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ABSTRACT
According to Huygens’ principle, all points on a wave front act as secondary sources emitting spherical waves and the envelope
of these spherical waves forms a new wave front. In the mathematical formulation of Huygens’ principle, the waves emitted
by the secondary sources are represented by Green’s functions. In many present-day applications of Huygens’ principle, these
Green’s functions are replaced by their time-reversed versions, thus forming a basis for backpropagation, imaging, inversion,
seismic interferometry, etc. However, when the input wave field is available only on a single open boundary, this approach has
its limitations. In particular, it does not properly account for multiply reflected waves. This is remedied by a modified form of
Huygens’ principle, in which the Green’s functions are replaced by focusing functions. The modified Huygens’ principle forms
a basis for imaging, inverse scattering, monitoring of induced sources, etc., thereby properly taking multiply reflected waves into
account.

1 Introduction

Dutchmathematician, physicist and astronomer Christiaan Huy-
gens (1629–1695) described light as a longitudinal mechanical
wave, propagating through an ether medium. Even though,
centuries later, Maxwell proposed light as a transverse elec-
tromagnetic wave and Einstein showed that it does not need
an ether to support its propagation, the early wave theoretical
approach of Huygens appeared very effective in the analysis of
the propagation and reflection of light. In his book Traité de la
Lumière (Treatise on Light, published in 1690), he explains that
around each undulating particle of the matter through which
a wave propagates, a spherical wave is formed of which this
particle is the centre. The common tangent (or envelope) of these
spherical waves forms a new wave front. This is, in a nutshell,
Huygens’ principle, and it applies to light as well as to other wave
phenomena. For an extensive discussion of the work of Huygens
and his important role in bridging ancient and modern science,
see Moser and Robinson (2024).

In the early nineteenth century, French physicist Augustin-Jean
Fresnel (1788–1827) added the theory of interference to Huygens’
principle. With this extension, the new wave front along the
envelope of aforementioned spherical waves can be explained as
the result of constructive interference of these spherical waves.
In the following, when we speak of ‘Huygens’ principle’, we
mean the original theory of Huygens, extended with the theory
of interference.

Figure 1 is an illustration of Huygens’ principle, applied to
acoustic waves. A point source, indicated by the red star, emits
a circular wave which propagates through a medium with a
constant propagation velocity (the example is in two dimensions;
hence, instead of spherical waves, we have circular waves). At
a certain time, this wave reaches a screen with a small opening
(Figure 1a). The wave field in this opening acts as a secondary
source, which emits a circular wave into the half-space above the
screen. Figure 1b shows a similar setup, but this time the screen
has many small openings, which all act as secondary sources,
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Figure 1 Illustration of Huygens’ principle for acoustic waves in a
homogeneousmedium. (a) A source at 𝐱𝑆 emits a circular wave. Thewave
field in the opening of the screen at 𝐱0 acts as a secondary source, emitting
a secondary circular wave into the upper half-space. (b)Many openings in
the screen, acting as secondary sources. The envelope of the superposition
of the secondary circular waves in the upper half-space approaches the
circular wave, originating from the source at 𝐱𝑆 . (c) All points in one
large opening in the screen act as secondary sources (indicated by the
blue stars). The superposition of the secondary circularwaves in the upper
half-space has converged to the circular wave, originating from the source
at 𝐱𝑆 . Animations of this and other figures are available. For details, see
the Data Availability Statement.

emitting circular waves at the time the original wave reaches
these openings. Hence, the field above the screen consists of a
superposition of circularwaves. The envelope of these superposed
waves approximately forms a circular wave, resembling the wave
that would be radiated by the original point source into the upper
half-space in the absence of the screen. In Figure 1c, the screen
contains one large opening. All points in this opening act as
secondary sources (indicated by the dense distribution of blue
stars), and the superposition of the circular waves above the
screen has indeed converged to the circular wave radiated by the
original source.

Huygens’ principle has foundmany applications in optics, acous-
tics and other fields in which wave propagation and scattering
play a role. In this paper, we restrict ourselves to applications in
acoustics and geophysics, in particular for wave field extrapola-
tion. Traditionally, the waves emitted by the secondary sources
in Huygens’ principle are represented by Green’s functions. In
Section 2,we reviewapplications ofHuygens’ principle in forward
and inverse wave field extrapolation through homogeneous and
inhomogeneous media. It appears that with the traditional Huy-
gens’ principle, internalmultiply reflectedwaves are not correctly
handled in inverse extrapolation through an inhomogeneous
medium. In Section 3, we first introduce focusing functions for
homogeneous and inhomogeneous media. Next, we discuss a
modified version of Huygens’ principle, in which the Green’s
functions are replaced by these focusing functions. We discuss
applications of this modified Huygens’ principle in forward and
inverse wave field extrapolation through an inhomogeneous
mediumand in the retrieval of the homogeneousGreen’s function
of an inhomogeneous medium. We show that internal multiply
reflected waves are correctly handled in these applications.

The style of the main text is informal, with an emphasis on
explanations of the different forms of Huygens’ principle, using
simple mathematics. More detailed derivations can be found in
the Appendices.

2 Traditional Huygens’ Principle, Using Green’s
Functions

2.1 ForwardWave Field Extrapolation Through a
Homogeneous Medium

We discuss some mathematics behind Huygens’ principle, as
illustrated in Figure 1, and use this as a starting point for the
discussion of forward wave field extrapolation. We define a
Cartesian coordinate system, with the 𝑧-axis pointing downward
and the coordinate vector 𝐱 denoting position in this system. For
the three-dimensional (3D) situation, this vector is defined as
𝐱 = (𝑥, 𝑦, 𝑧); whereas most of the theory in this paper holds for
three dimensions, the examples are in two dimensions, in which
case the coordinate vector is defined as 𝐱 = (𝑥, 𝑧). Time is denoted
by 𝑡.

Let 𝐱𝑆 denote the position of a monopole source (in Figure 1 it
is defined as 𝐱𝑆 = (0, 1200) m). We define the acoustic Green’s
function 𝐺(𝐱, 𝐱𝑆, 𝑡) (named after George Green, 1793–1841) as
the response to an impulsive monopole source at 𝐱𝑆 and 𝑡 = 0,
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observed at 𝐱 as a function of 𝑡. The Green’s function is a causal
function of time, meaning 𝐺(𝐱, 𝐱𝑆, 𝑡) = 0 for 𝑡 < 0. The source
of the Green’s function is a volume-injection rate source (see
Appendix A1 for further details). When the source function in an
actual situation is not an impulse but a transientwavelet 𝑠(𝑡), then
the observed acoustic pressure is given by the convolution of the
Green’s function with the wavelet, according to

𝑝(𝐱, 𝑡) = ∫
∞

0

𝐺(𝐱, 𝐱𝑆, 𝑡
′)𝑠(𝑡 − 𝑡′)d𝑡′. (1)

To simplify the notation, here and in subsequent sections, we
introduce the convolutional symbol ∗ and replace the integral
notation of Equation (1) by

𝑝(𝐱, 𝑡) = 𝐺(𝐱, 𝐱𝑆, 𝑡) ∗ 𝑠(𝑡). (2)

The wave fronts in Figure 1 below the screen are described
by this equation. The source function 𝑠(𝑡) is a Ricker wavelet
with a central frequency of 20 Hz, and 𝐺(𝐱, 𝐱𝑆, 𝑡) is the two-
dimensional (2D) Green’s function in a homogeneous lossless
mediumwith propagation velocity 𝑐 = 2000m/s andmass density
𝜌 = 1000 kg/m 3 (hence, the wavelength at the central frequency
is 100 m). The amplitudes along the wave fronts are tapered
at large propagation angles (relative to the vertical axis), and
waves reflected by the screen are not shown. Let 𝐱0 = (𝑥0, 𝑧0)

denote the position of the opening in the screen in Figure 1a,
with 𝑧0 being the depth level of the screen (with 𝑧0 = 0 m here
and in subsequent figures). According to Huygens’ principle, the
acoustic pressure at this position, 𝑝(𝐱0, 𝑡), acts as a secondary
source for the wave field above the screen; hence, analogous to
Equation (2), this is given by

𝑝(𝐱, 𝑡) ∝ 𝐺(𝐱, 𝐱0, 𝑡) ∗ 𝑝(𝐱0, 𝑡), (3)

where the symbol ∝ means ‘proportional to’. Next, let 𝐱𝑛 =
(𝑛Δ𝑥, 𝑧0), 𝑛 = −𝑁,… ,−1, 0, 1, … ,𝑁, denote the positions of the
openings in the screen in Figure 1b (with𝑁 = 9 andΔ𝑥 = 200m).
Then, according to Huygens’ superposition principle, the wave
field in the half-space above the screen can be expressed as

𝑝(𝐱, 𝑡) ∝

𝑁∑
𝑛=−𝑁

𝐺(𝐱, 𝐱𝑛, 𝑡) ∗ 𝑝(𝐱𝑛, 𝑡). (4)

Next, for the situation of one large opening in the screen, as
in Figure 1c, we reduce the distance between the secondary
sources to Δ𝑥 = 10 m. Since this is significantly smaller than
the central wavelength of 100 m, we now have effectively a
continuum of secondary sources and we replace the summation
by an integration, according to

𝑝(𝐱, 𝑡) ∝ ∫
𝕊0

𝐺(𝐱, 𝐱′, 𝑡) ∗ 𝑝(𝐱′, 𝑡)d𝐱′, (5)

where 𝕊0 denotes the integration boundary (the opening in the
screen as in Figure 1c, or an infinite horizontal boundary in the
absence of the screen). For the 2D situation considered here, this
is a 1D integral over 𝑥′; for the 3D situation, it is a 2D integral over
𝑥′ and 𝑦′. In both cases, 𝑧′ is fixed and equal to 𝑧0, being the depth
of integration boundary 𝕊0.

Figure 2 Dipole Green’s function 𝐺d(𝐱, 𝐱
′, 𝑡) (convolved with a

Ricker wavelet to get a nicer display) in a homogeneous medium, for a
dipole at 𝐱′ on 𝕊0 at depth 𝑧0. In the mathematical formulation of Huy-
gens’ principle, this dipole Green’s function describes the propagation
from a secondary source at 𝐱′ to an observation point 𝐱 (see Equation 6).

Up to this point, we captured the physical arguments of Huy-
gens and Fresnel in mathematical form. Using only physical
arguments, the proportionality factor remains unknown. In the
19th century, Kirchhoff, Helmholtz, Rayleigh and others derived
expressions which formalize Huygens’ principle. In Appendix B,
we summarize their derivation and obtain the following more
precise form of Equation (5)

𝑝(𝐱, 𝑡) = −2∫
𝕊0

𝐺d(𝐱, 𝐱
′, 𝑡) ∗ 𝑝(𝐱′, 𝑡)d𝐱′, (6)

for 𝐱 above𝕊0. Here,𝐺d(𝐱, 𝐱′, 𝑡) is the response, observed at 𝐱 and
𝑡, to an impulsive dipole source at 𝐱′ and 𝑡 = 0, with 𝐱′ on 𝕊0; see
Figure 2 (actually we already used this dipole Green’s function
in generating the example in Figure 1). This dipole Green’s
function is further specified in Appendix A3. The minus sign in
Equation (6) stems from the definition of the dipole (it is oriented
with respect to the positive 𝑧-axis, whereas in Equation (6) it
radiates in the negative 𝑧-direction). The factor 2 in Equation (6)
is explained later.

