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ABSTRACT 
BLACQUI~RE, G., DEBEYE, H.W.J., WAPENAAR, C.P.A. and BERKHOUT, A.J. 1989. 3D table- 
driven migration. Geophysical Prospecting 37, 925-958. 

An efficient full 3D wavefield extrapolation technique is presented. The method can be 
used for any type of subsurface structure and the degree of accuracy and dip-angle per- 
formance are user-defined. The extrapolation is performed in the spacefrequency domain as 
a space-dependent spatial convolution with recursive Kirchhoff extrapolation operators. 

To get a high level of efficiency the operators are optimized such that they have the 
smallest possible size for a specified accuracy and dip-angle performance. As both accuracy 
and maximum dip-angle are input parameters for the operator calculation, the method offers 
the possibility of a trade-off between these quantities and efficiency. The operators are calcu- 
lated in advance and stored in a table for a range of wavenumbers. Once they have been 
calculated they can be used many times. 

At the basis of the operator design is the well-known phase-shift operator. Although this 
operator is exact for homogeneous media only, it is assumed that it may be applied locally in 
case of inhomogeneities. Lateral velocity variations can then be handled by choosing the 
extrapolation operator according to the, local value of the velocity. Optionally the operators 
can be designed such that they act as spatially variant high-cut filters. This means that the 
evanescent field can be suppressed in one pas% with the extrapolation. The extrapolation 
method can be used both in prestack and post-stack applications. In this paper we use it in 
zero-offset migration. Tests on 2D and 3D synthetic and 2D real data show the excellent 
quality of the method. The full 3D result is much better then the result of two-pass migration, 
which has been applied to the same data. 

The implementation yields a code that is fully vectorizable, which makes the method 
very suitable for vector computers. 

INTRODUCTION 

Many current 3D migration techniques, e.g. 3D time migration methods in general, 
two-pass (or 2 times 2D) depth migration and 3D depth migration based on oper- 
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ator splitting, are only approximately valid in case of inhomogeneous media. If 
strong velocity variations occur in the subsurface, a one-pass, true 3D, depth migra- 
tion method should be used (Yilmaz et al. 1987). The quality of such a method is 
determined by the wavefield extrapolation, apart from the quality of the data and 
the availability of a good macro-model. To be able to handle the lateral velocity 
variations correctly, the extrapolation is performed as a laterally variant convolu- 
tion in the space-frequency x, y, w domain (Berkhout and Van Wulfften Palthe 
1979; Berkhout 1984, 1985). Vertical velocity variations are taken into account by 
dividing the model into small layers and by applying the extrapolation recursively 
from one depth level to the next. 

In practice some of the problems that have to be avoided in wavefield extrapo- 
lation are: instability, inaccuracy, poor performance if steep dips are present, and 
spatial operator aliasing. In this paper we describe a 3D table-driven extrapolation 
scheme in which these problems have been solved. We use a 3D version of the 
optimum operator design method as introduced by Holberg (1988) where full 
control of accuracy and dip-angle performance is available, and it also offers the 
option of space-dependent high-angle and evanescent field suppression. The advan- 
tage is that whatever the requirements are, the result is always the smallest possible 
stable extrapolation operator. 

Full 3D wavefield extrapolation is numerically expensive, and therefore special 
attention must be paid to an efficient implementation of the scheme. Following an 
idea of Raoult and Dezard (1985), we calculate the 3D extrapolation operators in 
advance and store them in a table. Some aspects concerning the table size (the 
number of operators) will be discussed. Also, the symmetry properties of the oper- 
ators - all information is actually contained in one quadrant of the 3D operator - 
are used to reduce the number of calculations. We use this wavefield extrapolation 
method in a recursive way together with the imaging principle for the development 
of a 3D zero-offset migration scheme. 

The final section is dedicated to examples. Although we only discuss the 3D case 
in this paper, the method can be easily applied for the 2D case as well, and therefore 
we also give some 2D examples. The algorithm was tested on synthetic data from 
subsurface models with strong velocity variations. A 2D zero-offset section was 
modelled with an accurate finite-difference scheme in which, for example, diffraction 
energy is fully incorporated (Kelly, Seford and Whitmore 1982); we also show a 2D 
example of real data. The 3D examples were generated using optimized extrapo- 
lation operators both for the modelling and the migration. For comparison a result 
of two-pass migration is also presented. 

~ 

WAVEFIELD EXTRAPOLATION THEORY 

lntroduction 

3D downward wavefield extrapolation, from depth level zi to depth level zi+ = 
zi + Az, in the x, y, w domain can be formulated as 

P(x, y ,  zi+l ,  0) = F [ x ,  Y ,  Az, k(x, Y ,  zi, 011 * P(x, Y ,  zi, U), (1) 
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with 

k(x, Y ,  zi > 0) = ~ / c ( x ,  Y, zi), 

where P denotes the temporally Fourier transformed upgoing pressure field, 
F denotes the inverse wavefield extrapolation operator, k is the local wavenumber, c 
is the propagation velocity of the medium, and the symbol * denotes a two- 
dimensional space-dependent spatial convolution along the x- and y-coordinates. 

The extrapolation according to (1) should be applied recursively for all depth 
levels of interest. This way vertical velocity variations can be taken into account. 

As can be seen from (l), a model of the subsurface containing the propagation 
velocity c(x, y ,  z )  is required. Following Berkhout (1985), we distinguish between the 
propagation properties and the reflectivity properties of the subsurface. The propa- 
gation depends on the macro seismic parameters of the medium, such as average 
velocity and average absorption. The reflectivity depends on the detailed seismic 
parameters of the medium such as local variations in velocity and density (see Fig. 1). 

Because one-way wavefield extrapolation according to (1) compensates for the 
propagation effects of the medium, only the macro seismic parameters need to be 
known. A discussion on techniques to estimate or update macro models (Van der 
Made 1988) is beyond the scope of this paper. 

