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Short Note

Synthesis of an inhomogeneous medium
from its acoustic transmission response

Kees Wapenaar∗

INTRODUCTION

In 1968 Claerbout showed that the reflection response of
a horizontally layered medium can be synthesized from the
autocorrelation of its transmission response. During a work-
shop on passive imaging methods at the 2002 SEG conference,
Claerbout showed that this result can be obtained straightfor-
wardly from the principle of conservation of acoustic power.
In this paper I briefly review this derivation and show that the
3D generalization can be obtained along the same lines using a
power reciprocity theorem. The resulting expression confirms
Claerbout’s conjecture that “by crosscorrelating noise traces
recorded at two locations on the surface, we can construct the
wave field that would be recorded at one of the locations if
there was a source at the other.”

1D DERIVATION USING POWER CONSERVATION

Let D(ω) and U(ω) represent downgoing and upgoing plane
wavefields in a horizontally layered medium in the frequency
domain (ω denotes the angular frequency). Then the net down-
going power flux is given by D∗D−U ∗U , where the asterisk
denotes complex conjugation (this assumes implicitly that D
andU are flux-normalized downgoing and upgoing wavefields).
When the medium is lossless and source free, this quantity is the
same in each layer. Now consider the plane-wave reflection ex-
periment depicted in Figure 1a. The incident downgoing wave
just below the free surface is denoted by 1, which corresponds
to an impulsive plane-wave source in the time domain. The
total upcoming reflected wavefield (including internal as well
as free surface multiples) is denoted by R [Claerbout denotes
this as −R; I take the liberty to modify the notation to facil-
itate the comparison with the 3D derivation]. Because of the
free surface there is a downgoing reflected wavefield, denoted
by −R. Hence, just below the free surface the total down- and
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upgoing wavefields are given by

D = 1− R, U = R (1)

(see Figure 1a), so the net downgoing power flux becomes

D∗D −U ∗U = (1− R∗)(1− R)− R∗R

= 1− R− R∗. (2)

At the lowest boundary in Figure 1a, the downgoing transmit-
ted wavefield (including internal as well as free surface multi-
ples) is denoted by T (Claerbout uses E, for escaping wave).
The medium below this boundary is assumed to be homoge-
neous, so there is no upgoing wavefield. Hence, in the lower
half-space the net downgoing power flux is given by

D∗D −U ∗U = D∗D = T∗T. (3)

Since the power flux D∗D−U ∗U is conserved, the right-hand
side of equation (2) is identical to that of equation (3). Hence,

R(ω)+ R∗(ω) = 1− T∗(ω)T(ω). (4)

Using reciprocity, the downgoing transmitted wavefield T be-
low the lowest boundary is equal to the upgoing transmitted
wavefield observed at the free surface (again denoted by T , see
Figure 1b) as a result of an impulsive plane-wave source below
the lowest boundary.

In the time domain equation (4) becomes

R(t)+ R(−t) = δ(t)− T(−t) ∗ T(t), (5)

where ∗ denotes convolution, and t is time. Since the reflection
response R(t) is causal, it is easily obtained by taking the causal
part of R(t)+ R(−t).

Equation (5) states that the reflection response is obtained
from the autocorrelation of the transmission response of an im-
pulsive source in the subsurface. However, the autocorrelation
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does not change when the impulsive source is replaced by any
source of which the autocorrelation is again an impulse. Hence,
the reflection response R(t) of an impulsive source at the sur-
face can be obtained from the autocorrelation of the transmis-
sion response of a white noise source in the subsurface. Note
that the depth of this source is immaterial since any time shift
of the transmission response is annihilated by the autocorrela-
tion. The only condition is that this source is below the lowest
boundary of the layered medium.

3D DERIVATION USING POWER RECIPROCITY

The generalization of the derivation to the 3D situation
is based on acoustic reciprocity. In general, an acoustic reci-
procity theorem formulates a relation between two acoustic
states that could occur in one and the same domain (de Hoop,
1988; Fokkema and van den Berg, 1993). One can distinguish
between two-way and one-way reciprocity theorems of the
convolution type and of the correlation type. In this paper I
work with the correlation-type one-way reciprocity theorem
[Wapenaar and Grimbergen (1996), their equation (81)], which
is valid for nonevanescent waves in 3D inhomogeneous loss-
less media. The reason for choosing the correlation type is obvi-
ous: Claerbout’s conjecture is about crosscorrelations. The one-
way choice stems from the fact that the concepts of reflection
and transmission apply to downgoing and upgoing wavefields
(rather than to full wavefields). Let ∂D0 and ∂Dm represent two
depth levels of fixed x3 and let Aand B denote two independent
acoustic states (for example, two independent seismic experi-
ments). When the medium between ∂D0 and ∂Dm is source free

FIG. 1. (a) Plane-wave reflection response of a horizontally
layered medium. (b) Plane-wave transmission response of the
same horizontally layered medium.

and the medium parameters are chosen identically in states A
and B, equation (81) of Wapenaar and Grimbergen (1996) sim-
plifies to ∫

∂D0

{
D∗ADB −U ∗AUB

}
d2xH

=
∫
∂Dm

{
D∗ADB −U ∗AUB

}
d2xH . (6)

Here, D(x, ω) and U(x, ω) represent flux-normalized down-
going and upgoing wavefields; x= (x1, x2, x3) denotes the
Cartesian coordinate vector and xH = (x1, x2) the horizontal co-
ordinate vector. When states Aand B are identical, equation (6)
states that the net downgoing power flux

∫ {D∗D−U ∗U }d2xH

is conserved. For this reason equation (6) is also called a power
reciprocity theorem for downgoing and upgoing waves.

