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ABSTRACT

Acoustic, electromagnetic, elastodynamic, poroelastic,
and electroseismic waves are all governed by a unified ma-
trix-vector wave equation. The matrices in this equation obey
the same symmetry properties for each of these wave phe-
nomena. This implies that the wave vectors for each of these
phenomena obey the same reciprocity theorems. By substi-
tuting Green’s matrices in these reciprocity theorems, unified
wavefield representations are obtained. Analogous to the
well-known acoustic wavefield representations, these unified
representations find applications in geophysical modeling,
migration, inversion, multiple elimination, and interfero-
metry.

INTRODUCTION

Wavefield representations play an important role in forward and
nverse geophysical problems, such as modeling, migration, inver-
ion, multiple elimination, and, recently, interferometry. Various au-
hors have derived acoustic and elastodynamic wavefield represen-
ations by substituting Green’s functions into the Rayleigh and Ray-
eigh-Betti reciprocity theorems, respectively �Morse and Feshbach,
953; de Hoop, 1958; Gangi, 1970, 2000; Aki and Richards, 1980;
okkema and van den Berg, 1993�. In this paper, we follow a similar
pproach for a general matrix-vector wave equation that governs
coustic, electromagnetic, elastodynamic, poroelastic, or elec-
roseismic wave propagation. First, we derive general convolution
nd correlation reciprocity theorems for this wave equation, supple-
ented with boundary conditions for imperfectly coupled interfac-

s. Next, we introduce a Green’s matrix as the point-source solution
f the general wave equation. By substituting this Green’s matrix
nto the reciprocity theorems, we obtain general convolution- and
orrelation-type representations. We conclude this paper by briefly
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SM5
iscussing a number of applications of these general representations
n seismic modeling, migration, inversion, multiple elimination, and
nterferometry.

MATRIX-VECTOR WAVE EQUATION

Diffusion, flow, and wave phenomena can each be captured by the
ifferential matrix-vector equation,

ADtu + Bu + Dxu = s �1�

Wapenaar and Fokkema, 2004�, where u = u�x,t� is a vector con-
aining space- and time-dependent field quantities, s = s�x,t� is a
ource vector, A = A�x� and B = B�x� are matrices containing
pace-dependent material parameters, and Dx is a matrix containing
he spatial differential operators �1, �2, and �3. Dt denotes the material
ime derivative, defined as Dt = �t + v0 · � = �t + vk

0�k, where �t is
he time derivative in the reference frame and v0 = v0�x� the space-
ependent flow velocity of the material; vk

0 denotes the kth compo-
ent of v0. Einstein’s summation convention applies to repeated sub-
cripts; lower-case Latin subscripts �except t� run from 1 to 3. In ex-
loration geophysics, we consider nonmoving media; hence, from
ere, onward we replace Dt by �t.

For acoustic wave propagation in an attenuating fluid, the vectors
nd matrices in equation 1 are defined by

u = �
p

v1

v2

v3

�, s = �
q

f1

f2

f3

� , �2�

ith p = p�x,t� the acoustic pressure, vi = vi�x,t� the particle veloci-
y, q = q�x,t� the volume injection rate, f i = f i�x,t� the external
orce;

d March 28, 2007; published onlineAugust 23, 2007.
lands. Email: c.p.a.wapenaar@tudelft.nl



w
=

w

w
t
c

w
s
t

�
o

=
t
d
H

�
�
s
fi
v
a
−
e
f
n
t
f
�
e
e
w

t
t

p

w
t
D
a

w
m
f
B
w
c

t

w
=
d

K

r

A
s
i
m
i
w
f

t
t
q

�
v

SM6 Wapenaar
A = �
� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 �
�, B = �

bp 0 0 0

0 bv 0 0

0 0 bv 0

0 0 0 bv
� , �3�

ith � = ��x� the compressibility, � = ��x� the mass density, bp

bp�x� and bv = bv�x� the loss terms, and

Dx = �
0 �1 �2 �3

�1 0 0 0

�2 0 0 0

�3 0 0 0
� . �4�

For electromagnetic diffusion and/or wave propagation in matter,
e have

u = �E

H
�, s = �− Je

− Jm � , �5�

ith E = E�x,t� and H = H�x,t� the electric and magnetic field vec-
ors, Je = Je�x,t� and Jm = Jm�x,t� the external electric and magnetic
urrent density vectors;

A = � � O

O �
�, B = ��e O

O �m � , �6�

ith � = ��x� and � = ��x� the permittivity and permeability ten-
ors, �e = �e�x� and �m = �m�x� the electric and magnetic conduc-
ivity tensors, O the null-matrix, and

Dx = �O D0
T

D0 O
�, D0 = � 0 − �3 �2

�3 0 − �1

− �2 �1 0
� �7�

superscript T denotes matrix transposition only; it does not denote
perator transposition�.