Apart from the input data and the macro model that is available, the quality of 
the extrapolation is mainly determined by the quality of the recursive operator F.  
The number of arithmetic operations involved in the extrapolation is inversely pro- 
portional to the size of operator F.  Therefore, in the following we will concentrate 
on the quality and the size of operator F.  

Optimization of the downward extrapolation operator 

The operator optimization method, introduced by Holberg (1988) for the 2D 

detail 

C(Xi,Yi,Z) t 

Z +  

FIG. 1. Velocity profile of the macro model (thick line) and the detailed model (thin line). 
Given the macro-model and the seismic data, the detailed model can be obtained with seismic 
migration. 
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- f - 
Holbergs optimization 
method 

A I  

case, has some properties that make it very suitable for our purpose: (1) The oper- 
ator size (number of operator points) and the maximum dip-angle are user-defined 
input parameters. (2)  Optionally the operator can be designed such that it acts as a 
high-dip angle or evanescent field suppression filter. (3) The most accurate operator 
possible under the conditions in 1 and 2 will be found. 

Hence, with the optimization method it is possible to find the operator that gives 
the most accurate results given the operator size, the maximum dip-angle and, 
optionally, a filter characteristic. However, one must keep in mind that our aim is to 
find the smallest operator given a criterion on the required accuracy, and again the 
maximum dip-angle and filter characteristic. This can be accomplished by iteratively 
applying the optimization method (see the flow-chart in Fig. 2). A description of the 
optimization method, which we have extended to the 3D case, will be given next. 

The basic principle of the operator optimization is to minimize the phase and 
amplitude errors with a least-squares optimization algorithm. The option to make 
the operator also act as a high dip-angle and evanescent field suppressing filter can 
be included by defining a so-called constraint function, e.g. a cosine shaped filter. 

The expression for wavefield extrapolation in the x, y ,  o domain, equation (l), 

A I  

maximum 

Input parameters: 
desired accuracy, 

increase the 
number of satisfy the accuracy 
operator points 

decrease the 
number of 
operator points 

I y  t 
smaller operator exists, 
satisfying the accuracy 
criterion? 

+7 optimum operator 

FIG. 2. Iterative application of Holbergs’ operator optimization method, results in the smal- 
lest possible operator given the desired accuracy and maximum dip-angle. 
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x P(x - x’, y - y’, zi, w)dx’dy’, (2a) 

x P[(q - m)Ax, (r - n)Ay, zi, o]AxAy, (2b) 

where q = 1, numx, and r = 1, numy. numx denotes the number of traces in the 
x-direction and numy denotes the number of traces in the y-direction. 

In principle both M and N should be infinite. However, in practice M and N 
must be limited because they determine the size of the operator. Moreover, for effi- 
ciency, they should be as small as possible. Therefore, this expression is an approx- 
imation. Note that in (2b) we replaced the symbol F for the extrapolation operator 
by (F), indicating that this is the approximated operator that has to be optimized. 

We assume for the moment that the velocity is laterally invariant. In that case k 
is constant within one extrapolation step, k = k(zi, o), and spatial convolution (2a) 
may be replaced by a simple multiplication in the k, , k, , o domain, according to 

Here the tilde (“) denotes a 2D spatial Fourier transform, according to 

J - m  J - m  

or, after discretization in the x- and y-direction, 
m m 

A(kx, k,) = c A(mAx, nAy) exp (jk,mAx) exp (jk, nAy)AxAy. 
m =  - m n =  -00 

We can now formulate the discretized and approximated version of (3), yielding the 
2D spatial Fourier transform of (2b): 
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If we use the symmetry properties of the operator: 

f m n  = fmc - n )  3 

f m n  = A  - m ) n ,  

we can write 
M N  

( F(k, ,  k ,  , Az, k ) )  = 4s,, f,, cos ( k ,  mAx) cos (k ,  nAy)AxAy, 

(5 )  

m = O  n = O  

in which s,, is a symmetry factor defined as 

s,, = 1 for m 2  1 and n 2  1, 

s,, = 3 for (m = 0 and n 2 1) 

or (m 2 1 and n = 0), 

s,, = for m = 0 and n = 0. 

Note that the actual number of coefficients has reduced from (2M + 1)(2N + 1) to 

In the k , ,  k , ,  w domain, the expression for the operator is the well-known 
( M  + 1)(N + 1). 

phase-shift operator 

F(kx,  k , ,  Az, k) = exp (j,/m Az). (7) 
Note that this expression is exact for propagating waves (k2 2 k: + k;). In practice 
we do not require operators that are accurate for all angles of propagation up to 
90”. Therefore, we introduce a,, max as the maximum angle of propagation in the x-z 
plane and a,, max as the maximum angle of propagation in the y-z plane. The area in 
the k,  , k ,  , w domain limited by these angles, is given by the ellipse 

= 1. 
k,” 

k2 sin2 (a,,,,J 
+ k: 

k2 sin2 (ax, ,,J 
Within the region bounded by this ellipse and the spatial Nyquist frequencies, 

+k,,Nyq = +_nn/Ax and *ky,Nyq = +n/Ay, (see Fig. 3, light-shaded area), the 
approximate operator ( F )  must be as accurate as possible. Outside this region, (see 
Fig. 3, dark-shaded area), there are no special requirements for the phase; however, 
to avoid instability problems, the amplitude must be smaller than unity. As men- 
tioned before, it is possible to use the extrapolation operator also for suppressing 
the waves with propagation angles larger than a,, max and a,, max respectively, and 
the evanescent waves (k: + k; > k’). In that case the amplitudes (in the dark-shaded 
area) should be smaller than some user-defined window, g,,,,(k, , k,), e.g. a cosine- 
window. 

