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ABSTRACT
Acoustic inversion in one-dimension gives impedance as a function of travel time.
Inverting the reflection response is a linear problem. Recursive methods, from top
to bottom or vice versa, are known and use a fundamental wave field that is com-
puted from the reflection response. An integral over the solution to the Marchenko
equation, on the other hand, retrieves the impedance at any vertical travel time in-
stant. It is a non-recursive method, but requires the zero-frequency value of the re-
flection response. These methods use the same fundamental wave field in different
ways. Combining the two methods leads to a non-recursive scheme that works with
finite-frequency bandwidth. This can be used for target-oriented inversion. When a
reflection response is available along a line over a horizontally layered medium, the
thickness and wave velocity of any layer can be obtained together with the velocity of
an adjacent layer and the density ratio of the two layers. Statistical analysis over 1000
noise realizations shows that the forward recursive method and the Marchenko-type
method perform well on computed noisy data.
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INTRODUCTION

Backus (1959) showed that the reflections in a marine seismic
trace can be understood as the subsurface reflection response
filtered by a water layer reverberation operator that is inde-
pendent of the source and receiver depth.He also showed how
a simple three-term deconvolution filter can be constructed
and used to remove these water-layer reverberations. Kunetz
(1964) showed that both free-surface and internal multiples
from the shallow part of the reflection response can be fil-
tered from the data. Application of this filter removes overlap
from multiples and the first deeper primary reflection which
can then be analysed. He showed that the filter consists of
two parts of a fundamental wave field and gave their mutual
recurrence relation. Combining the filter and the recurrence
relations leads to a forward recursive inversion scheme. It suc-
cessively filters from top to bottom the local reflection coeffi-
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cients from the data. The same idea, but using an energy equa-
tion, was used by Robinson (1967) and Robinson and Treitel
(1977) to construct a similar forward recursive scheme. They
also showed that the filters at each step can be used to compute
the up- and down-going wave fields at depth from the surface
reflection response. Robinson and Treitel (1978) showed how
the energy relation can be used to construct a scheme that
starts in the bottom of a model. It leads to a backward re-
cursive scheme to obtain the local reflection coefficients. All
the work was done with the Goupillaud’s (1961) model of a
discrete-layered medium. In these three schemes, one equation
is used that involves the data. Kunetz (1964) used the convolu-
tional model,whereas Robinson and Treitel (1977, 1978) used
an energy relation. The other equations are the recursive rela-
tions of the two parts of the fundamental wave field to make
a forward or backward recursion step. The reflection coeffi-
cient is retrieved as the amplitude of an event at the proper
two-way travel time, which is then also found. From the re-
fection coefficients, the layer impedances are found and this
completes the inversion.
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Many people worked on the exact inverse solution of
the Schrödinger equation to resolve the scattering potential
from the scattered field (Agranovich and Marchenko 1963;
Lamb 1980). This solution was taken byWare and Aki (1969)
who showed that if depth was converted to vertical travel
time and the fields were flux-normalized, the one-dimensional
acoustic wave equation is equal to the Schrödinger equa-
tion. The inverse solution consists of a time integral from
which the fundamental reflection solution can be computed.
The acoustic impedance at any fixed vertical travel time is
obtained by integrating the fundamental reflection solution
over all times. It requires the zero-frequency component to be
recorded in the seismic record (Berryman and Greene 1980).
Rose (2002) showed how we can understand the solution to
the Marchenko equation as creating a focused wave field at
depth. This led Broggini, Snieder and Wapenaar (2012) to the
understanding that this focus leads to a response at the ac-
quisition surface as coming from a virtual source at the fo-
cal point. By reciprocity, this is the same as the understanding
of finding the wave field at depth from a source at the ac-
quisition surface by Robinson and Treitel (1977). Slob et al.

(2014) showed that the fundamental reflection solution of the
Marchenko equation is a particular combination of the up-
and down-going parts of the fundamental wave field. They
showed how the Marchenko equation can be seen as a sum
of two other equations. One that represents a seismic exper-
iment and one that represents a time-reversed seismic exper-
iment. They derived these two equations by applying acous-
tic reciprocity of the time-convolution and time-correlation
types. They showed that the local reflection coefficient at any
vertical travel time instant is obtained directly from the up-
going part of the fundamental wave field. Wapenaar et al.
(2013) derived the single-sided Marchenko equation for a
three-dimensional heterogeneous medium, and connected the
concepts of Marchenko inverse scattering and Green’s func-
tion retrieval. This triggered new research on redatuming,
imaging and inversion with minimal model information and
multiple elimination without model information. Review and
tutorial papers have been published that help getting into the
subject of Marchenko redatuming and imaging (Wapenaar
et al.2017; Nowack and Kiraz 2018; Lomas and Curtis 2019).

Bardan and Robinson (2018) connect the result of the for-
ward recursive scheme of Kunetz (1964) to the solution of the
discrete version of the Marchenko equation from Berryman
and Greene (1980). They conclude that the discrete solution
of Kunetz (1964) is the same as that of the discreteMarchenko
equation. Here, we show that the two bodies of thought de-
scribed above are connected through the fundamental wave

field. The fundamental wave field as derived in discrete forms
of the recursive schemes has up- and down-going parts and
together make up the fundamental reflection solution of the
Marchenko equation. We show how the equations that are
used for the forward and backward recursive schemes can
be combined at any depth level to yield the two parts of the
Marchenko equation. We then show how the combination of
the two equations removes the need for recursive solutions.
Only in this way the inversion can be done at any chosen ver-
tical travel time in a target-oriented way for finite-frequency-
bandwidth data.We show how the reflection response along a
line over a horizontally layered medium leads to the possibil-
ity of obtaining layer thickness and velocity of a target layer,
together with the velocity of the two adjacent layers and the
density ratios of these layers.

First, we give the expressions for a two-sided experiment
to build the necessary expressions for the impulse reflection
and transmission responses of a layered medium. We estab-
lish the convolutional model and the time-reversed experi-
ment that lead to the energy relations. The subsurface im-
pulse reflection response is represented by the fundamental
wave field and we give the recurrence relations between the
up- and down-going parts. We derive Green’s function repre-
sentations in terms of the reflection response and the funda-
mental wave field. From these representations, we derive the
Marchenko equation. Second, we derive four inversion meth-
ods and show that they are based on the same set of equa-
tions. We show how the inversions are carried out and which
information is obtained. Third, we show how only the inver-
sion with the Marchenko-type method can be extended to
target-oriented inversion of finite-frequency-bandwidth data.
Finally, we give a numerical example to illustrate the per-
formance of the methods on noisy data and evaluate the
results.

THE CONVOLUTIONAL MODEL OF
ACOUSTIC EXPERIMENTS

In this section, we describe the discrete-layered model and the
associated wave fields that can be measured on both sides of
the model given a source in the top or in the bottom. With-
out loss of generality, we model the acquisition surface as
a transparent boundary in the upper half space and in the
lower half space. Inclusion of a free surface would not add
an unknown reflector as explained by Kunetz (1964). We use
the physics of acoustic wave propagation in a linear model,
which says that the response of a medium is the convolu-
tion of the time signature of the source and the earth impulse
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Figure 1 The model for a physical experiment in a one-dimensional
piecewise-homogeneous medium with m+ 1 reflecting boundaries
with transparent boundary at z = 0, has down- and up-going fields,
D(t ) andU(t ) at z = 0 and Dm(t ) andUm(t ) at z = zm, respectively.

response. Later, we use this understanding to unravel the sub-
surface reflection information from the data. We do not use
z-transforms and the associated Goupillaud’s (1961) model,
but use expressions in the time domain, with time denoted
by t.

Figure 1 shows the model configuration with possible up-
and down-going wave fields at the top and bottom of the lay-
ered medium. The up- and down-going parts of the acous-
tic pressure, U(t ) and D(t ), respectively, are defined at z = 0
and Um(t ) and Dm(t ) just below z = zm. The discrete-layered
medium has m+ 1 reflecting boundaries at depth levels zn,
n = 0,1, . . . ,m. Each layer is characterized by constant ve-
locity, cn, and density, ρn. The depth axis points downwards,
hence zn > zn−1. The thickness of each layer is dn = zn − zn−1,
for n = 1, 2, . . . ,m. For an interface at zn, the reflection coef-
ficient for a plane pressure wave coming from above is indi-
cated by rn = (Zn+1 − Zn)/(Zn+1 + Zn), with the impedance
given by Zn = ρncn. The vertical travel time in each layer is
denoted tn = dn/cn for n = 1,2, . . . ,m. We define the travel
time and distance to z0 as t0 = d0/c0 and d0 = z0. Cumulative
travel time from z = 0 to zn is denoted t0n = t0 + t1 + · · · + tn.
The transmission coefficient is denoted t±n = (1 ± rn) and the
cumulative transmission coefficient is t±0n = t±0 t

±
1 · · · t±n , where

the plus-sign applies to transmission from z = 0 to z = zn and
the minus-sign from zn to z = 0.