Huygens’ wave-theoretical description of light was not immedi-
ately accepted. One of the reasons was that it does not explain
why the secondary sources radiate only forward: if each point
in a wave field acts as a secondary source, one would expect
it to radiate in all directions (like the dipole source of the
Green’s function in Figure 2). Consequently, the envelope of the
superposed waves of all secondary sources on a plane would
consist of two contributions: one propagating forward, in the
direction of the original wave, and one propagating backward,
against the direction of the original wave. In the time of Huygens,
it was not clear why the secondary sources do not give rise to this
backward propagating wave. This was seen as a serious drawback
of Huygens’ wave-theoretical approach. Newton’s competing
theory (light consisting of particles moving along straight lines)
did not have this drawback, but it had other shortcomings, such
as not explaining diffraction and interference. All in all, Huygens’
wave theory has withstood the test of time.
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To understand why the secondary sources generate only the
forward propagating wave, consider the Kirchhoff–Helmholtz
integral in Equation (B8). This integral contains monopole and
dipole Green’s functions, driven by the particle velocity and
acoustic pressure, respectively, at the horizontal boundary 𝕊0.
Equation (B8) states that the combination of secondarymonopole
and dipole responses yields the forward propagating wave in the
half-space above 𝕊0, whereas their contributions cancel in the
half-space below 𝕊0. Moreover, for the homogeneous medium
configuration of Figure 1, the secondary monopoles and dipoles
give equal contributions to the wave field above 𝕊0, so one of
the terms can be omitted and the other term doubled, yielding
Equation (6) and explaining the factor 2 in this equation.Whereas
Equation (B8) holds for 𝐱 at either side of 𝕊0, Equation (6) is only
valid for 𝐱 above 𝕊0.

Huygens’ principle was developed in the pre-Industrial age. At
the time, it was merely meant to explain the physics of wave
propagation. Technological developments in the 20th century
enabled many other interesting applications of Huygens’ prin-
ciple. For example, in Equation (6), the wave field 𝑝(𝐱′, 𝑡) at 𝕊0
can be replaced by electric signals that are fed to a dense array
of piezoelectric transducers which emit ultrasound. Equation (6)
then describes the synthesized wave field emitted by the array
into the half-space above 𝕊0. On the other hand, digitized
measurements of an acoustic or seismic wave field 𝑝(𝐱′, 𝑡) at
𝕊0 can be fed to a computer and Equation (6) can be evaluated
numerically to compute the wave field 𝑝(𝐱, 𝑡) at any position 𝐱
in the half-space above 𝕊0. The latter application is wave field
extrapolation (Berkhout 1985). In practice, the convolution along
the time coordinate is often replaced by a multiplication in the
frequency domain (see Equation B9), but for clarity we keep our
expressions in the time domain because this appeals better to the
physics of Huygens’ principle.

InEquation (6),𝐱 is assumed to be situated in thehalf-space above
𝕊0 whereas the source (or source distribution) of the wave field
𝑝(𝐱′, 𝑡) resides in the half-space below 𝕊0. For this situation, we
speak of forward wave field extrapolation, since the direction of
extrapolation (upward from 𝕊0 to 𝐱 above 𝕊0) corresponds to the
direction of the upgoing wave field 𝑝(𝐱′, 𝑡) at 𝕊0. Since this is
the direction of the negative 𝑧-axis, we can indicate this with a
superscript − as follows:

𝑝−(𝐱, 𝑡) = −2∫
𝕊0

𝐺d(𝐱, 𝐱
′, 𝑡) ∗ 𝑝−(𝐱′, 𝑡)d𝐱′, (7)

for 𝐱 above 𝕊0. Similarly, for forward extrapolation of a downgo-
ing field, indicatedwith a superscript+, we can derive in a similar
way

𝑝+(𝐱, 𝑡) = 2∫
𝕊0

𝐺d(𝐱, 𝐱
′, 𝑡) ∗ 𝑝+(𝐱′, 𝑡)d𝐱′, (8)

for 𝐱 below 𝕊0 (here the source is assumed to be situated in
the half-space above 𝕊0). Note that the dipole Green’s function
𝐺d(𝐱, 𝐱

′, 𝑡) for 𝐱 below 𝕊0 has a sign opposite to that for 𝐱 above
𝕊0 (see Figure 2). This compensates for the different signs in front
of the integrals in Equations (7) and (8).

2.2 Inverse Wave Field Extrapolation Through a
Homogeneous Medium

We start this section with discussing an intuitive modification of
Huygens’ principle for backpropagation. We consider again the
acoustic pressure 𝑝(𝐱, 𝑡) in a homogeneous lossless medium, in
response to a source in the lower half-space (at 𝐱𝑆 = (0, 1200)m),
observed at 𝐱𝑛 = (𝑛Δ𝑥, 𝑧0) at 𝕊0, with 𝑛 = −𝑁,… ,−1, 0, 1, … ,𝑁
(with 𝑁 = 50 and Δ𝑥 = 200 m, hence 𝑁Δ𝑥 = 10, 000 m). In
Equation (4), we replace the Green’s function by the time-
reversed Green’s function 𝐺d(𝐱, 𝐱𝑛,−𝑡) (i.e., the time-reversal
of the dipole Green’s function shown in Figure 2). Hence, we
evaluate the expression

⟨𝑝(𝐱, 𝑡)⟩ ∝ 2

𝑁∑
𝑛=−𝑁

𝐺d(𝐱, 𝐱𝑛,−𝑡) ∗ 𝑝(𝐱𝑛, 𝑡), (9)

for 𝐱 in the half-space below 𝕊0. The notation ⟨𝑝(𝐱, 𝑡)⟩ means
‘estimate of 𝑝(𝐱, 𝑡)’. Whereas, in Equation (4), the Green’s
function 𝐺(𝐱, 𝐱𝑛, 𝑡) forward propagates the field of the secondary
sources 𝑝(𝐱𝑛, 𝑡) into the half-space above 𝕊0, in Equation (9)
the time-reversed Green’s function 𝐺d(𝐱, 𝐱𝑛,−𝑡) backpropagates
the field of the secondary sources 𝑝(𝐱𝑛, 𝑡) into the half-space
below 𝕊0 (Schneider 1978). The result ⟨𝑝(𝐱, 𝑡)⟩ for 𝑡 = 0.4 s is
shown inFigure 3a. This figure illustratesHuygens’ superposition
principle for backpropagation. The envelope of the superposed
circular waves approximately forms a circular wave, resembling
the wave emitted by the original point source at 𝐱𝑆 , observed
above this point source at 𝑡 = 0.4 s. Figure 3b shows ⟨𝑝(𝐱, 𝑡)⟩ for
𝑡 = 0 s. Here, a focus is formed at the position of the original point
source. Since there is no sink at 𝐱𝑆 to absorb the focused field,⟨𝑝(𝐱, 𝑡)⟩ does not vanish when we continue the backpropagation
to negative times, as is shown in Figure 3c for 𝑡 = −0.4 s. Next,
we replace the summation in Equation (9) with an integration,
according to

⟨𝑝(𝐱, 𝑡)⟩ = 2∫
𝕊0

𝐺d(𝐱, 𝐱
′,−𝑡) ∗ 𝑝(𝐱′, 𝑡)d𝐱′ (10)

(but in the numerical implementation we actually evaluate Equa-
tion (9), with Δ𝑥 reduced to Δ𝑥 = 10 m, which is much smaller
than the central wavelength of 100m, and𝑁 = 1000, so that again
𝑁Δ𝑥 = 10, 000m). Figure 3d shows a superposition of snapshots
of ⟨𝑝(𝐱, 𝑡)⟩ for 𝑡 = 0.4 s, 𝑡 = 0 s and 𝑡 = −0.4 s. In the left-hand side
of Equation (10), we still use the notation ⟨𝑝(𝐱, 𝑡)⟩, indicating an
approximation of 𝑝(𝐱, 𝑡). The actual response to a point source
at 𝐱𝑆 is causal and consists of circular wave fronts around 𝐱𝑆
at positive times only, whereas Figure 3d shows an incomplete
response at positive time (a half-circle above 𝐱𝑆), and a non-
existing response at negative time (a half-circle below 𝐱𝑆). In
Appendix C, we review a step-by-step derivation of Equation (10).
Ignoring evanescent waves, we arrive at Equation (C4), which
has three terms on the right-hand side. The first of these terms
is the integral in the right-hand side of Equation (10), explaining
Figure 3d. The second term restores the missing half-circle below
𝐱𝑆 at positive time and creates a half-circle above 𝐱𝑆 at negative
time. The third term suppresses the entire acausal response. Since
the second and third terms require measurements at a boundary
below the source and knowledge of the source at 𝐱𝑆 , they cannot
be evaluated in most practical situations. By ignoring the second
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F

Figure 3 (a)–(c) Illustration of Huygens’ principle for backprop-
agation of acoustic waves in a homogeneous medium, according to
Equation (9), with the time-reversal of the dipole Green’s function of
Figure 2. (d) As Figures (a)-(c), but here according to Equation (10).

and third terms in Equation (C4), we are left with Equation (10),
with the limitations discussed above. For an inhomogeneous
medium, the limitations are more severe as we will see in the
next section.

Unlike Equation (6), which formalizes Huygens’ explanation of
the physics of wave propagation, Equation (10) with the time-
reversed Green’s function does not describe a physical situation.
However, it can be used for numerical wave field extrapolation of
an upgoing wave field 𝑝(𝐱′, 𝑡), measured at 𝕊0, to any position
below 𝕊0 and above the source. Here, we speak of inverse
wave field extrapolation, since the direction of extrapolation
(downward from 𝕊0 to 𝐱 below 𝕊0) is opposite to the direction
of the upgoing wave field 𝑝(𝐱′, 𝑡) at 𝕊0. We indicate upgoing wave
fields again with a superscript − and replace Equation (10) by

𝑝−(𝐱, 𝑡) = 2∫
𝕊0

𝐺d(𝐱, 𝐱
′,−𝑡) ∗ 𝑝−(𝐱′, 𝑡)d𝐱′, (11)

for 𝐱 below 𝕊0. As long as 𝐱 is above the source in the lower
half-space, Equation (11) describes the complete upgoing wave
field at 𝐱; see Figure 3 (in this case, the only approximation is
the neglection of evanescent waves). When the lower half-space
is source-free, Equation (11) even holds for the entire lower half-
space. Similarly, for inverse extrapolation of a downgoing wave
field, we can derive in a similar way

𝑝+(𝐱, 𝑡) = −2∫
𝕊0

𝐺d(𝐱, 𝐱
′,−𝑡) ∗ 𝑝+(𝐱′, 𝑡)d𝐱′, (12)

for 𝐱 above 𝕊0. As long as 𝐱 is below the source in the upper
half-space, Equation (12) describes the complete downgoingwave
field at 𝐱. When the upper half-space is source-free, Equation (12)
holds for the entire upper half-space.

Equations (11) and (12) are the basic expressions for inverse wave
field extrapolation through a homogeneous lossless medium, as
applied in acoustic and seismic imaging methods. They can be
implemented in the space-time domain, as inKirchhoffmigration
(Schneider 1978; Tygel et al. 2000) and reverse-time migra-
tion (Whitmore 1983; McMechan 1983), in the space-frequency
domain, as in seismic inversion (Cohen et al. 1986) and seismic
migration (Berkhout 1985), or in the wavenumber–frequency
domain, as in migration with the phase-shift method (Gazdag
1978).

Another application of Equation (10) is obtained when we revert
the time coordinate on the right-hand side, according to

2∫
𝕊0

𝐺d(𝐱, 𝐱
′, 𝑡) ∗ 𝑝(𝐱′,−𝑡)d𝐱′. (13)

Note that 𝐺d(𝐱, 𝐱′, 𝑡) is again the causal response to a dipole at
𝐱′ on 𝕊0, similar to Equation (6). The expression of Equation (13)
underlies the principle of time-reversed acoustics, as advocated by
Fink (1992) and coworkers. In this situation, 𝑝(𝐱′,−𝑡) represents
the time reversal of measurements at 𝕊0, which are fed to a dense
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array of piezoelectric transducers which emit ultrasound. This
expression thus describes the synthesized wave field emitted by
the array into the half-space below𝕊0. If we interchange the labels
for positive and negative times in Figure 3, this figure shows the
synthesized wave field at 𝑡 = −0.4 s converging to the position
of the original source, the focused field at 𝑡 = 0 s, and the field
at 𝑡 = 0.4 s diverging from the focus. Note that in this case the
focused field acts as a downward radiating virtual source. A
further discussion of time-reversed acoustics is beyond the scope
of this paper.

