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ABSTRACT 
KINNEGING, N.A., BUDEJICKY, V., WAPENAAR, C.P.A. and BERKHOUT, A.J. 1989. Efficient 2D 
and 3D shot record redatuming. Geophysical Prospecting 37,493-530. 

In order to make 3D prestack depth migration feasible on modern computers it is neces- 
sary to use a target-oriented migration scheme. By limiting the output of the migration to a 
specific depth interval (target zone), the efficiency of the scheme is improved considerably. 
The first step in such a target-oriented approach is redatuming of the shot records at the 
surface to the upper boundary of the target zone. For this purpose, efficient non-recursive 
wavefield extrapolation operators should be generated. We propose a ray tracing method or 
the Gaussian beam method. With both methods operators can be efficiently generated for any 
irregular shooting geometry at the surface. As expected, the amplitude behaviour of the 
Gaussian beam method is better than that of the ray tracing based operators. 

The redatuming algorithm is performed per shot record, which makes the data handling 
very efficient. From the shot records at the surface 'genuine zero-offset data' are generated at 
the upper boundary of the target zone. Particularly in situations with a complicated overbur- 
den, the quality of target-oriented zero-offset data is much better than can be reached with a 
CMP stacking method at the surface. The target-oriented zero-offset data can be used as 
input to a full 3D zero-offset depth migration scheme, in order to obtain a depth section of 
the target zone. 

INTRODUCTION 
During the last decade the seismic industry has gradually been shifting from 2D 
data acquisition and processing to 3D techniques. The main causes of this impor- 
tant shift are: (i) The Earth is 3D and a 2D description is therefore incorrect. For 
strongly inhomogeneous subsurfaces the 2D assumption breaks down completely. 
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Out-of-plane events and amplitudes are handled incorrectly. (ii) The development of 
electronics and computers in the last decade has made it possible to do 3D acquisi- 
tion and processing in an economically justifiable way. The shift from 2D to 3D 
imposes heavy constraints on the acquisition and demands large and fast com- 
puters. Until the arrival of large supercomputers, it was difficult to do 3D processing 
in practice. 

Despite the increase in the possibilities of supercomputers, it is still not feasible 
to perform a full 3D prestack depth migration. Current 3D processing still consists 
of conventional CMP stacking followed by post-stack migration. It is well known 
that CMP stacking may distort the data considerably, especially where there are 
strong lateral velocity variations. This means that a lot of the advantages of 3D 
processing are diminished by the stacking process. It is therefore important to 
develop a method that does not have the problems of conventional CMP stacking 
but that is also efficient such that stacking can be performed within a reasonable 
CPU time on modern supercomputers. One way to improve the quality of the pro- 
cessing is by improving the stacking technique and therefore much work has been 
done in developing DMO techniques. However, DMO is designed for constant 
velocity media. For strongly inhomogeneous media DMO may even diminish the 
quality of the data. Therefore we propose a full prestack approach to 3D data 
processing. In this paper we pay special attention to an efficient implementation. 

The basic principle to develop such an efficient scheme is to separate the sub- 
surface of the earth into two parts, namely a target zone and an overburden. After 
conventional processing the geologist indicates a part of the subsurface, the target 
zone, in which he is especially interested. With the proposed scheme, a high quality 
detailed reflectivity image is calculated only for this part of the subsurface. This is 
the so-called target-oriented approach to 3D prestack migration (TRITON, 1985). 

The target-oriented scheme consists of a number of separate steps: 
(1) Surface related pre-processing. Here the surface related multiples are elimi- 

nated. After this step the reflecting surface is effectively replaced by a reflection-free 
surface and the data can be considered as the upgoing part of the pressure field. 
More information can be found in Verschuur et al. (1988). 

(2) Estimation of the macro-subsurface model. This model contains the main geo- 
logical boundaries and interval velocities. It describes the propagation of the seismic 
waves through the overburden. The best known method for +he macro-model esti- 
mation is Dix’s formula (1955) and the extensions made by Hubral (1976). Van der 
Made (1988) gave an alternative method for this estimation. 

(3) Redatuming of the shot records at the surface to the upper boundary of the 
target zone. In this step the surface data is extrapolated to the target upper bound- 
ary and there ‘genuine’ zero-offset data is generated. The distorting propagation 
effects of the overburden are eliminated in this step. Prestack 2D redatuming was 
described by Berryhill (1984) and Peels (1988). 

(4) Verijication of the macro-subsurface model. After redatuming the macro- 
subsurface model used is checked for correctness by means of a focusing analysis. 
For minor errors in the macro-model used the data can be corrected by applying a 
residual NMO correction. For larger errors the macro-model has to be updated and 
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a new redatuming must be performed. This verification and updating method was 
described by Jeannot, Faye and Denelle (1986) and Cox et al. (1988). 

