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ABSTRACT 
WAPENAAR, C.P.A. and BERKHOUT, A.J. 1986, Wave Field Extrapolation Techniques for 
Inhomogeneous Media which Include Critical Angle Events. Part 11: Methods Using the 
Two-way Wave Equation, Geophysical Prospecting 34, 147-179. 

In one-way wave field extrapolation downgoing and upgoing waves are treated indepen- 
dently, which is allowed if propagation at small angles against the vertical in (weakly) inho- 
mogeneous media is considered. In practical implementation the slow convergence of the 
square-root operator causes numerical deficiencies. On the other hand, in two-way wave field 
extrapolation no assumptions need to be made on the separability of downgoing and upgoing 
waves. Furthermore, in practical implementation the use of the square-root operator is 
avoided. To put the two-way techniques into perspective, it is shown that two-way wave field 
extrapolation could be described in terms of one-way processes, namely: (1) decomposition of 
the total wave field into downgoing and upgoing waves; (2)  one-way wave field extrapo- 
lation; (3) composition of the total wave field from its downgoing and upgoing constituents. 
This alternative description of two-way wave field extrapolation is valid for media which are 
homogeneous along the z-coordinate as well as for small dip angles in arbitrarily inhomoge- 
neous media. In addition, it is shown that this description is also valid for large dip angles in 
1-D (vertically) inhomogeneous media, including critical-angle events, when the WKBJ 
one-way wave functions discussed in part I of this paper are considered. 

For large dip angles in arbitrarily inhomogeneous media the two-way wave equation is 
solved by means of Taylor series expansion. For practical implementation a truncated oper- 
ator is designed, assuming gentle horizontal variations of the medium properties. This oper- 
ator is stable and converges already in the first order approximation, also for critical-angle 
events. 
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1. I N T R O D U C T I O N  

Both in modeling and migration schemes, wave field extrapolation operators play 
an important role. In depth extrapolation techniques these operators describe the 
propagatibn effects of the wave field from one depth level to another. For this 
purpose a horizontally layered computational model is often chosen, a's shown in 
fig. 1. It should be stressed that the depth levels zo, zl, z2, ..., zip1, z i ,  ..., zI 

7.. 

7 .  

Fig. 1. Computationally convenient subsurface model for depth extrapolation techniques. 

generally do not coincide with reflecting boundaries in the subsurface model. As a 
consequence, the medium properties c and p (propagation velocity and mass 
density) between two depth levels may be arbitrary functions of the spatial coordi- 
nates (x,  y, z). Most approaches to wave field extrapolation are based on the 
assumption that the downgoing (source) wave field and the upgoing (reflected) wave 
field may be treated independently. This one-way approach is extensive!y discussed 
by Berkhout (1982) and in part I of this paper (Wapenaar and Berkhout 1985). In 
the frequency (CO) domain the one-way operations can be formulated in terms of 
spatial convolutions over the x- and y-coordinates. We consider four cases : 

(i) jorward extrapolation of downgoing waves P' (the positive z-axis is pointing 

( l . la)  

see also fig. 2a. (For notational convenience we abbreviate wave functions 
P(x, y ,  z ,  CO) as P(z) or P ;  the symbol * denotes spatial convolutions); 

downward) is symbolically described by 

P+(Zi) = W+(Zi, Zi-J * P+(Zi_,), 

(ii) forward extrapolation ojupgoing waves P -  is symbolically described by 

P-(zi-l) = w-(zi-l, Z i )  * P-(zi), 
(see also fig. 2b); 

( l . lb) 
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Fig. 2. In the one-way approach to wave field extrapolation downgoing and upgoing waves 
are treated independently: (a) forward extrapolation of downgoing waves; (b) forward 
extrapolation of upgoing waves; (c) inverse extrapolation of downgoing waves; (d) inverse 
extrapolation of upgoing waves. 

(iii) inverse extrapolation of downgoing waves P +  is symbolically described by 

P + ( z i - l )  = F + ( z i - l ,  Z i )  * P+(Z,), (l.lc) 

(see also fig. 2c); 
(iv) inversz extrapolation ojupgoing waves P -  is symbolically described by 

P-(z i )  = F - ( z i ,  Z i - 1 )  * P - ( z i - l ) ,  

(see also fig. 2d). 

( l . ld) 

Relationships (l . la)  and (l . lb) provide the basis for modeling schemes based on the 
one-way wave equations, relationships (1 .1~)  and (1,ld) for migration schemes based 
on the one-way wave equations. As shown in part I, the one-way approach breaks 
down for strong vertical velocity gradients and large propagation angles (critical 
angle events). Interestingly, lateral gradients do not introduce any theoretical com- 
plications. In part I we discussed an extension to the one-way approach suitable for 
critical angle events as well. However, for this extension we had to assume that the 
medium properties are a function of depth only. 

Here we discuss a more fundamental approach to wave field extrapolation which 
evades many of the problems typical for the one-way approach. We consider 
extrapolation of the total wave field, described in terms of P and p - l  8, P .  Because 
the total wave field is a superposition of downgoing and upgoing waves we may also 
speak of two-way wave field extrapolation. It is important to realize that no assump- 
tions need be made on the separability of downgoing and upgoing waves (as for 
one-way techniques). In the frequency domain the two-way operations can be for- 
mulated in terms of spatial convolutions. We consider two cases: 

(i) upward extrapolation oj. the total wave jield (P ,  p P 1  8, P)T is symbolically 
described in matrix notation by 

(1.2a) 
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21-1 

Z; 

( 0 )  ( b )  

Fig. 3.  In the two-way approach to wave field extrapolation downgoing and upgoing waves 
are treated simultaneously: (a) upward extrapolation of the total wave field; (b) downward 
extrapolation of the total wave field. 

or, in abbreviated form, by 

Q(zi- 1) = W(zi- 19 zi)Q(zi), (1.2b) 

(ii) downward extrapolation of the total wave field [ P ,  p - l  a ,P lT  is symbolically 
(see also fig. 3a); 

described in matrix notation by 

or, in abbreviated form, by 

Q(zi) = W(zi 2 zi- 1)Q(zi- 1 )  (1.2d) 

(see also fig. 3b). 

Various expressions for the two-way operator W are presented further on in this 
paper. Notice that upward and downward two-way wave field extrapolation are 
fundamentally equivalent : in both cases downgoing and upgoing waves are extrapo- 
lated simultaneously. It will be shown in part I11 that upward extrapolation algo- 
rithm (1.2a) or (1.2b) provides the basis for two-way modeling schemes and that 
downward extrapolation algorithm (1.2~) or (1.2d) provides the basis for two-way 
migration schemes. 