For elastodynamic wave propagation in a solid, we have uT

�vT,− � 1
T,− � 2

T,− � 3
T� �with v and � i the particle velocity and trac-

ion vectors�, sT = �fT,h1
T,h2

T,h3
T� �with f and hi the external force and

eformation rate vectors�, and A, B, and Dx are 12�12 matrices �de
oop and de Hoop, 2000; Wapenaar and Fokkema, 2004�.
For electroseismic wave propagation in a saturated porous solid

Pride, 1994�, we have uT = �ET,HT,�vs�T,− � 1
T,− � 2

T,− � 3
T,wT,pf�

with superscripts s and f referring to the solid and fluid phase, re-
pectively�, where E and H are the average electric and magnetic
eld vectors, vs and � i the solid particle velocity and bulk traction
ectors, w = ��v f − vs� the filtration velocity �with � the porosity�,
nd pf the fluid pressure. Moreover, sT = �− �Je�T,
�Jm�T,fT,h1

T,h2
T,h3

T,�f f�T,hf�, where Je and Jm are again the external
lectric and magnetic current density vectors, f and f f the external
orces on the bulk and on the fluid, and hi and hf the modified exter-
al deformation rates for the bulk and the fluid. Finally, for this situa-
ion A, B, and Dx are 22�22 matrices. Omitting E, H, Je, and Jm

rom u and s gives the field and source vectors for poroelastic waves
Biot, 1956� governed by 16�16 matrices A, B, and Dx. On the oth-
r hand, omitting w, pf, f f and hf and reorganizing B results in the
lectrokinetic equations for a piezoelectric system �Auld, 1973�,
ith 18�18 matrices A, B and D .
x
In all cases, matrices A�x� and B�x� can be replaced by convolu-
ional operators A�x,t�� and B�x,t�� to account for more general at-
enuation mechanisms.

We define the temporal Fourier transform of a space- and time-de-
endent quantity p�x,t� as

p̂�x,�� = 	
−�

�

exp�− j�t�p�x,t�dt , �8�

here j is the imaginary unit and � the angular frequency. Applying
he Fourier transform to all terms in matrix-vector equation 1, with

t replaced by �t and A�x� and B�x� replaced by convolutional oper-
tors A�x,t�� and B�x,t��, we obtain

j�Âû + B̂û + Dxû = ŝ , �9�

here, apart from the field and source vectors û�x,�� and ŝ�x,��, the
aterial parameter matrices Â�x,�� and B̂�x,�� are in their general

orm frequency-dependent and complex-valued. Note that j�Â and
ˆ could be combined into one material-parameter matrix. However,

e prefer to keep these terms separated to acknowledge the different
haracter of the parameters in Â and B̂.

For each situation, matrices Â, B̂, and Dx obey the symmetry rela-
ions

KÂK = Â = ÂT, �10�

KB̂K = B̂T, �11�

KDxK = − Dx = − Dx
T, �12�

here K is a real-valued diagonal matrix, obeying the property K
K−1. For example, for the acoustic and electromagnetic situations

iscussed above, we have

= �
1 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 − 1
� and K = �− I O

O I
� , �13�

espectively, with I the identity matrix.

MATRIX-VECTOR BOUNDARY CONDITION

At any position in space where the medium parameters in matrices
ˆ and B̂ are discontinuous, the wavefield quantities in vector û
hould obey boundary conditions. The same is true at a fracture with
mperfect coupling. For this situation, the wavefield quantities in û

ay exhibit a finite jump. We call both types of medium singularities
nterfaces. In the following, we consider the most general case for
hich the medium parameters are different at both sides of the inter-

ace and the media are not in perfect contact with each other.
Consider an interface with normal vector n = �n1,n2,n3�T between

wo materials �see Figure 1�. In linearized form, the boundary condi-
ions at an imperfect interface can be formulated in the space-fre-
uency domain as


Mû� = − j�Ŷ�Mû �14�

Wapenaar et al., 2004�, where M is a matrix that contracts the wave
ector û to the components that are involved in the boundary condi-
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General wavefield representations SM7
ions, Ŷ = Ŷ�x,�� is a matrix containing the boundary parameters,
nd �·� and �·� represent the jump and the average across the inter-
ace, respectively, as stated by


p̂�x,��� = lim
h↓0

�p̂�x + hn,�� − p̂�x − hn,��� , �15�

�p̂�x,�� = lim
h↓0

�p̂�x + hn,�� + p̂�x − hn,���/2, �16�

where x is chosen at the interface.
For acoustic waves, the matrices in equation 14 are defined as