( 5 )  Zero-offset depth migration within the target zone. Finally the zero-offset 
output data of the redatuming is migrated by a one-pass depth algorithm. It results 
in a detailed depth section of the target zone. This scheme can be efficiently imple- 
mented by storing the operators in a table (Holberg 1987; BlacquiBre et al. 1989). In 
some cases the velocity structure within the target zone is relatively simple, such 
that no full depth migration is necessary. Yilmaz and Lucas (1986) showed an 
example where, after elimination of the effect of the sea bottom topography, a time 
migration algorithm could be used. However a post-stack depth migration scheme 
will recover a high quality depth section of the target zone without the simplifying 
assumptions of a time migration scheme. 

Because no detailed reflectivity of the overburden is aimed at, this scheme is 
much more efficient than full 3D prestack migration. It makes the scheme feasible 
on modern (super)computers. The conventional CMP stacking is avoided. Due to 
the full 3D redatuming of the shot records, combined with a full 3D migration 
scheme, an image of the target zone can be obtained that is much better than can be 
obtained by conventional CMP stacking and post-stack migration. 

We will focus on the second step in this scheme, the 3D redatuming. Schultz and 
Sherwood (1980) have already mentioned the possibility of redatuming to a certain 
level and doing a post-stack processing below that level in their paper on 2D pre- 
stack depth migration. Berryhill (1984, 1986) described the conventional implemen- 
tation of redatuming in three steps: (i) downward extrapolation of the receivers to 
the new datum, (ii) reordering the data from common shot gathers to common 
receiver gathers, and (iii) downward extrapolation of the sources to the new datum, 
using the reciprocity property. 

The result of this redatuming scheme is a prestack data set as if it had been 
measured at the new datum. There is an obvious reason why this scheme is not well 
suited for 3D applications. In 2D applications the reordering of the data can be 
avoided: on most of the modern computers a full monochromatic data set can easily 
be kept in core. However, in 3D this reordering cannot be circumvented. Due to the 
huge amount of data, a lot of 1/0 is required, which causes serious problems. 

We describe a 3D shot record redatuming scheme. By redatuming per shot 
record, the reordering of the data into common receiver gathers is avoided. Further- 
more, the amount of data to be kept in core at any time is limited. Therefore the 
problems that conventional redatuming schemes would encounter in 3D are 
avoided here, while the quality of the result stays exactly the same. This important 
advantage of the shot record approach is not always fully appreciated (see e.g. 
Jeannot 1988). 

As can be deduced from the above, wavefield extrapolation plays a key role in 
redatuming. It is very important to develop an efficient method for extrapolation. 
We use both ray tracing as well as the Gaussian beam method to calculate non- 
recursive extrapolation operators. We thus obtain in an efficient way operators that 
are valid for strongly lateral and vertical inhomogeneous media. The concept of 
using ray tracing for the calculation of extrapolation operators is also employed by 
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Beydoun and Keho (1987) and Keho and Beydoun (1988) in a time-domain imple- 
mentation of a Kirchhoff migration scheme. 

The scheme described here is constructed in such a way that the results can be 
easily used from any available ray tracing package. The actual redatuming is 
applied per monochromatic component, as is done with all our migration related 
techniques. Both for 2D as well as for 3D different ray tracing packages are com- 
mercially available. 

In comparison with ray tracing, the Gaussian beam method has several impor- 
tant advantages: (i) it has a better amplitude behaviour than ray tracing, (ii) it is 
stable in case of caustics, and (iii) shadow zones, that frequently occur in ray tracing 
methods, are avoided. 

Besides these advantages the Gaussian beam algorithm is, just like ray tracing, 
very efficient. Wapenaar et al. (1989) introduce the use of Gaussian beams for the 
development of inverse wavefield extrapolation operators. 

Our paper can be subdivided into two main parts. In the first part the theory 
and the implementation of inverse wavefield extrapolation are discussed. In the 
second part the application to shot record redatuming is shown. 

The first part reviews the general theory of wavefield extrapolation. Then special 
attention is paid to the Gaussian beams. The principle of Gaussian beams is dis- 
cussed with a simple modelling example and the main results from the theory are 
presented. After the introduction of Gaussian beams we discuss how both the ray 
tracing as well as the Gaussian beam method can be implemented in a scheme for 
inverse wavefield extrapolation. A comparison between the two methods is made for 
the inverse extrapolation of a 2D wavefield. Also the inverse extrapolation of a 3D 
wavefield through an inhomogeneous subsurface are demonstrated. 

The second part discusses the theory of shot record redatuming. It is shown that 
the results of shot record redatuming are identical to the results of so-called ‘full ’ 
prestack redatuming. Finally the results of redatuming of 2D and 3D prestack data 
are presented. 

WAVEFIELD EXTRAPOLATION 
Wavefield extrapolation plays a key role in the redatuming scheme. Berkhout and 
Wapenaar (1989) and Wapenaar et al. (1989) describe the theory of both forward 
and inverse one-way extrapolation through complex media. 