Reflection and transmission experiments

In the model shown in Fig. 1, the up- and down-going fields
are related to each other through the impulse reflection and
transmission responses that is expressed as

Table 1 Values for velocity, density, layer thickness and local reflec-
tion coefficient in the layered model

Velocity
(m/s)

Density
(kg/m3)

Thickness
(m)

reflection
Coefficient (−)

1500 1000 ∞ 0.6364
3000 2250 117 −0.6364
1500 1000 99 0.4545
2000 2000 85 −0.2075
1750 1500 111 0.3538
2750 2000 ∞ –

(
Dm(t )
U(t )

)
=
(
T (t ) R(t )
R(t ) T (t )

)
∗
(
D(t )
Um(t )

)
, (1)

where ∗ denotes temporal convolution, R(t ) and T (t ) de-
note the impulse reflection and transmission responses, at
z = 0 and z = zm, respectively, in case the down-going wave
field D(t ) = δ(t ) at z = 0 and the up-going field Um(t ) = 0
at z = zm, whereas R(t ) and T (t ) denote the impulse reflec-
tion and transmission responses, at z = zm and z = 0, respec-
tively, when the up-going wave field Um(t ) = δ(t ) just below
z = zm and the down-going field D(t ) = 0 at z = 0. They are
impulse responses, or Green’s functions. The column vector
in the left-hand side of equation (1) is the down-going wave
fieldDm(t ) that could be measured at z = zm and the up-going
wave field,U(t ), that could be measured at z = 0. The column
vector in the right-hand side of the equation contains the ini-
tiating down-going wave field D(t ) that could be emitted at
z = 0 and up-going wave field Um(t ) that could be emitted at
z = zm. These wave fields are shown in Fig. 1 and are con-
nected to each other through the impulse reflection and trans-
mission response matrix as expressed in equation (1). This is
the convolutional model of a physical acoustic experiment. In
this paper, all equations that represent an experiment have this
structure. We illustrate equation (1) with a numerical exam-
ple.We take amodel with five reflectors (m = 4),whichwe use
throughout the paper. The medium parameters and the local
reflection coefficients are given in Table 1. We emit a Ricker
wavelet at 75 m above the top reflecting boundary. It is shown
as the down-going field,D(t ), in Fig. 2(a) and U4(t ) = 0. The
reflection response,U(t ), is shown in Fig. 2(b). The total wave
field everywhere in the model is shown in Fig. 2(c) as a func-
tion of vertical travel time, ζ , and recording time, t. The reflec-
tors are indicated by the horizontal black lines and the verti-
cal black line indicates the time it takes the initial down-going
wave to propagate to z2. We use this level later to introduce a
truncated medium which facilitates our analysis. The slanted
black line marks ζ = t. Zero vertical travel time indicates the
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(a)

(b)

(c)
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Figure 2 The down-going (a) and up-going (b) wave field at z = 0,
the wave field inside a medium with three reflectors as a function of
vertical travel time and recording time (c) and the down-going wave
field below z = z4 (d).

acquisition surface in the top. The down-going field D4(t ) is
shown in Fig. 2(d). The sum of the two traces in Fig. 2(a,b)
is the same as the field at zero vertical travel time in Fig. 2(c).
The wave field in Fig. 2(d) is the same as the field shown at the
latest vertical travel time in Fig. 2(c). Some of these events are
indicated in Fig. 2(c) with arrows to show in which direction
they propagate.

Time-reversed reflection and transmission experiments

In a lossless medium, the wave equation is symmetric in time,
which we exploit in a time-reversed experiment. A down-
going field at the acquisition surface in a physical experiment
is time reversed and becomes an up-going field in a time-
reversed experiment and an up-going field becomes a down-
going field upon time reversal. This configuration is shown in
Fig. 3. By carrying out a time-reversed experiment using the re-
sponses measured in the physical experiment, we recover our
original source time function as the response (Fink 1992). In-
terchanging the up- and down-going fields in the column vec-
tors of equation (1) and reversing their time dependency gives
the expression for a time-reversed experiment, which is then
given by

z = 0
U(−t) D(−t)

d0ρ0, c0 z0

zn−1

dnρn, cn

zn

zm

ρm+1, cm+1

Um(−t) Dm(−t)

Figure 3 The time-reversed experiment that corresponds to the phys-
ical experiment of Fig. 1 has down- and up-going fields, U(−t ) and
D(−t ) at z = 0, andUm(−t ) and Dm(−t ) at z = zm, respectively.

(
Um(−t )
D(−t )

)
=
(
T (t ) R(t )
R(t ) T (t )

)
∗
(
U(−t )
Dm(−t )

)
. (2)

Equation (2) is the mathematical expression of the experiment
depicted in Fig. 3. For later convenience, we take the time re-
verse of equation (2), reorder the fields to make an equation
that resembles equation (1) and find(
D(t )
Um(t )

)
=
(
T (−t ) R(−t )
R(−t ) T (−t )

)
∗
(
Dm(t )
U(t )

)
. (3)

From here onward, equation (3) is how we define a time-
reversed experiment. It shows that when the field responses,
U(t ) and Dm(t ), at z = 0 and z = zm, respectively, generated
by D(t ) and Um(t ) in the physical experiment, are used as
the emitted wave fields in a time-reversed experiment, the re-
sponse is the original emitted field D(t ) and Um(t ). This is
the convolutional model of the time-reversed experiment cor-
responding to that of the physical experiment. We interpret
Fig. 2 using equation (3). Equation (3) shows in the column
vector in the right-hand side that the wave fields shown in
Fig. 2(b,d) are the input wave fields, U(t ) from above and
Dm(t ) from below, respectively. According to equation (3), the
medium responds in reverse time. This means that the wave
field propagates inside the layered medium in the direction of
decreasing recording time. This can be seen in Fig. 2(c) when
all arrows are rotated 180◦, such that what was upward point-
ing is now downward pointing, and vice versa, and they all
point towards decreasing recording time. Consequently, the
only result is the Ricker wavelet shown in Fig. 2(a).

We use the fact that the input fields (Dm(t ),U(t ))t , where
superscript t denotes matrix transposition, in equation (3), are
the responses in the left-hand side of equation (1). Combining

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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these two equations results in a statement that the input is the
same as the output. Since this must be true for any input, we
decide to use onceD(t ) = δ(t ) andUm(t ) = 0 and onceD(t ) =
0 andUm(t ) = δ(t ), which results in the matrix expression(

δ(t ) 0
0 δ(t )

)
=
(
T (−t ) R(−t )
R(−t ) T (−t )

)
∗
(
T (t ) R(t )
R(t ) T (t )

)
, (4)

which expresses the unitary property of the reflection and
transmission impulse response matrix. It is the well-known ex-
pression of the conservation of acoustic energy in the system.
The two equations involving the first column of the second
matrix in the right-hand side of equation (4) are written as

δ(t ) = R(−t ) ∗ R(t ) + T (−t ) ∗ T (t ), (5)

0 = T (−t ) ∗ R(t ) + R(−t ) ∗ T (t ). (6)

Equations (5) and (6) describe the time-reverse experi-
ment of equation (3), with the incident fields given byU(t ) =
R(t ) and Dm(t ) = T (t ). Equation (5) was given in Robinson
and Treitel (1977) and forms the basis of their methods, which
we discuss later. We use these relations when we want to in-
terrogate the medium in its interior using only the reflection
response R(t ).

Relations between the reflection and transmission responses
and the fundamental wave field

Impulse reflection and transmission responses are not inde-
pendent from each other. Compact frequency domain expres-
sions were given in terms of the up- and down-going parts
of a fundamental wave field in optics by Abeles (1946) and in
acoustics byGoupillaud (1961).Kunetz and d’Erceville (1962)
introduced the term fundamental polynomials and Kunetz
(1964) gave coupled recurrence relations for the fundamental
polynomials. Here we give a treatment in our notation to link
their equations to the recent work on Marchenko-type equa-
tions to obtain reflectivity from the reflection response (Slob
et al. 2014). If a layered system has n+ 1 reflecting bound-
aries, with the bottom reflector at zn and n < m, we call it
a truncated medium. Its impulse reflection response from a
source in the top is denoted Rn and its impulse transmission
response just below zn is denoted Tn. They are given in terms
of the two parts of the fundamental wave field related to the
truncated medium, h−

n (t ) and h
+
n (t ), as

h−
n (t ) = Rn(t ) ∗ h+

n (t ), (7)

Td,n(t ) = t+0nδ(t − t0n) = Tn(t ) ∗ h+
n (t ), (8)

where t+0n denotes the cumulative transmission coefficient, as
defined in the paragraph describing Fig. 1, and Td,n(t ) is ex-
plained below. Equations (7) and (8) can be interpreted as
the convolutional model of a seismic reflection and trans-
mission experiment. According to equation (1), when D(t ) =
h+
n (t ) is the down-going wave field incident on the truncated

medium andUn(t ) = 0,U(t ) = h−
n (t ) is the reflection response

andDn(t ) = t+0nδ(t − t0n) the transmission response. The latter
is the physical direct arrival in the impulse transmission re-
sponse, which we denote as Td,n(t ) as shown in equation (8).
For this reason, we interpret h+

n (t ) as the internal multiple
eliminator, or the anti-reverberation filter, for the transmission
response of the truncated medium. The expression of equa-
tion (7) was given in Kunetz (1964).