2.3 Inverse Wave Field Extrapolation Through
an Inhomogeneous Medium

We discuss Huygens’ principle for backpropagation through an
inhomogeneous lossless medium. To show the essence, we con-
sider for simplicity the horizontally layered medium of Figure 4,
with interfaces (indicated by the yellow solid lines) at 𝑧 = 500

m and 𝑧 = 1500 m. The propagation velocity 𝑐 is taken constant
throughout at 2000m/s. Themass density 𝜌 in the half-spaces 𝑧 <

500m and 𝑧 > 1500m equals 1000 kg/m 3 and in the layer 500 <
𝑧 < 1500 m it equals 4000 kg/m 3. We place again a monopole
source at 𝐱𝑆 = (0, 1200)m (indicated by the red star), between the
two interfaces. The source function is again a Ricker wavelet 𝑠(𝑡)
with a central frequency of 20 Hz. We use a recursive ‘layer-code’
method (Kennett 1983) to model the response to this source. This
response, 𝑝(𝐱, 𝑡) = 𝐺(𝐱, 𝐱𝑆, 𝑡) ∗ 𝑠(𝑡), is shown in Figure 4a–d for
𝑡 = 0.2 s, 𝑡 = 0.4 s, 𝑡 = 0.6 s and 𝑡 = 0.8 s (note that the amplitudes
along the wave fronts are again tapered at large propagation
angles). The interfaces at 𝑧 = 500 m and 𝑧 = 1500 m partially
reflect and partially transmit the waves. Figure 4d shows the first
multiply reflected wave.

For the same layered medium, the dipole Green’s function
𝐺d(𝐱, 𝐱

′, 𝑡), for a dipole at𝐱′ on𝕊0, is shown inFigure 5. Snapshots
of this Green’s function for 𝑡 = 0.2 s and 𝑡 = 0.4 s are shown
in Figure 5a, whereas Figure 5b shows a snapshot for 𝑡 = 1.4 s,
including the first multiply reflected event. Figure 5c is a cross
section of 𝐺d(𝐱, 𝐱′, 𝑡) along a vertical line through the dipole
source, as a function of depth 𝑧 and time 𝑡. The vertical dashed
lines in this figure at 𝑡 = 0.2 s, 𝑡 = 0.4 s and 𝑡 = 1.4 s correspond
to the vertical dashed lines in the snapshots in Figure 5a,b. The
vertical solid line in Figure 5c at 𝑡 = 0 s indicates the causality
condition, which states that 𝐺d(𝐱, 𝐱′, 𝑡) is non-zero only after the
source at 𝑡 = 0 (hence, right of this line). Figure 5d is a ray diagram
of this dipole Green’s function.

We use the time-reversal of the dipole Green’s function of Figure 5
to backpropagate the acoustic pressure wave field of Figure 4
from 𝕊0 to any point 𝐱 below 𝕊0. First, we use the discretized
form of Huygens’ principle, as formulated by Equation (9), with
𝐱𝑛 = (𝑛Δ𝑥, 𝑧0), Δ𝑥 = 200m and 𝑁 = 50. The results ⟨𝑝(𝐱, 𝑡)⟩ for
𝑡 = 0.8 s and 𝑡 = 0.4 s are shown in Figure 6a and 6b. Compare
these figures with Figure 4d and 4b, which show the desired field
𝑝(𝐱, 𝑡) at the same time instants. It appears that the envelopes
of the superposed waves in Figure 6a,b resemble parts of the
desired field, but significant parts are missing (in particular,
the downgoing field in the lower half-space), the amplitudes
of the reflected waves are too low, and circular ghost events
appear in the lower half-space. Figure 6c shows ⟨𝑝(𝐱, 𝑡)⟩ for

M

Figure 4 Wave field𝑝(𝐱, 𝑡) = 𝐺(𝐱, 𝐱𝑆, 𝑡) ∗ 𝑠(𝑡) in a layeredmedium,
for a monopole at 𝐱𝑆 .

𝑡 = 0 s. Apart from the focus on the position of the original
point source, a ghost focus is formed below the second interface.
Figure 6d shows ⟨𝑝(𝐱, 𝑡)⟩ for 𝑡 = −0.4 s. Clearly, ⟨𝑝(𝐱, 𝑡)⟩ does
not vanish for negative times. The situation is more complex
than in Figure 3, which is the result of applying Equation (9)
in a homogeneous medium. In particular, reflected waves are
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Figure 5 (a) and (b) Dipole Green’s function 𝐺d(𝐱, 𝐱′, 𝑡) (convolved
with a Ricker wavelet) in a layered medium, for a dipole at 𝐱′ on 𝕊0 at
depth 𝑧0. (c) Cross section at 𝑥 = 𝑥′ = 0. (d) Ray diagram. Red and blue
arrows represent downgoing and upgoing waves, respectively. The arcs
represent some of the wave fronts at 𝑡 = 0.2 s and 𝑡 = 1.4 s.

not correctly backpropagated by the time-reversed dipole Green’s
function of the layeredmedium, despite the fact that primary and
multiply reflectedwaves are included in this Green’s function (see
Figure 5).

Next, we use the integral form of Huygens’ principle, as formu-
lated by Equation (10), which we extend with a second integral
over a boundary 𝕊1 (at 𝑧1 = 3000m) below the source, hence

⟨𝑝(𝐱, 𝑡)⟩ = 2∫
𝕊0

𝐺d(𝐱, 𝐱
′,−𝑡) ∗ 𝑝(𝐱′, 𝑡)d𝐱′

−2∫
𝕊1

𝐺d(𝐱, 𝐱
′,−𝑡) ∗ 𝑝(𝐱′, 𝑡)d𝐱′, (14)

for 𝐱 between 𝕊0 and 𝕊1. The results ⟨𝑝(𝐱, 𝑡)⟩ for 𝑡 = 0.8 s and 𝑡 =
0.4 s are shown in Figure 7a,b. These results accurately resemble
the desired field 𝑝(𝐱, 𝑡), shown in Figure 4d and 4b, respectively,
including the internal multiply reflected waves. Figure 7c, which
shows ⟨𝑝(𝐱, 𝑡)⟩ for 𝑡 = 0 s, contains a single focus at the position
of the original point source. Finally, Figure 7d shows ⟨𝑝(𝐱, 𝑡)⟩
for 𝑡 = −0.4 s, which again appears to be non-zero. Comparing
Equation (14) with Equation (C4), we find that ⟨𝑝(𝐱, 𝑡)⟩ consists
of two contributions, according to

⟨𝑝(𝐱, 𝑡)⟩ = 𝑝(𝐱, 𝑡) + 𝐺(𝐱, 𝐱𝑆,−𝑡) ∗ 𝑠(𝑡). (15)

The second term in this expression explains the contribution at
negative time in Figure 7d.

In most practical situations, measurements are available only
at a single boundary, say 𝕊0, meaning that the second integral
in Equation (14) cannot be evaluated. Hence, we are left with
the integral along 𝕊0, as formulated by Equation (10), with
𝐺d(𝐱, 𝐱

′,−𝑡) defined in the inhomogeneous medium. Similar
to a homogeneous medium, we can reformulate this again
into Equation (11), which then describes approximate inverse
extrapolation of upgoing waves 𝑝−(𝐱′, 𝑡) from 𝕊0 through an
inhomogeneous medium, to 𝐱 below 𝕊0 and above the source
in the lower half-space. As we have seen above, this approxi-
mation does not properly handle multiply reflected waves, so
it only accounts for primary waves. Moreover, even for these
primary waves, amplitude errors occur, which are proportional
to amplitudes of multiply reflected waves (see Wapenaar et al.
1989 for a detailed analysis). Despite these approximations,
Equation (11), with the dipole Green’s function defined in the
inhomogeneous medium, forms the basis for many acoustic and
seismic imaging schemes, including reverse timemigration, time-
reversed acoustics, etc. The approximations are acceptable as long
as the contrasts in the medium are sufficiently small so that
internalmultiply reflected waves can be ignored. For situations in
which internal multiply reflected waves cannot be ignored, other
approaches are needed. One of these approaches is the replace-
ment of the dipole Green’s functions by focusing functions. This
modification of Huygens’ principle is the subject of the next
section.
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Figure 6 Illustration of Huygens’ principle for backpropagation of
acoustic waves in a layered medium (Equation (9), with the time-reversal
of the dipole Green’s function of Figure 5).

F

M

Figure 7 Illustration of Huygens’ principle for backpropagation of
acoustic waves in a layered medium from two enclosing boundaries
(Equation 14).
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We conclude this section by deriving a representation for the
homogeneous Green’s function from Equations (14) and (15).
Using Equation (2) for the first term on the right-hand side of
Equation (15), we observe that this equation can be written as⟨𝑝(𝐱, 𝑡)⟩ = 𝐺h(𝐱, 𝐱𝑆, 𝑡) ∗ 𝑠(𝑡), where 𝐺h(𝐱, 𝐱𝑆, 𝑡) is the homoge-
neous Green’s function, defined as

𝐺h(𝐱, 𝐱𝑆, 𝑡) = 𝐺(𝐱, 𝐱𝑆, 𝑡) + 𝐺(𝐱, 𝐱𝑆,−𝑡); (16)

see Appendix A2 (here, ‘homogeneous’ refers to the fact that the
wave equation for 𝐺h has no source term; hence, it is a homo-
geneous differential equation). Next, using this in the left-hand
side of Equation (14) and using Equation (2) for 𝑝(𝐱′, 𝑡) in the
right-hand side of Equation (14), we obtain (after removing the
convolution with 𝑠(𝑡) on both sides) the following representation
for the homogeneous Green’s function in an inhomogeneous
lossless medium:

𝐺h(𝐱, 𝐱𝑆, 𝑡) = 2∫
𝕊0

𝐺d(𝐱, 𝐱
′,−𝑡) ∗ 𝐺(𝐱′, 𝐱𝑆, 𝑡)d𝐱′

−2∫
𝕊1

𝐺d(𝐱, 𝐱
′,−𝑡) ∗ 𝐺(𝐱′, 𝐱𝑆, 𝑡)d𝐱′ (17)

(Porter 1970; Oristaglio 1989). This representation forms the
basis for holographic imaging and inverse scattering methods.
Moreover, if we use the source–receiver reciprocity relation
𝐺(𝐱′, 𝐱𝑆, 𝑡) = 𝐺(𝐱𝑆, 𝐱

′, 𝑡), then the integrands on the right-hand
side describe the cross-correlation of responses at receivers at
𝐱𝑆 and 𝐱 (both located between 𝕊0 and 𝕊1), due to sources at
𝐱′ at the boundaries 𝕊0 and 𝕊1 (Wapenaar and Fokkema 2006).
In this form, Equation (17) is the theoretical basis for Green’s
function retrieval, also known as seismic interferometry (Weaver
and Lobkis 2001; Campillo and Paul 2003; Schuster et al. 2004;
Snieder 2004; Roux et al. 2004; Sabra et al. 2007; Draganov
et al. 2009). Again, in many practical situations (for holographic
imaging, interferometry, etc.), receivers or sources are available
only at a single boundary. An alternative representation of the
homogeneous Green’s function, in terms of integrals over a
single boundary, follows from the modified version of Huygens’
principle in the next section.

3 Modified Huygens’ Principle, Using Focusing
Functions

3.1 Introducing the Focusing Function

Huygens’ principle, formalized by Kirchhoff, Rayleigh and oth-
ers, accurately explains the physics of wave propagation. As
we have seen, it can also be used for forward extrapolation of
a wave field measured on a plane 𝕊0 into a source-free half-
space. This is formulated by Equation (6) and illustrated for a
homogeneous upper half-space in Figure 1. When the upper half-
space is inhomogeneous, Equation (6) still holds when the dipole
Green’s function is replaced by that of the inhomogeneous upper
half-space (and the wave field at 𝕊0 by its upgoing part). Hence,
for these situations, there is no need to modify the mathematical
formulation of Huygens’ principle.