M = �1 0 0 0

0 n1 n2 n3
� and Ŷ = � 0 �̂b

�̂b 0
� . �17�

he superscript b denotes that �̂b = �̂b�x,�� and �̂b = �̂b�x,�� are
oundary parameters. The dimension of each boundary parameter is
qual to the dimension of the corresponding volumetric parameter,
ultiplied by meter. For vanishing �̂b and �̂b, equation 14, with û, M,

nd Ŷ defined in equations 2 and 17, reduces to the standard bound-
ry conditions for perfectly coupled fluids, i.e., 
p̂� = 0 and 
v̂ini�
0. When �̂b and �̂b are nonzero, 1/j��̂b is the hydraulic boundary

ermeability, �̂b the boundary compressibility, and 1/�̂b = K̂b the
oundary stiffness. Note that the dimension of the boundary stiffness

ˆ b is that of stiffness per meter �i.e., Pa/m�. Therefore, K̂b is also
alled the specific boundary stiffness.

For elastodynamic waves, the matrices in equation 14 are defined
s

= � I O O O

O n1I n2I n3I
� and Ŷ = �O Ŝb

�̂b O
� , �18�

here �̂b and Ŝb are the boundary density and compliance tensors,
espectively. When �̂b = O �which is usually a good approximation�
nd n = �0,0,1�T �i.e., the interface is horizontal�, equation 14, with

and Ŷ defined in equation 18, reduces to the linear slip model of
choenberg �1980� when Ŝb is diagonal and real-valued, to the ex-

ended linear slip model of Pyrak-Nolte et al. �1990� when Ŝb is diag-
nal and complex-valued, or to the general boundary model �includ-
ng shear-induced conversion� of Nakagawa et al. �2000� when the
ondiagonal elements of Ŝb are also nonzero. Liu et al. �1995, 2000�
elate the parameters in the compliance tensor to the details of the
icrostructure of the interface.
For electromagnetic waves, equation 14 is a generalization of the

aufman and Keller �1983� conductive interface model. For po-
oelastic waves, it is a generalization of the Gurevich and Schoen-
erg �1999� permeable interface model; when Ŷ vanishes, it reduces
o the Deresiewicz and Skalak �1963� open-pore boundary condition

n

igure 1. Interface between two media with imperfect coupling.
or the perfectly coupled porous solids. For electroseismic waves,
quation 14 combines the boundary conditions for electromagnetic
nd poroelastic waves.

In all cases Ŷ obeys the symmetry relations

ŶTN = − NŶ and Ŷ†J = JŶ* �19�

Wapenaar et al., 2004�, where superscript � denotes complex conju-
ation and † complex conjugation and transposition. For example,
or the acoustic and elastodynamic situations discussed above, we
ave

N = � 0 1

− 1 0
�, J = �0 1

1 0
� �20�

nd

N = � O I

− I O
�, J = �O I

I O
� , �21�

espectively.

CONVOLUTION-TYPE RECIPROCITY THEOREM

In general, a reciprocity theorem interrelates two independent
tates in one and the same domain �de Hoop, 1966; Fokkema and van
e Berg, 1993�. Here, we derive a reciprocity theorem for the general
ave vector û described in the previous sections. We introduce two

ndependent states �i.e., wavefields, medium parameters, boundary
arameters, and source functions� that will be distinguished by the
ubscripts A and B, �see Table 1�. In the frequency domain, each of
hese states obeys the general matrix-vector-wave equation 9. We
onsider the interaction quantity ûA

TKDxûB − �DxûA�TKûB. Using
ave equation 9 as well as symmetry relations 10 and 11 for both

tates, we obtain

ûA
TKDxûB − �DxûA�TKûB = ûA

TKŝB − ŝA
TKûB

− ûA
TK�j��ÂB − ÂA�

+ �B̂B − B̂A��ûB. �22�

his is the local form of the convolution-type matrix-vector reci-
rocity theorem. We call this convolution type because the products
n the frequency domain �ûA

TKŝB etc.� correspond to convolutions in
he time domain. Next, we consider an arbitrary spatial domain D
ith boundary �D and outward-pointing normal vector n �see Figure
�. Note that �D does not necessarily coincide with a physical bound-
ry. For the moment, we assume that the medium parameters in both

able 1. States for the unified reciprocity theorems.