The special character of the two wave fields h±
n is cap-

tured in their coupled recurrence relations given by (Kunetz
1964)

h+
n+1(t ) = h+

n (t ) + rn+1h−
n (2t0(n+1) − t ), (9)

h−
n+1(t ) = h−

n (t ) + rn+1h+
n (2t0(n+1) − t ), (10)

where h±
n+1 are the up- and down-going parts of the funda-

mental wave field for the truncated medium that has its bot-
tom reflector at zn+1. Both equations are used in the method
of Kunetz (1964). The forward recursion is initialized by

h+
0 (t ) = δ(t ), (11)

h−
0 (t ) = r0δ(t − 2t0). (12)

The importance of the initial unit amplitude impulse lies
in the fact that h+

n is a causal minimum delay function for arbi-
trary n, provided all |rn| < 1. For this reason, the inverse exists,
denoted Mn(t ), which is a causal minimum delay function as
well, with Mn(t ) ∗ h+

n (t ) = δ(t ). Because h+
n (t ) is understood

as the multiple eliminator,Mn(t ) is understood as the multiple
generator, such that Rn = h−

n (t ) ∗Mn(t ).
It is of interest to make three observations from equa-

tions (9) and (10). First, h±
n have the same finite number of

events and their number is equal to 2n. This can be under-
stood from the fact that for n = 0 both filters have one event,
see equations (11) and (12), and every time we add a reflector,
we double the number of events. Second, all primary reflec-
tions that occur in the impulse reflection response have the
local reflection coefficient as amplitude in h−

n (t ) and arrive
at the expected two-way travel time. This can be seen from
equation (10) as follows. Let us take n = 0, h−

1 (t ) is then con-
structed from h−

0 (t ), which contains the first reflection event
at its physical arrival time, and which will never change when

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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we increase n. The second term in the right-hand side has a
unit amplitude impulse in h+

0 (t ), which results in the contribu-
tion r1δ(t − 2t01) and contains the local reflection coefficient
as an event at the physical arrival time. Then we take n = 1
and h−

2 (t ) has the reflection events from the first two reflec-
tors as present in h−

1 (t ) and r2δ(t − 2t02) is obtained from the
unit amplitude impulse in h+

1 (t ). The second event in h+
1 (t ) will

create a non-physical event in h−
2 (t ). This will happen for any

value of n where all coefficients rk, k = 0, 1, . . . ,n, are con-
tained in h−

n (t ) and rn+1δ(t − 2t0(n+1) ) comes from the leading
impulse in h+

n (t ). Third, in h±
n no events are present outside

the time window between t = 0 and t = 2t0n. All events in h−
n

are primary reflections and the ones that can be traced back to
the initial unit amplitude impulse at t = 0 are the physical pri-
mary reflections. Emitting h+

n into the truncated medium leads
to the minimum number of events possible in a reflection and
transmission experiment for that truncated medium. The re-
flection response is h−

n , which has the same number of events
as the input signal. In this sense, the functions h±

n are called
the up- and down-going parts of the fundamental wave field,
hn = h+

n + h−
n . The transmission response has a single event,

coming from the initial down-going impulse in h+
n .

To illustrate this, we use a truncated part of the model as
in Fig. 2, with n = 2.We show the wave fields in the truncated
medium in Fig. 4. The down-going field, h+

2 (t ), is shown in
Fig. 4(a). The corresponding reflection response, h−

2 (t ), is
shown in Fig. 4(b). How the waves in Fig. 4(a) propagate
into the medium and lead to waves in the response shown in
Fig. 4(b) is shown in Fig. 4(c). Similar to Fig. 2(c), here the plot
shows the propagation throughout the medium as a function
of vertical travel time, ζ , and recording time, t. The reflec-
tors are indicated by the horizontal black lines and the verti-
cal black line indicates the time it takes the initial down-going
wave to propagate to z2. The slanted black line marks ζ = t.
Zero vertical travel time indicates the acquisition surface. In
the figure, the four waves that are emitted into the medium
are indicated by the downward pointing arrows. These are the
same as the ones shown in Fig. 4(a). The four waves that arrive
at the acquisition surface are indicated by the upward point-
ing arrows. These are the same as the ones shown in Fig. 4(b).
Note that the acquisition surface is an acoustic transparent
surface where no reflections occur. Just below the black line
that marks the bottom reflector we see the single wave prop-
agating down into the lower half space as expressed in the
left-hand side of equation (8) with n = 2 and indicated by the
downward pointing arrow in the bottom of the figure. This
is the physical first arrival in an impulse transmission experi-
ment and is the only down-going wave as shown in Fig. 4(d).

(a)

(b)

(c)

(d)

Figure 4 The down-going anti-reverberation filter (a) and up-going
truncated medium response (b) at z = 0, the wave field inside the trun-
cated mediumwith three reflectors as a function of vertical travel time
and recording time (c) and the down-going transmission response of
the truncated medium in the bottom below z = z2 (d).

This confirms that h+
2 (t ) is the anti-reverberation filter for the

transmission response of the truncated medium. It has the
same meaning for the reflection response, albeit that in that
case non-physical primary reflections end up in h−

2 (t ) as can
be seen in Fig. 4(b) where the third event is a non-physical pri-
mary reflection. This event arises from the third event in h+

2 (t )
which is emitted to prevent a multiple to be generated at the
second reflector. Only then a single wave travels down below
the third reflector.

To understand the corresponding time-reversed experi-
ment, we replace the reflection and transmission responses in
equations (5) and (6) by those of the truncated medium. We
then convolve both sides by h+

n and use equations (7) and (8)
to find

h+
n (t ) = Rn(−t ) ∗ h−

n (t ) + Tn(−t ) ∗ Td,n(t ), (13)

0 = Tn(−t ) ∗ h−
n (t ) + Rn(−t ) ∗ Td,n(t ), (14)

where Rn and Tn are defined as R and T but now for the
truncated medium. Let us interpret Fig. 4 as a time-reversed
experiment. By rotating all arrows 180◦ in Fig. 4(c), all propa-
gation takes place in the reversed-time direction. The waves
shown in Fig. 4(b) are now sent into the medium at zero

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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vertical travel time and propagate in the direction of decreas-
ing recording time. The reflection response at z = 0 is given
by the first term in the right-hand side of equation (13). The
corresponding transmission response at z = z2 is given by the
first term in the right-hand side of equation (14). The wave
in the bottom of the model is now an up-going wave incident
on the three reflectors and it propagates through the model in
the decreasing time direction. Its initial strength is t+02 and it
starts at t = t02. The transmission response at z = 0 is given
by the second term in the right-hand side of equation (13).
The corresponding reflection response from below at z = z2
is given by the second term in the right-hand side of equa-
tion (14). The sum of the two terms in the right-hand side of
equation (13) forms the total response at the acquisition sur-
face, z = 0, given by the left-hand side of equation (13). These
are the waves shown in Fig. 4(a). The sum of the two terms in
the right-hand side of equation (14) forms the total response
just below z = z2. This total response is zero as can be seen
in Fig. 4(c), where no waves exist below the bottom reflec-
tor as a function of decreasing recording time and increasing
vertical travel time. Hence, the waves in Fig. 4(c) can be un-
derstood as propagating in increasing or decreasing recording
time direction without changing anything in their amplitude
and time behaviour.

If we convolve both sides of equation (13) with h+
n (−t ),

use equation (7) and reorder the terms, we obtain the useful
relation (Kunetz 1964)

h+
n (t ) ∗ h+

n (−t ) − h−
n (t ) ∗ h−

n (−t ) = t+0nt
−
0nδ(t ). (15)

To obtain the right-hand side of equation (15), we have used
an equation similar to equation (8) but for transmission from
bottom to top,with Tn(t ) replaced by Tn(t ) and t+0n replaced by
t−0n. We use equation (15) when we discuss inversion methods
in the next section.