For inverse wave field extrapolation (i.e., extrapolation of a wave
field measured on a plane 𝕊0 into the half-space containing
the source(s) of this wave field), the dipole Green’s function
is commonly replaced by its time-reversed version (see Equa-
tion 10). This is illustrated for a homogeneous lower half-space
in Figure 3 and for an inhomogeneous lower half-space (using
the time-reversed dipole Green’s function of this inhomogeneous
half-space) in Figure 6. In the latter case, inverse wave field
extrapolation yields reasonable results for the primary waves but
it breaks down for multiply reflected waves, even though these
are included in the Green’s functions.

Huygens’ principle was meant to explain the physics of wave
propagation, so the fact that it has limitations for inverse wave
field extrapolation is not a shortcoming of this principle in itself.
Nevertheless, it is worthwhile to modify Huygens’ principle for
inverse wave field extrapolation, in such a way that it accounts
for multiply reflected waves. To address this, in this section, we
replace the dipole Green’s functions by focusing functions and,
hence, the dipole sources by focal points. In previous work on
the Marchenko method, we introduced two types of focusing
functions: 𝑓1, which has a focal point inside the inhomogeneous
medium, and 𝑓2, with its focal point at the boundary between the
inhomogeneous lower half-space and the homogeneous upper
half-space (Wapenaar et al. 2014). Since the dipole Green’s func-
tions in Huygens’ principle have their sources at the boundary
𝕊0, we choose for focusing functions with their focal points at
𝕊0. Hence, the focusing function 𝐹 we discuss below is akin to
the focusing function 𝑓2. However, it is normalized in a different
way.Moreover, whereas 𝑓2 is defined in a truncated version of the
actual medium, the focusing function 𝐹 is defined in the actual
medium and it is not decomposed into downgoing and upgoing
components inside the medium. Before we discuss this focusing
function in an inhomogeneous medium, we start with discussing
the focusing function 𝐹 in a homogeneous medium.

3.2 Focusing Function in a Homogeneous
Medium

We define the focusing function 𝐹(𝐱, 𝐱′, 𝑡) for a homogeneous
lossless medium as an upward propagating wave field, of which
the wave fronts are half-spheres (in three dimensions) or half-
circles (in two dimensions) centred at 𝐱′ on 𝕊0 (at depth 𝑧0)
(see Figure 8a for the 2D situation). At negative times, the
focusing function propagates (as a function of 𝐱 and 𝑡) upward
through the lower half-space towards 𝕊0, at 𝑡 = 0 it focuses at
𝐱 = 𝐱′ on 𝕊0, and at positive times it propagates upward through
the upper half-space away from 𝕊0. The time-reversed focusing
function 𝐹(𝐱, 𝐱′,−𝑡), illustrated in Figure 8b for the 2D situation,
propagates at negative times downward through the upper half-
space towards𝕊0, at 𝑡 = 0 it focuses at 𝐱 = 𝐱′ on𝕊0, and at positive
times it propagates downward through the lower half-space away
from 𝕊0.

In the lower half-space, we relate the upward propagating
focusing function of Figure 8a to the time-reversal of the dipole
Green’s function of Figure 2 via

𝐹(𝐱, 𝐱′, 𝑡) = 2𝐺d(𝐱, 𝐱
′,−𝑡), (18)
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Figure 8 (a) Focusing function 𝐹(𝐱, 𝐱′, 𝑡) (convolved with a Ricker
wavelet to get a nicer display) and (b) its time-reversed version𝐹(𝐱, 𝐱′,−𝑡)
in a homogeneous medium, for a focal point at 𝐱′ on 𝕊0 at depth 𝑧0. In
the modified version of Huygens’ principle for a homogeneous medium
(Equations 21 and 22), these focusing functions replace the dipole Green’s
function of Figure 2.

for 𝐱 below 𝕊0. In the upper half-space, we relate it to the dipole
Green’s function via

𝐹(𝐱, 𝐱′, 𝑡) = −2𝐺d(𝐱, 𝐱′, 𝑡), (19)

for 𝐱 above 𝕊0. For 𝐱 at 𝕊0 (hence, for 𝑧 = 𝑧′ = 𝑧0), the focusing
condition reads

𝐹(𝐱, 𝐱′, 𝑡)|𝑧=𝑧′ = 𝛿(𝐱H − 𝐱′H)𝛿(𝑡), (20)

where 𝐱H and 𝐱′H denote the horizontal components of 𝐱 and
𝐱′, respectively, hence 𝐱H = (𝑥, 𝑦) and 𝐱′H = (𝑥′, 𝑦′) (in three
dimensions) or 𝐱H = 𝑥 and 𝐱′H = 𝑥′ (in two dimensions). In
theory, evanescentwaves can be included in the focusing function
(Dukalski et al. 2022;Wapenaar et al. 2023), but to avoid instability
they are usually suppressed. This implies that the delta functions
in the right-hand side of Equation (20) should be interpreted
as band-limited delta functions. Note that, whereas the Green’s
function 𝐺d(𝐱, 𝐱′, 𝑡) is the response to a dipole source at 𝐱′ on
𝕊0, the focusing function 𝐹(𝐱, 𝐱′, 𝑡) obeys a source-free wave

equation (the right-hand side of Equation (20) formulates a
focusing condition, not a source; see Appendix D for details).

Substituting Equation (19) into Equation (7) for forward extrap-
olation of upgoing waves to 𝐱 above 𝕊0, or substituting Equa-
tion (18) into Equation (11) for inverse extrapolation of upgoing
waves to 𝐱 below 𝕊0, we obtain in both cases

𝑝−(𝐱, 𝑡) = ∫
𝕊0

𝐹(𝐱, 𝐱′, 𝑡) ∗ 𝑝−(𝐱′, 𝑡)d𝐱′. (21)

Hence, this expression holds for𝐱 in the upper aswell as the lower
half-space as long as 𝐱 is above the source in the lower half-space.
Similarly, substituting Equation (18) into Equation (8) for forward
extrapolation of downgoing waves to 𝐱 below 𝕊0, or substituting
Equation (19) into Equation (12) for inverse extrapolation of
downgoing waves to 𝐱 above 𝕊0, we obtain in both cases

𝑝+(𝐱, 𝑡) = ∫
𝕊0

𝐹(𝐱, 𝐱′,−𝑡) ∗ 𝑝+(𝐱′, 𝑡)d𝐱′. (22)

Hence, this expression also holds for 𝐱 in the upper and lower
half-space as long as 𝐱 is below the source in the upper half-
space. In the absence of sources, Equations (21) and (22) hold
throughout space.

By introducing the focusing function and its time-reversal, we
achieved that the four equations for forward and inverse extrapo-
lation of upgoing and downgoing waves through a homogeneous
medium (Equations 7, 8, 11 and 12) are now captured by the
two Equations (21) and (22). These equations formulate modified
versions of Huygens’ principle for a homogeneous medium.
Figures 1 and 3 can be seen as examples of Equation (21) for 𝐱
above and below 𝕊0, respectively. For a homogeneous medium,
there are no further advantages of using the focusing functions
instead of the dipoleGreen’s functions. This changes considerably
for an inhomogeneous medium.

3.3 Focusing Function in an Inhomogeneous
Medium

We consider a medium which is inhomogeneous below the
boundary 𝕊0 (at depth 𝑧0), with propagation velocity 𝑐(𝐱) and
mass density 𝜌(𝐱). At and above this boundary, we assume that
the medium is homogeneous, with propagation velocity 𝑐0 and
mass density 𝜌0. For this configuration, we define the focusing
function 𝐹(𝐱, 𝐱′, 𝑡), with 𝐱′ again denoting a focal point at 𝕊0
(hence, 𝑧′ = 𝑧0). Throughout space, 𝐹(𝐱, 𝐱′, 𝑡) obeys the source-
free acoustic wave equation, with the condition that at 𝕊0 it obeys
the focusing condition, formulated by Equation (20), and that
at and above 𝕊0 it propagates upward. Hence, at and above 𝕊0
this focusing function is the same as that for a homogeneous
medium, discussed in the previous section; below 𝕊0, it is of
course different. Assuming the medium is lossless throughout
space, the time-reversed focusing function 𝐹(𝐱, 𝐱′,−𝑡) obeys the
same source-free wave equation as 𝐹(𝐱, 𝐱′, 𝑡). At and above 𝕊0,
this time-reversed focusing function propagates downward.

We illustrate 𝐹(𝐱, 𝐱′, 𝑡) for the same layered medium as used
for previous examples. Figure 9a–d shows snapshots at times
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Figure 9 Focusing function 𝐹(𝐱, 𝐱′, 𝑡) (convolved with a Ricker
wavelet) in a layered medium, for a focal point at 𝐱′ on 𝕊0 at depth 𝑧0.
In the modified version of Huygens’ principle for an inhomogeneous
medium (Equation 23), this focusing function and its time-reversed
version replace the dipole Green’s function of Figure 5.

𝑡 = −1.0 s, 𝑡 = −0.6 s, 𝑡 = −0.2 s and 𝑡 = 0.2 s, respectively.
Figure 10a,b shows cross sections of 𝐹(𝐱, 𝐱′, 𝑡), and of its time-
reversed version 𝐹(𝐱, 𝐱′,−𝑡), along a vertical line through the
focal point, as a function of depth 𝑧 and time 𝑡. The vertical
dashed lines in Figure 10a at 𝑡 = −1.0 s, 𝑡 = −0.6 s, 𝑡 = −0.2
s and 𝑡 = 0.2 s correspond to the vertical dashed lines in the
snapshots in Figure 9a–d. Figure 10c,d shows ray diagrams of
𝐹(𝐱, 𝐱′, 𝑡) and 𝐹(𝐱, 𝐱′,−𝑡). From these figures, we observe that
the focusing function 𝐹(𝐱, 𝐱′, 𝑡) starts with upgoing waves in the
half-space below the deepest interface, which are tuned in such a
way that, after interaction at the interfaces, a single upgoing wave
converges to the focal point (Figures 9c and 10c), focuses at 𝐱 = 𝐱′

and 𝑡 = 0 and continues as a single upgoing wave, diverging from
the focal point (Figures 9d and 10c).

Note the different character of the focusing function 𝐹(𝐱, 𝐱′, 𝑡) in
Figures 9 and 10 in comparison with the dipole Green’s function
𝐺d(𝐱, 𝐱

′, 𝑡) in Figure 5.Whereas the dipole Green’s function obeys
a causality condition related to the source at 𝑡 = 0, indicated by
the vertical solid line in Figure 5c, the focusing function obeys a
focusing condition at 𝑧0, indicated by the horizontal solid lines
in Figure 10a,b. Conversely, the focusing function is not causal (it
exists at negative and positive times; see Figure 10a), whereas the
dipole Green’s function does not focus at 𝑧0 (it contains multiple
upgoing events at 𝑧0; see Figure 5c,d).

3.4 Modified Huygens’ Principle for an
Inhomogeneous Medium

We now discuss how the focusing functions 𝐹(𝐱, 𝐱′, 𝑡) and
𝐹(𝐱, 𝐱′,−𝑡) can replace the dipole Green’s functions 𝐺d(𝐱, 𝐱′, 𝑡)
and 𝐺d(𝐱, 𝐱′,−𝑡) in Huygens’ principle for an inhomogeneous
medium. Recall that we assume that the medium at and above
the boundary 𝕊0 is homogeneous, with propagation velocity 𝑐0
and mass density 𝜌0. This means that in the upper half-space
we can handle downgoing and upgoing waves independently
of each other. On the other hand, the medium below 𝕊0 is
inhomogeneous with propagation velocity 𝑐(𝐱) and mass density
𝜌(𝐱). Although in inhomogeneous media, decomposition into
downgoing and upgoing waves is often possible locally, in the
following analysis we will not make use of this, so in the lower
half-space we will consider the total wave field. For the moment,
we will assume that the entire medium (at, above and below 𝕊0)
is source-free for the wave field 𝑝(𝐱, 𝑡). Hence, 𝑝(𝐱, 𝑡) obeys the
wave equation 𝑝 = 0 (with  defined in Equation (A2)) in the
entire medium. The focusing functions 𝐹(𝐱, 𝐱′, 𝑡) and 𝐹(𝐱, 𝐱′,−𝑡)
obey the same source-free wave equation.