The optimization problem can now be formulated as follows: 

Find the coefficientsf,, of approximated operator ( F ) ,  such that (1) in the light- 
shaded area as depicted in Fig. 3, the errors (the differences between (F) and the 
exact operator F) are as small as possible; (2) in the dark-shaded area of Fig. 3, the 
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FIG. 3. In the light-shaded area the approximated operator should match the exact phase- 
shift operator as accurately as possible. In the dark-shaded area the amplitude of the approx- 
imate operator should be smaller than unity or some user defined window. 

operator satisfies the requirements concerning stability (11 (F>II I 1) or suppression 

In the implementation of the optimization method two functions are important: 
the objective function, which handles requirement 1 and constraint function, which 
takes care of requirement 2. These will now be discussed. 

The error function that is minimized, requirement 1, is called the objective func- 
tion and is given by 

(II(F>II < Suser < 1). 

OBJ(F) = (6’ + Ad2), 
k x ,  k y  

for 

< 1  
k,” 

+ 2  
kZ 

k2 sin2 (a,, ,,,) k sin2 (ay, ,,,) - 

(9) 

and I k x l  I k ~ . N y q  and I k y  1 5 k y ,  Nyq * (l0) 

Here the symbol F represents the coeffkientsf,, of extrapolation operator ( F )  : 

F = c f 0 0 , f 1 0 ~  ~ ~ ~ , f M O ~ f O l , f i 1 ~  ...YfMl; ... ; f O N , f i N ?  . . * , f M N ) ,  

E represents the phase error 

c(kx,  k y ,  Az, k)  = , / V A z  - tan-’ (Im (P)/Re (P)), 
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6 represents the amplitude error 

W, , k,, Az, k) = 1 - II (F> 11, 
and I is an optional weighting factor which can be used to control the emphasis put 
on the amplitude errors relative to the phase errors. In practice we use I = 1. 

The summation in (9) is carried out over all k,, k, samples within the area as 
defined by (lO), (light-shaded area in Fig. 3). 

In our version of the objective function (9) we did not explicitly include the 
derivatives of the phase and amplitude errors with respect to k, k, and k,, respec- 
tively. This reduces the cost of computation. Instead, we use the optimum operator 
for wavenumber k as initial estimate for the optimization of the operator for wave- 
number k + Ak (see also the next section). This has the effect that rapid oscillations 
in the errors in the k-direction generally do not occur and therefore no spurious 
energy is generated (Holberg 1988). Also rapid oscillations in the errors in the k,- 
and k,-direction will not occur because of the small number of operator points in 
the x, y, w domain. 

Requirement 2, concerning stability or suppression for the larger wavenumbers, 
is formulated in a constraint function, which is given by 

for 

and I kx I 5 kx, Nyq and I ky 1 5 ky, Nyq . (12) 

The summation in (11) is carried out over all k,, k, samples within the area as 
defined by (12), (see the dark shaded area in Fig. 3). 

Note that we have formulated our problem as a minimization problem which 
can be solved with standard minimization software (e.g. NAG). We used a sequen- 
tial quadratic programming algorithm which requires as input : the objective func- 
tion, the constraint function and their first derivatives (Gill, Murray and Wright 
1981). The algorithm will not be discussed in this paper. 

As mentioned before, the procedure should be repeated until the smallest 
operator with errors below a user specified level is found. After this the optimum 
operators are ready to be applied. 

In Fig. 4 an optimized 3D operator can be seen. Fig. 4a shows the amplitude of 
the operator in the x, y, w domain, Figs 4b and 4c show the amplitude and the 
phase of this operator in the k,, k, , o domain, and Figs 4d and 4e show the ampli- 
tude error and phase error, respectively. The errors are plotted in the region in the 
k,, k,, o domain as defined by (10). The parameters of this operator are k = 0.2 
m-', M = 12, N = 12; number of points in the k,, k,, o domain 64 x 64, 
Ax = Ay = 7 m, Az = 5 m, a,.. = a,, ,,, = 45". 

In the derivation of the operator optimization method, we had to assume a 
laterally constant velocity. However, the actual extrapolation is performed in the x, 
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FIG. 4a. Amplitude of optimum 3D operator in the x, y ,  w domain, 25 * 25 points (M = 12, 
N = 12). 
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FIG. 4b. Amplitude of optimum 3D operator in the k, ,  k , ,  o domain. 
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FIG. 4c. Phase of optimum 3D operator in the k,  , k , ,  w domain. 
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FIG. 4d. Amplitude error of 3D operator in the k , ,  k , ,  w domain. 
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FIG. 4e. Phase error of 3D operator in the k,,  k , ,  w domain. 

y, o domain, which allows for lateral velocity variations to be taken into account. 
Therefore, we apply our extrapolation operators in a space-variant manner, i.e. each 
output point of the extrapolated data is computed using an operator based on one 
local value of the wavenumber k(x, y, zi, CO) being the ratio o/c(x, y ,  zi) of the cur- 
rently treated frequently CO and the local propagation velocity c(x, y, zi). 

OPERATOR TABLE 
The method of operator generation as described in the previous section is computa- 
tionally rather intensive. Calculation of the operators during the extrapolation 
would slow down the speed of the algorithm too much. Furthermore, a specific 
operator is likely to be used many times, either within one migration process, due to 
the recursive character of the extrapolation, or in other migration processes. There- 
fore, the operators are calculated in advance for a range of wavenumber values and 
stored in a table. During the extrapolation, the local value of the wavenumber, 
k = w/c(x, y ,  zi), is determined after which the appropriate operator is selected from 
the table and applied to the data. However, this procedure could easily lead to very 
large operator tables, because the maximum number of different k-values is equal to 
the product of the number of subsurface gridpoints and the number of frequency 
components. (This maximum will occur in the extreme case that the velocity 
changes from gridpoint to gridpoint in the subsurface.) Therefore, it was decided not 
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to keep one operator in the table for every k-value that occurs, but to define a 
wavenumber sampling interval Ak and to store operators in the table for the follow- 
ing regular range of k-values : 

kmin 3 kmin + A k  * * * , kmax - Ak, kmax 9 

in which kmin = omi Jc, and k,, = w,,/c,~~. 
Note that the number of operators in the table is inversely proportional to Ak. 