2. A COMPARISON OF T H E  O N E - W A Y  A N D  T H E  TWO-WAY 
APPROACH 

In this section we start with the derivation of the matrix formulation of the two-way 
wave equation. Next, we decompose this formulation and show the close relation- 
ship with the one-way wave equations. Finally, we discuss the physical interpreta- 
tion of both approaches. 

In the frequency domain, the wave equation for inhomogeneous media is given 
by 

V 2 P  + k2P = V In p . V P ,  (2.1) 
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where 

P = P(x, y, z, w)  is the acoustic pressure, 
k = o / c  is the wave number, 
c = c(x, y, z )  is the propagation velocity, 
p = p(x, y, z) is the mass density, and 

w is the circular frequency. 

In order to describe wave field propagation along the depth coordinate we 
separate z-derivatives from x- and y-derivatives according to 

d2P a2P a i n p  aP a l n p  aP a2P a i n p a ~  
az2 az aZ aX2 ay2 ax ax ay ay ’  (2.2) +--+-- -- - ___ - = - k 2 p  - __ - - 

The z-derivatives can be expressed as a lateral operator H, working on P as 
follows: 

where 

(2.3a) 

(2.3b) 

with 

ddx, Y) = & + x Y ) .  (2 .3~)  

Notice that (2.3) represents a space variant spatial convolution along the x- and 
y-coordinates. d,(x) and d,(y) are space invariant one-dimensional spatial differen- 
tiation operators with respect to x and y, respectively, where m is the order of 
differentiation; the quantities k2, 8, In p and d, In p are space variant weighting 
factors. Note that for practical implementation spatially band-limited operators 
d,(x) and d,(y) should be used (Berkhout 1982). 

Relation (2.3) is not yet suitable for wave field extrapolation because it is a 
second order differential equation. An easily manageable first order differential 
equation is obtained if we rewrite (2.3) as a matrix differential equation, according to 

with 

(2.4a) 

(2.4b, c) 

Notice that two-way wave equation (2.4) requires one boundary condition for the 
wave vector Q only. 
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If we define operators H ,  and H; such that 

H, * H, = H,, 

H,' * H, = 6(x) 6(y),  

then operator A can be expressed as 

A = LAL-', 

with 

(2.5a) 

(2.5b) 

(2.6a) 

1 [ do  * 
2 d o *  -jHL1 * p d o  * 

jH;' * p d o  *] L - l = -  . (2.6b, c, d) 

In addition, if we define P +  and P -  such that 

P = P +  + P - ,  

or, in matrix notation, 

Q = LP 

or, equivalently, 

P = L-'Q, 

with 

p = [;I], 
we find by substituting (2.6a) and (2.7~)  into two-way wave equation (2.4a) 

aP 
aZ - = [A - L- '  Z I P ,  

or 

and 

-- - +jH, * P -  + 4H;' * aP - 
aZ 

(2.7a) 

(2.7b) 

(2 .7~)  

(2.7d) 

(2.7e) 

(2.8a) 

(2.8b) 

(2.8~) 

Apparently P +  and P -  satisfy the coupled one-way wave equations for downgoing 
and upgoing waves, which were derived on physical grounds in part I. Note that in 
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the conventional one-way approach it is assumed that I P -  I 4 I P +  I in (2.8b) and 
I P +  I 4 I P -  1 in (2.8c), which means that critical angle events are not considered. 
Hence 

(2.9a) 

(2.9b) 
aP - 
- N  - +jH, * P - ,  
az 

where the new operators H: and H; are defined as 

jH: = jH ,  ++H,' * 
P 

[P (i H,)]. 
jH; = jH, - 3H;' * 

P 

(2.9~) 

(2.9d) 

Finally, note that (2.8b) and (2.8~) fully decouple for media which are homogeneous 
along the z-coordinate, that is, when dz(p-lHl) = 0. Summarizing, by decomposing 
operator A we showed that two-way wave equation (2.4a) 

aQ 
az - = A Q  (2.10) 

can be transformed into coupled one-way wave equations (2.8b, c), or, assuming 
that critical angle events may be neglected, into decoupled one-way wave equations 
(2.9a, b), in matrix notation given by 

ap . 
aZ - z jH,P, 

with 

H 1 = [  -H:* 0 
H;*  O 1- 

(2.1 1 a) 

(2.1 1 b) 

For downward extrapolation, a solution of one-way wave equations (2.1 1) is sym- 
bolically described by [see also (l.la) and (l.ld)] 

[::::;1] = [ w+(Zi;z i - l )  * F - ( z i ,  0 Zi-1)  * I[ P - ( z i - l  P + ( z i -  111 ' (2.12a) 

or, in abbreviated form, by 

P(q) = V(Zi,  2 ; -  l)P(zi - l). 

With respect to these independent one-way solutions, notice the following: 

(i) critical angle events are not included because the underlying wave equation 

(2.12b) 

A similar relation holds for upward extrapolation. 

(2.11) is a decoupled approximated version of (2.8); 
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(ii) in practical implementations for inhomogeneous media the solution is highly 
affected by numerical inaccuracy (limited dip angle performance) because the 
underlying wave equation is based on the implicitly defined one-way square 
root operator H, [see (2.5a)l; 

(iii) in recursive applications additional effort is required with respect to the 
boundary conditions between the consecutive extrapolation steps, because 
downgoing and upgoing waves are not continuous at layer interfaces. In 
practical implementations these boundary conditions are often neglected, 
which means that transmission effects and multiple reflections are not incor- 
porated. 

On the other hand, a solution of two-way wave (2.10) is symbolically described 

Q(z3 = W(zi 3 zi- AQ(zi- 1). (2.13) 

Notice that for media which are homogeneous along the z-coordinate, as well as for 
small dip angle applications in arbitrary inhomogeneous media, two-way wave field 
extrapolation, as described by (2.13), could be replaced by three sub-processes as 
follows : 

(i) decomposition of the total wave field Q = [ P ,  p - l  d,PIT into downgoing and 

P(zi - = L- '(zi - ,)Q(zi - (2.14a) 

(ii) independent one-way wave jield extrapolation of downgoing and upgoing 

(2.14b) 

(iii) composition of the total wave field from its downgoing and upgoing constitu- 

Q(zi) = Yzi)P(Zi)* (2.14~) 

by [see also (1.2d)l 

upgoing waves P = [P', P-IT, according to (2.7d): 

waves, according to (2.12b): 

P(Zi )  = V(Zi, zi- ,)P(Zi- l); 

ents, according to (2.7~): 

Combination of these three steps yields 

Q(zi) = [L(zi)V(zi 3 zi- I)L-'(zi- 1)1Q(zi- 1). (2.15) 

This total process is indicated symbolically in fig. 4. It is important to realize, 
however, that direct two-way wave field extrapolation, as described by (2.13), is to be 
preferred to the above forementioned one-way processes for the following reasons : 

, -1 

Fig. 4. 
lation. 