In the previous section, we remarked that at and above 𝕊0, the
focusing function𝐹(𝐱, 𝐱′, 𝑡) is the same as that for a homogeneous
medium. Hence, Equations (21) and (22), which were derived
for 𝐱 in the upper and lower half-space in a homogeneous
medium, still hold for 𝐱 in the homogeneous half-space above
𝕊0, evenwhen themedium below𝕊0 is inhomogeneous. Defining
𝑝(𝐱, 𝑡) = 𝑝−(𝐱, 𝑡) + 𝑝+(𝐱, 𝑡) for 𝐱 at and above 𝕊0, we obtain from
Equations (21) and (22)

𝑝(𝐱, 𝑡) = ∫
𝕊0

𝐹(𝐱, 𝐱′, 𝑡) ∗ 𝑝−(𝐱′, 𝑡)d𝐱′
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Figure 10 (a) and (b) Cross sections at 𝑥 = 𝑥′ = 0 and (c) and (d)
ray diagrams of the focusing function𝐹(𝐱, 𝐱′, 𝑡) in Figure 9 and of its time-
reversed version 𝐹(𝐱, 𝐱′,−𝑡). Red and blue arrows represent downgoing
and upgoing waves, respectively. The arcs represent some of the wave
fronts at 𝑡 = ∓1.4 s and 𝑡 = ∓0.2 s.

+∫
𝕊0

𝐹(𝐱, 𝐱′,−𝑡) ∗ 𝑝+(𝐱′, 𝑡)d𝐱′, (23)

for 𝐱 at and above 𝕊0. The focusing functions 𝐹(𝐱, 𝐱′, 𝑡) and
𝐹(𝐱, 𝐱′,−𝑡) are mutually independent solutions of the same
source-free wave equation as that for 𝑝(𝐱, 𝑡). Hence, from a
mathematical viewpoint, Equation (23) expresses 𝑝(𝐱, 𝑡) as a
superposition of these independent solutions, with 𝑝−(𝐱′, 𝑡) and
𝑝+(𝐱′, 𝑡) being their (convolutional) coefficients. Although we
derived this equation from Equations (21) and (22) for 𝐱 at and
above𝕊0, the quantities 𝑝(𝐱, 𝑡), 𝐹(𝐱, 𝐱′, 𝑡) and 𝐹(𝐱, 𝐱′,−𝑡) all obey
the same source-free wave equation for all 𝐱 (at, above and below
𝕊0). Hence, if we write 𝑝(𝐱, 𝑡) for 𝐱 below 𝕊0 as a superposition
of 𝐹(𝐱, 𝐱′, 𝑡) and 𝐹(𝐱, 𝐱′,−𝑡), the coefficients must be the same
as for 𝐱 at and above 𝕊0. In other words, Equation (23) holds
for all 𝐱 throughout space. When there are sources for the wave
field 𝑝(𝐱, 𝑡) in the upper half-space, then Equation (23) holds for
all 𝐱 below the shallowest source (following the same reasoning
as for the homogeneous medium). A more formal derivation of
Equation (23) for all 𝐱 below the shallowest source is presented in
Appendix D. From this derivation, it also follows that evanescent
waves are neglected at 𝕊0. This does not mean that evanescent
waves are neglected altogether. Waves that are propagating at
𝕊0 may become evanescent in high-velocity layers, and Equa-
tion (23) accounts for such evanescent waves (Wapenaar et al.
2021).

Equation (23) formulates the modified Huygens’ principle for an
inhomogeneous medium. The two terms on the right-hand side
are illustrated with ray diagrams in Figure 11 for 𝐱 below 𝕊0.
First, consider Figure 11b. A downgoing wave field 𝑝+(𝐱′, 𝑡) is
incident from above to the inhomogeneous lower half-space. For
each 𝐱′ on 𝕊0, it is convolved with the time-reversed focusing
function 𝐹(𝐱, 𝐱′,−𝑡). The integral over all 𝐱′ on 𝕊0, as formulated
in the second term on the right-hand side of Equation (23),
extrapolates the field 𝑝+(𝐱′, 𝑡) from 𝕊0 into the lower half-space.
Since the focusing function implicitly consists of a superposition
of downgoing and upgoing waves in the lower half-space (the
red and blue rays in Figure 11b), the result of this integral is not
the forward extrapolated downgoing field 𝑝+(𝐱, 𝑡) in the lower
half-space (unlike in the homogeneous medium situation, as
formulated by Equation 22). Next, we consider Figure 11a. Here,
the upgoing field 𝑝−(𝐱′, 𝑡) is convolvedwith the focusing function
𝐹(𝐱, 𝐱′, 𝑡) for all 𝐱′ on 𝕊0. The integral over all 𝐱′ on 𝕊0 (the
first term on the right-hand side of Equation 23) extrapolates
the field 𝑝−(𝐱′, 𝑡) from 𝕊0 into the lower half-space. For similar
reasons as above, this is not the inverse extrapolated upgoing field
𝑝−(𝐱, 𝑡) in the lower half-space. However, the superposition of
the two integrals, as formulated by Equation (23), yields the total
wave field 𝑝(𝐱, 𝑡) in the lower half-space, including all internal
multiply reflected waves. In comparison with Equation (14),
where the two integrals are taken over two different boundaries,
in Equation (23) the two integrals are taken over one and the
same boundary. Hence, this makes Equation (23) very useful for
practical situations in which a medium is often accessible from
one side only, such as in the seismic reflection method. The
focusing function can be retrieved from the reflection response,
acquired at the same boundary, using the Marchenko method for
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Figure 11 Ray diagrams of the modified Huygens’ principle, as
formulated by Equation (23), with the focusing functions of Figure 10. (a)
The first and (b) the second term in Equation (23).

1D, 2D or 3D inhomogeneous media (Broggini and Snieder 2012;
Wapenaar et al. 2014; Slob et al. 2014; Van der Neut et al. 2015;
Meles et al. 2015). In most papers on the Marchenko method,
it is assumed that the wave field and focusing functions inside
the medium can be decomposed into downgoing and upgoing
components. This decomposition is avoided in Equation (23),
which opens the way to handle refracted and evanescent waves
(Wapenaar et al. 2021; Diekmann and Vasconcelos 2021). A
further discussion of the Marchenko method is beyond the scope
of this paper. In the next sections, we indicate applications of
Equation (23), assuming the focusing function is known (either
from numerical modelling or from applying the Marchenko
method to the reflection response).

3.5 Simultaneous Forward and Inverse Wave
Field Extrapolation Through an Inhomogeneous
Medium

Since Equation (23) yields the total wave field in the inhomoge-
neous half-space below𝕊0 from downgoing and upgoing waves at
𝕊0, we can interpret it as an expression for simultaneous forward
and inverse wave field extrapolation. We illustrate this for the
situation of reflection measurements at the boundary 𝕊0. We
define the reflection response 𝑅(𝐱′, 𝐱′′, 𝑡) of the inhomogeneous

lower half-space via the relation

𝑝−(𝐱′, 𝑡) = ∫
𝕊0

𝑅(𝐱′, 𝐱′′, 𝑡) ∗ 𝑝+(𝐱′′, 𝑡)d𝐱′′, (24)

for 𝐱′ and 𝐱′′ at 𝕊0. We consider a dipole source in the homoge-
neous upper half-space at 𝐱𝐷 = (𝐱H,𝐷, 𝑧0 − 𝜖) (with 𝐱H,𝐷 denoting
the horizontal component(s) of 𝐱𝐷), at a vanishing distance 𝜖
above 𝕊0. This is the source for the wave field 𝑝(𝐱, 𝑡). We scale
it such that for the downgoing field at 𝐱′′ on 𝕊0 we have

𝑝+(𝐱′′, 𝑡) = 𝛿(𝐱′′𝐻 − 𝐱H,𝐷)𝑠(𝑡), (25)

where 𝑠(𝑡) is the sourcewavelet. Substitution of Equation (25) into
Equation (24) gives

𝑝−(𝐱′, 𝑡) = 𝑅(𝐱′, 𝐱𝐷, 𝑡) ∗ 𝑠(𝑡), (26)

for 𝐱′ at 𝕊0. Substitution of Equations (25) and (26) into
Equation (23) yields

𝑝(𝐱, 𝑡) = ∫
𝕊0

𝐹(𝐱, 𝐱′, 𝑡) ∗ 𝑅(𝐱′, 𝐱𝐷, 𝑡) ∗ 𝑠(𝑡)d𝐱
′

+ 𝐹(𝐱, 𝐱𝐷,−𝑡) ∗ 𝑠(𝑡). (27)

Since the source at𝐱𝐷 lies just above𝕊0, this expression holds only
for 𝐱 at and below 𝕊0. First, we evaluate a discretized version of
only the first term on the right-hand side of Equation (27), that is,

𝑁∑
𝑛=−𝑁

𝐹(𝐱, 𝐱𝑛, 𝑡) ∗ 𝑅(𝐱𝑛, 𝐱𝐷, 𝑡) ∗ 𝑠(𝑡), (28)

with 𝐱𝑛 = (𝑛Δ𝑥, 𝑧0), Δ𝑥 = 200 m and 𝑁 = 50. For this 2D exam-
ple,we choose𝐱H,𝐷 = 𝑥𝐷 = 0. The result is shown inFigure 12a–d,
for 𝑡 = 0.2 s, 𝑡 = 0.6 s, 𝑡 = 1.0 s and 𝑡 = 1.4 s, respectively. The
envelopes of the superposed waves converge to wave fronts, but it
is not yet obvious how they are connected to the desired response
𝑝(𝐱, 𝑡) (which is the response to a dipole source at 𝐱𝐷). Next, we
replace the summation by an integration and we add the term
𝐹(𝐱, 𝐱𝐷,−𝑡) ∗ 𝑠(𝑡), that is, we add Figure 9c, 9b and 9a to the
converged versions of Figure 12a, 12b and 12c. The results are
shown in Figure 13. This figure clearly shows the desired response
to the dipole source at 𝐱𝐷 , observed at all 𝐱 in the lower half-space,
including internal multiply reflected waves (compare Figure 13a
and 13d with the directly modelled dipole Green’s function in the
lower half-space in Figure 5a and 5b at 𝑡 = 0.2 s and 𝑡 = 1.4 s,
respectively).

Extrapolation of reflection data with focusing functions finds
applications in acoustic and seismic imaging schemes, account-
ing for internal multiply reflected waves (Ravasi et al. 2016;
Jia et al. 2018; Staring and Wapenaar 2020; Brackenhoff et al.
2022). In those applications, the focusing functions are obtained
with the Marchenko method from numerically modelled or field
reflection responses of 2D and 3D inhomogeneous media. The
focal points of those focusing functions are inside the medium,
but, as long as evanescent waves can be neglected, they are
straightforwardly related to focusing functions with their focal
points at 𝕊0 (Wapenaar et al. 2014).
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Figure 12 Illustration of the first term of the modified Huygens’
principle (Equation 28, with the focusing function of Figure 9), applied
to the discretized reflection response 𝑅(𝐱𝑛, 𝐱𝐷, 𝑡) ∗ 𝑠(𝑡).

M

Figure 13 Illustration of the modified Huygens’ principle (both
terms of Equation 27), applied to the continuous reflection response
𝑅(𝐱′, 𝐱𝐷, 𝑡) ∗ 𝑠(𝑡).
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F

Figure 14 Illustration of the first term of the modified Huygens’
principle (Equation 30, with the focusing function of Figure 9), applied
to the discretized Green’s function 𝐺(𝐱𝑛, 𝐱𝑆, 𝑡).