A thorough description of wavefield extrapolation is beyond the scope of this 
paper, but the main results are discussed here. Consider the geometry as depicted in 
Fig. 1. The upgoing (reflected) wavefield at z = zA must be calculated from the 
wavefield at z = zo . The closed surface Kirchhoff integral over S o ,  S ,  and S2 can be 
approximated by a surface integral over acquisition surface So only (as shown by 
Wapenaar et al. 1989): 

P 
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FIG. 1. Geometry for inverse extrapolation from zo to zA . 

where P = P (r, CO) is the acoustic pressure, P-(rA, CO) is the upgoing component of 
the extrapolated pressure wavefield at r = T A ,  G = G(r, T A ,  CO) is the Green’s wave- 
field at r for a Green’s point source located at rA (see Fig. 2 for a schematic represen- 
tation of this Green’s function), G* = G*(r, rA,  CO) is the backpropagating Green’s 
wavefield (the symbol * denotes the complex conjugate), and p is the mass density. 

In (1) the following approximations are made : (i) evanescent waves are neglected, 
which is common practice in seismic processing and (ii) Second-order amplitude 
effects such as internal multiples are neglected, which is normal for the one-way 
approximation. 

This Kirchhoff integral can be further simplified to a Rayleigh integral, when So 

SO 

FIG. 2. Schematic representation of the Green’s wavefield G (r, rA , a). 
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is a plane surface at z = zo 

where P -  and G- represent the upgoing parts of the acoustic wavefield P at z = zo 
and the Green's wavefield G at z = z,,, respectively. Note that the result of the 
preprocessing step is an upgoing wavefield at the surface. 

The discrete version of this integral reads 

(2b) 

where rmn = (x, 7 Y n  3 z), r A ,  i j  = ( X i  7 yj, Z A  Axm xm+ 1 - x,, and AY, = yn+ 1 - Y ,  . 
Equation (2b) is a 3D frequency-domain representation of the ' generalized 

In analogy with Berkhout (1985) we can write this equation in the matrix nota- 
Kirchhoff summation approach to inverse wavefield extrapolation '. 

tion 

where 

P(z) = CP(X1, Y1, z, 4 a . .  P(X,, Y,, Z,4 lP (X , ,  y2, z, w )  ... P(xhf, y,, z, 0)l ... 
Ip(xl, YN, z,  0) ... p(xhf, YN, z, w)lT, 

containing the monochromatic pressure values P(xm, y,, z, 0) for all (xm, y,) at 
depth z. 

Fig. 3 shows this representation of the 2D and 3D version of the matrix nota- 
tion. In Fig. 3a the 2D representation as introduced by Berkhout (1985) is shown. 
The vector P- contains the 2D monochromatic wavefield at the lateral coordinates 
x. In this way inverse wavefield extrapolation can be described by a matrix multipli- 
cation with the extrapolation matrix F, ( z A ,  zo). This matrix notation can be 
extended to 3D (Fig. 3b) by placing the 2D vectors for each y-value one after 
another in one vector (equation (3a)). So the index of the vector indicates a 2D 
coordinate in x and y. Note that we now have the same formulation for the 3D case 
as for the 2D case (except that the values for a 3D wavefield and for 3D extrapo- 
lation operators are of course different). 

Hence the rows of F, (zA , zo) contain 

for all (xm, y,) at depth zo (i.e. the surface locations rma) and for one (xi, yj) at depth 
zA (i.e. the locations T A ,  ij  at the target's upper boundary). 



SHOT RECORD REDATUMING 499 

'm I 

yn I 
a 

b 
FIG. 3. The matrix notation for wavefield extrapolation. (a) 2D representation, (b) 3D repre- 
sentation. 

Analogous to (3), for the forward extrapolation of the downgoing waves from zo 
to z A  we can write 

p+(z.4) = w i ( z A  7 zO)p'(zO) , (44 
where the rows of W i  ( z A ,  zo) are given by 

Notice that the Green's wavefield G(r, rA , CO) represents the response at r of a point 
source at r = T A .  Hence extrapolation operators can be developed by a forward 
modelling scheme (see (3b) and (4b)). A very accurate way is to use a finite difference 
modelling scheme. Because we want to use the extrapolation operators in a 3D 
redatuming scheme, we now use a more efficient way of modelling Green's wave- 
fields for constructing extrapolation operators, namely Gaussian beam modelling 
and ray tracing. 

Wapenaar et al. (1989) give a detailed description of the (amplitude) errors in the 
expression for inverse wavefield extrapolation (2). They show that, assuming exact 
Green's functions, with (2) only the upgoing wavefield at rA is reconstructed. Evanes- 
cent waves are neglected and for an arbitrary inhomogeneous medium second-order 
amplitude errors are introduced. First-order amplitude effects, like geometrical 
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FIG. 4. Ray centred coordinate system along ray R with coordinates s and n. 

spreading and transmission at interfaces are incorporated correctly. In the following 
we will make further approximations by using a ray tracing method and a Gaussian 
beam method for the calculation of the Green’s functions. We emphasize that, using 
moderate velocity variations, our operators describe non-recursive true-amplitude 
inverse wavefield extrapolation of primary waves. 