Single-sided time-reversed experiment

The above time-reversed experiments were carried out as two-
sided experiments.We want to be able to find the medium pa-
rameters using only the single-sided reflection response. For
this reason, we assume that we know only the reflection re-
sponse at z = 0 and write equation (13) as

h+
n (t ) −G−(0, zn, −t ) ∗ Td,n(t ) = Rn(−t ) ∗ h−

n (t ), (16)

where G−(0, zn, t ) = Tn(t ) is the Green’s function describ-
ing the pressure at z = 0 generated by an up-going impulse
just below z = zn as indicated by the minus-sign in super-
script. Equation (16) states that when the up-going funda-

(a)

(b)

(c)

Figure 5 The time-reversed filter responses in the truncated medium;
(a) The incident wave field, h−

2 (t ); (b) the reflected wave field com-
posed of h+

2 (t ) (black line),−t+02G
−(0, z2, t02 − t ) (green line) and the

sum where they overlap (dashed black-green) at z = 0; (c) the wave
field propagating in reverse time inside a medium with three reflectors
as a function of vertical travel time and recording time.

mental wave field is sent into the medium for a time-reversed
experiment, the reflection response is the down-going fun-
damental wave field minus the time-reversed Green’s func-
tion convolved with the direct arrival in the transmission re-
sponse. Equation (16) is of course the same equation as equa-
tion (13), but with different meaning and interpretation. We
illustrate equation (16) as a single-sided time-reversed exper-
iment in Fig. 5. In this situation, the field that is incident on
the medium only comes from above and is h−

2 (t ), shown in
Fig. 5(a). The time-reversed reflection response of the medium
is shown in Fig. 5(b) where the function h+

2 (t ) minus the scaled
and delayed Green’s function are depicted. The part of the fil-
ter that does not overlap with minus the scaled and delayed
Green’s function is shown in black, whereas the part of mi-
nus the scaled and delayed Green’s function that does not
overlap with the filter is shown in green. It can be seen that
the two functions have one overlapping event, which is de-
picted as a dashed black–green line, because it is the sum of
the two terms. The difference between Figs. 4(c), interpreted
as a time-reversed experiment, and 5(c) is the up-going inci-
dent wave from the bottom that is present in Fig. 4(c) and ab-
sent in 5(c). This absence can be understood as emitting that
impulse together with the same impulse with opposite sign.
Consequently, no up-going wave is visible in the bottom of
Fig. 5(c) and as a result there are propagating waves that arise
from the extra negative amplitude impulse that leads to mi-
nus the scaled and delayed time-reversed Green’s function at
the acquisition surface.With this understanding, we are ready
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to use the fundamental wave field of the truncated medium
in physical and time-reversed experiments using the impulse
reflection response of the actual medium.

Filtering the impulse reflection response with fundamental
wave fields of a truncated medium

In this section, we derive expressions for physical and time-
reversed experiments when the incident field is coming from
above only. We begin with writing the impulse reflection re-
sponse R(t ) as the sum of the impulse reflection response of
the truncated medium and a scaled and delayed Green’s func-
tion. This was derived by Goupillaud (1961) and we write his
expression as

R(t ) = Rn(t ) +G+(0, zn, t ) ∗ Tn(t ), (17)

where G+(0, zn, t ) is a Green’s function of the actual layered
medium. It describes the acoustic pressure at z = 0, generated
by a down-going unit-amplitude impulse just below zn as in-
dicated by the plus-sign in superscript. The convolution of Tn
and G+ describes the part of the impulse reflection response
that is not described by Rn. We convolve all terms in equa-
tion (17) with h+

n (t ), use equations (7) and (8) and write it as
a single-sided experiment given by

h−
n (t ) +G+(0, zn, t ) ∗ Td,n(t ) = R(t ) ∗ h+

n (t ). (18)

Equation (18) states that when the incident field is the down-
going part of the fundamental wave field of the truncated
medium, the reflection response is the up-going part of the
fundamental wave field of the truncated medium plus a scaled
and delayed Green’s function of the actual medium. There
is no overlap in time between these two parts of the re-
flection response. To show that, we illustrate equation (18)
with a numerical example with m = 4 and n = 2. Figure 6(a)
shows h+

2 (t ) as incident field which is the same as in Fig. 4(a).
Figure 6(b) shows the corresponding reflection response, the
black line is h−

2 (t ) and is the same as in Fig. 4(b), whereas
the green line is the scaled and delayed Green’s function. Fig-
ure 6(c) shows the wave field in the actual medium. The
dotted line marks the vertical travel time where the actual
medium is truncated. The black solid lines indicate the reflect-
ing boundaries and the dashed lines indicate the time window
of the fundamental wave fields. This means that the part in-
side the time window marked by the dashed lines is the same
as Fig. 4(c). Consequently, all waves outside the time window
marked by the dashed lines are part of the delayed and scaled
Green’s function. As long as we truncate the actual medium

(a)

(b)

(c)

Figure 6 The response of the actual medium to h+
2 (t ); (a) incident

field h+
2 (t ), (b) reflection response composed of h−

2 (t ) (black line) and
t+02G

+(0, z2, t − t02) (green line) at z = 0 and (c) the wave field prop-
agating in a medium with five reflectors as a function of vertical travel
time and recording time.

between the third and fourth reflector, the wave field does not
change anywhere.

Equation (18) was used by Kunetz to invert a trace with
a forward recursion method using equations (9) and (10).
Equation (18) is also one of the two equations used for the
Marchenko method that makes non-recursive use possible.
Before we can demonstrate that, we must obtain an equa-
tion for the single-sided time-reversed experiment. We need
the expression for the impulse transmission response, which is
written as

T (t ) = G+(zm, zn, t ) ∗ Tn(t ), (19)

where G+(zm, zn, t ) is the pressure Green’s function of the ac-
tual layered medium. It describes the impulse response just be-
low zm generated by the unit amplitude down-going impulse
starting just below zn. When the actual impulse is not just be-
low zn but at z = 0, we need to convolve the Green’s function
with the transmission response of the truncated medium. This
follows directly from the convolutional model of an acous-
tic experiment. We write equation (19) with the aid of equa-
tion (8) as an experiment, given by

G+(zm, zn, t ) ∗ Td,n(t ) = T (t ) ∗ h+
n (t ). (20)

The left-hand side of equation (20) is the wave field just below
the black line marking the bottom reflector in Fig. 6(c).
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In the two-sided time-reversed experiment, the responses
as given in the left-hand sides of equations (18) and (20) are
emitted into the medium from top and bottom, respectively,
and propagation takes place in reversed time. This leads to h+

n

as the response at the acquisition surface, given by

h+
n (t ) = R(−t ) ∗ [h−

n +G+(0, zn, t ) ∗ Td,n(t )
]

+ T (−t ) ∗ [G+(zm, zn, t ) ∗ Td,n(t )
]
. (21)

Equation (21) is found by convolving all terms in equa-
tion (5) with h+

n (t ) and then using equations (18) and (20)
in the resulting right-hand side. We understand equation (21)
from Fig. 6(c) in the way we used Fig. 4(c) to understand equa-
tion (13). In a time-reversed experiment, there are many waves
sent in from below and from above by the scaled and de-
layed Green’s functions, together with the waves in h−

2 that
are sent in from above. They result in h+

2 at the acquisition
surface. Sending in the scaled and delayed Green’s functions
from the top and bottom leads to a single up-going impulse
with amplitude t+02 that arrives just below z2 at t = t02. It
will then continue to propagate in reverse time. At the ac-
quisition surface, this would lead to the time-reversed scaled
and delayed Green’s function t+02G

−(0, z2, t02 − t ). Just below
z4, it would be the time-reversed scaled and delayed Green’s
function t+02G

−(z4, z2, t02 − t ). However, because we send h−
2

back into the medium as well, these scaled and delayed time-
reverse Green’s functions are cancelled. Hence, no waves ex-
ist for recording times smaller than the vertical travel time as
can be seen in Fig. 6(c). The sum of the two terms involving
the Green’s functions in the right-hand side of equation (21)
is equal to the scaled and delayed time-reversed impulse re-
sponse, or the convolution of the Green’s function with the
direct arrival of the transmission response in the truncated
medium, hence G−(0, z2, −t ) ∗ Td,2(t ) = t+02G

−(0, z2, t02 − t ),
at the acquisition surface. This is true for any n and m with
n = 2 and m = 4 being an arbitrary example.

We carry out a single-sided time-reversed experiment and
send in only h−

n (t ). In that case, this time-reversed Green’s
function will be part of the response with a minus sign. For
this reason, we rewrite equation (21) as

h+
n (t ) −G−(0, zn, −t ) ∗ Td,n(t ) = R(−t ) ∗ h−

n (t ), (22)

with

G−(0, zn, −t ) = R(−t ) ∗G+(0, zn, t )

+ T (−t ) ∗G+(zm, zn, t ). (23)

Equation (22) is interpreted in the same way as equa-
tion (16). The only difference is that now the Green’s func-

(a)

(b)

(c)

Figure 7 The time-reversed response of the actual medium to h−
2 (t );(a)

the incident wave field, h−
2 (t ); (b) the reflected wave field composed

of h+
2 (t ) (black line) and t+02G

−(0, z2, t02 − t ) (green line) at z = 0 of
a time-reversed experiment; (c) the wave field propagating in reverse
time inside amediumwith five reflectors as a function of vertical travel
time and recording time.

tion belongs to the actual medium and not to the truncated
medium. We illustrate equation (22) with a numerical exam-
ple where the waves propagate in the same model as used
for Fig. 6, but now in reversed time. We send in only h−

2 (t )
and the reflection response is as given in the left-hand side of
equation (22). Equation (22) is of course the same as equa-
tion (21) but interpreted differently. The wave field corre-
sponding to the interpretation of equation (22) is shown in
Fig. 7. Figure 7(a) shows the emitted wave field h−

2 (t ) and
Fig. 7(b) shows the corresponding reflection response, which
again consists of two terms that overlap at t = 0 and their
sum is shown as a dashed green–black line. The rest of h+

2 (t )
is shown in black, whereas the rest of minus the scaled and
delayed time-reversed Green’s function is shown in green. Fig-
ure 7(c) shows the waves in the entire medium and the arrows
indicate the direction of propagation at the acquisition sur-
face. Similar to the missing up-going wave in the bottom of
Fig. 5(c), here the up-going wave where the dashed and dot-
ted lines coincide is absent. Therefore, similar to what we saw
in Fig. 5(b), there is an overlap at zero time of the two terms
in the left-hand side of equation (22), but otherwise the two
parts of the reflection response are disjoint.