State A State B

avefields ûA�x,�� ûB�x,��
edium parameters �ÂA,B̂A��x,�� �ÂB,B̂B��x,��
oundary parameters ŶA�x,�� ŶB�x,��
ource functions ŝA�x,�� ŝB�x,��

Domain D
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tates are continuous in D. We integrate both sides of equation 22
ver this domain and apply Gauss’ theorem in matrix-vector form
equation A-5, seeAppendix A� to the left-hand side. This yields

�
�D

ûA
TKNxûBd2x = 	

D
�ûA

TKŝB − ŝA
TKûB�d3x

− 	
D

ûA
TK�j��ÂB − ÂA�

+ �B̂B − B̂A��ûBd3x . �23�

ere, Nx is a matrix containing the components of normal vector n,
rganized in the same way as matrix Dx. For example, for the acous-
ic situation Nx is defined as

Nx = �
0 n1 n2 n3

n1 0 0 0

n2 0 0 0

n3 0 0 0
� . �24�

or all situations, Nx obeys the symmetry relation

KNxK = − Nx = − Nx
T, �25�

nalogous to equation 12. Equation 23 is the unified convolution-
ype reciprocity theorem for a domain D in which the medium pa-
ameters are continuous. It interrelates the wavefield quantities �con-
ained in ûA and ûB�, the medium parameters �contained in ÂA, ÂB,
ˆ

A, and B̂B� and the source functions �contained in ŝA and ŝB� of states
and B. The left-hand side is a boundary integral that contains a spe-

ific combination of the wavefield quantities of states A and B at the
oundary of domain D. The first integral on the right-hand side inter-
elates the wavefield quantities and the source functions in D. The
econd integral on the right-hand side contains the differences be-
ween the medium parameters in both states; obviously, this integral
anishes when the medium parameters in both states are identical.

We now extend the reciprocity-theorem equation 23 for the situa-
ion in which D contains internal interfaces �or fractures� with imper-
ect coupling. To this end, we subdivide D into M continuous re-
ions, according to D = D1 �D2 · · · · �DM, see Figure 3. Region Dm

s enclosed by surface �Dm with outward-pointing normal vector nm.
he boundaries between these regions represent the imperfect inter-
al interfaces. Note that each internal interface is part of two surfaces
Dm, with opposite-pointing normal vectors nm, see Figure 3.

n 

x1 

x3 

x2 

∂ 

igure 2. Configuration for the reciprocity theorems.
Since the medium parameters in region Dm are continuous, reci-
rocity-theorem equation 23 applies to each of these regions. Sum-
ing both sides of this equation over m again yields equation 23 for

he total domain D, with an extra integral over the internal interfaces
n the left-hand side as stated by

	
�Dint

��ûA
TKNxûB�1 + �ûA

TKNxûB�2�d2x , �26�

here �Dint constitutes the total of all internal interfaces; the sub-
cripts 1 and 2 denote the two sides of the internal interfaces. Using
he general boundary condition 14 for imperfect interfaces and the
rst of the symmetry relations in equation 19, this internal interface

ntegral can be rewritten as

	
�Dint

ûA
TMTN�I − ẐA

−1ẐB�MûBd2x �27�

Wapenaar et al., 2004� with

Ẑ = �I + j�Ŷ/2�−1�I − j�Ŷ/2� . �28�

ˆ obeys the symmetry relation

ẐTN = NẐ−1, �29�

hich follows from equations 19 and 28. For small Ŷ, equation 27
implifies to

j�	
�Dint

ûA
TMTN�ŶB − ŶA�MûBd2x . �30�

n the integrals in equations 27 and 30, ûA, ûB, and M are all chosen at
he same side of the interfaces �but which side is arbitrary�.

Adding the internal interface integral of equation 27 to the left-
and side of equation 23, we obtain

�
�D

ûA
TKNxûBd2x + 	

�Dint

ûA
TMTN�I − ẐA

−1ẐB�MûBd2x

= 	
D

�ûA
TKŝB − ŝA

TKûB�d3x − 	
D

ûA
TK�j��ÂB − ÂA�

+ �B̂B − B̂A��ûBd3x . �31�

n3 

n1 

n1 

n1 

n2 

n2 

n2 n3 

n3 

∂ 3

∂ 2

∂   1

3

1

2

igure 3. Piecewise continuous domain D = D �D ¯ �D .
1 2 M
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General wavefield representations SM9
e conclude this section by specifying equation 31 for the acoustic
ituation, assuming small boundary parameters. Upon substitution
f equations 2, 3, 13, 17, 20, and 24, we obtain

�
�D

�p̂Av̂i,B − v̂i,Ap̂B�nid
2x + j�	

�Dint

���̂B
b − �̂A

b�p̂Ap̂B

− ��̂B
b − �̂A

b�v̂i,Aniv̂ j,Bnj�d2x

= 	
D

�p̂Aq̂B − v̂i,Af̂ i,B − q̂Ap̂B + f̂ i,Av̂i,B�d3x

− j�	
D

���̂B − �̂A�p̂Ap̂B − ��̂B − �̂A�v̂i,Av̂i,B�d3x

− 	
D

��b̂B
p − b̂A

p�p̂Ap̂B − �b̂B
v − b̂A

v�v̂i,Av̂i,B�d3x , �32�

hich has the familiar form known from, e.g., Fokkema and van den
erg �1993� and de Hoop �1995�, but with an extra integral over the

nternal interfaces.