GAUSSIAN BEAMS 
In this section we describe the Gaussian beam method as a modelling algorithm. As 
explained in the previous section, any forward modelling scheme can be used to 
calculate the Green’s wavefields, that are used in the inverse wavefield extrapolation 
operators. It is beyond the scope of this paper to handle the complete Gaussian, 
beam theory, but a basic discussion is necessary to understand the use of the Gauss- 
ian beam method in our inverse extrapolation algorithm. The main results from the 
theory are presented and especially the principles of Gaussian beam modelling are 
explained. For a thorough description we refer to Cerveny, Popov and Psencik 
(1982). 

Gaussian beams are based on a solution of the wave equation (here the 2D 
acoustic wave equation) in a ray centred coordinate system with coordinates (see 
Fig. 4) s which measures the arclength along the ray (Q) from an arbitrary reference 
point so ; and n which measures the distance perpendicular to the ray (a) from s. 

The basis of the new ray centred coordinate system is formed by the independent 
unit vectors (Fig. 4) 

t tangent to the ray in point (s, n = 0) and 

n normal to the ray in point (s, n = 0). 

By using a high-frequency approximation, for the solution of the wave equation in 
the vicinity of the ray (following Cerveny, Popov and Psencik we can write 
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FIG. 5. Principle of the modelling scheme using the Gaussian beam method. Here the situ- 
ation is shown for a source so and detector D in an homogeneous medium. 

where u(s) is the propagation velocity along the ray, q(s) represents the geometrical 
spreading, K(s)  can be interpreted as the curvature of the phase front of the beam, 
and L(s) represents the effective half-width of the beam. Note that q(s), K(s )  and L(s) 
have, in general, complex values. 

Gaussian beam modelling is based on the following principle : 

1. At the source, decompose the wavefields into a number of Gaussian beams. 
2. Trace each beam through the medium and determine the beam parameters 

U@), ds), K(s)  and W. 
3. At any detector position, compute the contribution of the different beams by 

evaluating (5) for each beam and sum the results. 

In Fig. 5 the response at detector D of a point source at so is schematically 
displayed as the summation over all contributing beams, which were shot with equi- 
distant take-off angles. For the exact expressions of the parameters in (5) we refer 
again to Cerveny, Popov and Psencik (1982), but here we try to explain the physical 
meaning of each of the components with a simple example. 

Again consider the geometry of Fig. 5 of a point source in a homogeneous 
medium. First consider the traveltime along each ray, which is described by the term 

where - determines the traveltime. s U::) 
These traveltimes are depicted in Fig. 6a as a function of the beam number. With 

an increasing distance of point D to the ray we have a decreasing traveltime. This is 
clear because we take the normal to each ray in s, see also Fig. 5. 
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FIG. 6. Contributions per beam of the different terms in the Gaussian beam expression (5) to 
the total response. (a) Traveltime. (b) Wavefront curvature. (c) Amplitude. (d) Total contribu- 
tion per beam convolved with a wavelet (left panel) and summed over all beams (right panel). 
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The second term accounts for the curvature of the wavefront 

where Real[$K(s)n’/u(s)] determines a traveltime. 

have an increasing traveltime contribution for increasing distance n. 
The contribution of this term to the total traveltime is shown in Fig. 6b. Here we 

Finally we look at the amplitude term 

exp [ - &]. 
This amplitude term is a Gaussian function of the normal distance n. For this 
reason the method is called the Gaussian beam method. This term is shown in 
Fig. 6c. 

In Fig. 6d the combined contributions of (6a, b, c) are depicted per beam 
(convolved with a wavelet). These contributions are summed, yielding the response 
at detector point D of source So (Fig. 9, which is the trace on the right in Fig. 6d. 

We have described the Gaussian beam method and we have shown how each 
beam contributes to the response at a certain detector point. To conclude this 
section we outline the procedure in a modelling scheme using the Gaussian beam 
method. This scheme is shown in Fig. 7. 

For a certain take-off angle at the source a ray is calculated using a dynamic ray 
tracing method. Any inhomogeneous subsurface model can be used here. For each 
detector position the contribution of the ray is calculated. This is repeated for all 
rays, shot at equidistant take-off angles. The contributions of the rays are summed 
per detector position. In this way the wavefield at the detectors can be calculated 
from a point source. This method is stable in caustics and it has a correct amplitude 
behaviour. Also shadow zones, that form an important problem in dynamic ray 
tracing, are avoided in the Gaussian beam method. 