To facilitate the derivation of the Marchenko equation
and later analysis of non-recursive inversion, we change the
notation of the fundamental wave fields to allow positioning
the down-going impulse at an arbitrary vertical travel time ζ .
We write them as h±(0, ζ , t ) with ζ as a free parameter that
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defines the time window in which the function exists. Hence,
h±(0, ζ , t ) = 0 for t < 0 and t > 2ζ and h±(0, ζ , t ) = h±

n (t )
for t0n < ζ < t0(n+1). With this new notation, we write equa-
tions (18) and (22) in the time domain as

h−(0, ζ , t ) + t+(ζ )G+(0, ζ , t − ζ ) = R(t ) ∗ h+(0, ζ , t ), (24)

h+(0, ζ , t ) − t+(ζ )G−(0, ζ , ζ − t ) = R(−t ) ∗ h−(0, ζ , t ) (25)

where t+(ζ ) = t+0n for t0n < ζ < t0(n+1).

Derivation of the Marchenko equation

For the later purpose of Marchenko inversion, we derive the
Marchenko equation. We define a shifted version of the fun-
damental wave field as k±(0, ζ , t ) = h±(0, ζ , t + ζ ) for −ζ <

t < ζ , where it is noted that the impulse at zero time, which is
the first term in h+(0, ζ , t ), is not included in k+(0, ζ , t ). We
use this wave field in equations (24) and (25), take the time-
reverse of the latter equation and restrict the time window
such that the contributions from the Green’s functions are ex-
cluded. This means we evaluate the equations in the interval
−ζ < t < ζ and find

R(t ) ∗ k+(0, ζ , t ) + R(t + ζ ) − k−(0, ζ , t ) = 0, (26)

R(t ) ∗ k−(0, ζ , −t ) − k+(0, ζ ,−t ) = 0, (27)

where R(t + ζ ) shows up as a separate term in the left-hand
side of equation (26), because the initial delta-function of
h+(0, ζ , t ) is not part of the function k+(0, ζ , t ) but it does
contribute to the convolution in equation (24). We are free
to add or subtract the two equations and decide to sub-
tract. We introduce the fundamental wave field k(0, ζ , t ) =
k+(0, ζ , t ) − k−(0, ζ , −t ) and end up with∫ t

t′=−ζ

R(t − t ′)k(0, ζ , t ′)dt ′ + k(0, ζ ,−t ) + R(t + ζ ) = 0, (28)

and −ζ < t < ζ . Equation (28) is the Marchenko equa-
tion. The functions k±(0, ζ , t ) are the same as the functions
h±(z0, zi, t ) as defined in equations (21) and (22) in Slob et al.
(2014), but they used z0 instead of z = 0 and used a depth
level zi instead of vertical travel time ζ . With this result, the
relation between the fundamental wave fields and the kernel
of the Marchenko equation is established.

FOUR INVERSION ALGORITHMS

In this section, we describe the inverse filtering method of
Kunetz (1964) who used a forward recursive scheme and of
Robinson and Treitel (1978) who used a backward recursive

scheme.We then use theMarchenko equation to directly com-
pute the impedance for any vertical travel time ζ as given in
Berryman and Greene (1980). We end the section with the
non-recursive scheme to obtain the local reflection coefficient
at any vertical travel time. All four methods presented here are
exact for infinite bandwidth data. As we show below, the di-
rect Marchenko inversion computes the impedance from the
zero-frequency value in the data, which normally is not avail-
able. The other three methods offer a data filtering technique
that can be used when the source wavelet is known from pre-
processing, because they do not rely on the zero-frequency in-
formation to be present in the data. Presence of the source time
signature in the data brings band-limitation and the associated
limited resolution in the proper retrieval of reflection coeffi-
cients. In one-dimension (1D), the information available and
retrievable from the reflection response is at best the acous-
tic impedance as a function of vertical travel time. All four
schemes perform this task through direct data filtering meth-
ods. In this sense, full waveform inversion using only the sub-
surface reflection response of a discretely layered lossless 1D
medium is a linear problem. The presence of the pressure-free
or rigid surface as acquisition surface does not increase the
number of unknowns and slightly modified versions of the
schemes presented here will remain valid and exact. Kunetz
(1964) and Robinson and Treitel (1978) have included those
surfaces in their analysis. Singh et al. (2015) has included it for
the Marchenko scheme. It follows from the analysis in Zhang
and Slob (2019) for the Marchenko-type scheme.

Kunetz’ inversion method by forward recursion

Kunetz and d’Erceville (1962) derived the recursive expres-
sions for the fundamental wave field and included the effects
of a pressure-free or rigid surface. Kunetz (1964) recognized
that the fundamental wave field can be used in a recursive
manner to remove overlap from shallow multiples from the
first primary that occurs below that shallow part. His algo-
rithm includes the free surface, but here we assume it is not
present. The reasoning is as follows. Because it is a forward re-
cursive scheme,we compute filters from previous inversion re-
sults and find the reflection coefficient from the next primary
in the data.Hence, all reflection coefficients are obtained from
the data, not from the filter. The first reflection in the data is
a primary with the local reflection coefficient as amplitude,
hence r0 is found directly from the first event in R(t ) and we
find it as

r0δ(t − 2t0) = R(t )[1 −H(t − 2t0 − ε)], (29)
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where ε is a small number, but large enough to ensure that the
reflection occurs in the non-zero part of the windowed reflec-
tion response as expressed in the right-hand side of the equa-
tion. In practice, half the time length of the source wavelet is
used. We then know r0 and t0 with which the associated fun-
damental wave field is computed according to equations (11)
and (12). We also know t±0 and perform the following recur-
sive steps for n ≥ 1.We compute the next reflection coefficient
from equation (18) as

rnδ(t − 2t0n)

=
[
R(t ) ∗ h+

n−1(t )
][
H
(
t − T−

0n

)−H
(
t − T+

0n

)]
t+0(n−1)t

−
0(n−1)

. (30)

where T±
0n = 2t0n ± ε.Note that in the right-hand side of equa-

tion (30) we convolve the data with h+
n−1(t ), while the trunca-

tion is around 2t0n. The convolution with h+
n−1(t ) removes all

multiples generated at any of the reflectors from the surface
to zn−1 from the data. In the convolution result, the first event
after t = 2t0(n−1) is the primary reflection from the reflector at
zn and this is the first event in the scaled and delayed Green’s
function in equation (18). This has the cumulative two-way
transmission coefficients in its amplitude and that is why this
factor is present in the denominator of equation (30). Then
h±
n (t ) is computed from equations (9) and (10), we add 1 to n

and evaluate equation (30) again until the entire trace is pre-
dicted. Note that the denominator in the right-hand side of
equation (30) can be found directly using equation (15). The
impedance of each layer is found from

Zn+1 = Zn
1 + rn
1 − rn

, (31)

and this completes the inversion.
Based on this same idea, a slightly different version of

the forward recursive scheme was implemented in Robinson
(1967) and was derived in detail in Robinson and Treitel
(1977) who also gave a numerical example. Kunetz (1964)
showed that the acoustic response at depth, generated by an
impulsive source at the free surface, is a function whose au-
tocorrelation has a causal part that is the reflection response
that would be measured at the surface. By reciprocity, as was
already remarked by Robinson and Treitel (1977), this is the
same as what Claerbout (1968) wrote.