Diagram showing the relationship between two-way and one. -way wave field extrapo- 
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(i) critical angle events are included because the underlying wave equation (2.10) 
is exact (in linear acoustics); 

(ii) in practical implementations for inhomogeneous media the solution may be 
very accurate (900 dip angle performance, see section 6 )  because the under- 
lying wave equation is based on the explicitly defined two-way operator H, 
[see (2.3b)l; 

(iii) in recursive applications no additional effort is required with respect to the 
boundary conditions, because the total wave field Q = [P, p - l  a, PIT is con- 
tinuous at layer interfaces. Hence, transmission effects and multiple reflec- 
tions are automatically incorporated; it is shown by Wapenaar, Kinneging 
and Berkhout (1985) that wave conversion may also be incorporated when 
the method is based on the full elastic two-way wave equation. 

3. T W O - W A Y  SOLUTION F O R  1-D INHOMOGENEOUS M E D I A  
INCLUDING C R I T I C A L  ANGLE EVENTS 

We start with a review of the two-way wave equation in the wave number-frequency 
domain, following Ursin (1983). Next, we give the solution for a homogeneous layer. 
Finally, we present two solutions for piecewise continuously-layered media. 

Consider the two-way wave equation in the wave number-frequency domain 

a0 - = xa, 
a Z  

(3.la) 

where 

(3.lb, c) 

and 
A , - k 2 -  - I - w2/c2 - k: - k,", (3.ld) 

The symbol : refers to a double spatial Fourier transformation from x to k, and y to 
k,, where k, and k, represent the horizontal components of the wave vector k. The 
medium properties c and p are functions of the depth coordinate only: c = c(z), 
p = p(z). If we define A, such that 

A: = R, ,  (3 :2) 

then eigenvalue decomposition applied to operator yields 

= zxz-1, 
with 

(3.3a) 

(3.3b, c, d) 
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Notice that this equation represents the wave number domain equivalent of (2.6). 
Similar as in (2.7), we define downgoing waves p' and upgoing waves p- according 
to 

O = Z P  (3.4a) 

or 

p = Z-'Q, 
with 

"+ 
P = [;-I. 

(3.4b) 

(3.4c) 

Notice that decomposition (3.4b) breaks down for critical angle events, that is, for 
R I  4 0 .  This phenomenon was already discussed in part I. Later in this section we 
present an alternative decomposition which is valid for critical angle events also. 

I az I * Z  
M 

Fig. 5. Subsurface model with homogeneous layers. 

We now consider the case that both c and p are constant within a given depth 

Qb) = W Z ,  Zo)Q(Zo), (3.5a) 

interval (see fig. 5). Then the solution of (3.1) is given by 

where, symbolically, 

w ( z ,  zo) = exp [A Az], (3.5b) 

with Az = z - z o .  Using (3.3), (3.5b) can be written as 

W(Z, z0) = I + Z(X Az)Z-' + Z(X Az)Z-'Z(X Az)Z-' + ... (3.6a) 

or 

W(Z, 20) = L[I + (X Az) + (X Az)' + . . .]E - ' 
or 

W(z, zo) = Z(z)B(z, zo)Z - '(zo),  

with 

v ( z ,  zo) = exp [A Az], 

(3.6b) 

(3.7a) 

(3.7b) 
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or 

exp Q f i ,  Az) 
V(z, zo) = (3.7c) 

(3.7) shows that for this special case of a homogeneous medium, two-way oper- 
ator w(z, zo) can be written in terms of one-way sub-processes. This phenomenon 
was already discussed in the previous section [see (2.14) and (2.15)] and is visualized 
in fig. 4. On the other hand, if we define two-way operator w(z, zo) as 

(3.8a) 

then expressions for the sub-operators % .. . Rv follow directly from relation (3.7): 

(3.8b, c) 

(3.8d, e) 

P R(z, zo) = cos [A, Az], 

R I I ( Z ,  zo) = 2 2  R k ,  zo), 

RI(z, zo) = 7 sin [A, Az], 
H l  

RdZ,  zo) = R(z, zo), 

with 

(3.8f) 

Notice that the limit for R I  + 0 exists. For evanescent waves (k: + ky’ > -02/c2) the 
operator A, becomes imaginary. The goniometric functions should then preferably 
be replaced by hyperbolic functions of the real argument jA, Az. 

For propagating waves (k: + kyZ < co2/c2) sub-operator R describes the real part 
of the phase shift operator exp (-jA, Az), which represents the spatial Fourier 
transform of the Rayleigh I1 operator. In a similar way, operators RI and RII are 
related to the imaginary part of the transformed Rayleigh I and Rayleigh I11 oper- 
ators. Hence, the spatially band-limited inverse Fourier transform of (3.5a) is given 
by the following relation in the space-frequency domain : 

Q(z) = W(Z, ~o)Q(zo), (3.9a) 

where 

(3.9b) 

with 

(3.9c, d) 

(3.9e, f )  

1 
W(z, zo) = Re (Rayleigh II), 

WII(z, zo) = --o Im (Rayleigh 111), 

W,(Z, zo) = - Im (Rayleigh I), 
0 

Wv(z, zo) = &(z, zo). 

The three Rayleigh operators are extensively discussed by Berkhout (1982). Notice 
that (3.9) describes stable two-way wave field extrapolation in the z-direction (the 
convolutions are carried out in the x- and y-directions). 
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I I I  
I I  

' I  Az - 2  - 
Fig. 6.  Piecewise continuously layered subsurface model. 

When c(z) and p(z) are arbitrary continuous functions within a given depth 
interval (see fig. 6), then two-way wave equation (3.1) cannot be solved as above. 
Suppose a solution is given by 

Q(4 = w z ,  zo)B(zo), (3.10a) 

then operator w(z, zo) should satisfy the wave equation 

(3.10b) 

Furthermore, when the gradients of c and p vanish, then %(z, zo) should be equal to 
operator (3.8). Assuming that the medium properties may be linearized within a 
sufficiently thin layer, according to 

C(Z) = co[1 + Az] (3.1 la) 

and 

p(z) = pOCl + r Azl, 

with 

AZ = z - zO, 

while 

14 Azl < 1 

(3.11b) 

(3.11~) 

and 

l r  Azl < 1, (3.11d) 

then it can be verified by substitution that operator w(z, zo) is given by 

(3.12a) 

(3.12b) 

(3.12~) 
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P O  " "I CO 

- 
2, = - -5 (1 - r Az)H,(zo) - q Az 7 , 

where 

4 0 ,  r 
S = 7 Az3, R = - Az. 

