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Design of one-way wavefield extrapolation operators, using
smooth functions in WLSQ optimization

Jan W. Thorbecke∗, Kees Wapenaar∗, and Gerd Swinnen∗

ABSTRACT

Many depth migration methods use one-way
frequency–space depth extrapolation methods. These
methods are generally considered to be expensive,
so it is important to find the most efficient way of
implementing them. This usually means making spatial
convolution operators that are as short as possible.
Applying the extrapolation operators in a recursive way,
using small depth steps, also demands that the operators
do not amplify the wavefield at every depth step.

Weighted least squares is an appropriate method to
use for designing extrapolation operators that are ac-
curate and efficient and that remain stable in a recur-
sive algorithm. The extrapolated wavefields calculated
with these operators are comparable with the extrapola-
tion results obtained with other known operator design
techniques as the Remez exchange method and non-
linear optimization. In this paper, the weighted least-
squares technique is refined by using different model
functions. By smoothing the phase and amplitude tran-
sition at the evanescent cutoff, we can stabilize the re-
sulting operators.

The accuracy of the operators is shown in zero-offset
migration impulse responses in 2D and 3D media. The
Sigsbee2A data set is used to illustrate the quality of the
extrapolation operators in prestack depth migration in a
complex medium.

INTRODUCTION

Recursive wavefield extrapolation in the space–frequency
domain has a number of advantages over other wavefield ex-
trapolation methods, such as phase shift plus interpolation
(PSPI) (Gazdag and Sguazzero, 1984), and methods based on
the parabolic wave equation (Claerbout, 1985). The most im-
portant advantage is extrapolation of one-way wavefields accu-
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rately through strongly laterally varying media. The disadvan-
tage is that the spatial convolution process is computationally
expensive; hence, short convolution lengths are desired to re-
duce computation costs.

Spatial convolution operators must extrapolate wavefields
for high propagation angles in heterogeneous media. Propaga-
tion for high angles means that the spatial length of the convo-
lution operator must be large enough to contain those angles.
On the other hand, extrapolation in heterogeneous media re-
quires a short spatial operator to handle the lateral variations
accurately. These two requirements are in conflict with each
other, which explains the need for extrapolation operator op-
timization. A third requirement is related to the amplitudes
of the operator. Because of the recursive use of the operators,
the amplitudes must be treated with special care. An amplitude
larger than one (in the wavenumber domain) can lead to unsta-
ble extrapolation results, while an amplitude smaller than one
will usually attenuate the wavefield during extrapolation. Last,
but not least, the phase of the operator should be accurate for
the whole range of angles for which the operator is designed.

There are many ways to calculate space-variant spatial con-
volution operators for wavefield extrapolation. The most com-
mon approach is to start with the exact analytical expression
of the phase-shift operator in the wavenumber–frequency do-
main and transform this operator back to the spatial domain in
some optimum sense. In recent years different methods have
been developed to do this transformation in an efficient and op-
timum way. Holberg (1988) for 2D media and Blacquière et al.
(1989) for 3D media use a nonlinear least-squares algorithm
with constraints to inverse transform from the wavenumber to
the spatial domain. A nonlinear algorithm is usually expensive,
will not always find the optimum solution, and can be trapped
in a local minimum.

For 2D wavefield extrapolation, Blacquière (1989) uses a
phase-shift operator with a smooth phase in the wavenumber
domain and inverse Fourier transforms this operator to the
spatial domain. There the operator is truncated to a small num-
ber of spatial samples to obtain the convolution operator. The
number of points to be used in the spatial domain is relatively
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large to remain stable in a recursive extrapolation algorithm.
Nautiyal et al. (1993) does not make the phase smoother but
uses a Gaussian taper function to smooth the spatial wavelet
represented by a Hankel function, for 2D downward extrapo-
lation. Other tapers could also be used, but it can be shown that
the Gaussian taper yields a stable extrapolation operator. The
disadvantage of this method is that the extrapolation result is
only accurate for small propagation angles. Other tapers, such
as the Hanning, preserve more of the spatial wavelet character
than the Gaussian does but are not guaranteed to lead to stable
operators.