CORRELATION-TYPE RECIPROCITY THEOREM

Porter �1970� and Bojarski �1983� formulated reciprocity theo-
ems with back-propagating wavefields. Here, we extend these theo-
ems for the general wave vector û. We consider the interaction
uantity ûA

†DxûB + �DxûA�†ûB. Since superscript † denotes transpo-
ition and complex conjugation, ûA

† represents a back-propagating
avefield. Using wave equation 9 as well as the symmetry relations

n equations 10 and 11 for both states, we obtain

ûA
†DxûB + �DxûA�†ûB = ûA

† ŝB + ŝA
† ûB − ûA

†�j��ÂB − ÂA
*�

+ �B̂B + B̂A
†��ûB. �33�

his is the local form of the correlation-type matrix-vector reciproc-
ty theorem. We say correlation type because the products in the fre-
uency domain �ûA

† ŝB etc.� correspond to correlations in the time do-
ain. Next, we consider again domain D with boundary �D and out-
ard-pointing normal vector n, see Figure 2. For the moment, we as-

ume that the medium parameters in both states are continuous in D.
e integrate both sides of equation 33 over this domain and apply

he theorem of Gauss in matrix-vector form �equation A-4� to the
eft-hand side. This yields

�
�D

ûA
†NxûBd2x = 	

D
�ûA

† ŝB + ŝA
† ûB�d3x

− 	
D

ûA
†�j��ÂB − ÂA

*�

+ �B̂B + B̂A
†��ûBd3x . �34�

quation 34 is the unified correlation-type reciprocity theorem for a
omain D in which the medium parameters are continuous.

We now extend this reciprocity theorem for the situation in which
contains internal interfaces with imperfect coupling, see Figure 3.

ince the medium parameters in region Dm are continuous, reciproc-
ty theorem 34 applies to each of these regions. Summing both sides
f this equation over m again yields equation 34 for the total domain
, with an extra integral over the internal interfaces on the left-hand
ide, as stated by

	
�Dint

��ûA
†NxûB�1 + �ûA

†NxûB�2�d2x . �35�

sing the general boundary condition 14 for imperfect interfaces
nd the second of the symmetry relations in equation 19, this internal
nterface integral can be rewritten as

	
�Dint

ûA
†MTJ�I − �ẐA��−1ẐB�MûBd2x �36�

Wapenaar et al., 2004�, with

Ẑ� = �I + j�Ŷ*/2�−1�I − j�Ŷ*/2� . �37�

ote that Ẑ� obeys the symmetry relation

Ẑ†J = J�Ẑ��−1, �38�

hich follows from equations 19 and 37. For small Ŷ, equation 36
implifies to

j�	
�Dint

ûA
†MTJ�ŶB − ŶA

*�MûBd2x . �39�

dding the internal interface integral of equation 36 to the left-hand
ide of equation 34, we obtain

�
�D

ûA
†NxûBd2x + 	

�Dint

ûA
†MTJ�I − �ẐA��−1ẐB�MûBd2x

= 	
D

�ûA
† ŝB + ŝA

† ûB�d3x − 	
D

ûA
†�j��ÂB − ÂA

*�

+ �B̂B + B̂A
†��ûBd3x . �40�

Note that when the medium and boundary parameters, sources,
nd wavefields are identical in both states, this reciprocity theorem
educes �omitting the subscripts A and B� to

R	
D

û†ŝd3x = �
�D

û†Nxûd2x

+ 	
D

û†�− 2�I�Â� + B̂ + B̂†�ûd3x

+ 	
�Dint

û†MTJ�I − �Ẑ��−1Ẑ�Mûd2x , �41�

here R and I denote the real and imaginary part, respectively. Note
hat this form of the reciprocity theorem represents a power balance
or each of the wave phenomena treated in this paper. The term on the
eft-hand side represents the power generated by the sources in D.
he first term on the right-hand side represents the power-flux prop-
gating outward through �D, the second term the power dissipated
y the medium in D �which vanishes for real-valued Â and zero B̂�,
nd the last term the power dissipated by the internal imperfect inter-
aces �Dint �which vanishes for real-valued Ŷ, as in the linear slip
odel of Schoenberg, 1980�.
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SM10 Wapenaar
We conclude this section by specifying equation 40 for the acous-
ic situation, assuming small boundary parameters. Upon substitu-
ion of equations 2, 3, 17, 20, and 24, we obtain