2CO 2 

(3.12d) 

(3.12e) 

(3.12f) 

For propagating waves, i.e., for R, > 0, the operators q17 $, , q3 are given by - 
= cos a, 

4,  = (sin $I/&, 
J 3  = (cos 6)/6, - (sin 6)/63, 

(3.12i) 

(3.12j) 

(3.12k) 

with 

6 = Al(z0) Az. (3.121) 

Notice that the limit for ~ , ( z , ) - t O  exists. For evanescent waves the operator 
Al(zo) is imaginary. The goniometric functions should then preferably be replaced 
by hyperbolic functions of the real argument jA,(z,,) Az. Notice that the only 
approximation is the thin layer assumption (3.1 1). This means that critical angle 
events are properly incorporated in operator w ( z ,  z0), given by (3.12). For large 
extrapolation distances this operator must be applied recursively with steps such 
that in each recursion step thin layer assumption (3.11) is satisfied. 

In part I we have shown that decomposition of the total wave field into down- 
going and upgoing waves is not uniquely defined. Based on the WKBJ approach for 
1 -D inhomogeneous media, we discussed an alternative choice of decoupled down- 
going and upgoing propagating waves 8' and 8- in the vicinity of a turning point, 
which include critical angle events. In the following, curled symbols refer to the 
incorporation of critical angle events in the one-way approach. The superposition of 
8' and 8-,  given by 

p " = @ +  + @ -  (3.13a) 

satisfies the wave equation 

(3.1 3 b) 

whereas 8' and 8- satisfy the following decoupled one-way wave equations: 

(3.13~) 

(3.1 3d) 
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Wave equation (3.13b) represents the spatial Fourier transform of wave equation 
(2.3), assuming I E,, I = I (1/2p) a: p - (3/4)(pP1 d, P ) ~  I e k2 .  Furthermore, it was 
assumed in part I that in the vicinity of the turning point z ,  the operator fi, can be 
linearized in depth according to 

A 2 ( z )  = (z - ZJX. (3.13e) 

Hence, it is assumed that in the vicinity of zt the propagation velocity c(z) satisfies 

c-'(z) = c-2(z1) + (z - Z , ) p - 2 ,  (3.13f) 

or, if zo is close to z ,  , 

with co = c(zo) and Az = z - z,,. In wave equations (3.13~) and (3.13d) the operators 
2: and 2; are based on Airy functions, according to (7.4c, d;  part I). We 
may construct a matrix formalism, based on (3.13a-d). The total wave field = 

[p, p- l  d, FIT can be composed from the wave functions @+ and 6'- according to 

Q = 9@, (3.14a) 

where 

(3.14b, c) 

and where Q satisfies two-way wave equation (3.la), assuming I E,, I 4 k2 .  Similarly, 
decomposition is described by 

@ = 2-10, (3.14d) 

where 

(3.14e) 

Notice that 9 defines a decomposition operator which is valid for sub-critical as 
well as critical angle events. Finally, the one-way wave equations (3.13~) and (3.13d) 
can be combined into the following matrix equation: 

with 

(3.1 5a) 

(3.1 5b) 

For downward extrapolation, a solution of one-way wave equation (3.15) is 
described by [see also (7.6) and (7.7) in part I] 

P ( z ,  O zo)  1[~'"''1 B-(z,,) ' 
["""] - - [ "'b". zo) 

& ( Z )  
(3.16a) 
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or, in abbreviated form, by 

@(z) = P(z, zo)B(z,).  (3.16b) 

A similar relationship holds for upward extrapolation. Notice that (3.14) and (3.16) 
can be elegantly combined into one relation for downward extrapolation of the total 
wave field 0:  

Q ( Z ,  = c m F ( z ,  Z o ~ ~ - ' ( z o ) l Q ( z o ) .  (3.17) 

Under thin-layer assumption (3.11), with q = - ~ c ~ o - ' x ,  this solution is equivalent 
to 

= w z ,  Z o ) Q ( Z o ) ,  (3.18) 

with two-way operator w ( z ,  zo) given by (3.12). 
Hence, (3.17) shows that also in the special case of a 1-D inhomogeneous 

medium, two-way wave field extrapolation can be written in terms of one-way 
sub-processes, including critical angle euents. For practical implementations, 
however, two-way algorithm (3.18) is preferred because it avoids the use of Airy 
functions. Two-way operator @(z, z,,), as defined by (3.12), is fully based on simple 
goniometm functions, which provide the basis for recursive finite difference schemes 
that include critical angle events (see section 5). 

We have derived two-way wave field extrapolation operators for media with 
depth-dependent properties c(z) and p(z), as shown in figs 5 and 6. Both in modeling 
and migration schemes, the operators should be applied recursively, which is 
allowed because the extrapolated total wave field 6 is continuous for all depths. 
This means that transmission effects as well as multiple reflections are automatically 
incorporated when applying operator (3.8) or (3.9). In addition, critical angle events 
are incorporated when applying operator (3.12). Modeling and migration schemes, 
based on the extrapolation operators (3.8) and (3.12), are discussed in part 111. In 
addition, it will be shown in part 111 that the composition and decomposition 
algorithms (3.4) and (3.14) play an important role in two-way modeling and migra- 
tion schemes. 

4. T W O - W A Y  SOLUTION F O R  A R B I T R A R Y  I N H O M O G E N E O U S  
M E D I A  INCLUDING CRITICAL ANGLE EVENTS 

In this section we discuss two-way wave field extrapolation in arbitrary inhomoge- 
neous media. It is shown that in principle lateral derivatives of the medium proper- 
ties can be incorporated. In addition, the operator may include all propagation 
angles as well as evanescent waves. 

Our starting point is two-way wave equation (2.4a) 

aQ 
az - = AQ,  

where A and Q are defined by (2.4b, c). Assuming that the derivatives amQ/azm exist 
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and are continuous between zo and z, we can define two-way wave field extrapo- 
lation by means of the following Taylor series summation: 

with Az = z - zo . Notice that in practice the scheme should be applied recursively 
for small I Az I. Berkhout (1982) discussed a similar approach for one-way wave field 
extrapolation. He concluded that the total error per extrapolation step depends on 
two different sub-errors : 

1. the error in the estimates of the derivatives with respect to z; 
2. the error due to truncation of the Taylor series. 