Now consider the point source reflection experiment de-
picted in Figure 2a. An impulsive point source is located at xA

at the free surface. The depth level ∂D0 is chosen just below this
free surface. The incident downgoing wave just below the free
surface is denoted by δ(xH − xH,A), where xH,A= (x1,A, x2,A) de-
notes the horizontal coordinates of the source at xA. The to-
tal upcoming reflected wavefield (including internal as well as
free surface multiples) is denoted by R(x, xA, ω), where x de-
notes an arbitrary receiver point at ∂D0. Because of the free
surface there is a downgoing reflected wavefield, denoted by
−R(x, xA, ω). Hence, just below the free surface (i.e., at ∂D0)
the total down- and upgoing wavefields are given by

DA(x, ω) = δ(xH − xH,A)− R(x, xA, ω), (7)

UA(x, ω) = R(x, xA, ω) (8)

(see Figure 2a). Next, consider a second independent reflection
experiment with an impulsive point source at another point xB

at the free surface (not shown in Figure 2a). For this second
experiment the total down- and upgoing wavefields at ∂D0 read

DB(x, ω) = δ(xH − xH,B)− R(x, xB, ω), (9)

UB(x, ω) = R(x, xB, ω). (10)

Substituting equations (7)–(10) into equation (6) yields for its
left-hand side∫

∂D0

{
D∗ADB −U ∗AUB

}
d2xH = δ(xH,A − xH,B)

− R(xA, xB, ω)− R∗(xB, xA, ω) (11)

[compare with equation (2)]. At the lowest boundary ∂Dm in
Figure 2a, the downgoing transmitted wavefields (including in-
ternal as well as free-surface multiples) for the two experi-
ments are denoted by T(x, xA, ω) and T(x, xB, ω), respectively,
where x now denotes an arbitrary observation point at ∂Dm.
The medium below this boundary is assumed to be homoge-
neous, so there are no upgoing wavefields. Hence, the right-
hand side of equation (6) simplifies to∫
∂Dm

D∗ADB d2xH =
∫
∂Dm

T∗(x, xA, ω)T(x, xB, ω) d2xH

(12)

[compare with equation (3)]. As a result of the power
reciprocity theorem (equation 6), the right-hand side of
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equation (11) is identical to that of equation (12). Hence, using
source–receiver reciprocity for the reflection and transmission
responses, these equations yield

R(xA, xB, ω)+ R∗(xA, xB, ω) = δ(xH,A − xH,B)

−
∫
∂Dm

T∗(xA, x, ω)T(xB, x, ω) d2xH , (13)

where T(xA, x, ω) is the upgoing transmitted wavefield ob-
served at xA at the free surface as a result of an impulsive
point source at position x at ∂Dm (see Figure 2b). T(xB, x, ω)
is the upgoing transmitted wavefield at xB resulting from the
same source (not shown in Figure 2b). For the special case of a
horizontally layered medium, equation (4) is obtained by ap-
plying a spatial Fourier transform to all terms in equation (13)
and selecting the normal incidence component.

Equation (13) almost proves Claerbout’s conjecture, cited in
the introduction. The term T∗(xA, x, ω)T(xB, x, ω) represents
the crosscorrelation of traces recorded at two locations (xA

and xB) on the surface for a source at x in the subsurface; the
term R(xA, xB, ω) is the wavefield that would be recorded at
one of the locations (xA) if there were a source at the other
(xB). The main discrepancy with the conjecture is the integral
in equation (13) over all possible source positions x at sur-
face ∂Dm. Equation (13) is useful when the transmission re-
sponses for the different source positions x at surface ∂Dm can
be measured sequentially. However, when the sources at ∂Dm

act simultaneously (for example, in the case of natural noise
sources with long duration), the integral in equation (13) can-
not be evaluated because the transmission responses are not
available for all individual source positions x. This is resolved
when the sources for different source positions x on ∂Dm are

FIG. 2. (a) Point source reflection response of an inhomoge-
neous medium. (b) Point source transmission response of the
same inhomogeneous medium.

mutually uncorrelated. To see this, apply an inverse Fourier
transform to all terms in equation (13) and discretize the inte-
gral, according to

R(xA, xB, t)+ R(xA, xB,−t) = δ(xH,A − xH,B)δ(t)