�
�D

�p̂A
* v̂i,B + v̂i,A

* p̂B�nid
2x + j�	

�Dint

���̂B
b − �̂A

b*�p̂A
* p̂B

+ ��̂B
b − �̂A

b*�v̂i,A
* niv̂ j,Bnj�d2x

= 	
D

�p̂A
* q̂B + v̂i,A

* f̂ i,B + q̂A
* p̂B + f̂ i,A

* v̂i,B�d3x

− j�	
D

���̂B − �̂A
*�p̂A

* p̂B + ��̂B − �̂A
*�v̂i,A

* v̂i,B�d3x

− 	
D

��b̂B
p + b̂A

p*�p̂A
* p̂B + �b̂B

v + b̂A
v*�v̂i,A

* v̂i,B�d3x ,

�42�

hich has the familiar form known from, e.g., Fokkema and van den
erg �1993� and de Hoop �1995�, but with an extra integral over the

nternal interfaces.

GREEN’S MATRIX

The wavefield vector û�x,�� and the source vector ŝ�x,�� are L
1 vectors, where the value of L depends on the type of wavefield

onsidered. A Green’s function is defined as the wavefield that
ould be obtained if the source were an impulsive point source ��x
x����t�, or, in the frequency domain, a point source ��x − x�� with

nit spectrum. Since the source vector ŝ contains L different source
unctions, we may define L different Green’s wavefield vectors. We
efine the lth Green’s wavefield vector �with 1� l�L� as the causal
olution of general wave equation 9 with boundary condition 14,
ith source vector ŝ�x,�� replaced by il��x − x��, where il is the L
1 unit vector �0,¯ ,1,¯ ,0�T, with ‘1’ on the lth position. Hence,

n the space-frequency domain the lth Green’s wave vector obeys the
elations

j�Âĝl + B̂ĝl + Dxĝl = il��x − x�� �43�

nd


Mĝl� = − j�Ŷ�Mĝl , �44�

here ĝl = ĝl�x,x�,�� is the lth L�1 Green’s wave vector observed
t x, due to a point source of the lth type at x�. Due to their causal be-
aviour in the time domain, the components of these Green’s vectors
bey the Kramers-Kronig relations.

Equations 43 and 44 each represent L matrix-vector equations for
he L Green’s wave vectors ĝl, with 1� l�L. For example, for the
coustic situation �L = 4�, equation 43 reads

�
	̂ �1 �2 �3

�1 
̂ 0 0

�2 0 
̂ 0

�3 0 0 
̂
��

Ĝp,q�x,x�,��

Ĝ1
v,q�x,x�,��

Ĝ2
v,q�x,x�,��

Ĝ3
v,q�x,x�,��

� = �
��x − x��

0

0

0
� ,

�45�

or l = 1 �with 	̂ = j��̂ + b̂p and 
̂ = j��̂ + b̂v�,
�
	̂ �1 �2 �3

�1 
̂ 0 0

�2 0 
̂ 0

�3 0 0 
̂
��

Ĝ,1
p,f�x,x�,��

Ĝ1,1
v,f �x,x�,��

Ĝ2,1
v,f �x,x�,��

Ĝ3,1
v,f �x,x�,��

� = �
0

��x − x��
0

0
� ,

�46�

or l = 2, etc. The superscripts of the Green’s functions refer to the
ype of observed wavefield at x and the source type at x�, respective-
y; the subscripts denote the different components. We now combine
he L Green’s vectors into a Green’s matrix and the L source vectors
nto a source matrix,

�ĝ1 . . . ĝl . . . ĝL��x,x�,�� = Ĝ�x,x�,�� , �47�

�i1 . . . il . . . iL���x − x�� = I��x − x�� , �48�

here Ĝ�x,x�,�� is the L�L Green’s wavefield matrix and I is the
�L identity matrix. With this notation, equations 43 and 44 for l
1. . .L can be combined into

j�ÂĜ + B̂Ĝ + DxĜ = I��x − x�� �49�

nd


MĜ� = − j�Ŷ�MĜ , �50�

espectively. These are the general wave equation and boundary con-
ition for the Green’s matrix Ĝ�x,x�,��.
Note that the wave vector û�x,�� and the Green’s matrix

ˆ �x,x�,�� obey the same linear wave equation with the same linear
oundary conditions, but with different source functions, ŝ�x,�� and
��x − x��, respectively. Hence, we may apply the superposition
rinciple to express the wave vector as

û�x,�� = 	
Ds

Ĝ�x,x�,��ŝ�x�,��d3x�, �51�

here Ds is the domain occupied by the source distribution. In the
ollowing, we derive representations for the Green’s matrix
ˆ �x,x�,��, and, implicitly via equation 51, for the wave vector
ˆ �x,��.