In one-way wave field extrapolation, the z-derivatives are based on the implicit 
square-root operator H,, defined by (2.5a). On the other hand, in two-way wave 
field extrapolation, the z-derivatives are based on the explicit operator H, , defined 
by (2.3b). 

They can be calculated exactly within the seismic band width, which means that 
sub-error 1 vanishes in case of two-way wave field extrapolation. In the next section 
we show that for gradual horizontal variations of the medium properties also sub- 
error 2 remains small. 

From (4. l), the z-derivatives follow directly by recursively applying 

so 

aQ 
aZ - = AQ, 

(4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 

etc. 
As in the previous section, we assume linearized medium properties in the z- 

direction. This means that sufficient thin-layers should be taken (see fig. 7b). For this 
situation the scheme is worked out in appendix A. In this section we only show the 
principle, assuming the medium properties are constant in depth, that is, c = c(x,  y) ,  
p = p(x,  y) within one layer (see fig. 7a). In this case all derivatives of operator A 
with respect to z vanish, so relation (4.2) can be written as 
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Fig. 7. Computationally convenient subsurface models with thin inhomogeneous layers: (a) c 
and p constant in depth per layer; (b) c and p linearized in depth per layer. 

This relation can be rewritten as 

where 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

(4.5e) 

(4.5f) 
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Notice that (4.5) can be written as 

Q(z) = W(Z, zo)Q(zo), 
where 

CO A - 2 n  

m 1 

(4.6a) 

(4.6b) 

(4.6c, d) 

(4.6e, f )  

(46%) 

(4.6h) 

Wl* WU * 
W 

Wm* W E *  

( 0 )  

H O* 

v 
HP* 

WI 

v 
H z* 

L 

( b )  

0 2  

Fig. 8. (a) Two-way wave field extrapolation scheme. (b) Detailed diagram of the second 
order approximation of sub-operator Q . For operators QI, Wv, operator H, should be 
replaced by pH, , H, , pH,, respectively, while coefficients a,, should be replaced by b,,  
- b,/p, aJp, respectively. 
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Notice that for two-dimensional as well as three-dimensional applications (4.6) 
describes an explicit finite difference two-way wave field extrapolation operator in 
the space-frequency domain, based on one-dimensional convolutions. The extrapo- 
lation scheme is shown in diagram in fig. 8. 

Note that in the special situation that c and p are constant in one layer, extrapo- 
lation may be carried out in the wave number-frequency domain, so H,, may be 
replaced by @, with A, given by (3.ld). Now the infinite series in (4.6) can be 
summed to closed expressions, yielding operators (3.8b-e). 

We have derived a two-way wave field extrapolation operator for inhomoge- 
neous media, assuming that in each layer the medium properties are constant in 
depth (fig. 7a). Since no approximation were made, the operator (4.6b) is exact. Of 
course, for practical applications this formal operator should be truncated. This is 
discussed in the following sections. In appendix A we generalized the operator 
assuming that in each layer the medium propertie? may be linearized in depth (fig. 
7b) as described by (A.2). Furthermore, we neglected mixed derivatives of the 
medium properties containing the first derivative with respect to z. Operator (ASb) 
takes properly into account sub-critical as well as critical angle events. 

5. A F A S T  C O N V E R G I N G  T W O - W A Y  E X T R A P O L A T I O N  SCHEME 
F O R  INHOMOGENEOUS M E D I A  

In the previous section we have seen that one of the sub-errors in wave field 
extrapolation by means of Taylor series summation vanishes when the scheme is 
based on the two-way wave equation, since the z-derivatives of the total wave field 
can be calculated exactly within the seismic band width. However, significant errors 
may arise in practice due to the truncation of the Taylor series, particularly for 
horizontal plane waves. For one-way wave field extrapolation, Claerbout (1976) 
introduced a floating time reference in order to improve the convergence speed. This 
means that the horizontal plane wave phase shift operator exp ( - jk  Az) is kept out 
of the Taylor series expansion (Berkhout 1982). In two-way wave field extrapolation 
the floating time reference concept cannot be followed, because downgoing and 
upgoing waves are considered simultaneously (see fig. 3). Instead, we rearrange the 
Taylor series expansion such that the two-way horizontal plane wave extrapolation 
operator can be kept out of the Taylor series expansion. In this section we only 
show the principle, assuming that c and p are constant in depth within each layer 
(fig. 7a). In appendix B we consider the case that c and p are linear functions of 
depth within each layer (fig. 7b). 

Assuming slow horizontal variations of the medium properties such that the 
lateral derivatives may be neglected, operator (4.6b) can be written as 

(5.la) 
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where 

E,,=[" 0 an '1, F n = [ b n  0 bn '1, =[": * H2n * 1, (5.lb, c, d) 

and A defined by (2.4b). Applying a binomial expansion for H; we may write 

H; = (K + D2)" = 1 ['- (E K")D?], 
m = O  m! die" 

where 

(5.2a) 

(5.2b, c) 

K = k2 ,  D2 = d,(x) + d,(y). (5.2d, e) 

Substituting (5.2a) in (5.la), changing the order of summations, and using the pro- 
perty d;Kn = 0 for m > n, yields 

where 
W m 

M = [EnKn], N = 1 [FnKn]. 
n = O  n = O  

(5.3a) 

(5.3b, c) 

So far, we did nothing but rewriting operator W(z, zo), assuming the lateral deriv- 
atives of the medium properties may be neglected. In our next step, however, we 
replace the infinite series (5.3b, c) by closed expressions, according to 

(5.4a, b) 

where 

(5.4c, d) P W, = cos ( k  Az), w1, = ; sin ( k  Az). 

Notice that w, and 
by relations (3.8b, c), for a horizontal plane wave (i.e., for k: = k," = 0). 

are equal to the operators q and qI, respectively, given 

By substituting (5.4) in (5.3), it follows that operator W(z, zo) is given by 

where 

(5.5a) 

(5.5b, c) 
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m !  alcm 

(5.5) 
1 

P 
Z 2 = - - 5 H  2 ,  

and D2, defined recursively by 

(5.5J) 

(5.5k) 

etc., and 

Do = dab,  Y )  = %4 w. (5.51) 

Notice that for two-dimensional as well as three-dimensional applications (5.5) 
describes an explicit finite difference two-way wave field extrapolation scheme based 
on one-dimensional convolutions. Operator D,, represents space invariant spatial 
convolutions for all m, while am , p m  and y m  represent space-dependent coefficients: 

Az 
sin k Az, etc., (5.6a, b) 

= y1 = -5 x0 = y0  = COS k Az, 

(5.6c, d) P 
2k 

B0 = f sin k Az, fil = - 7 [sin k Az - k Az cos k Az], etc., 

(5.6e, f )  

In practice only a finite number of terms can be used. We define the Mth order 
approximation of W(z, zo) by 

(5.7a) 

where 
M M 

W, M ( z ,  ‘0) = C amDZm9 WI, M ( z ,  20) = C PmDzm, (5.7b, c) 
m = 0  m = O  

M 

Wll, dz, zo) = Z, * WI, M ( z ,  Z O ) ~  Wv, M ( z ,  ~ 0 )  = 1 Ym D,m. (5.7d, e) 

Notice that for a horizontal plane wave all lateral derivatives are zero, which means 
that the zeroth-order scheme (M = 0) already converges for this situation. We may 
conclude that the zeroth-order terms represent the “floating time reference for the 
two-way wave equation ”. 

