadrants the total wavefield was
also decomposed into up- and down-going particle-velocity-
normalized wavefields. These were rotated using equation
(26) to find the up- and down-going horizontal particle ve-
locities. These in turn were then used in conjunction with the
up- and down-going pressure to decompose the wavefields
again into left- and right-going wavefields.

Consider the wavenumber spectrum of the total field, cen-
tral panel of Fig. 7(f), which has a jittery amplitude behaviour
due to the interferring waves in the central pane of Fig. 7(e).
Wavefields propagating in opposite directions are destruc-
tively interfering, causing the amplitude of the total wavefield
to be smaller than that of the decomposed fields. Further-
more, the amplitude distribution in the total field around the
origin is not as clear as for the decomposed fields. After de-
composition it is much clearer, however, that edge-related
artefacts and artefacts due to the asymptotic scaling of the
particle velocity are also boosted. The amplitude spectra of
the decomposed fields appear identical, however, the domi-
nant difference between the decomposed fields is in the phase
(not shown). This is expected as the wavefield radiated spher-
ically away from the source at the centre. Further decompos-
ing the wavefield corresponds to a simple quadrant mute in
the wavenumber domain. Note that the decomposition or-
der is highlighted by the horizontal erroneous bands due to
asymptotic scaling. These bands would have been vertical if
the wavefield had been first left–right decomposed and then
up–down.

4.2 Constant parameter model: comparison of different
scalings

To illustrate the possible numerical errors introduced by using
the wavenumber-based scaling of equation (22), as opposed
to the magnitude of the particle-velocity vector, equation (28),
see Fig. 8. Figure 8(a,b) shows the pressure and specific-
acoustic-impedance-scaled vertical particle velocity due to a

sum of unit-amplitude Ricker-wavelet plane waves, travelling
from left to right with increasing obliquity to the vertical axis.
Figure 8(c,d) shows the corresponding amplitudes around the
origin (centre of panel) in the wavenumber-time domain. Note
that the vertical particle velocity (Fig. 8d) is missing the hor-
izontally travelling wave corresponding to the horizontal red
line segment in (Fig. 8c), see black ellipse.

We now scale the vertical particle velocity to the pres-
sure using equations (22) and (28), resulting in Fig. 8(e,f).
Note that the scaled vertical particle velocity is set to zero
for kz = 0. When comparing Fig. 8(e,f) to Fig. 8(c,d) the am-
plitudes of Fig. 8(c,f) are very similar, except where kz = 0,
while the amplitudes of Fig. 8(e) diverge from those in Fig. 8(f)
away from the origin as one approaches kz = 0. The reasons
for this divergence are twofold: (1) numerical accuracy of the
asymptotic wavenumber scaling in equation (22) degrades as
one approaches kz = 0, resulting in horizontal artefacts as can
be seen in the dashed circles in Fig. 8(g,h), and (2) aliasing due
to the finite size of the domain causes wrap-around artefacts
due to the cyclic nature of the employed Fourier transform,
as can be seen in the spy-glasses in Fig. 8(g,h). The aliasing
causes high wavenumbers to map to lower wavenumbers, and
vice versa, which are subsequently incorrectly scaled. It is sus-
pected that one does not see this effect in Fig. 8(h) because the
aliasing in the horizontal and vertical wavenumber for a given
point in the wavenumber-time domain, when used to calculate
the magnitude of the particle velocity, are equal/similar to the
aliasing for the pressure at said point. It appears that using
the magnitude of the particle velocity for decomposition on
finite non-periodic domains is less corrupted by aliasing arte-
facts, suggesting that equation (28) should be used over equa-
tion (22) whenever possible.

4.3 Four-layer model

In the previous examples, we did not show the effect of vari-
ations in medium parameters on the model. Figure 9 shows
up–down decomposed wavefields for a four-layer model, with
a density increase, velocity increase and constant specific-
acoustic-impedance interface from top to bottom, as shown
in Fig. 9(a). Figure 9(b) shows a pressure snapshot, due a
volume injection source at the origin injecting a 50 Hz Ricker
wavelet, at 0.1 s. Figure 9(f) shows the corresponding recorded
wavefield at a depth of 150 m, indicated by the dashed line
in Fig. 9(b–d). Note that the top and bottom boundaries are
both free surfaces while the left and right boundaries are ab-
sorbing, more precisely they are 500-element-wide perfectly
matched layer boundaries (Chew and Liu 1996).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8 (a) Superposition of pressure plane waves
at 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ to the vertical
with the (b) associated specific-acoustic-impedance-
scaled vertical particle velocity. (c) and (d) are ex-
tracts around the origin of the the magnitude of
the wavenumber transforms of (a) and (b) respec-
tively. (e) and (f) show scaled version of (c) and (d)
according to equations (22) and (28) respectively.
The fields were muted where kz = 0. (g) and (h)
show the corresponding decomposed wavefields in
the space domain. Please note that in all panels the
origin is at the centre of the image and that the co-
ordinate system displayed in (a) applies to (a, b, g
and h), while the coordinate system shown in (c)
applies to (c–f).