Robinson and Treitel’s inversion method by backward
recursion

Robinson and Treitel (1978) recognized that all local reflec-
tion coefficients are present at their correct two-way travel

time in the up-going part of the fundamental wave field com-
puted for the bottom reflector, h−

m(t ). They write that if higher
order products of reflection coefficients can be neglected, we
need to solve only for h−

m(t ). They called those corrupted pri-
maries and we use their terminology. From what we have seen
above, when a model has just 11 reflectors, the number of
events in h−

10(t ) is 1024 and only 11 of them are the desired
primaries. All the other 1013 will be present in the same time
window, overlap the physical primaries and their large num-
ber will outweigh their individual small strength. Hence, it is
useful to not neglect the non-physical primaries.Robinson and
Treitel (1978) gave a backward recursion scheme that uses the
reverse of equations (9) and (10), given by(
1 − r2n

)
h+
n−1(t ) = h+

n (t ) − rnh−
n (t0n − t ), (32)

(
1 − r2n

)
h−
n−1(t ) = h−

n (t ) − rnh+
n (t0n − t ). (33)

With these equations, we need to start in the bottom and
work our way up. Backward recursion implies that the data
are used to compute the filter that corresponds to the bot-
tom reflector and find the reflection coefficient rm directly
from the latest event in the up-going filter h−

m(t ). We then use
that inversion result to compute the filters that corresponds
to next higher reflector and find the reflection coefficient in
the same way as the previous one. Hence, the data are used
only to compute the filters h±

m(t ) and each reflection coeffi-
cient is found directly from the up-going part of the filter
after each recursion step. To find an equation from which
h+
m(t ) can be found from the reflection response, we con-

volve equation (5) with the fundamental wave field h+
m(t ) This

leads to

h+
m(t ) = �(t ) ∗ h+

m(t ) + t0mT (t0m − t ), (34)

where �(t ) denotes the autocorrelation of the reflection re-
sponse. Note that equation (34) is equal to equation (22) for
n = m, but written such that h−

m(t ) is avoided. This is possible
only for n = m, because then h−

m(t ) = R(t ) × h+
m(t ). The sec-

ond term in the right-hand side of equation (34) is zero for
positive times. We write the down-going fundamental wave
field as h+

m(t ) = δ(t ) + h+
m;m(t ), where h+

m;m(t ) contains all un-
known waves that are emitted after the initial impulse. Be-
cause this is a causal function, we evaluate equation (34) for
positive times only. This leads to[
h+
m;m(t ) − �(t ) ∗ h+

m;m(t )
]
H(t − ε) = �(t )H(t − ε). (35)

This equation can be solved for h+
m;m(t ) for all positive times

available. Once this wave field is known, equation (7) is used
to determine h−

m(t ). Within that wave field, the last event
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contains the local reflection coefficient of the bottom reflector
in the data. It is found as

rmδ(t − 2t0m) = h−
m(t )[H(t − 2t0m + ε)

−H(t − 2t0m − ε)], (36)

from which rm and the two-way travel time, 2t0m, are known.
With this information, the scheme then determines h±

m−1(t )
from equations (32) and (33). The last event in h−

m−1(t ) con-
tains the reflection coefficient rm−1 at its two-way travel time
2t0(m−1). In this way, we recursively move upward in the data
until the local reflection coefficients and two-way travel times
of all reflectors are computed. Impedances are obtained using
equation (31) and the inversion is complete.

Marchenko impedance inversion by non-recursive filtering

Equation (35) resembles equation (28) remarkably well, even
though the equations have quite different interpretations and
meaning. Equation (28) uses only the reflection response and
can be solved for the wave field k(0, ζ , t ) within its time win-
dow of validity for any constant value of ζ . The impedance
at that particular vertical travel time is directly obtained by
evaluating (Berryman and Greene 1980)

Z(ζ ) = Z(0)
[
1 +

∫ ζ

t=−ζ

k(0, ζ , t )dt
]
. (37)

The value 1 in the right-hand side comes from the fact that the
initial impulse is not part of the wave field k(t ) but contributes
to the impedance. With this evaluation the inversion is com-
plete. The integral can be seen as a Fourier transformation at
zero frequency, which is the only frequency used to compute
the impedance.

Marchenko-type inversion by non-recursive filtering

Equations (24) and (25) can be used in two ways to perform
the inversion. For both, the first step is to use them together
to simultaneously solve for h±(0, ζ , t ) for any fixed value of
ζ , let us say t0n < ζa < t0(n+1), by limiting the evaluation of the
equations to 0 < t < 2ζa. These are given by∫ t

t′=0
R0m(t − t ′)h+(0, ζa, t ′)dt ′ = h−(0, ζa, t ), (38)

∫ 2ζa

t′=t
R0m(t ′ − t )h−(0, ζa, t ′)dt ′ = h+(0, ζa, t ), (39)

Equations (38) and (39) are the same as equations (24) and
(25) in Slob et al. (2014) with a time shift for the fundamental

wave fields.The first method retrieves the reflection coefficient
rn as the last event in h−(0, ζa, t ) at its physical two-way travel
time, 2t0n, or,

rnδ(t − 2t0n) = h−(0, ζa,2t0n). (40)

We observe that this is similar to the backward recursive
scheme, but here it is not recursive and we can evaluate at any
vertical travel time. Of course, from one reflection coefficient,
only the impedance ratio can be obtained, cf. equation (31).
The second method uses h±(0, ζa, t ) to evaluate equation (24)
for larger values of t. The first event in t+(ζa)G+(0, ζa, t − ζa)
will be the next primary reflection event in the data, it will
have its physical amplitude, t+0nt

−
0nrn+1, and will be present at

its two-way travel time, 2t0(n+1). Equation (15) is evaluated to
determine the factor t+0nt

−
0n after which the reflection coeffi-

cient rn+1 is known. It is given by

rn+1δ(t − 2t0(n+1) ) = t+(ζa)G+(0, ζa, t0(n+1) )
t+0nt

−
0n

. (41)

We observe that this step is similar to the forward recursive
scheme, but here it is not recursive and we can perform this
step at any vertical travel time.

In this method, we combine the ideas of the forward and
backward recursive schemes and make it non-recursive by
using the idea behind the Marchenko equation. As a conse-
quence, only this method can be performed with finite fre-
quency bandwidth data in a target-oriented manner. Once we
have made the first non-recursive step at a chosen vertical
travel time, we can explore the target zone by using the recur-
sive relations of equations (32) and (33) to move in upward
direction, or by using the recursive relations of equations (9)
and (10) to move in downward direction. The benefit of this
possibility is illustrated in the next section for 3D wave fields
in a horizontally layered medium.

TARGET-ORIENTED INVERSION WITH 3D
FINITE FREQUENCY BANDWIDTH WAVE
FIELDS

When one shot gather of the reflection response of a hori-
zontally layered medium is available, we transform it to the
horizontal-slowness intercept-time domain, with radial slow-
ness, s, and intercept time, τ . We assume that the up-going
pressure is known at the acquisition surface together with the
source time signature,W (t ),which we assume to be zero phase
for simplicity. The source time signature has a finite-frequency
bandwidth and a zero mean. The Ricker wavelet used in the
above examples qualifies. Real source time signatures often
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have smaller bandwidths than the Ricker wavelet. The up-
going pressure is then given by

p−(s, τ ) =
∫ τ

t′=0
R(s, τ − t ′)W (t ′)dt ′. (42)

The functions t+(s, ζ )G±(0, ζ , s, τ ∓ ζ ) convolved with the
wavelet are denoted P±(0, ζ , s, τ ). Equations (38) and (39) are
now written as∫ τ

t′=0
p−(s, τ − t ′)h+(0, ζ , s, t ′)dt ′

=
∫ τ

t′=0
h−(0, ζ , s, τ − t ′)W (t ′)dt ′, (43)∫ 2ζ

t′=τ

p−(s, t ′ − τ )h−(0, ζ , s, t ′)dt ′

=
∫ τ

t′=0
h+(0, ζ , s, τ − t ′)W (t ′)dt ′, (44)

and the equations can be solved for each value of s sepa-
rately. Note that the filters remain impulse response func-
tions, within the bandwidth of the data. These two equations
can be solved for h±(0, ζ , s, τ ) at any chosen vertical travel
time, ζ , at any value of s. Suppose we solve the equa-
tions for several values of s and for ζ = ζa and t0(n−1) <

ζa < t0n. Then we know h±(0, ζa, s, τ ) and the latest event in
h−(0, ζa, s, τ ) is the event with amplitude rn−1(s) and inter-
cept time τ0(n−1)(s) = t0q0(s) + t1q1(s) + · · · + tn−1qn−1(s), in
which qn−1 =

√
1 − (scn−1)2 is the normalized vertical slow-

ness in layer n− 1. Hence, the first inversion method obtains

rn−1(s)δ(τ − 2τ0(n−1)(s)) = h−(0, ζa, s,2τp(n−1)(s)). (45)

We can nowmove in upward direction using the backward re-
cursion of equations (32) and (33), which remain valid by re-
placing t0n by τ0n(s) for each value of s for propagating waves.

For the second method, we use the band-limited version
of equation (24) for later times and obtain P+(0, ζa, s, τ ). The
earliest event in P+(0, ζa, s, τ ) is the reflection from zn and
we know its intercept time τn(s) = τn−1(s) + tnqn(s), but not
yet the local reflection coefficient, because all transmission
effects are still present. We use the band-limited version of
equation (25) to compute P−(0, ζa, s, τ = 0) and obtain the lo-
cal reflection coefficient of the deeper reflector as (Slob et al.
2014; Wapenaar et al. 2014)

rn(s) = P+(0, ζa, s,2τn(s))
P−(0, ζa, s,0)

. (46)

We can move in downward direction using the forward recur-
sion of equations (9) and (10),which remain valid by replacing
t0n by τ0n(s) for each value of s for propagating waves .