The advantage of such a table is its limited size. The disadvantage is that an actually 
required operator is not likely to be present. The easiest solution to the problem of 
'computing ' a required operator from table-operators is rounding, i.e. to select the 
operator with a k-value nearest to the required one. It will be clear that a significant 
error may be introduced this way. In practice a very small value for Ak, or, equiva- 
lently, a very large number of operators, would be necessary and therefore this 
method is not recommended. 

A better solution is to compute the required operators by interpolation. We 
found that in general linear interpolation of real and imaginary parts gives good 
results if Ak is in the order of A0/2cm,. A more sophisticated interpolation method 
is not recommended because this would deteriorate the efficiency of the migration. 

A given table with operators can be used whenever seismic data with the appro- 
priate acquisition parameters (Ax, Ay, etc.) need be extrapolated. In the ideal situ- 
ation one has an operator table available for the most common acquisition 
parameters. Therefore we do not consider the time consuming optimization pro- 
cedure as a disadvantage. 

WAVEFIELD EXTRAPOLATION APPLIED I N  
ZERO-OFFSET MIGRATION 

We used the wavefield extrapolation method as the basis for a 3D zero-offset depth 
migration algorithm. It consists of the following two steps: 

1. Downward extrapolation, according to 

f'zo(qAx, TAY, zi+ 1, 0) 

M N  

1 C (FCmAx,  AY, Az, k,/Z(qAx, rAy, zi, 0)1> 
m =  -M n= -N 

x P,,[(q - m)Ax, (I - n)Ay, zi, o]AxAy. (13) 
where q = 1, numx and r = 1, numy, with 

kl/Z(X, Y ,  z, 0) = w/c,,z(x, Y, z) = 20/c(x, y, 4. 
In (13) P,, denotes the temporal Fourier transform of the upgoing pressure field 
(zero-offset data, based on the ' exploding reflector ' model), and the index 1/2 refers 
to the half-velocity substitution used in the exploding reflector model. 

Note that (13) is the same as (2b) except for the so-called half velocity substitu- 
tion (exploding reflector assumption). 
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2. Imaging by performing a weighted summation of all frequency components in 
the frequency band of interest. This yields an estimate of the zero-offset reflectivity 
(t = 0), according to 

(Rzo)  denotes the band-limited estimate of the zero-offset reflectivity and G is an 
optional weighting function. It can be used for depth-variant spectral shaping, e.g. 
to compensate for absorption or to suppress coherent noise. 

These two steps should be applied recursively for all depth levels of interest. The 
procedure is visualized in Fig. 5. If a good macro model is used the result will be a 
detailed zero-offset reflectivity map of the subsurface. 

COMPUTATIONAL ASPECTS 
In 3D depth migration large amounts of data are involved, even in the case of 
zero-offset data. In this section we pay attention to the efficient implementation of 
the migration scheme. The extrapolation is computationally its most intensive part, 
and therefore we first discuss how the implementation is optimized by exploiting the 
symmetry properties of the extrapolation operators. As a measure for the efficiency 
of our algorithm we use the floating point operation count. After that we give a 
schematic overview of the data management of our scheme together with a brief 
discussion on the required core memory space. 

Finally a comparison with another full 3D migration algorithm, reverse-time 
migration, is made. 

zero-offset data 0 
1-D FFT t-+m - 

(operator table])+ , 1 , 1 I 
(-eg 

extrapolation 

next frequency 

imaging 1 
I 1 next depth level I 

(migrated data) 

FIG. 5. Flow chart of 3D zero-offset migration scheme. 
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Floating point operation count 

One monochromatic extrapolation step according to (1 3) involves 

(numx)(numy)(2M + 1)(2N + 1) complex additions, and 

(numx)(numy)(2M + 1)(2N + 1) complex multiplications. (15) 

One complex addition is equivalent to two real additions ; one complex multiplica- 
tion is equivalent to four real multiplications and two real additions. Using this, we 
can express the total number of floating point ( fp)  operations for one monochromatic 
extrapolation step as 

8(numx) (numy) (2M + 1) (2N + 1) fp-operations. (16) 

Such a result must be interpreted with care, because it does not take into 
account the machine architecture (scalar o vector, add multiply overlap, parallel 
processing, etc.); however, we consider the fp-operation count a satisfactory tool 
with which to compare different algorithms with similar structures. 

In the operator design we made use of the symmetry properties of the operators, 
(5) ;  if these properties are also used in the application of the operator, (13) becomes 

Pzo(qAx,  AY, zi+ 1, 0) 

N M  

s,,<FCmAx, nAy, Az, k1,2 (qAx,  AY, zi 0)1> 
n=O m = O  

x {PzoC(q - m)Ax, (r  -  AY, z i ,  0 1  + PzoC(q - m)Ax, (r +  MY, zi 9 0 1  
+ PzoC(q + m)Ax, (r -  AY, zi 9 0 1  + PzoC(q + m)Ax, (r  +  AY, zi 7 0 I ) A x  AY 

(17) 

with 4 = 1, numx and r = 1, numy. 
One monochromatic extrapolation step according to (17) involves 

4(numx)(numy)(M + 1)(N + 1) complex additions, and 

(numx)(numy)(M + 1)(N + 1) complex multiplications, or 

14(numx) (numy) (M + 1) (N + 1) fp-operations. (18) 

Note that in general the number of operations in (18) is less than 50% of the 
number in (16). 