Hale’s (1991b) method is based on a Taylor series expan-
sion of the phase-shift operator and is stable [excluding the ex-
treme velocity distributions mentioned by Etgen (1994)]. This
method uses only a limited number of points, but it cannot han-
dle high angles of propagation. The method used by Soubaras
(1992) is based on the L∞ norm and produces extrapolation
operators which have an equiripple behavior in the wavenum-
ber domain. Although this method produces quite accurate
operators for high angles, the equirippleness of the operators
is not strictly needed in wavefield extrapolation, and further
improvements can be achieved using a different norm.

In this paper, an improved weighted least-squares (WLSQ)
method is presented for an efficient transformation from a
phase-shift operator in the wavenumber domain to an accurate
convolution operator in the spatial domain. Before discussing
this new method, the problems of extrapolation operator opti-
mization are briefly explained. The WLSQ method is then de-
rived from the Fourier integral, and it is shown how the method
can be used in extrapolation operator design (Thorbecke and
Rietveld, 1994). Furthermore, special attention is paid to the
choice of the model function in the WLSQ method and the
impact it has on the accuracy of the operator. We show that
the choice for smooth model functions in WLSQ optimization
leads to significantly more accurate operators than any of the
methods described in the literature to date.

The WLSQ method with smooth model functions can easily
be extended to 3D media, and a simple example illustrates the
accuracy of the 3D extrapolation operators.

EXTRAPOLATION OPERATORS

Wavefield extrapolation in the space–frequency domain
propagates data from depth level zm to level zm+1, where
1z= |zm+1 − zm| is small compared to the spatial length of the
operator. In a homogeneous layer, the forward one-way extrap-
olation operator in the kx, ky−ω (wavenumber–frequency) do-
main is a well-known analytical function, called the phase-shift
operator (Gazdag, 1978), and is given by

W̃(kx, ky, ω,1z) = exp(− jkz1z), (1)

Figure 1. The principle of recursive extrapo-
lation with space-variant spatial convolution
operators. At every lateral position which has
a different velocity, a new operator is used
to extrapolate the data from one depth level
to another. Within the operator length the
medium is assumed to be homogeneous. It is
important, therefore, to use the shortest op-
erator possible while minimizing instability.
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with k defined as ω/c, 1z is a small extrapolation step, c is
the propagation velocity of the layer, j is the imaginary unit,
and ω is the angular frequency. Note that for (k2

x + k2
y)> k2, the

wavefield becomes evanescent (i.e., exponentially decaying).
The extrapolation result at depth level zm+1 can be obtained
by multiplying the data at zm with the phase-shift operator in
the kx, ky−ω domain. For laterally varying media, the mul-
tiplication in the wavenumber domain by equation (1) is not
valid. Instead a space-variant spatial convolution operator in
the x, y–ω (space–frequency) domain can be used to extrapo-
late the data more accurately. Figure 1 explains the basic con-
cepts of recursive wavefield extrapolation with space-variant
spatial convolution operators. At every lateral position another
operator is used, based on the local velocity, to extrapolate the
data from one depth level to another.

In the kx–ω domain the extrapolation operator for a 2D
medium is given by equation (1) with ky= 0:

W̃(kx, ω,1z) = exp(− jkz1z). (3)

The analytical inverse Fourier transform of equation (3) is a
scaled Hankel function (see Berkhout, 1984):

W(x, ω,1z) = − jk
1z

2r
H (2)

1 (kr), (4)

where the distance r =√(x2+1z2); H (2)
1 (kr)= J1(kr)−

jY1(kr) is the first-order Hankel function of the second kind;
and J1 and Y1 are the first-order Bessel functions of the first
and second kind, respectively. The cheapest way of obtaining a
short operator in the space domain is by discretizing equation
(4) and truncating it to a finite number of points. The accuracy
of the resulting short operator can be assessed by comparing
its spectrum with equation (3).