CONVOLUTION-TYPE REPRESENTATION

We consider again the piecewise continuous domain D with
oundary �D and outward-pointing normal vector n �Figure 3�. We
ssume that the boundaries between the different regions are imper-
ect interfaces; the combination of all internal interfaces is represent-
d by �Dint.

We derive a convolution-type representation for the Green’s ma-
rix. To this end, we let the Green’s matrix introduced in the previous
ection, with the point source at x = x�, play the role of state A in the
nified reciprocity theorem of equation 31. For the medium parame-
ers as well as for the boundary parameters, we introduce back-
round values; hence, the Green’s matrix in state A is defined in a
ackground medium. This is denoted by bars above the parameter
atrices as well as the Green’s matrix, see Table 2.Asimilar Green’s
atrix, but with its point source at x = x , will play the role of state
�
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. The medium parameters in this state are the actual parameters,
nd, consequently, the Green’s matrix in state B is defined in the ac-
ual medium, again see Table 2.

Consider the following property of the delta function

	
D

��x − x��u�x�d3x = �D�x��u�x�� , �52�

here �D�x�� is the characteristic function for domain D, defined as

�D�x�� = �
1 for x� � D

1

2
for x� � �D

0 for x� � R3 \ �D � �D� .
� �53�

pon substitution of the states of Table 2 into the convolution-type
eciprocity theorem �equation 31�, using this property of the delta
unction, we obtain

�D�x��KḠ
ˆ T�x�,x�,��K − �D�x��Ĝ�x�,x�,��

= �
�D

KḠ
ˆ T�x,x�,��KNxĜ�x,x�,��d2x

+ 	
D

KḠ
ˆ T�x,x�,��K�Ĥ�x,��Ĝ�x,x�,��d3x

+ 	
�Dint

KḠ
ˆ T�x,x�,��K�Ĥb�x,��Ĝ�x,x�,��d2x ,

�54�

ith the contrast functions �Ĥ and �Ĥb defined as

�Ĥ = j��Â − Ā
ˆ � + �B̂ − B̄

ˆ � , �55�

�Ĥb = KMTN�I − Z̄
ˆ −1Ẑ�M . �56�

quation 54 is the general convolution-type representation of the
reen’s matrix. Applications are discussed in a later section. Here,
e derive a reciprocity relation for the Green’s matrix. To this end
e replace the background parameters in state A by the actual pa-

ameters; hence, the last two integrals on the right-hand side of equa-
ion 54 vanish. Then, we replace D by R3, to make the characteristic
unctions in the left-hand side of equation 54 both equal 1. Finally,
e assume that outside some sphere with finite radius, the medium is
omogeneous, isotropic, and nonporous, which implies that the first
ntegral on the right-hand side vanishes as well �Sommerfeld radia-
ion conditions, Born and Wolf, 1965; Pao and Varatharajulu, 1976;
e Hoop, 1995�. This leaves

KĜT�x�,x�,��K = Ĝ�x�,x�,�� . �57�

f course a similar relation holds for the Green’s matrix in the back-
round medium. Equation 57 formulates source-receiver reciprocity
or a piecewise continuous medium with imperfect interfaces. For
xample, for the acoustic situation, we have
�
Ĝp,q − Ĝ1

v,q − Ĝ2
v,q − Ĝ3

v,q

− Ĝ,1
p,f Ĝ1,1

v,f Ĝ2,1
v,f Ĝ3,1

v,f

− Ĝ,2
p,f Ĝ1,2

v,f Ĝ2,2
v,f Ĝ3,2

v,f

− Ĝ,3
p,f Ĝ1,3

v,f Ĝ2,3
v,f Ĝ3,3

v,f
��x�,x�,��

= �
Ĝp,q Ĝ,1

p,f Ĝ,2
p,f Ĝ,3

p,f

Ĝ1
v,q Ĝ1,1

v,f Ĝ1,2
v,f Ĝ1,3

v,f

Ĝ2
v,q Ĝ2,1

v,f Ĝ2,2
v,f Ĝ2,3

v,f

Ĝ3
v,q Ĝ3,1

v,f Ĝ3,2
v,f Ĝ3,3

v,f
��x�,x�,�� . �58�

CORRELATION-TYPE REPRESENTATION

For the derivation of a correlation-type representation of the
reen’s matrix, we substitute the states of Table 2 into the reciproci-