However, a further reduction of the number of fp-operations is possible if (17) is 
split into two parts, as follows: 

Pzo(qAx,  AY, zi + 1 9  0) 
N M  

x 1 C smn(FCmAx,  AY, Az, k,/2(qAx,  AY, z i ,  U)]> 
n=O m = O  

x {PzoC(q - m)Ax, (r - $Ay, z i ,  0 1  + P:,,C(q - m)Ax, (r +  AY, z i ,  0 l ) A x  AY, (19) 

with q = 1, numx and r = 1, numy, in which 
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P:oC(q - m)Ax,  AY, zi a1 = PzoC(q - m)Ax,  AY, zi 3 01 
+ PzoC(q + m)Ax, lAy, zi, 01- (20) 

First the summation according to (20) is performed for 1 = (1 - N), (numy + N) 
and m = 0, M. This yields 

(numy + 2NXM + 1) complex additions, 

application of (19) - in which (20) is included - results in 

(numx)[2(numy)(M + 1)(N + 1) + (numy + 2N)(M + l)] complex additions, 

and 

(numx)(numy)(M + 1)(N + 1) complex multiplications, or, together 

(numx)(M + I)[lO(numy)(N + I )  + 2(numy + 2N)] fp-operations. (21) 

Compared with (18), the number of fp-operations in (21) is reduced by about 25%. A 
high degree of vectorization is possible on vector computers for the implementation 
of (19) and (20); this is a very important property because the extrapolation is the 
heart of the migration algorithm. 

The floating point operation count for the operator interpolation is not a fixed 
number. It depends on the structure of the macro model. For one monochromatic 
extrapolation step it is somewhere in between 

0 fp-operations, for a homogeneous macro model, and 

6(numx) (numy) (N + 1 )  (M + I )  fp-operations, for a fully inhomogeneous 
model. 

In a practical subsurface macro model there will be large homogeneous areas, 
and therefore we neglect the operator interpolation with respect to the extrapolation 
of the data. We also neglect the imaging step because its contribution to the f p -  
operation count is only in the order of 0.1 %. 

Thus, an estimate of the total number offp-operations of the migration scheme 
can be obtained by multiplying the number of operations in (21) by the number of 
frequency components and the number of extrapolation steps : 

(numz) (numf) (numx) (M + I ) 
[lO(numy) (N + I) + 2(numy + 2N)] fp-operations. (22) 

numz is the number of extrapolation steps, numf is the number of frequency com- 
ponents; in practice numf x numt, where numt is the number of recorded time 
samples. 

Data management 

In this section a brief description of the data flow of our migration algorithm is 
given. In Fig. 6 the procedure is visualized. We start with a Fourier transformed 
zero-offset data set (x, y, o domain), stored in a data file on disk. A table containing 
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DISK CORE MEMORY PROCESS 

operator 
table 

velocity info velocity info 
f i l e  z = z .  

Y 
Qz Qw 

X + 1 X 

P y 

Py X 

Qz 
=b 

X 

Y 
I 

1 
zero-of fset  data 

input file 
w = w. 
z = z .  data, J 

f 

I 

r 

EXTRAPOLATION 

(2-D convolution) 
z i -1  ~ + A z  

QZ 

X 4- 
X 

'partially' migrated result at z = z + AZ , 
a summation of the frequency components 

(only the 'completely' migrated result 
is written back to disk). 

migrated 
data, 
output file a l t o  wj . 

FIG. 6. Data management of the 3D table-driven migration algorithm. 

a set of optimized extrapolation operators must be available in the core memory. A 
velocity information file (macro model) must be present on disk. It is possible to use 
this file also as output file. This means a reduction of the required disk space. 
However, the original velocity information in the file will get lost. 
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Depth loop: 
- A 2D x-y panel, constant depth z = zi, containing velocity information of the 

current depth level zi is read from the velocity information file on disk and 
stored in the core memory. The extrapolation from the current depth level to 
the next, zi --f zi + Az, can now be performed. 

- A 2D x-y data panel, depth level z = zi and frequency w = w j ,  is read 

x, Y loop: 

Frequency loop: 

from the data file on disk and stored in core memory. 

- The local k-value is determined: k = o j / c l j 2 ( x ,  y ,  zi). 
- Only if this value differs from the previous one, a new extrapolation 

operator for this k-value is calculated by means of linear interpolation 
between two operators from the table. 

- The operator is applied to the data, according to (19). 

Once all points have been extrapolated, the result is an extrapolated x-y 
data panel at z = zi + Az for frequency component wj  . 

- This panel is written back to the data file on disk, where it replaces the 
x-y data panel at z = zi for frequency component oj. 

- Also this panel is used to carry out a part of the imaging step: we don’t 
need to wait until all frequency components have been treated to do the 
summation. Instead we can simply add the real parts of the extrapolated 
result for the current frequency component, o = w j ,  to the ‘ partially ’ 
imaged result of the previously treated frequency components w1 to wj -  
This yields a partially imaged x-y panel at z = zi + Az, which is the result 
of a summation of the frequency components w1 to w j .  
It is called partial because not all frequencies have contributed to the 
result yet. 

End of frequency loop. 

End of X ,  Y loop: 

Once all frequencies have been treated, the output is : 
1. the migrated x-y panel at z = zi + Az. 

- this panel is written to the output file on disk. 
2. a 3D zero-offset data set in the x ,  y ,  w domain at z = zi + Az, stored in the 

data file on disk, which will be used as input for the extrapolation to the 
next depth level. 

End of depth loop. 

Once this procedure has been repeated for all depth levels, the result is the migrated 
data section in the x ,  y ,  z domain. 

Experience taught us that the speed of the migration algorithm was never 
bounded by the 1/0 between disk and core memory. The wavefield extrapolation 
almost completely determines the calculation time. It should be noted that during 
the migration process the extrapolated zero-offset data set in the x ,  y ,  w domain is 
available as an intermediate result for any depth level. Examination of those inter- 
mediate results, after inverse Fourier transformation to the x ,  y ,  t domain, may 
contribute to a better understanding of the migrated result. 
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The migration can be easily implemented in parallel, because the extrapolation is 
performed per frequency component. Working per frequency component offers a 
natural way of dividing a problem into independent parts, each of which can be 
treated by a separate processor. 