We now outline a different target-oriented inversion pro-
cedure than given in Slob, Wapenaar and Treitel (2018). Af-
ter one Marchenko solution and one Green’s function compu-
tation, we know the intercept times inside layer n as τn(s) =
τ0n(s) − τ0(n−1)(s), and the reflection coefficients rn−1(s) and
rn(s). We first use the intercept time to recover the thickness
dn of the layer. Suppose the ray parameter is sampled with
K+ 1 samples as sk with k = 0,1, 2, . . . ,K and s0 = 0. The
layer thickness is found from the intercept times and the slow-
ness values. The general expression for the intercept time is
given by

τn(sk) = dn
cn

√
1 − s2kc

2
n, (47)

with known τn(0) = dn/cn and we rewrite equation (47) as

τ 2
n (sk) = τ 2

n (0) − s2kd
2
n, (48)

which leads to

dn =
√

τ 2
n (0) − τ 2

n (sk)/sk, (49)

with k > 0. We find the velocity in the layer from

cn = dn/τn(0). (50)

With this velocity we invert the reflection coefficient rn−1 for
cn−1 and ρn/ρn−1 is obtained as final parameter. The reflection
coefficient is written as

rn−1(sk) = bn−1 −√
an−1(sk)

bn−1 +√
an−1(sk)

, (51)

where bn−1 is ratio of the impedances at the two sides of the
reflector and is obtained from rn−1(0) as

bn−1 = ρncn
ρn−1cn−1

= 1 + rn−1(0)
1 − rn−1(0)

, (52)

and an−1 is the ratio of the squared q-factors given by

an−1(sk) = q2n(sk)
q2n−1(sk)

= b2n−1

(
1 − rn−1(sk)
1 + rn−1(sk)

)2

. (53)

Because cn is known, we find cn−1 from

cn−1 =
√
an−1(sk) − q2n(sk)

sk
√
an−1(sk)

. (54)

Now both velocities are known and the density ratio ρn/ρn−1

can be computed from equation (52). Because rn is also
known, we can repeat this analysis and find cn+1 and ρn+1/ρn.
With this result the inversion is complete. This can be repeated
by performing a forward or a backward recursion step, in
which case we would continue with the method of Kunetz or
Robinson and Treitel, respectively, without having to perform
more Marchenko steps.

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.,Geophysical Prospecting, 68, 1425–1442



1438 E. Slob, K. Wapenaar and S. Treitel

Table 2 Values for the medium parameters in the model for the nu-
merical example

Layer
number

Velocity
(m/s)

Density
(kg/m3)

Thickness
(m) Z/Z0 (−)

0 1700 1430 ∞ 1.000
1 2300 2750 64.0 2.602
2 1900 2000 49.2 1.563
3 1700 1430 153.6 1.000
4 2100 1750 216.4 1.512
5 3200 2930 335.9 3.857
6 2000 1750 55.7 1.440
7 2100 2110 154.8 1.823
8 3300 1970 85.4 2.674
9 2500 2110 199.0 2.170

10 3000 2110 162.6 2.604
11 2500 2250 147.7 2.314
12 2900 2300 ∞ 2.744

NUMERICAL EXAMPLE

The methods described above are exact methods for piecewise
constant one-dimensional layered models. With impulse re-
flection response data they return all layer impedance values
without error. When we use finite frequency bandwidth re-
flection response data, by convolving the impulse reflection
response with a Ricker wavelet, Marchenko impedance inver-
sion does not work anymore. When noise is added to the data
the backward recursion method soon does not work anymore.
The primary reason is that the autocorrelation of the reflec-
tion response is used to compute the fundamental wave field.
The overall noise amplitude in the down-going part of the fun-
damental wave field that we obtain is too high to estimate the
up-going part of the fundamental wave field to start the inver-
sion in the bottom of the model. We do not show results for
these two methods. We illustrate how the method of Kunetz
(KI), of equation (30), and the Marchenko-type method (MI),
of equation (40), perform on computed data with multiplica-
tive noise in a model with 12 reflectors. Once the reflection
coefficients and their two-way travel times are obtained, we
use equation (31) recursively to compute the impedance as a
function of two-way travel time. Using the same model, we
show how well the target-oriented Marchenko-type inversion
(TOMI) scheme works.

The model information is given in Table 2. The source
emits a 30 Hz Ricker wavelet with which we compute the re-
flection response. For illustrating TOMI, we compute the re-
sponse for 10 different slowness values and use multiplicative
noise. We compute the noise in the frequency domain with
a base amplitude of 0.1 and a random phase after which it

is multiplied by and added to the reflection response. This
is equivalent to creating a random white noise trace in time
domain, convolving it with the reflection response and then
adding it to the reflection response. The time domain noise has
extreme values of ±0.009. We compute 1000 different noise
realizations and add each to the reflection response. We have
tested the inversion schemes with only additive noise, andwith
both additive andmultiplicative noise, and the results statistics
are the same as the results shown here for multiplicative noise.

For each of these 1000 datasets, we compute inversion
results with KI and MI. In the inversion, we first compute the
reflection coefficients for each method. For both methods, we
perform blind inversion as a fully automated process. The only
model assumption is that all layers have constant parameters.
We do not assume a predetermined number of layers, but we
assume that the layers are thick enough to prevent resolution
problems to occur. The 30 Hz Ricker wavelet is 62 ms long
to an amplitude level of 0.0023. This means we assume that
the two-way travel time inside each layer is 62 ms or more. In
the model we use in this example, four layers have a two-way
travel time between 51 ms and 56 ms (layer numbers 1, 2, 6
and 8). In the 51 ms window, the smallest wavelet amplitude
is 0.04, which is more than four times the noise level.

The KI method is implemented as follows. We search
the extreme value in the reflection response within the first
62 ms time window. When this value is at or below the noise
level, we assume it is noise and search again by shifting the
search window by one window length. When this value is
above the noise level, we assume it is part of a reflection
and search for another extreme value within the same win-
dow length but with half a window length shift. When that
extremum is larger than the one found earlier, its location
and value provide the time location and reflection coeffi-
cient value. Otherwise the location and value of the previ-
ously found extremum provide the time location and reflec-
tion coefficient value. We then apply the forward recursion
step and search the resulting trace by shifting the time search
window by one window length from the detected reflector lo-
cation. This is repeated until the end time is reached. With
this method, the number of detected reflectors has a mean
value of 12.1, a maximum of 19 and a standard deviation
of 0.4.

The MI method is implemented in two steps. We first
solve the coupled Marchenko-type equations to obtain the
primary reflectivity as a function of travel time. The result-
ing trace contains only primary reflections convolved with the
Ricker wavelet. On that trace we proceed as we did in KI but
now without the need to use the recursive steps, because all
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Figure 8 The retrieved mean impedance value and at one standard
deviation for KI (a) and MI (b). The mean values are normalized to
the impedance of the upper half space.The true normalized impedance
is shown by solid black lines, the mean impedances by dashed lines
and at one standard deviation by dotted lines, in red for KI and in
blue for MI.

multiples have been eliminated already. We use a threshold of
0.04 to decide whether an extremum is part of a reflection
or noise. This higher level can be used because in the trace
to be analysed the transmission effects have been eliminated
and true reflectivity amplitudes are present. The number of
detected reflectors has a mean of 12.5, a maximum of 21 and
a standard deviation of 1.1. For both results, we compute the
constant impedance values for each layer for all travel times
within that layer to plot the results.

Figure 8 shows the mean normalized impedance values
and the value at one standard deviation away from the mean
as a function of travel time as obtained fromKI in Fig. 8(a) and
from MI in Fig. 8(b). The impedance of the upper half space
is used as normalization factor. The true values are shown in
black solid lines. The KI retrieved values are shown in red with
the mean by a dashed line and the values at one standard de-
viation by dotted lines. The MI results are shown in a similar
way in blue colours. It can be seen that the mean values are
quite accurately obtained for both methods. The mean value
errors are below 0.5% for KI and MI. The mean timing errors
are below ±4 samples for both methods. In Fig. 8(a), we can
see that the standard deviation of the impedance values sud-
denly jumps up in layer with number 6, which is where the
first error in the arrival time estimations occur. The standard
deviation grows in the next two layers but then stabilizes until
the end of the trace. In Fig. 8(b), we can see that the standard
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Figure 9 The error in the mean values of the normalized impedance as
a function of travel time for KI (red solid) and MI (blue dashed). The
horizontal lines in both results indicate large errors (<10%) arising
from small errors in the retrieved travel times of the reflectors.

deviation of the impedance values slowly grows and contin-
ues to grow after the last reflector is found. From reflector
6 onward in this model, KI shows larger standard deviations
thanMI but at the end of the trace the standard deviations are
the same.