In Figure 2a the amplitude of the wavenumber spectrum
of the operator of equation (4), truncated to 25 points, is
shown together with the amplitude of the phase-shift opera-
tor W̃(kx, ω,1z) (solid line). The wavenumber spectrum of the
truncated operator is, in places, significantly larger than one for
|kx| ≤ k. Recursive application of this operator causes waves to
amplify at every extrapolation step, which in the end blows up
the extrapolation result.

A shorter operator has even higher bump(s) above ampli-
tude 1.0 in the wavenumber domain and also limits the max-
imum propagation angle of the extrapolated wavefield more
severely. In the limit, a one-point operator can only propagate
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the plane wave corresponding to kx = 0. The optimal extrapo-
lation operator we are looking for propagates a large range of
wave angles accurately and, in a stable sense, consists of only a
limited number of points for efficiency. Note that since extrap-
olation is always done for a finite (but large) number of steps,
amplitudes slightly larger than one are allowed. We consider
an operator to be stable when its amplitude is smaller than
1.001 for all wavenumbers. In a homogeneous medium and a
single frequency, this leads to, after 500 extrapolation steps, a
maximum amplification of 1.65. In reality this factor is usually
closer to 1.0 since the extrapolation operators will not be used
in a homogeneous medium and the positive maximum errors
will not accumulate.

Figure 2b shows an operator that has been optimized using
the Remez exchange algorithm (Soubaras, 1992). Figures 2c
and 2d are the result of WLSQ optimization (discussed follow-
ing). Note that the amplitude error for the WLSQ operator, as
shown in Figure 2d, is 0.0001 and gives a maximum error of 5%
after 500 extrapolation steps.

Figure 2. Comparison between spectra of var-
ious wavefield extrapolation operators. Am-
plitude is left column; phase error is right col-
umn. For each operator, k=ω/c=π/21x.
Since the operators are symmetric, only the
right half is shown. (a) The effect of the trun-
cation of the analytical operator as seen in
the wavenumber amplitude and phase spec-
trum. (b) The result after optimization with
the Remez exchange algorithm. (c) WLSQ
optimization with the model function w̃ being
equal to the phase-shift operator. (d) Using a
smooth version of w̃ given by equation (14b).
Note the vertical scale difference between (a)
and (b)–(d). For all these figures, we have
chosen a full operator length of 25 points
(M = 12), 1x= 10 m, 1z= 2 m, ω= 50π ra-
dians/s, N= 512 samples, c= 1000 m/s, and a
maximum propagation angle of αmax= 75◦.
The horizontal axis represents normalized
wavenumber cycles (kx1x/2π).

WEIGHTED LEAST SQUARES

The goal in the optimization procedure is to obtain a short
spatial convolution operator with a wavenumber spectrum that
is equal or close to the exact formulation in the frequency–
wavenumber domain over a desired wavenumber band. This
problem can be written in general terms as an integral equation
based on the spatial Fourier transform:

W̃(kx, ω,1z) =
∫ x2

x1

exp( jkxx)W(x, ω,1z) dx

for kx,1 ≤ kx ≤ kx,2, (5)

where W(x, ω,1z) is the convolution operator to be deter-
mined. For symmetric operators and in the remainder of this
paper, x2=−x1 and kx,2=−kx,1. Integration is carried out over
a limited spatial interval representing the short operator, and
the frequency–wavenumber domain of the operator is band
limited. The discrete counterpart of the integral in equation (5)
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is (omitting ω and 1z in the arguments of W̃ and W)

W̃(n1kx) = 1x
M∑

m=−M

exp( jn1kxm1x)W(m1x)

for −N ≤ n ≤ N. (6)

Written explicitly in matrix notation, the discrete representa-
tion of equation (5) is



W̃(−N1kx)
...

W̃(0)
...