The Gaussian beam method can be extended to 3D without much dificulty. For 
the 3D Gaussian beams the same advantages hold as for the 2D beams. It is an 
efficient method with a good amplitude behaviour. We have not yet implemented a 
3D extension, but for the future this extension is envisaged. 

PRACTICAL IMPLEMENTATION 
In this section we concentrate on how the ray tracing and the Gaussian beam 
schemes are implemented in an efficient way for calculating extrapolation operators. 
It will be shown that the two methods fit elegantly in one general operator calcu- 
lation and extrapolation scheme. When implementing these methods for modelling 
Green’s wavefields the following points should be remembered. 

In our application we want to extrapolate prestack data, measured at the surface 
to the upper boundary of the target zone. In acquisition it is generally impossible to 
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FIG. 7. The main steps in a modelling scheme, using Gaussian beams. 

place the detectors (geophones for land data or hydrophones for marine data) on a 
regular grid. One tries to make the actual acquisition grid as regular as possible, but 
there will always be irregularities, e.g. due to roads and buildings or due to cable 
feathering in marine acquisition. In normal data processing is is often assumed that 
the acquisition points lie on a regular grid or instead the data is interpolated to a 
regular grid. By developing extrapolation operators for irregularly spaced acquis- 
tion geometries we can avoid contaminating the data by interpolation. 

A second point, that can be advantageous in our scheme, is that for land acquisi- 
tion most of the geophones are used for many shots. This means that for many shot 
records the same operator can be used to extrapolate the data. This is efficient 
because the operator has to be calculated just once. Unfortunately for marine acqui- 
sition this is not generally the case because of cable feathering. 

A third point to keep in mind is that for the operator calculation one needs only 
the macro-subsurface model and the acquisition and target geometries. This makes 
it possible to calculate the operators in advance (before the redatuming itself) and to 
store the results on disc. We call this phase the operator development phase. During 
the actual extrapolation phase these results can be retrieved from disc. However, the 
operators for all frequencies would take too much disc space and would also result 
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FIG. 8. The main steps in the scheme of the operator development phase. 

in an inefficient I/O. Therefore we chose a method in which only a limited number 
of frequency-independent parameters need be stored after the operator development 
phase, and from which the actual operator can be calculated during the extrapo- 
lation phase. 

Considering these points we come to the scheme as shown in Figs 8 and 10. 
Notice that this scheme is independent of the method we choose for calculating the 
operators (either dynamic ray tracing or Gaussian beam modelling). Only the inner 
blocks of this scheme differ for the two methods. 

The first part is the operator development phase (Fig. 8) and is performed 
separately from the actual extrapolation; it involves the calculation of the operator 
parameters. Using the macro-subsurface model, so called ' basic rays ' are calculated 
from all positions at the upper boundary of the target zone to the surface. The 
actual acquisition grid is, as mentioned before, densely spaced and irregular. Later, 
during the extrapolation phase, the operator for the actual acquisition grid is calcu- 
lated from these 'basic rays '. In the ray tracing method for this interpolation we use 
a Fraunhofer or local plane wave assumption. In the Gaussian beam method the 
theory describes the interpolation in a natural way. 

In Fig. 9 the principles of these two methods are depicted schematically. For the 
ray tracing method the extrapolation operators are calculated through a correction 
to the parameters of the nearest ray(s), as depicted in Fig. 9a. The principle of the 
Gaussian beam method as depicted in Fig. 9b was discussed in the previous section. 
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(b) 
FIG. 9. ‘Operator interpolation’ to the acquisition grid. (a) Ray tracing method: Local plane 
wave assumption. (b) Gaussian beam method: Sum over contributing rays. 
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FIG. 10. The main steps in the scheme of the extrapolation phase. 

By limiting the number of parameters to be stored to some characteristic param- 
eters per ray, the amount of required disc space as well as the number of (time 
consuming) 1/0 operations (during the extrapolation phase) is greatly reduced. 

The second stage of the calculation of the operator is done during the extrapo- 
lation phase, which is schematically depicted in Fig. 10. From the parameters of the 
‘basic rays ’ first the ‘ operator parameters ’ are constructed. These parameters are 
frequency-independent and contain the amplitude (A) and traveltime ( T )  informa- 
tion, that is needed to calculate the full operators, for all surface and target loca- 
tions. 

For dynamic ray tracing these frequency-independent operator parameters are 
obtained by applying a plane wave correction to the traveltime and amplitude of the 
nearest ‘basic ray’ to the actual acquisition point (see Fig. 9a). In 3D this correction 
is given by (see Fig. 11) 

where (x,,, y,) is the location of the acquisition point, AT the correction to the 
traveltime of the ‘basic ray ’, (x, , y,) is the location at the surface of the ‘basic ray ’, 
8, the dip angle at the surface of the ‘basic ray ’, t,h, the azimuth angle at the surface 
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FIG. 11. Geometry for calculating the 3D Fraunhofer correction. (a) Top view. (b) Side view. 

of the ' basic ray ') and V, the propagation velocity of the upper layer of the macro 
subsurface model. 