Accuracy and stability properties for various order are studied in the next 
section. The first order extrapolation scheme is shown in diagram in fig. 9. Notice 
that the operator D, is used efficiently in two suboperators. 

m = O  
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[+ %Iz 
Fig. 9. Rapidly converging two-way wave field extrapolation scheme for sub-critical as well 
as critical angle events. 

In this section we have derived a quickly converging two-way wave field 
extrapolation operator for inhomogeneous media, assuming that the medium 
properties are constant in depth for each layer (fig. 7a). In the derivation we 
assumed that the lateral derivatives of the medium properties may be neglected. In 
appendix B we generalize the operator, assuming that the medium properties for 
each layer may be linearized in depth (fig. 7b), as described by (A.2). Operator (B.5) 
is comparable to (5.5); only Z, and the coefficients a,, p, , y m  are defined differently. 
These coefficients are based on operators $,, $ 3 ,  given by (3.12i-k) for k: = 
kf = 0, and their derivatives with respect to K. Operator (B.5) takes properly into 
account sub-critical as well as critical angle events. Hence, the diagram in fig. 9 
represents the first order two-way wave field extrapolation scheme for sub-critical as 
well as critical angle events. 

Finally, we present a two-term operator Wz)(z, zo), which is defined as follows: 

(5.8a) 

where 

wf,”t(z, zo) = m z ,  zo) + AW, M(Z, zo), 

w:)M(z, 20)  = %(Z> zo) + A%, M(Z, ZO), 

N:,!M(Z, zo) = z, * w:)M(Z, 201, 

w(2) IV, M(Z, zo) = Rv(z, zo) + AWV, M(Z, 20). 

(5.8b) 

(5 .8~)  

(5.8d) 

(5.8e) 

Operator Z, is defined by (B.11). The operators q, qI, qv describe two-way wave 
field extrapolation in a homogeneous reference layer, with propagation velocity 2 
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Fig. 10. Computationally-convenient subsurface model with inhomogeneous layers, used for 
the two-term operator. 

and mass density 7, (fig. 10). They should preferably be applied in the wave number- 
frequency domain. The double spatial Fourier transforms of these operators are 
given by (3.8b, c, e), where c and p should be replaced by C and 7,. The operators 
A Y ,  M ,  AY,, take into account the two-way propagation effects due 
to the deviation Ac(x, y ,  z), Ap(x, y ,  z )  of the true medium properties c(x, y ,  z) ,  
p(x, y ,  z )  from the reference medium properties C, 7,. They are defined as follows: 

and AYv, 

(5.9a, b) 

(5.9c, d) 

(5.9e, f )  

where urn, /Im, ym are defined by (BSf, g, h) and where Cl,, jm, 7, are defined by 
(5.5f, g, h), with c, p replaced by C, 7,. A Born-type two-term wave field extrapolation 
operator was discussed by Kennett (1972). In his approach the deviation term 
describes the effects of a moderate inhomogeneity (10% contrast with the surround- 
ing medium) of small lateral and vertical extent. For comparison, in two-term 
operator (5.8) no assumptions are made with respect to the dimensions of the 
contrast. It is shown in the next section that the first order scheme (M = 1) con- 
verges for sub-critical as well as critical angle events, even when the contrast Ac/C is 
in the order of 25% in the whole layer. 

6. ACCURACY A N D  STABILITY OF TWO-WAY E X T R A P O L A T I O N  
In this section we discuss the accuracy and stability properties of the Mth order 
finite difference operators W,(Z, zo) and Wg)(z, zo), given by (5.7) and (5.8), respec- 
tively, as a function of the propagation angle. Therefore, it is convenient if we 
assume that c and p are functions of z only. First we consider operator WM(z, zo), in 
the wave number-frequency domain given by 

(6.la) 
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where 
M M 

% , M k  ZO) = 1 ccmfj>l;l, %,&f(z ,  Z O )  = pJ;, (6.1 b, c) 
m = O  m = O  

(6.ld, e) 
m = O  

D; = (- k: - k;)", 

Notice that 

(6.lf) 

with U,, p,, y m  given by (BSf, g, h) and 2, given by (3.12f). 

with w ( z ,  zO) given by (3.12). In the following analysis, we compare the eigenvalues 
f i M  of e M ( z ,  zo)  with the eigenvalues ,Z of operator w ( z ,  zo):  

E& = +U%, + Rv, M )  T jJdet (wM) - %R, + Rv, (6.3a) 

E' = +(@ + RV) T jJ1 - $(q + RVl2. (6.3b) 

The angle-dependent amplitude and phase errors we define as 

AA"=J--l, (6.4a) 

A& = f [arg (E&) - arg (E' ) ] .  (6.4b) 

In order to specify the threshold values for these errors, we consider a homogeneous 
medium. Notice that in this case the eigenvalues of the exact operator, given by 
(6.3b), simplify to 

(6.5) 

which is equivalent to the phase-skqt operator for one-way wave field extrapolation. 
In recursive extrapolation, the total amplitude and phase errors after N extrapo- 
lation steps in a homogeneous medium read 

AAto, = (1 + AA)N - 1 x N AA", (6.6a) 

A&tot = N A&. (6.6b) 

- +  - -  Notice that p M p M  = det (eM) and ,ii+,i- = 1. 

E' = exp (TjA, Az), 

We define the following (arbitrary) accuracy criteria: 

at an extrapolation depth of N Az = 502 the absolute amplitude error NAA" 
should be smaller than 3 dB and the absolute phase error N A 6  should be 
smaller than .n/lO. 