Required core memory space 

(see also Fig. 6) 

- a 2D x-y panel, z constant, containing velocity information, size: 

During the migration process the next amounts of data are kept in core memory 

(numx) (numy) real numbers. 

- a 2D x-y panel, o constant, containing monochromatic zero-offset data, size: 

(numxxnumy) complex numbers, or 

2(numx) (numy) real numbers. 

- a 2D x-y panel, o constant, containing extrapolated monochromatic zero-offset 
data, size: 

(numx)(numy) complex numbers, or 

2(numx) (numy) real numbers. 

- a 2D x-y panel, z constant, containing (partially imaged) migrated data, size: 

(numx) (numy) real numbers. 

- a table containing the extrapolation operators, size: 

(numop)(N + 1)(M + 1) complex numbers, or 

2(numop) ( N  + 1) ( M  + 1) real numbers, 

numop represents the number of operators in the table. 
Hence, the core memory space must be large enough for 

b(numx) (numy) + 2(numop)(N + l ) (M + 1) real numbers. (23) 

Example. With the next parameters: numx = 500, numy = 100, M = 12, N = 12, a 
table containing 400 operators and 4 bytes per real number, we find that a core 
memory of 1.7 Mbyte is required. 

Cost comparison with other migration methods 

The use of ‘2  times 2D migration’ methods, or methods based on operator splitting, 
reduces the computational costs considerably. However, as these methods do not 
have the quality of full 3D migration (see also 3D example 2), a fair cost comparison 
cannot be made. 

Therefore, we compare the cost of our migration with that of the acoustic 3D 
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reverse-time migration algorithm as discussed by Chang and McMechan (1989). In 
reverse-time migration the recursive extrapolation is performed backwards in time 
without dip limitations. At each extrapolation step the zero-offset data provide the 
boundary conditions at the surface. Starting at the maximum registration time, the 
extrapolation is continued to zero time. The extrapolated section at zero time is the 
migrated result : all depths are imaged simultaneously. The expression for reverse- 
time extrapolation is given by 

where Pi ,  m, is an abbreviation for the pressure field p(kAx,, , mAy,, , nAz,, , t), 
Ax,, = Ayrt = Azrt = h is the grid spacing, the index rt refers to reverse-time and 
a = u(x, y ,  z) = c1,2(x, y ,  z)At/h. From (24) it follows that the extrapolation of one 
sample requires 9 fp-operations (in case of a homogeneous medium). The total 
number of fp-operations is found by multiplying this with the number of gridpoints 
and the number of time steps numt,,: 

9(numxrO (numyrt) (numzpt) (numtrt) * (25) 

To be able to compare this result with the one in (22), one should keep in mind that 
the spatial and temporal intervals in reverse-time migration are small in order to 
preclude instability and/or grid dispersion : 

numx,, x Snumx, 

numy,, “N 5 numy, 

numz,, x 5 numz, 

numt,, “N 5 numt “N 20 numf. 

Using this we find for the total number offp-operations in reverse-time migration: 

22 500 (numx) (numy) (numz) (numfr) (27) 
This is in the order of 10 times larger than the number of fp-operations for our 
method (22). 

The required memory space for reverse-time migration is computed as follows: 
- a 3 D  x-y-z volume containing velocity information, size: 

125(numx) (numy) (numz) real numbers. 

- two 3 D  x-y-z volumes containing data at two times, size: 

250(numx) (numy) (numz) real numbers. 

Hence, unless one accepts an enormous amount of I/O, the core memory space must 
be large enough for 

375(numx) (numy) (numz) real numbers. (28) 
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Example. With the next parameters: numx = 500, numy = 100, numz = 150 and 4 
bytes per real number, we find that the reverse-time migration requires a core 
memory of more than 10 Gbyte. This number should be compared with the 1.7 
Mbyte that is required by table-driven migration (see the previous example). Note 
that 10 Gbyte is too much for an implementation on present computers. 

RE s U L T s/E x A M P LE s 

20  example 1 

Although we described the migration method for the 3D case, we first imple- 
mented the scheme for the 2D case. To test it, synthetic exploding reflector data 
were generated with an accurate finite-difference scheme, in which diffraction energy 
is correctly incorporated (Kelly, Alford and Whitmore 1982). The subsurface model 
is shown in Fig. 7a. It consists of a reflector below a pinch-out structure and signifi- 
cant lateral and vertical velocity variations are present. The zero-offset response of 
only the ‘exploding reflector’ was modelled, see Fig. 7b. The shape of the reflector is 
distorted by the propagation effects of the overburden. In Fig. 7c the migrated result 
is shown. Notice the excellent positioning and focussing of the reflector. 

Some parameters: temporal sampling interval 6t = 4 ms, frequency content 
fmin = 10 Hz,fm,, = 70 Hz, number of frequency components numf = 62, minimum 

2400 rn/s 

2700 rn/s 

‘exploding reflector’ 

O m  

200 rn 

400 rn 

600 rn 

Om 300 m 700 rn 1024 m 
FIG. 7a. Subsurface model used in the generation of zero-offset data. Only the response of the 
‘exploding reflector ’ was modelled. 
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velocity cmin = 2400 m/s, maximum velocity c,,, = 3400 m/s, grid size 256 x 256 
(numx, numz), horizontal grid spacing Ax = 8 m, vertical grid spacing Az = 4 m, 
number of operator points 19 ( M  = 9), maximum angle of propagation used in the 
operator design a,,, = 65", number of operators 185 (in the range from kmin = 0.036 
m-' to k,,, = 0.368 m-'). 