Using a local plane wave or Fraunhofer approximation means that no arnpli- 
tude correction is applied. The operator parameters T and A are stored in two 2D 
arrays (the two axes of these arrays represent the positions at the upper boundary of 
the target zone and the acquisition positions at the surface). 

For Gaussian beam modelling the ' traveltime ' and ' amplitude ' information 
have complex values. The complex valued ' traveltime ' contribution of one beam in a 
certain acquisition position can be described as 

as can be deduced from (6a) and (6b). 
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The complex valued 'amplitude' for one beam at a certain acquisition point is 
given by 

as in (6c). The complex operator parameters T and A are stored in two complex 
value 3D arrays. The three axes represent the positions at the upper boundary of the 
target zone, the acquisition positions at the surface and the beam number. 

Within the frequency loop (see Fig. 10) the actual monochromatic extrapolation 
operator is finally calculated and the actual extrapolation is performed. Again the 
implementation of the operator construction differs for dynamic ray tracing and the 
Gaussian beam method, but the principles of the schemes are identical. 

For the dynamic ray tracing method the monochromatic Green's function can 
be found from the operator parameters by 

In the Gaussian beam method the monochromatic Green's function is calculated 
from the operator parameters by 

#beams 

G-(rmn, rA,ij ,  w) = C Ab(rmn, rA,ij)e-i"Tb(rmnirA,ij). 
b=l 

In both, the elements of the extrapolation operator F, ( z A ,  zo) follow directly 
from these Green's functions (see also (3b)). Just as in the operator development 
phase, in this extrapolation phase the implementation differs for the two methods, 
but the principles of the schemes (Fig. 10) are identical. 

We now demonstrate this extrapolation scheme with two simple examples of 
inverse wavefield extrapolation applied to zero-offset data (redatuming of shot 
records is considered later). 

The first example is a 2D subsurface model. Consider the model shown in Fig. 
12a. Here a faulted structure is placed beneath a salt dome. Using the exploding 
reflector assumption and a finite difference modelling scheme, zero-offset data were 
generated at the surface from this faulted structure. Note that the reflections of the 
overlying layers were not modelled in this example. 

In Fig. 12b the data obtained in this way are shown. The data were recorded at 
the surface from x = 0 m to x = 1500 m with a spacing of 9 m. From this data it is 
almost impossible to distinguish the faulted structure. Due to propagation through 
the overburden the image is heavily distorted. 

With the ray tracing method the operators were calculated for an inverse 
extrapolation from the surface to a depth of 700 m, just above the faulted structure. 
In Fig. 13a the result after inverse extrapolation with the ray tracing method is 
shown. The propagation effects of the overburden are eliminated. The lateral posi- 
tioning and the traveltime of the extrapolated reflection are correct. 
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FIG. 12b. 2D zero-offset data from lower reflector, used as input for inverse wavefield 
extrapolation. 
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FIG. 13. Result after inverse extrapolation. (a) Using the ray tracing method. (b) Using the 
Gaussian beam method. 
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FIG. 14a. 3D subsurface model. 

Using the Gaussian beam method for inverse wavefield extrapolation the ampli- 
tude behaviour is much better. The result is shown in Fig. 13b. Just as for the ray 
tracing method the position of the reflector is here correct. We see that the ampli- 
tude is smoother than for the ray tracing case. The side effects are also much smaller 
than for ray tracing. This is because the Gaussian beam method is based on the 
wave equation and does not suffer from shadow zones or instabilities. 

The second example is a 3D inverse wavefield extrapolation. Here we only used 
the ray tracing based operators. In Fig. 14a the 3D inhomogeneous subsurface 
model is shown that was used for this example. With a recursive Kirchhoff model- 
ling scheme zero-offset data was generated at the surface for a reflector of limited 
extent at a depth of 1000 m (see Fig. 14a). Two cross-sections of the data at the 
surface are shown in Fig. 14b. In Fig. 14c the result after 3D inverse wavefield 
extrapolation to z = 1000 m is shown. The lateral positioning (both in the x- and in 
the y-direction) of the reflector is correct and the event aligns correctly at t = 0 s. 

In conclusion, we have developed a non-recursive inverse wavefield extrapo- 
lation scheme that is efficient with respect to computation time and I/O. It is pos- 
sible to use this scheme to extrapolate through strongly inhomogeneous media for 
both 2D and 3D applications. In the following we show how to integrate this 
scheme in a shot record redatuming algorithm. 

THEORY OF REDATUMING 
Following Berkhout (1985) the monochromatic response of a seismic experiment 
can be described by the following matrix formulation: 
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where s,?(zo) is a vector containing the downgoing source wavefield at the surface of 
source j ,  W+(z,, zo) is a matrix describing the forward propagation of the down- 
going wavefield from zo to z,, R(zm) is a matrix describing the angle-dependent 
reflection properties at z, , W-(zo, z,J describes the forward propagation of the 
upgoing wavefield from z, to zo , D(zo) describes the detector characteristics, and 
p;(zo) is a vector containing the detected upgoing wavefield at zo related to 
source j. 