Here Az = z - zO > 0, while 1 represents the wave length. Since N = loon/ 

I AA"I/(k Az) 5 0.001, (6.7a) 

I A& I/(k Az) I 0.001. (6.7b) 

( k  Az), the accuracy criteria read 
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8 ( 1 0 )  

Fig. 11. Error curves for the zero-, first-, and second-order finite difference two-way wave 
field extrapolation operator, with k ,  Az = 742, q Az = 0.01, r Az = 0. 

These requirements cannot always be met for all propagation angles. To avoid that 
the solution grows out of bounds, our stability criterion reads 

(6.7~) 

In this case k should be replaced by k ,  = k(z,). In fig. 11 the scaled amplitude 

Az) I 0.001 for all propagation angles. 

We adopt these criteria for the inhomogeneous situation. 

and phase errors are shown as a function of 6, with 

sin2 6 = (kz  + kF)/k2(z,). (6.8) 
Notice that 8 represents the propagation angle at depth z,: 6 = 8(zo). The extrapo- 
lation step size is Az = /2/4, so k Az = n/2. The parameter q (3.11) is chosen such 
that q Az = 0.01, which means that the velocity at extrapolation depth z ,  + 252 
equals twice the velocity at depth zo (assuming the velocity function to be linear also 
outside the considered depth interval Az). The density is assumed to be constant, i.e., 
r = 0. Notice that thin-layer condition (3.11c, d) is satisfied. From fig. 11 we observe 
that the first-order operator is accurate up to 20" and that the second-order 
operator q2 is accurate up to 45". Notice that all operators are stable. For a proper 
incorporation of critical angle events (6 + 90"), higher order schemes are required, 
which is not very attractive from a computational point of view. Therefore we 
consider also the two-term operator Wg). Similarly as above we can define the 
eigenvalues ,E!&) of the two-term operator in the wave number-frequency domain. 
The amplitude and phase errors for one extrapolation step we define as 

(6.9a) 

(6.9b) 

In fig. 12 the scaled amplitude and phase errors are shown as a function of O(z,). In 
all examples Az is chosen such that Az = 7112, where E = 012. Furthermore, 
p(zo) = j, r = 0. In fig. 12a the true velocity is chosen close to the reference velocity, 
according to [c(zo) - C]/C = 0.05, 4 Az = 0.01. Notice that the first order two-term 

A Z 2 '  = Jm - 1, 

A@2' = f [arg (,E'#*) - arg ( f i * ) ] .  
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D 

Fig. 12. Error curves for the zero-, first-, and second-order finite difference two-term two-way 
wave field extrapolation operator, with Az = 4 2 ,  p(zo) = 3, r Az = 0. (a) [c(zo) - C]/C = 

q Az = -0.01; (d) As in (b); improved first order scheme, B1(zo) = 60". 
0.05, AZ = 0.01 ; (b) [ c ( z ~ )  - C]/C = 0.25, AZ = 0.01 ; (c) [c(z~) - C]/C = 0.25, 
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operator is accurate up to 55" and that the second order operator is accurate up to 
90". All operators are stable. For angles higher than 82" a turning point occurs 
within the considered depth interval Az. This accounts for the phase behaviour at 
high angles (0 + 90"), where the eigenvalues become purely real (for comparison, the 
phase-shift operator for one-way wave field extrapolation becomes real for evanes- 
cent waves). In fig. 12b the true velocity differs significantly from the reference 
velocity, according to [c(zo) - E ] / ?  = 0.25, q Az = 0.01. Notice that the first order 
operator is accurate up to 45" and that the second order operator is accurate up to 
90". All operators are stable. In fig. 12c, a decreasing velocity is chosen, according to 
[c(zo) - C]/C = 0.25, q Az = -0.01. The error curves are comparable with fig. 12b. 
Notice that no turning point is present within the considered depth interval Az, In 
fig. 12d the same example is chosen as in fig. 12b, however, the operator D, is 
approximated by - [k2(zo)  sin' O,(zo)]D, with O,(zo) = 60". This means that the 
second order scheme has been simplified to a first order scheme without loss of 
accuracy at 60". Notice that this improved first order scheme is accurate and stable 
up to 90". 

We have formulated accuracy and stability conditions for the finite difference 
approximation of the eigenvalues of the two-way wave field extrapolation operator 
for inhomogeneous media. In the examples we studied the error curves for various 
orders, assuming a depth-dependent velocity function. Since density variations do 
not account for critical angle events, the density was kept constant in all examples. 
From the examples, it may be concluded that the finite difference approximations 
are stable and that critical angle events are properly taken into account. Particularly 
the improved first order two-term operator is very attractive from a computational 
point of view. Notice that the analysis has been performed in the wave number- 
frequency domain. It is assumed that the investigated accuracy and stability proper- 
ties apply locally in a laterally varying medium. 

7. CONCLUSIONS 

In principle there are two approaches to modify the wave equation such that wave 
field depth extrapolation operators can be derived : 

(i) decomposition into two first order one-way wave equations for P' and P - ,  
respectively ; 

(ii) reformulation into a first order two-way matrix wave equation for 

In this part we discussed methods using the two-way wave equation. In sections 
1 and 2 we have shown the close relationship with the one-way wave equations 
which were derived in part I. We have discussed several solutions for increasing 
complexity of the medium: 

(1) the medium consists of a sequence of homogeneous layers. Exact solutions 
for each layer have been formulated in both the space-frequency domain and the 
wave number-frequency domain (section 3). The recursive scheme is very simple 
since the total field is continuous for all depths. This means that the boundary 

(P ,  p - dP/dz)T. 
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conditions (reflection, transmission) for downgoing and upgoing waves are auto- 
matically fulfilled at the layer interfaces. This is advantageous with respect to a 
proper treatment of multiple reflections in modeling as well as migration schemes, 
as will be discussed in part 111; 

(2) the medium consists of a sequence of layers where in each layer the medium 
properties are functions of the depth coordinate only. A solution has been formu- 
lated in the wave number-frequency domain, assuming the medium properties may 
be linearized in depth within each layer (section 3). Critical angle events are properly 
incorporated. We discussed the relationship with the decoupled WKBJ one-way 
wave equations for downgoing and upgoing waves which include critical angle 
events (as discussed in part I). Again the recursive scheme is very simple. Applica- 
tions will be discussed in part 111; 

(3) the medium is arbitrary inhomogeneous. A formal solution has been formu- 
lated in the space-frequency domain, assuming that within each layer the medium 
properties may be linearized in depth. Critical angle events are incorporated 
(section 4 and appendix A). A quickly converging explicit finite difference scheme 
has been derived, assuming slow horizontal variations of the medium properties 
(section 5 and appendix B). It has been shown that the scheme is stable and con- 
verges already in the first order approximation, also for critical angle events 
(section 6). 
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APPENDIX A 
We derive a two-way wave field extrapolation operator for arbitrarily inhomoge- 
neous media. We follow the same procedure as in section 4; however, here we take 
into account the first derivative of the medium properties with respect to z. 