F

M

Figure 15 Illustration of the modified Huygens’ principle (both
terms of Equation 29), applied to the continuous Green’s function
𝐺(𝐱′, 𝐱𝑆, 𝑡) and its time-reversal 𝐺(𝐱′, 𝐱𝑆,−𝑡).
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3.6 Retrieval of the Homogeneous Green’s
Function in an Inhomogeneous Medium

In Equation (16), we introduced the homogeneous Green’s
function𝐺h(𝐱, 𝐱𝑆, 𝑡) = 𝐺(𝐱, 𝐱𝑆, 𝑡) + 𝐺(𝐱, 𝐱𝑆,−𝑡) for an inhomoge-
neous lossless medium. Both terms on the right-hand side obey
a wave equation with a source at 𝐱𝑆 , but these sources cancel
each other, implying that the wave equation for 𝐺h(𝐱, 𝐱𝑆, 𝑡) is
source-free (see Appendix A2). Hence, when in Equation (23)
we replace 𝑝(𝐱, 𝑡) by 𝐺h(𝐱, 𝐱𝑆, 𝑡), it will hold throughout space,
independent of the position of 𝐱𝑆 . With this replacement, the
upgoing and downgoing wave fields 𝑝−(𝐱′, 𝑡) and 𝑝+(𝐱′, 𝑡) on
the right-hand side of Equation (23) need to be replaced by
𝐺−
h
(𝐱′, 𝐱𝑆, 𝑡) and 𝐺+

h
(𝐱′, 𝐱𝑆, 𝑡), respectively. Assuming again that

𝐱𝑆 lies below 𝕊0, taking into account that 𝐱′ is situated at 𝕊0
and that the half-space above 𝕊0 is homogeneous, it follows
that the Green’s function 𝐺(𝐱′, 𝐱𝑆, 𝑡) propagates upward for 𝐱′
at 𝕊0 (see Figure 4). As a result, the time-reversed Green’s
function 𝐺(𝐱′, 𝐱𝑆,−𝑡) propagates downward for 𝐱′ at 𝕊0. Since
these two terms constitute the total homogeneous Green’s func-
tion, it follows that 𝐺−

h
(𝐱′, 𝐱𝑆, 𝑡) = 𝐺(𝐱′, 𝐱𝑆, 𝑡) and 𝐺+

h
(𝐱′, 𝐱𝑆, 𝑡) =

𝐺(𝐱′, 𝐱𝑆,−𝑡) for 𝐱′ at 𝕊0. With these substitutions, Equation (23)
becomes

𝐺h(𝐱, 𝐱𝑆, 𝑡) = ∫
𝕊0

𝐹(𝐱, 𝐱′, 𝑡) ∗ 𝐺(𝐱′, 𝐱𝑆, 𝑡)d𝐱
′

+∫
𝕊0

𝐹(𝐱, 𝐱′,−𝑡) ∗ 𝐺(𝐱′, 𝐱𝑆,−𝑡)d𝐱′, (29)

for all 𝐱 throughout space. Compare this with Equation (17),
where the two integrals are taken over two different boundaries.
In Equation (29), both integrals are taken over the same boundary.
Moreover, the second integral is merely the time-reversal of the
first integral.

We illustrate Equation (29) for the same layeredmedium as in the
previous examples and with 𝐱𝑆 = (0, 1200) m. First, we evaluate
a discretized version of only the first term on the right-hand side
of Equation (29), that is,

𝑁∑
𝑛=−𝑁

𝐹(𝐱, 𝐱𝑛, 𝑡) ∗ 𝐺(𝐱𝑛, 𝐱𝑆, 𝑡), (30)

with 𝐱𝑛 = (𝑛Δ𝑥, 𝑧0), Δ𝑥 = 200 m, 𝑁 = 50, and with 𝐺(𝐱𝑛, 𝐱𝑆, 𝑡)
tapered at large propagation angles. The result is shown in
Figure 14a–d, for 𝑡 = 0.8 s, 𝑡 = 0.4 s, 𝑡 = 0.0 s and 𝑡 = −0.4 s,
respectively. Next, we replace the summation by an integration
and (following Equation 29), we add its time-reversal, that is,
we superpose the converged versions of Figure 14b (at 𝑡 = 0.4

s) and 14d (at 𝑡 = −0.4 s), etc. The result is shown in Figure 15.
This figure shows the retrieved homogeneous Green’s function
𝐺h(𝐱, 𝐱𝑆, 𝑡). Note that the result in Figure 15 is indistinguishable
from that in Figure 7. However, whereas Figure 7 was obtained
from an integral over two boundaries, using the traditional
Huygens’ principle with time-reversed dipole Green’s functions,
Figure 15 is the result of an integral over a single boundary and

its time-reversal, using the modified Huygens’ principle with
focusing functions.

Retrieval of the homogeneous Green’s function from wave
field observations at a single boundary finds applications in
holographic imaging and inverse scattering (Wapenaar et al.
2016; Diekmann and Vasconcelos 2021) and in monitoring
of induced acoustic (Van der Neut et al. 2017) and seismic
sources (Brackenhoff et al. 2019). In those applications, the
focusing functions are obtained with the Marchenko method
from numerically modelled or field reflection responses of 2D
inhomogeneous media.

4 Conclusions

Huygens’ principle stands as a milestone in the history of wave
theory. Originally formulated to explain the propagation of light,
it has found many applications in optics, acoustics, geophysics,
etc. Central in the mathematical formulation of Huygens’ princi-
ple, due to 19th century physicists Fresnel, Kirchhoff, Helmholtz,
Rayleigh and others, is the Green’s function, which formalizes
the responses to the secondary sources in Huygens’ principle.
Many of the present-day applications of Huygens’ principle use
time-reversed Green’s functions. These time-reversed Green’s
functions are acausal and as such do not describe physical
responses to secondary sources. However, they play a fundamen-
tal role in algorithms for backpropagation, imaging, inversion,
seismic interferometry, etc.

We have demonstrated with numerical examples that the tradi-
tional Huygens’ principle with time-reversed Green’s functions
has limitations when the medium is inhomogeneous. In particu-
lar, when measurements are available only at a single boundary,
internal multiply reflected waves are incorrectly handled. To
remedy this, Huygens’ principle has been modified by replacing
the Green’s functions by focusing functions. For a homogeneous
medium, this replacement does not make much difference but
for an inhomogeneous medium the improvement is consid-
erable. Using the modified Huygens’ principle with focusing
functions, the limitations of the traditional Huygens’ principle
with time-reversed Green’s functions are evaded. This has been
demonstrated with numerical examples for a simple horizontally
layered medium, but note that the modified principle holds
for an arbitrary inhomogeneous medium. The only assumption
is that evanescent waves can be ignored at the boundary. No
assumptions are made about up-down decomposition inside the
inhomogeneous lower half-space.

Similar to the time-reversedGreen’s functions inHuygens’ princi-
ple, the focusing functions in the modified Huygens’ principle do
not describe physical responses to secondary sources. However,
they play an important role in novel algorithms for acoustic
and seismic imaging and inverse scattering, for monitoring of
induced acoustic and seismic sources, etc. In all these cases, the
focusing functions can be obtained from the reflection response
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with the Marchenko method, taking internal multiply reflected
waves properly into account.

Data Availability Statement

Animations associated with the figures in this paper are available and can
be accessed via the following URL https://gitlab.com/geophysicsdelft/
OpenSource in the directory . . . /huygens
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Appendix A: Monopole and Dipole Green’s Functions

A.1 Monopole Green’s Function

The wave equation for the acoustic pressure 𝑝(𝐱, 𝑡) in an inhomogeneous
lossless medium with propagation velocity 𝑐(𝐱) and mass density 𝜌(𝐱)
reads

𝑝 = −𝜕𝑡𝑞, (A.1)

with 𝜕𝑡 standing for 𝜕∕𝜕𝑡, wave operator (𝐱, 𝑡) defined as

 = 𝛁 ⋅
1

𝜌
𝛁 − 1

𝜌𝑐2
𝜕2𝑡 (A.2)

and source function 𝑞(𝐱, 𝑡) being the volume-injection rate density. We
define the Green’s function (𝐱, 𝐱′, 𝑡) as the solution of

 = −𝛿(𝐱 − 𝐱′)𝛿(𝑡), (A.3)

with 𝛿(𝐱) = 𝛿(𝑥)𝛿(𝑦)𝛿(𝑧) and causality condition

(𝐱, 𝐱′, 𝑡) = 0, for 𝑡 < 0. (A.4)

Hence, (𝐱, 𝐱′, 𝑡) is the response to an impulse at 𝐱′ and 𝑡 = 0, observed
at 𝐱 as a function of 𝑡. Similarly, we define 𝐺(𝐱, 𝐱′, 𝑡) as the response to
an impulsive volume-injection rate source 𝑞(𝐱, 𝑡) = 𝛿(𝐱 − 𝐱′)𝛿(𝑡); hence,
it obeys

𝐺 = −𝛿(𝐱 − 𝐱′)𝜕𝑡𝛿(𝑡) (A.5)

and a causality condition similar to Equation (A4). We apply the operator
𝜕𝑡 to both sides of Equation (A3) and use the property 𝜕𝑡 = 𝜕𝑡
(since 𝜌(𝐱) and 𝑐(𝐱) are independent of 𝑡). Comparing the result with
Equation (A5), it follows that𝐺(𝐱, 𝐱′, 𝑡) and(𝐱, 𝐱′, 𝑡) aremutually related
via

𝐺(𝐱, 𝐱′, 𝑡) = 𝜕𝑡(𝐱, 𝐱′, 𝑡). (A.6)

Note that the source terms in Equations (A3) and (A5) represent
monopole sources at 𝐱′; hence, we call 𝐺 and  monopole Green’s func-
tions.

For the special case of a homogeneous medium, we have for the 3D
situation

(𝐱, 𝐱′, 𝑡) = 𝜌
𝛿(𝑡 − ||𝐱 − 𝐱′||∕𝑐)

4𝜋||𝐱 − 𝐱′|| (A.7)

and for the 2D situation

(𝐱, 𝐱′, 𝑡) = 𝜌
𝐻(𝑡 − ||𝐱 − 𝐱′||∕𝑐)

2𝜋
√
𝑡2 − ||𝐱 − 𝐱′||2∕𝑐2 , (A.8)

where𝐻(𝑡) is theHeaviside function. According to Equation (A6), explicit
expressions for 𝐺(𝐱, 𝐱′, 𝑡) in a homogeneous medium are obtained by
taking the time-derivative of the expressions in the right-hand sides of
Equations (A7) and (A8).