The wavefields in Fig. 9(b,f) were then decomposed, using
equations (23) and (28), into down-going waves in Fig. 9(c,g)
and Fig. 9(d,h) respectively. Figure 9(e) shows the up-going
pressure wavefield based on equation (23). Note that all pan-
els were tapered at the edges to avoid the Gibbs–Wilbraham
phenomenon. Please also note that the amplitudes have been
clipped at 5% of the maximum to illustrate that the errors are
generally smaller than 1%.

Comparing Fig. 9(b–d), the large vertical artefacts in
Fig. 9(c) are immediately evident. These are caused by the
incorrect scaling of small vertical wavenumbers due to alias-
ing artefacts because of the implicit fast Fourier transform
jump-discontinuity at the surface. These artefacts are much
smaller in Fig. 9(d). However, small artefacts associated to
small vertical wavenumbers are visible throughout Fig. 9(c).
It is suspected that these are caused by the interaction of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9 Pressure snapshot (b) from a four-layer model (a) decomposed into down-going waves by either scaling the vertical particle velocity
in the wavenumber domain according to equation 23(c), or by using the magnitude of the particle-velocity vector according to equation 35(d).
(f–h) show the corresponding wavefields recorded on the dashed surfaces in (b–d), while (e) shows the up-going wavefield, found by subtracting
(g) from (f) and dividing by two.

aliasing, among other possible errors, of the horizontal and
vertical particle velocity. They are also in part due to the het-
erogeneous medium.

We can see the same artefacts in Fig. 9(e,g,h), where the
vertical bands in Fig. 9(c) now appear as an erroneous event
in Fig. 9(e,g) that resembles a conventional direct wave when
the source is at the same depth level as the acquisition surface,
see shaded green area. When comparing Fig. 9(g,f) there is
another event that arrives in Fig. 9(g) before the direct wave
in Fig. 9(f), see yellow area. This event is associated with
the erroneous vertical bands that arise due to the amplitude
discontinuity when the wavefield reflects at the first interface,
similar to the two vertical artefacts due to the tapered edge
discontinuity at the top of the model causing two erroneous
vertical events in Fig. 9(c). These errors are mostly absent
from Fig. 9(h), they are only visible in time from about 0.1 s

to 0.3 s, the cyan area, along with other noise, in the form
of high-frequency noise. This noise is most evident inside the
black box. Evidently decomposition in terms of the magnitude
of the particle velocity, equation (28), is not as sensitive to
these errors as decomposition in terms of equation (23).

Figure 9(h), however, suffers from other errors. Between
0.1 s and 0.3 s there appears the aforementioned high-
frequency noise, see cyan area. This noise is again due to
the interaction of artefacts in both the horizontal and verti-
cal particle velocity. If the model domain is made larger these
become smaller, but they do not completely vanish as they
are also partially due to the variations in medium parameters,
which are quite strong for this model. Qualitatively decompos-
ing in terms of the magnitude of the particle-velocity vector,
Fig. 9(h), appears to perform better than only scaling the ver-
tical component of the particle velocity in the decomposition,
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(a) (b)

(c) (d)

Figure 10 Pressure snapshot (c), from the constant-density Marmousi model (b), directionally decomposed into up- (a) and right-going (d)
pressure-normalized wavefields. The source location is indicated by a red cross. Amplitudes are normalized to the unit amplitude Ricker source
wavelet.

Fig. 9(g), when compared to conventional surface normal de-
composition, which is ideal for this scenario. The errors are
more concentrated in Fig. 9(g) though.

Note that both Fig. 9(h,g), as well as conventional decom-
position, show errors around the source if it is not explicitly
included in the decomposition scheme. This can be seen in the
spyglass in Fig. 9(h). In this case these errors have two compo-
nents, the source itself, which was not properly accounted for,
and the fact that the data were modelled using a staggered-
grid finite-difference scheme, where the wavefield mismatch
in space and time between the pressure and particle velocity
is largest around source locations.

4.4 Marmousi model: (Up-left)-(down-right) decomposition

We have demonstrated that snapshot decomposition
performs well on layered models. Let us now relax the
lateral-homogeneity condition and consider fully heteroge-
neous velocity models. Figure 10 shows in the upper right the

Marmousi velocity model (Fig. 10 b), with the source location
marked using a red cross. In this case a 50 Hz Ricker wavelet
was injected. Figure 10(c) shows the total pressure wavefield
for a snapshot at 0.9 s. The other two panels shows the
pressure wavefield decomposed into up- and right-going
waves, Fig. 10(a,d) respectively. In this case the wavefields
were decomposed using equation 23, including the use of
the horizontal particle velocity to account for horizontally
travelling waves. Interesting here is to look at the curvature
of the dominant events, and to see that they are well
decomposed. The unexepected vertical and horizontal events
in Fig. 10(a,d) respectively are caused by the incorrect scaling
due to the asymptotic nature of equation (23) and the inherent
incorrect scaling of aliased waves due to the heterogeneous
nature of the model. As there is no reference decomposition
for a model of this complexity, it is difficult to grade the
accuracy of the decomposition. Overall and when seen
from one snapshot to another the decomposition appears to
do well.
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(a) (b) (c) (d)