−
∑

i

T(xA, xi ,−t) ∗ T(xB, xi , t), (14)

where the sum is applied over all xi at ∂Dm (the discretiza-
tion intervals are included as a factor in the transmission re-
sponses). Let Ni (t) and Nj (t) be mutually uncorrelated white
noise sources at xi and x j ; hence, Ni (−t)∗Nj (t)= δi j δ(t). Insert-
ing these noise sources in the right-hand side of equation (14)
yields

R(xA, xB, t)+ R(xA, xB,−t) = δ(xH,A − xH,B)δ(t)

−
∑

i

∑
j

T(xA, xi ,−t) ∗ Ni (−t) ∗ T(xB, x j , t) ∗ Nj (t)

(15)

or

R(xA, xB, t)+ R(xA, xB,−t) = δ(xH,A − xH,B)δ(t)

− Tobs(xA,−t) ∗ Tobs(xB, t) (16)

[compare with equation (5)], with

Tobs(xA, t) =
∑

i

T(xA, xi , t) ∗ Ni (t), (17)

Tobs(xB, t) =
∑

i

T(xB, xi , t) ∗ Ni (t). (18)

Note that Tobs(xA, t) and Tobs(xB, t) may be seen as transmission
responses, observed at xA and xB on ∂D0, from a distribution
of uncorrelated noise sources at a number of positions xi on
∂Dm. The right-hand side of equation (16) describes the cross-
correlation of these observations. The impulsive point-source
reflection response R(xA, xB, t) is obtained by taking the causal
part of the left-hand side of this equation. This finalizes the
proof of Claerbout’s conjecture.

Of course, in reality the noise sources will not be evenly dis-
tributed along a single surface ∂Dm (see Figure 3). However, the
actual depth of the sources is almost immaterial, since the extra

FIG. 3. Transmission response, observed at xA and xB, result-
ing from a distribution of uncorrelated white noise sources.
According to equation (16), their crosscorrelation yields the
reflection response observed at xA as if there were an impul-
sive point source at xB.
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traveltime between the actual source depth and ∂Dm drops out
in the correlation process. Of course, the accuracy degrades
in the case of an irregular source distribution. Other effects,
like crosstalk, nonwhiteness, etc., also degrade the accuracy of
equation (16). Finally, note it was assumed that the half-space
below ∂Dm is homogeneous. When this assumption is not ful-
filled, extra events will appear in the transmission responses
which will not be correctly mapped to the reflection response.
However, the traveltimes of these ghost events depend on the
source depth. So when the source depth is irregular, these ghost
events do not contribute coherently to the integral and there-
fore are suppressed in the reflection response (Draganov et al.,
2003).

CONCLUSIONS AND DISCUSSION

Claerbout (1968) shows that the reflection response of a
horizontally layered medium can be synthesized from the au-
tocorrelation of its transmission response. This result is most
easily derived by applying the power conservation principle.
In this paper I show that the 3D extension can be derived
along the same lines by applying a power reciprocity theo-
rem for downgoing and upgoing waves. The final expressions
[equations (16)–(18)] show that by crosscorrelating noise traces
recorded at two locations xA and xB on the surface, one can
construct the wavefield that would be recorded at one of the
locations if there were an impulsive source at the other. This
is the basis for 3D acoustic daylight imaging, i.e., synthesizing
an inhomogeneous medium from its acoustic transmission re-
sponse, obtained from passive measurements at the surface of
noise sources in the subsurface. Rickett and Claerbout (1999)
demonstrate this principle convincingly with solar seismology.
Some initial results with acoustic daylight imaging on earth are
reported by Daneshvar et al. (1995). The method may be im-
proved by using significantly longer noise recordings and by
using geophone arrays that suppress surface waves.

In the derivation of equation (16) I have made no particu-
lar assumptions on the medium, except that it is lossless and
sandwiched between a free surface and a homogeneous half-
space. The sources are assumed to be mutually uncorrelated
noise sources, distributed sufficiently dense to avoid spatial
aliasing and covering enough aperture to account for the re-
quired range of propagation angles in the reconstructed impul-

sive reflection response (i.e., the Green’s function). Another
approach to reconstructing the Green’s function from noise
measurements is discussed by Lobkis and Weaver (2001). They
show that the Green’s function of a medium emerges by cross-
correlating the recordings of two receivers in a diffuse field.
Their assumptions are the complement of the assumptions
described above: a single source is sufficient, but the medium
parameters must have enough randomness for the wavefield
(including its coda resulting from internal multiple scattering)
to be diffuse. Their derivation shows similarities with that of
acoustic time reversal in chaotic cavities (Draeger and Fink,
1999). Campillo and Paul (2003) use the approach of corre-
lating diffuse fields to reconstruct surface-wave responses be-
tween two stations from recordings of distant earthquakes.

In practice, the conditions for passive seismics will most
likely be a combination of the two situations described above,
i.e., a limited number of uncorrelated noise sources and a lim-
ited amount of randomness of the medium parameters. Both
conditions contribute to the accuracy of the reconstruction of
the Green’s fuction.
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