Both methods retrieve the impedance of each layer with
acceptable errors in the mean values of the retrieved results.
This is illustrated in Fig. 9 where it can be seen that the er-
ratic behaviour of the error in the impedance between 1.5 sec-
onds and 2 seconds is the effect of the noise that causes the
methods to detect a reflector. It looks so erratic because at ev-
ery noise realization those non-physical reflectors are detected
at slightly different times. They do not create large changes
in the impedance. Note that the error axis is bounded by
±0.5% error. The horizontal lines are spiky errors that oc-
cur after 0.8 seconds. They all coincide with small timing er-
rors of the reflector locations. These errors are similar in both
methods, below 10% in amplitude and less than 4 ms in time
location.

The coupled Marchenko equations can be used at any
two-way travel-time value for TOMI. We assume that the re-
flection response is obtained such that we have data at zero
incidence, φ0 = 0, and at nine angles of incidence, φk, in the
upper half space from 15◦ to 28◦, such that the radial slow-
ness is given by sk = sin(φk)/c0.We choose the same noise lev-
els and compute 1000 realization of the reflection responses
at these angles of incidence. For each dataset, we perform
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Figure 10 The true and mean retrieved reflection amplitude r5 as a
function of incidence angle; the vertical lines indicate the standard
deviation of the retrieved results.

Table 3 Values for the medium parameters in the model and for the
TOMI result

d6 (m) c6 (m/s) c5 (m/s) ρ6/ρ5 (-)

True 55.7 2000 3200 0.594
Mean 55.9 2007 3209 0.595
Std 0.2 8 86 0.023

the inversion as outlined in equations (49)–(54) by comput-
ing the mean value using all values for the radial slowness.
We choose the truncation time values ζα (sk) inside layer num-
ber 6 (n = 6). The latest event in h−(0, ζα, s, τ ) has amplitude
r5(sk) and the time of arrival is 2τ05(sk). As explained in the
text above equation (46), we then use the band-limited version
of equation (24) for τ (s) > ζα (sk) and find the time of arrival
of the first event in P+, which is equal to 2τ06(sk). We now
know the interval intercept time τ6(sk) = τ06(sk) − τ05(sk) =
t6q6(sk). The arrival times are not significantly influenced by
the noise after one Marchenko step. This means that the layer
thickness, d6 and the corresponding velocity c6 are found with
mean value errors well below 1% and very small standard de-
viations. The true and mean retrieved reflection amplitude r5
from h− is shown as a function of incidence angle in Fig. 10.
The vertical lines indicate the retrieved results within one stan-
dard deviation. The figure shows that the errors in the mean
retrieved value and the standard deviation increase with in-
creasing angle of incidence. The maximum error in the mean
value is below 1% and occurs at 28◦. The values at one stan-
dard deviation have an error below 3%. The numerical values
are summarized in Table 3.

DISCUSS ION

The method of Kunetz (KI) is a forward recursive method and
involves only convolutions of modelled fundamental wave
fields with the data. The fundamental wave fields are mod-
elled using equations (9) and (10). The only influence of the
noisy data on the fundamental wave fields are the amplitude
and arrival time of the estimated reflection coefficient. For this
reason, this method is quite well behaved with regard to noise.
Estimated reflection coefficients at shallower depth are used
to compensate for the transmission effects for each new es-
timated reflection coefficient. Small amplitude errors lead to
increasingly larger errors because of increasingly incorrect cor-
rection for transmission effects. Those errors and errors in the
estimated arrival times of the reflections lead to incorrect times
of the events in the fundamental wave fields. These lead in turn
to incomplete cancelation of themultiple reflections.When the
amplitudes of these remnant multiple refections are above the
noise level, they lead to the estimation of non-physical reflec-
tors. The method suffers from increasing errors in estimating
reflection coefficients and arrival times, because these are used
to model fundamental wave fields, which in turn are used to
detect and estimate the arrival time and reflection coefficient
of a deeper reflector. These effects are minimal in the exam-
ple shown here. The advantage of KI is that no equation has
to be solved. It is consists of one convolution and modelling
the fundamental wave fields at each step. This makes it a very
fast method.

TheMarchenko-type inversion is a non-recursive method
that computes the fundamental wave fields by filtering the re-
flection response. Filtering involves a convolution and a cor-
relation of the fundamental wave fields with the data. As a
consequence, the noise in the data enters into the fundamen-
tal wave fields. The correlation of two noisy traces increases
the noise in the result. This can be seen by the increase of the
relative standard deviation in the impedance values obtained
as a function of travel time with this method. An advantage of
Marchenko-type method (MI) is that it can be adapted to ac-
commodate an unknown source wavelet, but then the down-
going part of the field must be known (Ravasi 2017). Another
advantage of MI is that higher thresholds can be used to de-
tect a reflector, because the local reflection coefficient values
are present in the up-going part of the fundamental wave field.
This is necessary because the correlationsmake the noise levels
grow with increasing travel time for the inversion. The larger
standard deviation in the number of detected reflectors in MI
than in KI is because the noise levels increase with increas-
ing inversion times.Most of the reflectors detected in addition
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to the reflectors in the model occur after the last reflector of
the model has been detected. Another implication of higher
noise levels is that weaker reflectors whose reflections have
large two-way travel times will be missed by MI. This does
not happen in the example shown here.

We evaluate the target oriented inversion method on
noisy reflection responses for normal incidence and nine non-
zero values for the radial slowness. We use the interval inter-
cept times at the available angles of incidence to find the value
for the layer thickness for each noise realization. Then the ve-
locity inside the layer is obtained from the layer thickness and
the normal incidence intercept time. Estimating the intercept
times of the reflections from the top and bottom boundaries of
the layer can be done with high accuracy. This means that the
estimate of the intercept times of the layer are very accurately
obtained. For this reason, both the layer thickness and the ve-
locity in the layer are obtained with high accuracy and small
standard deviations. Figure 10 shows that the mean values of
the retrieved reflection strength is very accurate for all values
of the incidence angle and the largest standard deviation is
below 3% of the reflection coefficient value. For this reason
and the fact that c6 is accurately obtained from the intercept
times, the mean value of the velocity in the layer number 5
and the density ratio of the layers 5 and 6 are very accurately
obtained as well. Because of the increased standard deviation
in the reflection coefficient, the standard deviation in the re-
trieved values of c5 is higher, but still acceptable at less than
3%.Given the lower sensitivity to noise of the Kunetz method,
it seems a good idea to continue with this method recursively
after one Marchenko step. The Marchenko method is already
adapted to retrieve local reflectivity in three-dimensional (3D)
that could be used for inversion (Wapenaar et al. 2014). An-
other interesting option seems to investigate the method of
Kunetz further to see whether it can be extended for use in a
general 3D setting.

CONCLUSIONS

We have discussed two recursive and two non-recursive meth-
ods for computing the reflection coefficients of a discrete lay-
ered model. The recursive methods use one equation that in-
volves the data and two model equations that are recursively
used to compute the fundamental wave fields. The forward
recursive scheme computes the reflection coefficient from the
data. The backward recursive scheme computes the reflec-
tion coefficients from the up-going part of the fundamental
wave field. The non-recursive methods use only equations
that involve the data to compute the fundamental wave fields

at any chosen travel time. The first non-recursive method
is the Marchenko impedance inversion method. The method
first computes a particular sum of the up- and down-going
parts of the fundamental wave fields. It then computes the
impedance directly from the zero-frequency value of that sum
of the fundamental wave fields. The second is a Marchenko-
type method that first computes the up- and down-going
parts of the fundamental wave field from the data and then
computes the reflection coefficient. The first three methods
were developed independently almost 60 years ago. We have
shown that these were revived briefly several times during
the six following decades, but remained seen as independent.
We have shown from the underlying physics that all four
methods are based on the concept of the fundamental wave
field.

In the Marchenko-type method, the two equations are
solved as a coupled set of equations for a chosen vertical
travel time. We can then proceed in two ways. The first is
to find the local reflection coefficient directly in the up-going
part of the fundamental wave field. It is the coefficient of the
reflector that has a vertical travel time less than but closest
to the chosen time instant. The second is to compute the lo-
cal reflection coefficient from the first event in the Green’s
function. The fundamental wave fields are used to correct its
amplitude for two-way transmission effects. Either way, this
scheme leads to the possibility of performing target-oriented
inversion. We have shown for a one-dimensional model that
when data are available for several ray parameters, the non-
recursive target-oriented inversion can provide layer veloc-
ity, layer thickness and the ratio of densities of two adja-
cent layers. The non-recursive nature of this method makes
it a good candidate for extension to laterally varying me-
dia. Its sensitivity to noise can create problems at large times.
The method of Kunetz is not very sensitive to noise (addi-
tive and/or multiplicative) and is very fast compared with
the Marchenko-type method, although it can be implemented
only in a recursive way. The theory of the Marchenko-type
method is available for three-dimensional (3D) inversion. The
concept of forward recursive filtering seems worth investigat-
ing to see whether it can be adapted for use in a general 3D
setting.
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