W̃(N1kx)


=



exp( j N1kx M1x) . . . 1 . . . exp(− j N1kx M1x)
...

. . .
... . . .

...

1 . . . 1 . . . 1
... . . .

...
. . .

...

exp(− j N1kx M1x) . . . 1 . . . exp( j N1kx M1x)





1xW(−M1x)
...

1xW(0)
...

1xW(M1x)



or

w̃ = Γw. (7)

Here, w represents the short operator and w̃ is its spatial Fourier
transform, yielding an approximation of the exact phase-shift
operator. Further, m=−M, . . . ,M represents the samples of
the short operator, and n=−N, . . . , N represents the sam-
ples of the Fourier transform. Wavenumber sampling is given
by

1kx = 2π
(2N + 1)1x

, (8)

and the number of samples in the frequency–wavenumber do-
main (2N+ 1) is chosen such that 2N+ 1≥ 2M + 1. Note that
only M + 1 independent coefficients have to be computed to
construct the full 2M + 1 convolution operator. In this paper
convolution operator sizes are indicated by their full length.

With respect to the unknown spatial operator w, equation (7)
has more equations than unknowns. To solve this problem, the
weighted prediction error function (Menke, 1989, p. 54) is used

ε̃ = ẽH Λ̃ẽ, (9)

where superscript H denotes a complex-conjugate transpose
and

ẽ = Γ〈w〉 − w̃. (10)

Diagonal matrix Λ̃ contains a weighting function on its diago-
nal, and Γ〈w〉 represents an approximation of w̃. The weighting
function is defined in such a way that the wavenumber com-
ponents in the propagating part of the operator, up to a cho-
sen maximum angle, are given a relatively high weight. The
wavenumber components above the maximum angle are given
a low weight factor. The least-squares solution of equation (7)
using equation (9) is given by

〈w〉 = [ΓH Λ̃Γ]−1ΓH Λ̃w̃, (11)

where 〈w〉 is the least-squares approximation of w. The com-
ponents of the Fourier transform matrix are

0nm = exp( jn1kxm1x), (12)

and the components of the diagonal weighting matrix are given
by

3nm = w(n1kx)δnm, (13)

w being a box-shaped weighting function. The matrix that must
be inverted, ΓH Λ̃Γ, is a square M ×M matrix. For 1D oper-
ators this matrix has a Toeplitz structure and can be inverted

efficiently using the Levinson scheme. If in equation (11) the
weight matrix is chosen identical to the unit matrix Λ= I, then
the right-hand side of equation (11) is an inverse Fourier trans-
form of 2N+ 1 points, which is truncated to 2M + 1 points in
the spatial domain. In this specific case no optimization is car-
ried out.

MODEL FUNCTION w̃

We consider two WLSQ optimization procedures using dif-
ferent choices for the model function w̃. For the first procedure,
the model function w̃ in equation (10) is chosen to be the ex-
act phase-shift operator. Note that the phase-shift operator has
sharp edges at kx =±k, which can cause problems if one wants
to approximate this operator in a least-squares manner.

It is justified to neglect the evanescent part in the extrapo-
lation operator because it is not present in the data above the
noise level. The recursive extrapolation scheme only demands a
stable behavior of the wavenumber components in the evanes-
cent region; the phase is of no importance. The weighting func-
tion is chosen to be a simple box function with a weight of 1.0 in-
side the domain of interest (the propagating waves) and a small
value (10−5) outside this band. In Figure 2c, the wavenumber
spectrum of a WLSQ optimized operator is shown. From Fig-
ure 2c we observe that the wavenumber spectrum is stable (in
the sense discussed above) for all wavenumbers and is accurate
within the band of interest. The character of the evanescent part
in the wavenumber spectrum is not exponentially decaying any
more but is varying (not shown in Figure 2c).