2 0  example 2 
In Fig. 8a a real stacked section is shown. In this section a fault can be observed 

from which diffraction tails originate. We found that satisfactory migration results 
were reached using a simple constant velocity macro model. As can be seen from the 
depth section in Fig. $b, the result shows a very good definition of the fault. 

Some parameters: temporal sampling interval 6t  = 4 ms, frequency content 
fmin = 15 Hz,~,,, = 100 Hz, number of frequency components numf = 175, velocity 
c = 2025 m/s, grid size 256 x 256 (numx, numz), horizontal grid spacing Ax = 5 m, 
vertical grid spacing Az = 4 m, number of operator points 23 ( M  = l l ) ,  maximum 
angle of propagation used in the operator design a,,, = 65", number of operators 
177 (in the range from kmin = 0.094 m-' to k,,, = 0.627 m-'). 

3 0  example 1 

The 3D migration scheme was first tested by examination of its impulse 
response. We therefore placed a wavelet at t = 300 ms on the middle trace of an 

- X  
0 ms 

1024 ms 
Om 1280 m 

FIG. 8a. Real stacked data. Notice the diffraction tails that originate from the fault. 
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-X 

orn  1280 rn 
FIG. 8b. Table-driven migrated result. 

'empty' zero-offset data set. In Fig. 9a a vertical (x-t) cross-section at y = 0 m is 
shown. After 3D migration, a vertical (x-z) cross-section at y = 0 m, and a horizon- 
tal (x-y) depth slice at z = 230 m can be seen in Figs 9b and 9c, respectively. As 
expected the migrated result is a half-sphere. 

Some parameters: temporal sampling interval 6t = 4 ms, frequency content 
fmin = 20 Hz, f,,, = 100 Hz, number of frequency components numf = 32, velocity 
c = 2000 m/s, grid size 128 x 64 x 70 (numx, numy, numz), horizontal grid spacing 
bx = 6 m and Ay = 7 m, vertical grid spacing b z  = 6.25 m, number of operator 
points 19 x 17 ( M  = 9, N = 8), maximum angles of propagation used in the oper- 
ator design a,,,, = 50" and ay,max = 50°, number of operators 54 (ranging from 
kmin = 0.123 m-l to k,, = 0.515 m-I). 

For this configuration, the program required 35 min user time at a rate of 
8.2 Mflop on a Convex C1-XP. 

3 0  example 2 
The impulse response in example 1 was made for a homogeneous medium. To 

test the performance of the migration also for a 3D inhomogeneous medium, the 
following example was made. We modelled the response of a horizontal square 
reflector situated below a 3D synclinal structure (see Fig. 10a). At its boundary, the 
velocity changes from 2400 m/s in the upper part to 3600 m/s in the lower part. A 
time slice at t = 0.28 s, a vertical (x-t) cross-section of the zero-offset data at 

947 

O r n  

1024 rn 
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-X 

FIG. 9a. ‘Zero-offset’ section, used as input data to determine the impulse response of the 3D 
migration algorithm. 

y = 455 m and a vertical (y-t)  cross-section at x = 520 m and are shown in Figs 
lob, c and d respectively. The synclinal structure has a strong focussing effect on the 
reflected energy. In order to see also the diffracted energy, the pictures of the zero- 
offset data have been clipped 15dB. The migrated result can be seen in Fig. 11. The 
vertical (x-z) and (y-z) cross-sections confirm that the reflector is horizontal whereas 

FIG. 9b. Vertical cross-section, (x-z) panel at y = 0 m, of the 3D migrated result. 
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-Y 

X I 

FIG. 9c. Depth slice at a depth of 230 m of the 3D migrated result. 

the depth slice at z = 350 m shows the correct square shape of the reflector. We also 
made amplitude cross-sections of Figs. l l b  and c, which are shown in Figs l l d  and 
e. Notice the constant amplitude along the reflector. 

The parameters for the migration are: temporal sampling interval 6t = 4 ms, 
number of time samples 128, frequency contentf,, = 20 Hz,~,,, = 70 Hz, number 
of frequency components numf = 28, minimum velocity cmin = 2400 m/s, maximum 
velocity cmaX = 3600 m/s, grid size 128 x 128 x 100 (numx, numy, numz), horizontal 
grid spacing Ax = 8 m and Ay = 7 m, vertical grid spacing Az = 5 m, number of 
operator points for migration 23 x 27 ( M  = 11, N = 13), maximum angles of propa- 
gation used in the operator design CI,,,,, = 50" and ay,max = 50", number of oper- 
ators 191 (ranging from kmin = 0.069 m- l  to k,,, = 0.366 m-'). 

100 rn 

300 rn 
350 rn 

A 
velocity 2400 rnis 

m velocity 3600 rn/s 

336 m 560 rn 

!4 rn 

FIG. 10a. 3D subsurface model. The response of the square reflector below the 3D synclinal 
structure was modelled. 
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-X 

O m  

896 m 
1024 m O r n  

FIG. lob. Zero-offset data, time slice at 280 ms. 

The number of floating point operations for this example is 7.84 x 1Oi0, and it 
took 156 min user time on a Convex C1-XP (at a rate of 8.4 Mflop). 