A.2 Homogeneous Green’s Function

We consider again an inhomogeneous lossless medium, with propagation
velocity 𝑐(𝐱) and mass density 𝜌(𝐱). Since operator , defined in
Equation (A2), contains only even order time-derivatives and the source
term in wave equation (A3) is an even function of time, the time-reversed
Green’s function (𝐱, 𝐱′,−𝑡) also obeys this wave equation. We define the
homogeneous Green’s function h(𝐱, 𝐱′, 𝑡) as

h(𝐱, 𝐱′, 𝑡) = (𝐱, 𝐱′, 𝑡) − (𝐱, 𝐱′,−𝑡) (A.9)

(Porter 1970; Oristaglio 1989). Since Equation (A3) holds for both terms
in the right-hand side of Equation (A9), their difference obeys the homo-
geneous differential equation h = 0 (hence the name ‘homogeneous
Green’s function’ for h).
Since the source term inwave equation (A5) is an odd function of time, the
opposite time-reversedGreen’s function−𝐺(𝐱, 𝐱′,−𝑡) also obeys thiswave
equation. Hence, the homogeneous Green’s function 𝐺h(𝐱, 𝐱′, 𝑡), defined
as

𝐺h(𝐱, 𝐱
′, 𝑡) = 𝐺(𝐱, 𝐱′, 𝑡) + 𝐺(𝐱, 𝐱′,−𝑡), (A.10)

obeys the homogeneous differential equation 𝐺h = 0. From Equa-
tion (A6) and the definitions of h and 𝐺h, it follows that these
homogeneous Green’s functions are mutually related via

𝐺h(𝐱, 𝐱
′, 𝑡) = 𝜕𝑡h(𝐱, 𝐱′, 𝑡). (A.11)

A.3 Dipole Green’s Function

Next, we define a Green’s function 𝐺d(𝐱, 𝐱′, 𝑡) as the solution of

𝐺d = 1

𝜌(𝐱′)
𝜕𝑧𝛿(𝐱 − 𝐱′)𝛿(𝑡), (A.12)

with a causality condition similar to Equation (A4) and 𝜕𝑧 standing for
𝜕∕𝜕𝑧. Note that

𝜕𝑧𝛿(𝑧 − 𝑧′) = lim
Δ𝑧→0

𝛿(𝑧 + Δ𝑧

2
− 𝑧′) − 𝛿(𝑧 − Δ𝑧

2
− 𝑧′)

Δ𝑧
. (A.13)

Hence, the right-hand side of Equation (A12) represents a vertically
oriented dipole source at 𝐱′. Therefore, we call 𝐺d a dipole Green’s
function. We define 𝜕′𝑧 as an operator for differentiation with respect to
𝑧′. We apply this operator to both sides of Equation (A3) and use the
properties 𝜕′𝑧 = 𝜕′𝑧 (since 𝜌(𝐱) and 𝑐(𝐱) are independent of 𝑧′) and
𝜕′𝑧𝛿(𝑧 − 𝑧′) = −𝜕𝑧𝛿(𝑧 − 𝑧′). Comparing the result with Equation (A12), it
follows that 𝐺d(𝐱, 𝐱′, 𝑡) and (𝐱, 𝐱′, 𝑡) are mutually related via

𝐺d(𝐱, 𝐱
′, 𝑡) = 1

𝜌(𝐱′)
𝜕′𝑧(𝐱, 𝐱′, 𝑡). (A.14)
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Appendix B: ForwardWave Field Extrapolation

Wedefine the temporal Fourier transform of a space- and time-dependent
quantity 𝑝(𝐱, 𝑡) as

�̂�(𝐱, 𝜔) = ∫
∞

−∞
𝑝(𝐱, 𝑡) exp(𝑖𝜔𝑡)d𝑡, (B.1)

where 𝑖 is the imaginary unit and 𝜔 the angular frequency (we consider
positive 𝜔 only). With this definition, differentiation with respect to 𝑡 in
the time domain is replaced by multiplication with −𝑖𝜔 in the frequency
domain; hence, wave equations (A1) and (A3) transform to

̂�̂� = 𝑖𝜔�̂� (B.2)

and

̂̂ = −𝛿(𝐱 − 𝐱′), (B.3)

respectively, with operator ̂(𝐱, 𝜔) defined as

̂ = 𝛁 ⋅
1

𝜌
𝛁 + 𝜔2

𝜌𝑐2
. (B.4)

Consider the quantity 𝛁 ⋅ {̂( 1
𝜌
𝛁�̂�) − �̂�( 1

𝜌
𝛁̂)}, apply the product rule for

differentiation and simplify the result usingwave equations (B2) and (B3).
This yields

𝛁 ⋅ {̂ 1
𝜌
𝛁�̂� − �̂� 1

𝜌
𝛁̂} = 𝑖𝜔̂�̂� + �̂�𝛿(𝐱 − 𝐱′). (B.5)

Integrate both sides of this equation over a domain𝕍with boundary𝕊 and
outward pointing normal vector 𝐧 and apply the theorem of Gauss to the
left-hand side. Use the source–receiver reciprocity relation ̂(𝐱, 𝐱′, 𝜔) =
̂(𝐱′, 𝐱, 𝜔) and subsequently modify the notation by replacing all 𝐱 by 𝐱′
and vice versa (meaning that effectively ̂(𝐱, 𝐱′, 𝜔) remains unchanged).
This yields the Kirchhoff–Helmholtz integral representation (Morse and
Feshbach 1953; Bleistein 1984)

𝜒𝕍(𝐱)�̂�(𝐱, 𝜔) = ∮
𝕊

1

𝜌(𝐱′)

(̂(𝐱, 𝐱′, 𝜔)𝛁′�̂�(𝐱′, 𝜔)
−�̂�(𝐱′, 𝜔)𝛁′̂(𝐱, 𝐱′, 𝜔)) ⋅ 𝐧d𝐱′
−∫

𝕍

𝑖𝜔̂(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′, (B.6)

with operator 𝛁′ acting on 𝐱′ and 𝜒𝕍(𝐱) being the characteristic function
for 𝕍, defined as

𝜒𝕍(𝐱) =
⎧⎪⎨⎪⎩

1 for 𝐱 in𝕍,
1

2
for 𝐱 on𝕊,

0 for 𝐱 outside𝕍 ∪ 𝕊.
(B.7)

We use Equation (B6) to derive an expression for forward wave field
extrapolation in the configuration of Figure B1 (Berkhout 1985; Frazer
and Sen 1985). The closed boundary 𝕊 consists of an infinite horizontal
boundary 𝕊0 (at 𝑧 = 𝑧0) and a half-sphere 𝕊sph with infinite radius
(𝑟 →∞) in the upper half-space (above 𝕊0). The upper half-space is
homogeneous; the lower half-space may be inhomogeneous. We choose
the source distribution �̂�(𝐱′, 𝜔) in the lower half-space (below 𝕊0) hence
outside 𝕍. This implies that the volume integral on the right-hand side of
Equation (B6) vanishes. The boundary integral over the half-sphere with
infinite radius also vanishes (Sommerfeld radiation condition). Hence, we
are left with a boundary integral over 𝕊0. At this boundary, the outward
pointing normal vector 𝐧 equals (0,0,1); hence, 𝛁′ ⋅ 𝐧 = 𝜕′𝑧 at 𝕊0. Using

Figure B.1 Configuration for forward wave field extrapolation (side
view).

the equation of motion 1

𝜌(𝐱′)
𝜕′𝑧�̂�(𝐱

′, 𝜔) = 𝑖𝜔𝑣𝑧(𝐱
′, 𝜔), where 𝑣𝑧 is the

vertical component of the particle velocity, and the Fourier transforms of
Equations (A6) and (A14), we thus obtain

𝜒𝕍(𝐱)�̂�(𝐱, 𝜔) = −∫
𝕊0

(
�̂�(𝐱, 𝐱′, 𝜔)𝑣𝑧(𝐱

′, 𝜔)

+ �̂�d(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)
)
d𝐱′. (B.8)

For 𝐱 in the lower half-space, we have 𝜒𝕍(𝐱) = 0; hence, the integral
on the right-hand side vanishes for this situation. For 𝐱 in the upper
half-space, we have 𝜒𝕍(𝐱) = 1; hence, for this situation, Equation (B8)
describes forward wave field extrapolation from the horizontal boundary
𝕊0 to any point 𝐱 above this boundary. Since the upper half-space is
homogeneous, the actual wave field (�̂� and 𝑣𝑧) is upward propagating at
𝕊0. Taking the entire medium homogeneous for the Green’s functions (�̂�
and �̂�d), then the two terms under the integral give equal contributions;
hence, Equation (B8) can be replaced by

�̂�(𝐱, 𝜔) = −2∫
𝕊0

�̂�d(𝐱, 𝐱
′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′, (B.9)

for 𝐱 in the upper half-space (Berkhout and Wapenaar 1989). Equa-
tion (B9) is a Rayleigh integral (Rayleigh (1878) derived expressions
like this to describe the radiation of sources, distributed over a plane).
Transforming this back to the time domain and using the causality
condition of the Green’s function gives

𝑝(𝐱, 𝑡) = −2∫
𝕊0

∫
∞

0

𝐺d(𝐱, 𝐱
′, 𝑡′)𝑝(𝐱′, 𝑡 − 𝑡′)d𝑡′d𝐱′, (B.10)

for 𝐱 in the upper half-space. The time integral in this expression is
a convolution, which can be written in a shorter notation using the
convolution symbol ∗. Equation (B10) thus becomes

𝑝(𝐱, 𝑡) = −2∫
𝕊0

𝐺d(𝐱, 𝐱
′, 𝑡) ∗ 𝑝(𝐱′, 𝑡)d𝐱′, (B.11)

for 𝐱 in the upper half-space.

Appendix C: Inverse Wave Field Extrapolation

The Fourier transform of the time-reversed Green’s function (𝐱, 𝐱′,−𝑡)
is given by ̂∗(𝐱, 𝐱′, 𝜔), where the superscript ∗ denotes complex conju-
gation. Since for a lossless medium ̂∗ obeys the same wave equation as
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Figure C.1 Configuration for inverse wave field extrapolation (side
view).

̂ (Equation B3), Equation (A6) remains valid when we replace ̂ by ̂∗
(Bojarski 1983), hence

𝜒𝕍(𝐱)�̂�(𝐱, 𝜔) = ∮
𝕊

1

𝜌(𝐱′)

(̂∗(𝐱, 𝐱′, 𝜔)𝛁′�̂�(𝐱′, 𝜔)
−�̂�(𝐱′, 𝜔)𝛁′̂∗(𝐱, 𝐱′, 𝜔)) ⋅ 𝐧d𝐱′
−∫

𝕍

𝑖𝜔̂∗(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′. (C.1)

We use Equation (C1) to derive an expression for inverse wave field
extrapolation in the configuration of Figure C1. The closed boundary
𝕊 consists of two infinite horizontal boundaries 𝕊0 (at 𝑧 = 𝑧0) and 𝕊1
(at 𝑧 = 𝑧1), connected by a cylindrical surface 𝕊cyl with infinite radius
(𝑟 →∞). The half-spaces above 𝕊0 and below 𝕊1 are homogeneous; the
medium between these boundaries may be inhomogeneous. We choose
the source distribution �̂�(𝐱′, 𝜔) between the two boundaries 𝕊0 and 𝕊1,
hence inside 𝕍. The boundary integral over the cylindrical surface with
infinite radius vanishes because its surface area increases with 𝑟, but its
integrand decays with 1∕𝑟2. The outward pointing normal vector𝐧 equals
(0, 0,−1) at𝕊0 and (0,0,1) at𝕊1; hence,𝛁′ ⋅ 𝐧 = −𝜕′𝑧 at𝕊0, and𝛁′ ⋅ 𝐧 = 𝜕′𝑧
at 𝕊1. Using again the equation of motion and the Fourier transforms of
Equations (A6) and (A14), we thus obtain

�̂�(𝐱, 𝜔) = −∫
𝕊0

(
�̂�∗(𝐱, 𝐱′, 𝜔)𝑣𝑧(𝐱

′, 𝜔)

− �̂�∗
d
(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)

)
d𝐱′

+∫
𝕊1

(
�̂�∗(𝐱, 𝐱′, 𝜔)𝑣𝑧(𝐱

′, 𝜔)

− �̂�∗
d
(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)

)
d𝐱′

−∫
𝕍

�̂�∗(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′, (C.2)

for 𝐱 in 𝕍. Since the medium above 𝕊0 and below 𝕊1 is homogeneous (for
the actual wave field and for the Green’s function), the two terms under
the boundary integrals give equal contributions; hence, Equation (C2) can
be replaced by

�̂�(𝐱, 𝜔) = 2∫
𝕊0

�̂�∗
d
(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′

−2∫
𝕊1

�̂�∗
d
(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′

−∫
𝕍

�̂�∗(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′, (C.3)

for 𝐱 in 𝕍. Going from Equation (C2) to Equation (C3), it is assumed that
evanescent waves at 𝕊0 and 𝕊1 can be ignored (Wapenaar et al. 1989).
Transforming Equation (C3) back to the time domain and choosing a
point source 𝑞(𝐱′, 𝑡) = 𝛿(𝐱′ − 𝐱𝑆)𝑠(𝑡) (with 𝐱𝑆 in 𝕍) gives

𝑝(𝐱, 𝑡) = 2∫
𝕊0

𝐺d(𝐱, 𝐱
′,−𝑡) ∗ 𝑝(𝐱′, 𝑡)d𝐱′

−2∫
𝕊1

𝐺d(𝐱, 𝐱
′,−𝑡) ∗ 𝑝(𝐱′, 𝑡)d𝐱′

−𝐺(𝐱, 𝐱𝑆,−𝑡) ∗ 𝑠(𝑡), (C.4)

for 𝐱 in 𝕍. Inverse extrapolation is often approximated by the first term
only (Schneider 1978; Berkhout 1985); hence,

⟨𝑝(𝐱, 𝑡)⟩ = 2∫
𝕊0

𝐺d(𝐱, 𝐱
′,−𝑡) ∗ 𝑝(𝐱′, 𝑡)d𝐱′, (C.5)

or, writing the integrand as a correlation integral,

⟨𝑝(𝐱, 𝑡)⟩ = 2∫
𝕊0

∫
∞

0

𝐺d(𝐱, 𝐱
′, 𝑡′)𝑝(𝐱′, 𝑡 + 𝑡′)d𝑡′d𝐱′, (C.6)

for 𝐱 below 𝕊0 and above the source; see the main text for a further dis-
cussion.