For accurate extrapolation results, the desired operator w̃
must be equal to the phase-shift operator for the propagating
waves. Behavior outside this part of the spectrum, however, can
differ from the phase-shift operator. For the second procedure,
a so-called smooth phase-shift operator has been designed such
that outside the band of interest the amplitude and the phase
are defined by a cubic spline which goes smoothly to zero:

‖W̃(kx, ω,1z, αmax)‖

=


1.0 |kx| ≤ k sin(αmax)

spline |kx| > k sin(αmax)

0 |kx| = π
1x

, (14a)
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arg (W̃(kx, ω,1z, αmax))

=


− jkz1z |kx| ≤ k sin(αmax)

spline |kx| > k sin(αmax)

0 |kx| = π
1x

, (14b)

where αmax is the maximum propagation angle of interest. The
weighting function is a simple box function. Using this smooth
model function, the least-squares algorithm finds a smoother
solution and has significantly lower amplitude oscillations in
the wavenumber spectrum. This can be observed by compar-
ing Figure 2c with Figure 2d. Changing the weighting function
shape—for example, with a smooth transition zone between
the low and high weight region—will give less accurate or un-
stable extrapolation operators.

In Figure 3, the frequency–wavenumber spectrum of the am-
plitude errors of optimized extrapolation operators are shown
for a range of wavenumber values. Figure 3a shows the am-
plitude errors of operators with the phase-shift operator as
model function, and Figure 3b is based on the smooth model
function. At the edges where kx =± ω

c sin (αmax), both oper-
ators have their highest amplitude oscillations (Gibb’s phe-
nomenon). These oscillations can give rise to small artifacts at
high propagation angles. The operators based on the smooth
operator (Figure 3b) have lower amplitude errors than those
based on the phase-shift operators (Figure 3a) and are there-
fore more accurate.

The accurate extrapolation operators can also be tailored
for anisotropic media (Zhang et al., 2001) or other special pur-
poses. For example, asymmetric operators can be designed and
used in areas where only a small number of receivers is avail-
able (Swinnen et al., 2001).

a) WLSQ with phase-shift as model function b) WLSQ with smooth phase-shift as model function

Figure 3. Amplitude errors of extrapolation
operators in the frequency–wavenumber do-
main. The operators are computed for a
frequency range of 0 to 80 Hz, 1t = 4 ms,
1x= 10 m, 1z= 2 m, velocity of 2000 m/s,
and full operator length of 25 points in the
space domain (M = 12). The operators based
on a smooth phase-shift operator have lower
amplitude errors than the ones based on the
exact phase-shift operator.

Figure 4. Migration impulse responses for (a)
a nonrecursive reference result and for three
recursive methods using (b) Remez exchange
optimized operators, (c) WLSQ based on
phase-shift operator, and (d) WLSQ based
on the smooth phase-shift operator. The im-
pulse responses are computed for a frequency
range of 0 to 80 Hz, 1t = 4 ms, 1x= 10 m,
1z= 2 m,αmax= 75◦, velocity of 2000 m/s, and
full operator length of 25 points.

MIGRATION RESULTS ON SYNTHETIC DATA

First we analyze the accuracy of the various operators us-
ing impulse responses. Zero-offset migration experiments are
done with a 25-point extrapolation operator in a homoge-
neous medium, a velocity of 2000 m/s, a receiver spread of
2000 m, and a maximum extrapolation depth of 1000 m with
1x= 10,1z= 2 m. The trace in the middle of the unmigrated
zero-offset section contains three Ricker wavelets at 0.3, 0.6,
and 0.9 s; all other traces contain only zeros. The wavelet is
sampled with 4 ms and has a frequency peak at 30 Hz. The
migration is carried out with half the velocity, i.e., 1000 m/s.

Figure 4a shows the impulse responses for a nonrecursive
reference result. Operators designed with the equiripple ap-
proach of the Remez algorithm (Soubaras, 1992) are used to
obtain the impulse response in Figure 4b. The WLSQ operators
based on the phase-shift operator yield the impulse response
in Figure 4c, and WLSQ operators based on the smooth phase-
shift operator yield the impulse in Figure 4d. The smooth op-
erator result has on average the least numerical artifacts. At
the higher angles (above 75◦) more artifacts are introduced. In
the difference plots of Figure 5, these artifacts are clearly visi-
ble. Both WLSQ methods give a better result than the Remez
exchange method.