Figure 11 Directionally decomposed common-shot gathers, from the Marmousi model, through the source depth level, indicated in Fig. 10. On
the far right is the down-going resampled plane-wave decomposed reference response (Suprajitno and Greenhalgh 1985), which was tapered at
the bottom.

(a)

(b) (c)

(d) (e)

Figure 12 Acoustic wavefield propagated from the center of the Marmousi model, see Fig. 5 for the velocity model, decomposed along variations
in the impedance and radially away from the source. (a) shows the total pressure wavefield 0.9 s after source excitation; the source location is
indicated by a red cross. (b) and (d) show the decomposition angles parallel to impedance variations and radially away from the source location.
(c) and (e) show the corresponding decomposed pressure-normalized wavefields according to the angles in (b) and (d) respectively. Note that
for (e) the wavefield at the source location was not decomposed as any wavefield at the source location must propagate away from it. Note that
amplitudes are normalized to the unit amplitude Ricker source wavelet.
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Figure 11 allows us to compare decomposed common-
shot gathers at the source depth level, which were decomposed
using equation (35) at every time sample. We can see that we
are able to nicely decompose the wavefield. Comparing the
down-going wavefield to the plane-wave down-going refer-
ence response, one finds they are nearly identical, except from
at the bottom of the panels, because the plane-wave decom-
posed panel was tapered at the top and bottom to avoid wrap-
around artefacts. Note that for very early times the wavefield
was not decomposed, as source artefacts were too dominant,
due to the fact that the source was not taken into account in
the decomposition.

4.5 Marmousi model: Impedance-based
decomposition-direction steering

We have demonstrated that wavefields propagating in the
Marmousi model can be easily decomposed along spa-
tially invariant directions. We can take the decomposition
a step further by decomposing in the direction normal to
medium interfaces, as discussed in Subsection 2.8. Figure 12
shows the decomposition results, found using equation
(47), associated to the proposed decomposition directions
in Fig. 5, which were computed using equation (50).
Figure 12(c) shows the down-going interface-normal decom-
posed pressure-normalized wavefield. This decomposed wave-
field, although very similar to the normal down-going pressure
wavefield, is important for imaging with acoustic wavefields.

As Fig. 12(c) is difficult to interpret with respect to the
prescribed decomposition direction, Fig. 12(d) shows desired
decomposition directions radiating away from the source lo-
cation. Using these directions we would then decompose the
wavefield into waves travelling away from and towards the
source. If one follows the curvature of the wavefronts in
Fig. 12(e), one can clearly see that they suggest the wave-
field is propagating away from the source, with the exception
of the dominant wave travelling upwards. This wave, how-
ever, is also travelling away from the source, its propagation
angle is just nearly at a right angle to the decomposition di-
rection. The wave vanishes right below the source as there it
is propagating towards the source.

5 D ISCUSS ION A N D C ON C LUSI ON

Conventional up–down wavefield decomposition is applied to
wavefields recorded on horizontal surfaces to decompose into
wavefields propagating up and down. This study took a dif-
ferent approach to conventional wavefield decomposition and

derived operators that decompose wavefields at one instance
in time that are known everywhere in space, effectively using
a temporal surface instead of a spatial surface. This has ad-
vantages and disadvantages when compared to conventional
decomposition.

Its biggest disadvantage is that the decomposition does
not correspond to how acoustic data is generally acquired,
which is generally on a single surface and not everywhere in
space for one instance in time. This implies that this method is
better suited for other applications, like decomposing wave-
fields as they are being modelled, for example using finite-
difference schemes, to improve reverse time migration (RTM)
imaging results, see Dı́az and Sava (2015). This is where the
proposed approach excels as the wavefield is known every-
where from one time step to the next, allowing for directional
wavefield decomposition at every time step, as opposed to
having to record the wavefield and then later decompose it
using conventional decomposition along some surface.

Another advantage over conventional decomposition is
that in conventional decomposition the decomposition direc-
tion is always normal to the surface along which the decompo-
sition occurs, whereas for the proposed scheme the wavefield
can be decomposed into any direction. The same is achievable
using conventional decomposition if the wavefield is known
everywhere in space and time. Hence, the proposed scheme
is ideal for any algorithms based on snapshots of a wavefield
like RTM, which would benefit from the ability to locally de-
compose wavefields normal to interfaces, not just between in-
and out-going wavefields but also according to the quadrant
from which the wave arrives using sub-decomposition.
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