Our starting point is relation (4.2): 

where 

- 
a m Q -  a z m  az a ["'-'"I a Z m - l  

(A.la) 

(A. 1 b) 

with 

aQ 
aZ - = AQ, (A.lc) 
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A and Q being defined by (2.4b, c). In the following we assume linearized medium 
properties, according to 

4x9 Y ,  4 = co(x, Y I D  + 4(x, Y )  Azl 

P(& Y ,  4 = POk Y)C1 + V(X> Y )  Azl,  

and 

with 

AZ = z - z O ,  

while 

I4(x, Y )  Az I 4 1 

and 

I r(x, y )  Az I 4 1 .  

Now operator A can be linearized, according to 

A = A, +- a z A o  Az, 

(A.2a) 

(A.2b) 

(A.2c) 

(A.2d) 

(A.3a) 

por  do *1 
with 

0 P O  do * 0 

[ - : I , , *  0 1' a z A o = [ ~ G , *  0 1' (A.3b, c) 

1 
L ,  = H,(zo), G2 = PO[; (- p H,)] . 

zo 

(A.3d, e) 

We assume that lateral derivatives of q(x,  y) and r(x, y) may be neglected and we 
obtain 

G, = rL, + (2qwz/c;) do ,  

while [a;Q],, can be approximated for even m (m = 2n) by 

(A.3f) 

where 

(A.4c) 

(A.4d) 
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0 P O  rL2n-2 *1 
A ; ” - ~ ( ~ , A ~ )  = -(-qn 1 

[ z G 2 * L 2 n - 2 *  0 

[ 
P O G ,  * L 2 n - 4  * 

A6”-3(d, Ao)Ao = (- 1)” r 
- L2n * 0 

(A.4e) 

(A.4f) 

(A.4h) 

(A.4i, j) 

(A.5a) 

(A.5b) 

1 
(A&) 

(ASe) 

(A.5f) 

with a, and b, defined by (4.6d, f). Notice that for q = r = 0 (4.6) is obtained. On the 
other hand, if the medium properties c and p are functions of z only, then extrapo- 
lation may be carried out in the wave number-frequency domain, so operator L,, 
may be replaced by = @(z,). Now the infinite series in (AS) can be summed to 
closed expressions, yielding operators (3.12b-e). 
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A P P E N D I X  B 
We derive a fast converging two-way wave field extrapolation operator for arbitrary 
inhomogeneous media. We follow the same procedure as in section 5, however, here 
we take into account the first derivative of the medium properties with respect to z. 

Our starting point is operator (ASb). Neglecting the lateral derivatives of the 
medium properties, this operator can be rewritten as 

CO 

W(Z, zO) = [{RE, + (S + JU)F, + (T + JV)G,}L';], 
n = O  

where 

(B.la) 

(1 - r Az)L, - q Az 

4 a 2  r 
S = 7 Az3, R = - Az, 

2% 2 

(B.lh, i) 

(B.1i k) 

(B.ll) 

(B.lm, n) 

with c&, Y ) ,  P ~ X ,  Y ) ,  q(x, Y ) ,  r(x,  Y )  given by (A.21, L2, given by (A.49 and an, b, 
given by (4.6d, f). In (B.l) we made use of the property Aza, = (2n + l)b,. 

As in section 5, we may write 

L; = m = O  [ m !  ( d K m  K")D;], 
K = a 2 / c i ,  

with K and D, given by (5.2b, c). Substitution in (B.l), changing the order of 
summations, and using the property 8:~" = 0 for m > n, yields 

+ (T + JV) - P DY , (B.3a) 
(::m )I I 

where 
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The infinite expansions for M, N and P can be replaced by closed expressions, 
according to 

where 

0 
(Do = 4 AZ = - Az. 

CO 

Notice that t+bl,o, $ z , o  and $ 3 , 0  are identical to the operators $1, $z and $ 3 ,  

respectively, given by (3.12i, j, k) for horizontal plane waves, that is, for k: = k," = 0. 
By substituting (B.4) in (B.3), it follows that operator W(z, zo) is given by 

where 
m CO 

with 

(B.5a) 

(B.5b, c) 

(B.5d, e) 

(B.5f) 

(B.5h) 

(B.5i, j, k) 
For m = 0, 1, . . . , we find 

1 
2 K  

5, = cos (Do, il  = - - (Do sin (Do, ... (B.6a, b) 

cos (Do , 1 sin (Do 
Yo = P O  Az - 

(DO 
(B.6c, d) 

cos (Do sin (Do 1 sin (Do 3 cos (Do 3 sin (Do 

2K 1-+ (Do a; 
9 , 3 , = - -  

O -  (D; @: 

(B.6e, f )  
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Notice that for q = r = 0 (B.5) is identical to operator (5.5). On the other hand, if the 
medium properties c and p are functions of z only, then extrapolation may be 
carried out in the wave number-frequency domain, so D,, may be replaced by 
@ = ( - k :  - k;)". Now the infinite series in (B.5) can be summed to closed expres- 
sions, yielding operators (3.12b-e). 
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ERRATA 

WAVE FIELD EXTRAPOLATION TECHNIQUES 
FOR INHOMOGENEOUS MEDIA WHICH INCLUDE 

CRITICAL ANGLE EVENTS, PARTS 1-111 

by C.P .A.  W A P E N A A R  and A . J .  BERKHOUT 

Part I :  Methods Using the One-way Wave Equations, vol. 33, no. 8, December 

Page 1153, relation (7.4b): P- should read as 8-. 
Part 11: Methods Using the Two-way Equation, vol. 34, no. 2, April 1986, pp. 

Page 156: relations (3.6a) and (3.6b) should read as 

1985, pp. 1138-1159. 

147-179. 

@(z, z,,) = I + L(X Az)Z-' + 4 E(X Az)Z-'L(X Az)Z-' + . . ., 
W(Z, z,,) = Z[I + (X Az) + 4 (X Az)' + 

(3.6a) 

(3.6b) 

Part 111: Applications in Modeling, Migration and Inversion, vol. 34, no. 2, April 
1986, pp. 18C207. 
Page 184, last line: (3.9) should read as (3.12). 
Page 190-197: the symbol * should read as a superscript (denoting complex 
conjugation) in the following relations: (5.4), (5.6), (6.7), (6.8) and (6.9). 

E-' .  
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