Note that the WLSQ operator optimization is done for a
fixed operator length, a fixed weight factor, and a fixed max-
imum angle of interest. However, convolution operators for
lower ω values can often be shorter than for higher ω values.
By choosing a smaller weight outside the wavenumber band of
interest, a more accurate operator within the desired band is
obtained. For a value that is chosen too small, the amplitude
can become larger than 1.0 outside the band of interest and
cause unstable behavior in the recursive algorithm. The input
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parameters of the WLSQ algorithm can be used to search for
the shortest, most accurate, and most stable operator within a
small range of input parameters (operator size, weight factor,
and angle).

The WLSQ algorithm used to calculate the operators is very
fast (Levinson recursion) and enables us to do multiple evalu-
ations for the same operator within a short computation time.

Sigsbee2A data set

As a second experiment we use a synthetic data set to exam-
ine the accuracy of a prestack depth migration result using the
extrapolation operators based on the smooth phase-shift oper-
ator. The synthetic Sigsbee2A data set (Paffenholz et al., 2002)
(courtesy of SMAART JV) is based on the geologic setting
found on the Sigsbee2A escarpment in the deepwater Gulf of
Mexico. The velocity model is shown in Figure 6. The complex
salt shape and the high-velocity contrast scatters the wavefield
severely. Because not all scattered energy is recorded, illumi-
nation problems will occur in the migration.

The Sigsbee2A data set is used to test the accuracy of the
extrapolation operators. The used velocity model has a trace
increment of 11.4 m, a depth sampling of 7.6 m, and a total

Figure 5. The numerical artifacts of the re-
cursive extrapolation, displayed by subtract-
ing the reference result from the recursive re-
sults. Note that the pictures are plotted with
a 20 times smaller clip value than Figure 4.
(a) Nonrecursive reference result, having the
same clip value as the other views. (b) Re-
mez equiripple operators. (c) WLSQ with
phase-shift operators. (d) WLSQ with smooth
operators.

Figure 6. The reflection interfaces are the
result of velocity contrasts which fluctuate
within ±91 m/s relative to a linear velocity
function. This velocity contrast is large enough
to produce reflections but not sufficient to
destroy the basic gradient macromodel used
in the depth migration. The salt velocity is
4511 m/s, and the sediment velocity used in the
migration is V = 1524+ 0.3(Z− Zsea f loor) m/s.

depth of 9144 m; 500 shots were modeled using an acoustic
finite-difference scheme for constant density. The source in-
terval is 45.7 m, and the receiver interval is 45.7 m (original
data had a receiver spacing of 22.9 m). The minimum offset
is 0 m, and the maximum offset is 7932 m (384 receivers per
shot). Starting at the right side of the model, the source location
walks through the cable until the full cable length is reached
(7932 m). The dominant frequency of the wavelet is 20 Hz.
The record length is 12 seconds, and the sample rate is 8 ms.
In the migration, an extra aperture of 500 points (5715 m) on
each side of the acquisition geometry has been used to allow
wavefields to propagate outside the acquisition aperture.

The prestack depth migration result shown in Figure 7 has
been obtained by using spatial convolution operators of 25
points. For every operator, a search has been carried out to
find the weight factor which gives the operator with the smallest
amplitude error. Building the operator table for the complete
range of velocities and frequencies took less than a minute on
a standard PC.

The steep faults beside the salt are imaged correctly. In the
zoom area below the salt, all events that contain reflection
energy are visible. Close to the right steep bottom of the salt,
no layers are visible and it seems that an internal multiple of
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the salt body (indicated by an arrow) has been imaged as a
steep ghost fault crossing the layers.