Appendix D: ExtrapolationWith Focusing Functions

Consider a configuration, consisting of an inhomogeneous lossless
medium below 𝕊0 (at 𝑧 = 𝑧0), with propagation velocity 𝑐(𝐱) and mass
density 𝜌(𝐱), and a homogeneous lossless medium at and above 𝕊0,
with propagation velocity 𝑐0 and mass density 𝜌0. In the space-frequency
domain, the acoustic pressure �̂�(𝐱, 𝜔) in this configuration obeys thewave
equation (B2), with operator ̂(𝐱, 𝜔) defined in Equation (B4). In the
following, we assume that the source distribution �̂�(𝐱, 𝜔) is restricted
to the upper half-space. Hence, for all 𝐱 below the source distribution,
�̂�(𝐱, 𝜔) obeys the source-free wave equation

̂�̂� = 0. (D.1)

For the same configuration, we define the Fourier-transformed focusing
function �̂�(𝐱, 𝐱′, 𝜔), with 𝐱′ denoting a focal point at 𝕊0 (hence, 𝑧′ =
𝑧0). This focusing function obeys the same source-free wave equa-
tion throughout space, hence

̂�̂� = 0. (D.2)

Moreover, �̂�(𝐱, 𝐱′, 𝜔) is defined such that for 𝐱 at 𝕊0 it obeys the Fourier
transform of the focusing condition of Equation (20), hence

�̂�(𝐱H, 𝑧0, 𝐱
′
H
, 𝑧0, 𝜔) = 𝛿(𝐱H − 𝐱′

H
), (D.3)

with 𝐱H and 𝐱′H being the horizontal components of 𝐱 and 𝐱
′, respectively.

Finally, for 𝐱 at and above 𝕊0 this focusing function propagates upward.
Note that �̂�∗(𝐱, 𝐱′, 𝜔), which is the Fourier transform of the time-reversed
focusing function, obeys the same wave equation and the same focusing
condition as �̂�(𝐱, 𝐱′, 𝜔); for 𝐱 at and above 𝕊0 it propagates downward.

For all 𝐱 below the source distribution, wewrite �̂�(𝐱, 𝜔) as a superposition
of the mutually independent focusing functions, according to

�̂�(𝐱, 𝜔) = ∫
𝕊0

�̂�(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′

+∫
𝕊0

�̂�∗(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′, (D.4)

20 of 21 Geophysical Prospecting, 2025

cwapenaar
Highlight
B6



where �̂�(𝐱′, 𝜔) and �̂�(𝐱′, 𝜔) are coefficients which still need to be
determined. In the main text, we use physical arguments to show that
these coefficients are the upgoing and downgoing parts of thewave field at
𝕊0. Here we show this via amore formal derivation. Using the equation of
motion, we obtain a similar expression for the vertical component of the
particle velocity from Equation (D4), according to

𝑣𝑧(𝐱, 𝜔) =
1

𝑖𝜔𝜌(𝐱)
𝜕𝑧�̂�(𝐱, 𝜔)

= 1

𝑖𝜔𝜌(𝐱) ∫𝕊0
𝜕𝑧�̂�(𝐱, 𝐱

′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′

+ 1

𝑖𝜔𝜌(𝐱) ∫𝕊0
𝜕𝑧�̂�

∗(𝐱, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′. (D.5)

We solve the coefficients �̂�(𝐱′, 𝜔) and �̂�(𝐱′, 𝜔) from the boundary
conditions for �̂�(𝐱, 𝜔) and 𝑣𝑧(𝐱, 𝜔) at 𝕊0. Choosing 𝐱 at 𝕊0 and using
Equation (D3), we obtain from Equation (D4)

�̂�(𝐱H, 𝑧0, 𝜔) = �̂�(𝐱H, 𝑧0, 𝜔) + �̂�(𝐱H, 𝑧0, 𝜔). (D.6)

From Equation (D5), we obtain for 𝐱 at 𝕊0

𝑣𝑧(𝐱H, 𝑧0, 𝜔) =
1

𝑖𝜔𝜌0 ∫
𝕊0

𝜕𝑧�̂�(𝐱, 𝐱
′, 𝜔)|𝑧=𝑧0 �̂�(𝐱′, 𝜔)d𝐱′

+ 1

𝑖𝜔𝜌0 ∫
𝕊0

𝜕𝑧�̂�
∗(𝐱, 𝐱′, 𝜔)|𝑧=𝑧0 �̂�(𝐱′, 𝜔)d𝐱′. (D.7)

We define the spatial Fourier transform of 𝑣𝑧(𝐱H, 𝑧0, 𝜔) as

𝑣𝑧(𝐤H, 𝑧0, 𝜔) = ∫
𝕊0

𝑣𝑧(𝐱, 𝜔) exp(−𝑖𝐤H ⋅ 𝐱H)d𝐱, (D.8)

where 𝐤H = (𝑘𝑥, 𝑘𝑦) (in three dimensions) or 𝐤H = 𝑘𝑥 (in two dimen-
sions). We apply this transformation to both sides of Equation (D7). Since
the focusing function is upward propagating at and above 𝕊0 and the
medium is homogeneous at and above 𝕊0, we can use the following one-
way wave equation for the Fourier transform of the focusing function at
𝑧 = 𝑧0

𝜕𝑧�̃�(𝐤H, 𝑧, 𝐱
′
H
, 𝑧0, 𝜔)|𝑧=𝑧0 = −𝑖𝑘𝑧�̃�(𝐤H, 𝑧0, 𝐱′H, 𝑧0, 𝜔), (D.9)

where the vertical wavenumber 𝑘𝑧 is defined as

𝑘𝑧 =
⎧⎪⎨⎪⎩
√

𝜔2

𝑐2
0

− 𝐤H ⋅ 𝐤H, for 𝐤H ⋅ 𝐤H ≤ 𝜔2

𝑐2
0

,

𝑖

√
𝐤H ⋅ 𝐤H − 𝜔2

𝑐2
0

, for 𝐤H ⋅ 𝐤H >
𝜔2

𝑐2
0

.

(D.10)

The two cases in the latter equation correspond to propagating and
evanescent waves, respectively. With this, we obtain for the Fourier
transform of Equation (D7)

𝑣𝑧(𝐤H, 𝑧0, 𝜔) =
−𝑘𝑧
𝜔𝜌0 ∫

𝕊0

�̃�(𝐤H, 𝑧0, 𝐱
′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′

+
𝑘∗𝑧
𝜔𝜌0 ∫

𝕊0

�̃�∗(−𝐤H, 𝑧0, 𝐱′, 𝜔)�̂�(𝐱′, 𝜔)d𝐱′. (D.11)

Applying the spatial Fourier transformation to Equation (D3), we obtain

�̃�(𝐤H, 𝑧0, 𝐱
′
H
, 𝑧0, 𝜔) = exp(−𝑖𝐤H ⋅ 𝐱′H). (D.12)

Substituting this into Equation (D11) and using Equation (D8) to define
the spatial Fourier transforms of �̂� and �̂� gives

𝑣𝑧(𝐤H, 𝑧0, 𝜔) =
−𝑘𝑧
𝜔𝜌0

�̃�(𝐤H, 𝑧0, 𝜔) +
𝑘∗𝑧
𝜔𝜌0

�̃�(𝐤H, 𝑧0, 𝜔). (D.13)

Equation (D13) can be combined with the spatial Fourier transform of
Equation (D6) into the following matrix–vector equation:

(
�̃�(𝐤H, 𝑧0, 𝜔)

𝑣𝑧(𝐤H, 𝑧0, 𝜔)

)
=

(
1 1
𝑘∗𝑧

𝜔𝜌0
− 𝑘𝑧

𝜔𝜌0

)(
�̃�(𝐤H, 𝑧0, 𝜔)

�̃�(𝐤H, 𝑧0, 𝜔)

)
. (D.14)

For propagatingwaves, that is, for𝐤H ⋅ 𝐤H ≤ 𝜔2

𝑐2
0

, the vertical wavenumber

𝑘𝑧 is real-valued (see Equation D10). Hence, for propagating waves at
depth 𝑧0 we may replace 𝑘∗𝑧 by 𝑘𝑧 in Equation (D14). We then recognize
this equation as the well-known expression for wave field composition
at depth 𝑧0 (Corones 1975; Ursin 1983; Fishman and McCoy 1984), with
�̃�(𝐤H, 𝑧0, 𝜔) = �̃�+(𝐤H, 𝑧0, 𝜔) and �̃�(𝐤H, 𝑧0, 𝜔) = �̃�−(𝐤H, 𝑧0, 𝜔), where the
superscripts + and − refer to downward and upward propagation. For
evanescent waves at depth 𝑧0, that is, for 𝐤H ⋅ 𝐤H >

𝜔2

𝑐2
0

, we have 𝑘∗𝑧 =

−𝑘𝑧; hence, this interpretation of Equation (D14) breaks down. However,
assuming evanescent waves are negligible at depth 𝑧0, we may extend the
relations �̃�(𝐤H, 𝑧0, 𝜔) = �̃�+(𝐤H, 𝑧0, 𝜔) and �̃�(𝐤H, 𝑧0, 𝜔) = �̃�−(𝐤H, 𝑧0, 𝜔) to
all 𝐤H. We thus obtain in the space-frequency domain �̂�(𝐱′

H
, 𝑧0, 𝜔) =

�̂�+(𝐱′
H
, 𝑧0, 𝜔) and �̂�(𝐱′

H
, 𝑧0, 𝜔) = �̂�−(𝐱′

H
, 𝑧0, 𝜔). Substituting this into

Equation (D4) yields

�̂�(𝐱, 𝜔) = ∫
𝕊0

�̂�(𝐱, 𝐱′, 𝜔)�̂�−(𝐱′, 𝜔)d𝐱′

+∫
𝕊0

�̂�∗(𝐱, 𝐱′, 𝜔)�̂�+(𝐱′, 𝜔)d𝐱′, (D.15)

for all 𝐱 below the source distribution. Equation (D15) describes extrap-
olation of the wave field from 𝕊0 to any point 𝐱 below the source
distribution. Since the source distribution is restricted to the upper half-
space, Equation (D15) holds for the entire lower half-space and for a
part of the upper half-space below the shallowest source. The lower
half-space may in general be inhomogeneous, with propagation velocity
𝑐(𝐱) and mass density 𝜌(𝐱) (we used the one-way wave equation (D9)
in the wavenumber–frequency domain only at 𝕊0, where the medium
is laterally invariant, to derive that �̂� and �̂� in Equations (D4) and (D5)
can be replaced by �̂�− and �̂�+). Finally, transforming Equation (D15)
back to the space-time domain yields Equation (23) for all 𝐱 below the
shallowest source.
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