Notice that (10) describes a 2D or a 3D seismic experiment when the notation is 
used that is explained in Fig. 3a or 3b, respectively. 

Equation (10) describes a single shot experiment. Extending this formulation to 
the multi-shot situation we have. 

where the columns of matrices P-(zo) and S+(zo) represent the single shot wavefields 
p,:(zo) and g:(zo) forj = 1 . . . J. 

For simplicity, in the rest of this paper we assume that D(zo) can be inverted (i.e. 
directional deconvolution) and that we can omit this term. 

If we let the upper boundary of the target zone be at z = zN , we can write (10) as 

where 
m 

and 

Here X(z,) is the multi-dimensional spatial impulse response at z = zN of the sub- 
surface below z = zN . 

We see that relation (12a) is split into two major parts. The first part describes 
the response of the overburden. For redatuming we are not interested in this 
response. The geologist will be interested in the response of the target zone and this 
response is included in the second part of relation (12a). 

In the measurements at the surface the impulse response (X(z,)) at the target 
upper boundary is distorted by the propagation through the overburden (12a)). This 
is described by the two propagation matrices W+(z,, zo) for the downward propa- 
gation of the source wavefield and W-(zo, zN) for the upward propagation of the 
reflected wavefield. Now we can give a more formal description of redatuming than 
the one given in the introduction. The aim of redatuming is to estimate X(zN), which 
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involves elimination of the distorting effect of propagation (described by the 
matrices W+(zN, zo) and W-(zo, zN)) through the overburden. Furthermore, for efi- 
ciency reasons we want to perform the redatuming per shot record. 

First we derive the expressions for the full prestack redatuming, before handling 
the shot record redatuming. We follow the approach of Berkhout (1984) and Wape- 
naar and Berkhout (1987). 

Ignoring the response of the overburden, for the multi-shot record data we can 
write 

p-(zO) = w - ( z O  9 zN)x(zN)w+(zN, zO)s+(zO) .  (13) 

From this equation it is clear that the full prestack redatuming can be written as 

and 

x(zN) P-(zN)[S+(ZN)I - l ,  ( 144 

F-(zN,  zO) = [w- (zO,  z N ) l - l *  (144 

where 

Equation (14) practically describes three steps in the redatuming scheme: (i) (14a) 
describes the inverse extrapolation of the detected upgoing wavefields P-(zo) to zN, 
(ii) (14b) describes the forward extrapolation of the downgoing source wavefields 
S+(zo)  to zN , and finally (iii) the upgoing reflected wavefields P-(zN) are deconvolved 
for the downgoing incident wavefields S+(Z,) at z = zN, which is described in (14c). 

For simplicity we will further assume that for the downgoing source wavefield 
we can write 

S+(Z0) = S(o)I, 

where I is the identity matrix and S(o) the spectrum of the source wavefield. 
Now we can write for the deconvolution step (14c): 

x(zN) = P-(zN)[Z+(zN)lT, 

where 

The bottom part of Fig. 15 illustrates the matrix multiplication of equation (16a). 
Now that we have described the full prestack redatuming scheme with (14a), 

(16b) and (16a), we can describe the shot record redatuming. We do this with a 2D 
example. In this example we use the same subsurface model as before (Fig. 12a). The 
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FIG. 15. Matrix representation of shot record redatuming (top) versus full prestack 
redatuming (bottom). 

operators for this example are calculated with our ray tracing scheme. For this 
model shot records were generated using a finite difference modelling algorithm. In 
Fig. 16 one of the modelled shot records is shown for the lateral source position 
x = 500 m. 

The first step in the shot record redatuming scheme is equivalent to an inverse 
extrapolation of the detected wavefield. This is the single-shot record version of 
(14a): 

P;(z,,,) = F-(z,, zo)P;(z0). 

Equations (17a and b) describe shot record redatuming per monochromatic com- 
ponent. The results of each step are plotted in the time domain after an inverse 
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FIG. 16. Shot record for a source at x = 500 m in the model of Fig. 12a. 

Fourier transformation from frequency to time. The result of step (17a) is shown in 
Fig. 17a. The reflection of the lower reflector now becomes more clear. The second 
step is the single-shot record version of (16b) : 

This step is comparable (for homogeneous media even equivalent) to the complex 
conjugate of the forward extrapolated source wavefield. In Fig. 17b the result of the 
forward extrapolated source field is shown. 