The number of floating-point operations (flops) for the con-
volution only are related to the spatial extrapolation aperture
A, the number of depth steps Z, and the half-operator length
M + 1 defined by equation (6). The total number of flops per
frequency is then given by ((M + 1)× 24+ 4)× (A× Z). The
24 represents the flops needed for the complex and symmetric
multiplication of both source and receiver wavefields. The four
extra flops are used for the imaging condition. Note that the
number of flops are not a correct indication for the total sin-
gle CPU running time. The algorithm used to carry out the 1D
convolution is optimized for cache reusage in scalar processors
and will also run very efficiently on vector processors, which
can handle small vector lengths.

By decreasing the operator length M , the run time will also
decrease. To make a smaller operator stable, it must be less
accurate at high angles. In Figure 8 the imaging result of a
seven-point (M = 3) operator, designed to be accurate up to
45◦, is shown for the same zoom area as in Figure 7. The total
run time was decreased by a factor of 2.3. The image quality of
Figure 8 is not as good as Figure 7, and the steep base of the salt
is missing. But the result with this small seven-point operator
is still quite useful.

Figure 7. Prestack depth migration of Sigs-
bee2A data set with optimized WLSQ oper-
ators with a fixed length of 25 points based
on the smooth model function. The bottom
picture is a zoom of the area below the salt.
The transmission coefficients through the salt
are not taken into account, giving a lower-
amplitude image below the salt compared
with the surrounding areas. Most events be-
low the salt are imaged. Only the turning
waves are not imaged. The event indicated
by the arrow represents an internal multiple
of the salt body, which has been imaged as a
steep ghost fault crossing the layers.

The disadvantage of recursive one-way migration, as used
in this paper, is that it is impossible to handle turning/bending
waves. Also, the transmission coefficients are not included, re-
sulting in lower amplitudes. Structurally, the one-way migration
method produces accurate images below the salt.

EXTENSION TO 3D EXTRAPOLATION

The extension of the WLSQ technique for 2D convolution
operators to be applied in 3D media is straightforward. The 2D
Fourier transformation is defined by

W̃(kx, ky, ω,1z) =
∫+∞∫
−∞

W(x, y, ω,1z)

× exp( jkxx) exp( jkyy) dx dy. (15)

Using a discrete version of the Fourier integral and the circular
symmetry in the phase-shift operator, equation (15) can be
rewritten as (Blacquière et al., 1989)

W̃(p1kx,q1ky) ≈ 1x1y
M∑

m=0

N∑
n=0

SmnW(m1x, n1y)

× cos (p1kxm1x) cos (q1kyn1y), (16)



1044 Thorbecke et al.

with Smn defined as

Smn =


1 for m= n= 0,
2 for m= 0 ∨ n= 0,
4 for n 6= 0 ∧m 6= 0.

(17)

By interchanging n and m and using the fact that
∑M

m=0

∑m
n=0 =∑M

n=0

∑n
m=0, the number of unknowns can be further reduced

to 1/8 of the original number of unknowns. Note that this reduc-
tion is only possible in isotropic media with 1x=1y. Hence,

W̃(p1kx,q1ky) ≈ 1x2
M∑

m=0

m∑
n=0

W(m1x, n1y)

× [Smn cos (p1kxm1x) cos (q1kyn1y)

+S′nm cos (p1kxn1x) cos (q1kym1y)],
(18)

with S′nm defined as
0 for n = m,

2 for n = 0 ∨m= 0,
4 for m 6= 0 ∧ n 6= 0,

(19)

and M ×M being the user-specified size of the desired short
operator.