Comparison with ‘2 times 2 0  migration ’. In the seismic industry 3D post-stack 
migration is usually carried out as a sequence of 2D migrations. In two-pass migra- 
tion (or ‘2  times 2D migration’) all 2D cross-sections in one lateral direction of a 
3D data set are migrated first. Next, all 2D cross-sections of the result are migrated 
in the perpendicular direction. In case of a homogeneous medium, the results of 
two-pass migration and full 3D migration are practically equivalent. To examine the 

0 ms 

512 ms 
o r n  1024 m 

FIG. 1Oc. Zero-offset data, vertical cross-section, (x-y) panel at y = 455 m. 
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0 ms 

512 ms 
O m  896 m 

FIG. 10d. Zero-offset data, vertical cross-section, (y-t) panel at x = 520 m. 

results of two-pass migration in case of lateral velocity variations we did the follow- 
ing experiment, starting with the same zero-offset data as in the previous example. 
The first pass was carried out in the x-direction using 2D time migration with 
dt = 4 ms. The second pass was carried out in the y-direction using 2D depth migra- 
tion with Az = 5 m. In Fig. 12 the results are shown. A depth slice at 350 m, a 
vertical x-z cross-section and a vertical y-z cross-section of the migrated result can 

-x 

O m  1024 m 

FIG. 1 la. 3D migrated data, depth slice at a depth of 350 m 

O m  

896 m 
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------+X 

rmm 
I I 

I 

O m  

500 m 
O m  1024 m 

FIG. 1 lb. 3D migrated data, vertical cross-section, (x-z) panel at y = 455 m. 

O m  

' I  

500 m 
896 m O m  

FIG. l lc.  3D migrated data, vertical cross-section, (y-z) panel at x = 520 m. 

d B  -x 

O m  1024 m 
FIG. l ld.  Amplitude cross-section of Fig. l lb.  
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O m  896 m 
FIG. 1 le. Amplitude cross-section of Fig. 1 lc. 

be seen in Figs 12a, b and c respectively. Amplitude cross-sections of Figs 12b and c 
are shown in Figs 12d and e. The migrated result in the x-z cross-section, Fig. 
12b, is not correct: the horizontal reflector is imaged as an anticlinal structure. Also 
its size is too large (compare with Fig. llb). Thr y-z cross-section in Fig. 12c is 
better: it is very similar to the result of full 3D migration. However, the amplitude 
cross-section in Fig. 12e is not as regular as the amplitude cross-section of the 3D 
migrated result, Fig. 1 le. 

O m  

896 m 

O m  1024 m 
FIG. 12a. Two-pass migrated data, first pass in x-direction, second pass in y-direction, depth 
slice at 350 m. 
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------+X 

O m  

500 m 
O m  1024 m 

FIG. 12b. Two-pass migrated data, first pass in x-direction, second pass in y-direction, verti- 
cal cross section, (x-z) panel at y = 455 m. 

-Y 
O m  

500 m 

O m  896 m 
FIG. 12c. Two-pass migrated data, first pass in x-direction, second pass in y-direction, vertical 
cross-section, (y-z) panel at x = 520 m. 

d B  -x 

n m  
1024 m U Ill 

FIG. 12d. Amplitude cross-section of Fig. 12b. 
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FIG. 12e. Amplitude cross-section of Fig. 12c. 
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The result of two-pass migration is not unique; it depends on the direction in 
which the first pass is carried out. To show this, the previous experiment was repeat- 
ed, this time with the first pass carried out in the y-direction and the second pass in 
the x-direction. The results are shown in Fig. 13. Notice the big differences between 
Fig. 12 and Fig. 13. As expected, this time the x-z cross-section of the migrated 
result is the best, see Fig. 13 b. 

O m  

896 m 

O m  1024 m 
FIG. 13a. Two-pass migrated data, first pass in y-direction, second pass in x-direction, depth 
slice at 350 m. 
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O r n  1024 rn 
FIG. 13b. Two-pass migrated data, first pass in y-direction, second pass in x-direction, verti- 
cal cross-section, (x-z) panel at y = 455 m. 

-Y 

O r n  896 rn 
FIG. 13c. Two-pass migrated data, first pass in y-direction, second pass in x-direction, vertical 
cross-section, (y-z) panel at x = 520 m. 

d B  -X 

O m  1024 m 
FIG. 13d. Amplitude cross-section of Fig. 13b. 
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O m  896 m 
FIG. 13e. Amplitude cross-section of Fig. 13c. 

These examples confirm the well-known result that in case of strong lateral 
velocity variations ‘ 2 times 2D migration ’ does no longer yield acceptable results. 
In this case full 3D depth migration is required (Fig. 11). 

CONCLUSIONS 
In today’s practice of seismic processing, 3D post-stack migration is usually carried 
out as a sequence of 2D migrations, the so-called two-pass migration. However, it 
has long been recognized that two-pass migration gives satisfactory results only in 
the case of media with small velocity variations. In more complex situations with 
significant velocity variations, especially in the lateral directions, a full 3D depth 
migration should be used. 

We presented a method for full 3D wavefield extrapolation that we used as the 
basis for a zero-offset depth migration scheme. The wavefield extrapolation is per- 
formed in the spacefrequency domain with optimized operators that have been 
pre-calculated and stored in a table. The operators are optimum in the sense that 
they have the smallest possible size given a user-specified accuracy and dip range. 
This means that steeply dipping events can be accurately treated in an efficient way. 
Because the extrapolation is performed recursively in the space domain, both verti- 
cal and lateral velocity variations can be handled. As shown in the examples, the 
migrated events are positioned well and diffraction energy is focused correctly. As 
expected, this is not the case if the same zero-offset data are processed with a two- 
pass migration algorithm. Once more, this confirms that full 3D techniques are 
required in case of significant velocity variations. 

A disadvantage of 3D processing is the huge computational effort that is usually 
required. Therefore, we paid special attention to efficiency aspects. The use of opti- 
mized operators that have been stored in a table contributes considerably to a high 
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efficiency. Furthermore, the symmetry properties of the operators are exploited 
which reduces the computational costs. Because the wavefield extrapolation can be 
formulated in terms of vector operations, the method is very well suited for a vector 
computer. Also a parallel implemenation could be realized in a natural way, because 
the frequency components are treated independently. In our algorithm, working per 
frequency component has the advantage that the requirements concerning the com- 
puter memory remain moderate. 

Together these properties make full 3D zero-offset depth migration feasible on 
mini super computers. 
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