The third step consists of a ‘deconvolution’ of the upgoing reflected wavefield 
(Fig. 17a) for the downgoing source wavefield (Fig. 17b) at the upper boundary of 
the target zone 

(X(zN)>j = ~ F ( z N ) c Z ~ ( Z N ) ~ ~ .  ( 1 7 4  

The result of this step is a single-fold redatumed section. In Fig. 17c the diagonal 
elements, corresponding to zero-offset, of this single-fold result are shown. Note that 
mainly the middle part of the lower reflector is illuminated by this shot at 
x = 500 m. 
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FIG. 17a. Inverse extrapolated detected wavefield at z = 700 m. 
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FIG. 17b. Forward extrapolated source wavefield at z = 700 m. 
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FIG. 17c. Single-fold redatumed section at z = 700 m for a shot at x = 500 m. 
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FIG. 17d. Genuine zero-offset response at z = 700 m. Result after CMP stacking of all 
redatumed shot records. 
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FIG. 18b. Estimated macro-subsurface model. 

The final step in the redatuming process is the CMP stacking: 

X(zN) = C <X(zN)> j * ( 1 7 4  
j 

Here the redatuming results from all single shot records are summed, giving a data 
set as if it had been measured at the upper boundary of the target zone. Figure 15 
shows that the result of shot record redatuming followed by stacking (17a, 17b, 17c 
and 17d) is exactly the same as full prestack redatuming (14a, 16b and 16a). The size 
of this data set would be of the same order as the original data set. However, the 
output can be limited to the diagonal elements of X(zN), resulting in a genuine zero- 
offset response as shown in Fig. 17d. By not calculating the off-diagonal elements of 
X(zN) the size of the data volume is reduced considerably. Also the number of calcu- 
lations to be done for the ‘deconvolution’ (17c) is reduced. It can be seen that the 
quality of this zero-offset data at the target is far better than could be reached with a 
conventional CMP stacking at the surface. 

2D AND 3D REDATUMING EXAMPLES 
In this section we describe another two examples of the redatuming scheme. The 
first example is redatuming of a 2D watertank experiment. The experiments and 
some results obtained with these data were described by Postma and Jeannot (1988). 
In Fig. 18a some shot records obtained over the model are shown. From the shot 
records a macro-subsurface model was derived with a focusing analysis method, 
described by Cox et al. (1988). This estimated model is shown in Fig. 18b. The result 
after shot record redatuming to z = 2200 m is shown in Fig. 18c. We see that the 
lower reflectors are recovered well. Due to the propagation velocities in the target 
zone the lower reflector is not horizontal in the time domain. 
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The second example is a redatuming of a 3D prestack data set, modelled with 
ray tracing. In Fig. 19a a perspective view of the 3D subsurface model is given. Note 
that the model has lateral variations in both the x- and y-direction. In Fig. 19b two 
cross-sections through the model are shown. Using ray tracing, shot records were 
generated at the surface with the response of five point diffractors at z = 1000 m. 
The reflections of the layers in the overburden were not modelled in this example. 
Figure 19c shows some cross-sections through the data of two shot records as indi- 
cated in Fig. 19a. 

Using 3D shot record redatuming, zero-offset data were generated at 
z = 1000 m, the level of the point diffractors. Figure 19d shows four cross-sections 
through the zero-offset data. The positions of these cross-sections are also indicated 
in Fig. 19a. We see that all point diffractors are focused correctly and they are 
positioned at t = 0 s and at the correct position in x and y. This example shows 
that, with the method described in this paper, correct 3D redatuming is possible. 
The method is efficient and makes 3D prestack processing feasible on modern 
supercomputers. 

CONCLUSIONS 

We have described a method for the redatuming of shot records. Especially for 3D 
shot records, the scheme that is used to calculate and apply wavefield extrapolation 
operators must be efficient. We have presented two procedures, based on ray tracing 
and Gaussian beams, respectively. 

In an example of 2D inverse wavefield extrapolation, both methods proved to be 
efficient and flexible. Non-recursive extrapolation operators can be generated for 
any type of inhomogeneous overburden. Also any irregular shooting geometry can 
be handled by these two schemes. Both methods have good focusing and posi- 
tioning properties. As expected, the amplitude behaviour of the Gaussian beam 
method is better than the amplitude behaviour of the operators obtained by ray 
tracing. 

For 3D wavefield extrapolation the Gaussian beam method has not yet been 
implemented, but here the ray tracing method also proved to be successful. When 
using a 3D Gaussian beam method the results should improve in the same way as in 
the 2D example. 

We have discussed a shot record redatuming scheme in which we integrated the 
ray tracing based extrapolation operators. The redatuming is performed per shot 
record which has, especially for the 3D redatuming, the advantage over the conven- 
tional redatuming scheme, that no reordering of the data is needed. Because the 
extrapolation is done non-recursively no padding of far-offset traces before extrapo- 
lation is needed. This is in contrast to shot record migration schemes. Hence, with 
our shot record approach to prestack redatuming, 3D seismic processing before 
stack becomes feasible on modern supercomputers. 
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FIG. 19a. 3D subsurface model (perspective view). 
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