Equation (16) or equation (18) must be solved for the
unknown operator coefficients Wmn=W(m1x, n1y) for all
equations. The same weighted error function ε̃ as introduced
in equation (9) is used, and the same least-squares solution is
obtained:

〈w〉 = [ΓH Λ̃Γ]−1ΓH Λ̃w̃, (20)

where ΓH Λ̃Γ is a square matrix. For the 1D optimization
problem, the WLSQ method could be inverted using a

Figure 8. Prestack depth migration below the
salt of the Sigsbee2A data set with optimized
WLSQ operators with a length of 7 points.
Because of the short operator length, not all
high angles have been propagated. This is ob-
served in the lack of steeps events compared
to Figure 7 and the missing steep bottom of
the salt. The clipping value of the plot is cho-
sen the same as in Figure 7.

Figure 9. The wavenumber spectrum of a
WLSQ optimized operator with 25× 25 spa-
tial points. The operator has a frequency of
25 Hz with c= 1000 m/s, 1x=1y= 10 m,
1z= 2 m, and maximum angle of interest set
at 75◦.

fast Levinson scheme. For the 2D problem, the Toeplitz
structure is not present, and LAPACK routines are used
to calculate a QR decomposition of the matrix ΓH Λ̃Γ in
equation (20).

Figure 9 shows the wavenumber spectrum of a WLSQ opti-
mized spatial convolution operator based on a smooth model
function of 25× 25 points. The WLSQ method gives an accu-
rate operator which has a wavenumber spectrum close to the
exact phase-shift operator. Because of the optimization on a
rectangular grid, the operator has a square footprint. The ac-
curacy of the operator is similar to an operator obtained with
nonlinear least squares, but the design of the WLSQ algorithm
is more efficient.

The operators obtained with this method require the imple-
mentation of a full 2D spatial convolution. Using the symmetry
in the operator, the number of multiplications in the 2D con-
volution can be reduced by a factor of four by folding the data
into a quarter and applying the convolution to this folded part
only. The number of flops remains high, however, especially if
one takes into account that this convolution has to be carried
out for every gridpoint, for every frequency of interest, and
for all depth steps. Alternative and more efficient recursive
extrapolation operators like the Hale-McClellan (Hale, 1991a;
McClellan, 1973) operator are discussed in more detail in Ap-
pendix A of Thorbecke (1997) and in Thorbecke and Geesink
(1999). The 2D WLSQ extrapolation operator can be used very
well in a Hale-McClellan scheme.

In Figure 10, a 3D impulse response using WLSQ operators
is shown. The top right-hand side in Figure 10 shows a vertical
cross-section for x= 0, and the bottom right-hand side shows a
vertical section for x= y. The left-hand side shows a horizon-
tal cross-section at a depth of 220 m, which corresponds to a
reflector dip of 65◦. The impulse response is circular, but the
artifacts introduced at high propagation angles are rectangular.
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Figure 10. The 3D impulse response of a
25× 25 WLSQ operator. (a) Depth slice at
z= 220 m. (b) Vertical slice for x= 0 m. (c) Di-
agonal slice for x= y. Note the circular shape
and the accuracy at the higher angles. For this
experiment, the velocity c= 1000 m/s, a fre-
quency range of (1–45) Hz, 1x=1y= 10 m,
1z= 2 m, 1t = 0.004 s, and αmax= 75◦ on a
spatial grid of 111× 111 samples wide. In the
diagonal cross-section, the distance between
two traces is

√
21x, where 1x is the distance

between the traces in the vertical x= 0 section.

DISCUSSION AND CONCLUSION

In this paper we have introduced a method to compute con-
volutional wavefield extrapolation operators that are accurate
for high propagation angles and have a short spatial extent. The
method is based on WLSQ and uses a smooth transition zone
at the evanescent cutoff. The presented results show that these
improved operators give very accurate extrapolation results.

The WLSQ algorithm to compute the operators is very effi-
cient. This allows multiple evaluations for different weighting
functions and operator lengths, thus searching for the best op-
erator with minimum operator length and smallest amplitude
and phase errors.

The WLSQ is not only suited for extrapolation operator de-
sign, but it can also be used in other filter design problems,
achieving an efficient and controlled transformation of the op-
erator in the Fourier domain to a convolution operator in the
original domain.
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