y theorem of correlation-type �equation 40�, which gives

D�x��Ḡ
ˆ †�x�,x�,�� + �D�x��Ĝ�x�,x�,��

= �
�D

Ḡ
ˆ †�x,x�,��NxĜ�x,x�,��d2x

+ 	
D

Ḡ
ˆ †�x,x�,���Ĥ�x,��Ĝ�x,x�,��d3x

+ 	
�Dint

Ḡ
ˆ †�x,x�,���Ĥb�x,��Ĝ�x,x�,��d2x , �59�

ith the contrast functions �Ĥ and �Ĥb now defined as

�Ĥ = j��Â − Ā
ˆ *� + �B̂ + B̄

ˆ †� , �60�

�Ĥb = MTJ�I − �Z̄ˆ ��−1Ẑ�M . �61�

quation 59 is the general correlation-type representation of the
reen’s matrix.

APPLICATIONS

Here we discuss a number of applications of the general convolu-
ion-type and correlation-type representations. This overview is not
xhaustive but serves as an illustration.

able 2. Green’s states for the unified representations.

State A State B

avefields
Ḡ
ˆ �x,x�,�� Ĝ�x,x�,��

edium parameters �Āˆ ,B̄
ˆ ��x,�� �Â,B̂��x,��

oundary parameters
Ȳ
ˆ �x,�� Ŷ�x,��

ource functions I��x − x�� I��x − x��

Domain D



F

r
s
a
w
q
i
m
a
d
e

G

M
d

T
u
f
a

w
a

s
W
a
p

I

s
C
s
x
v
t
t
b
w
t
a
t
a
t

G

o

T
u
f
e
fi
1
l
s
m

r
a
t
e

f

F F

SM12 Wapenaar
orward wavefield extrapolation

The most straightforward application of the convolution-type rep-
esentation �equation 54� is forward wavefield extrapolation. Con-
ider the configuration of Figure 4. The boundary �D consists of an
cquisition surface �D1 and a hemisphere �D0 in the upper half-space
ith its midpoint at x�. The source domain Ds is sited below the ac-
uisition surface �D1. When we let the radius of the hemisphere go to
nfinity and assume that beyond some finite radius the medium is ho-

ogeneous, isotropic, and nonporous, the contribution of the bound-
ry integral over �D0 vanishes. Assuming the contrasts �Ĥ and �Ĥb

efined by equations 55 and 56 are negligible in D, we obtain from
quation 54 �using equation 57�

ˆ �x�,x�,�� = − 	
�D1

Ḡ
ˆ �x�,x,��NxĜ�x,x�,��d2x . �62�

ultiplying both sides by ŝ�x�,�� and integrating over the source
omain Ds, we obtain �using equation 51�

û�x�,�� = − 	
�D1

Ḡ
ˆ �x�,x,��Nxû�x,��d2x . �63�

his expression formulates forward extrapolation of the wavefield
ˆ �x,�� at acquisition surface �D1, because of sources below this sur-
ace, to any point x� above this surface. By substituting the vectors
nd matrices for the acoustic situation, we obtain

p̂�x�,�� = − 	
�D1

�Ḡˆ p,q�x�,x,��v̂ j�x,��

+ Ḡ
ˆ

,j
p,f�x�,x,��p̂�x,���njd

2x , �64�

v̂i�x�,�� = − 	
�D1

�Ḡˆ i
v,q�x�,x,��v̂ j�x,��

+ Ḡ
ˆ

i,j
v,f�x�,x,��p̂�x,���njd

2x , �65�

hich are the well-known Kirchhoff-Helmholtz integrals �Morse
nd Feshbach, 1953; Berkhout, 1985�, with many applications in

∂    1

   S

r

x'

x''

x

n

G(x', x,   )
−̂

∞

ω

Ĝ(x', x'',   )ω

Ĝ(x, x'',   )ω

∂   0

igure 4. Configuration for forward wavefield extrapolation.
eismic modeling �Frazer and Sen, 1985; Hill and Wuenschel, 1985;
enzel et al., 1990; Druzhinin et al., 1998�. Equation 63 is the gener-

lization of the Kirchhoff-Helmholtz integral for any of the wave
henomena considered in this paper.

nverse wavefield extrapolation

An expression for inverse wavefield extrapolation follows in a
imilar way from the correlation-type representation in equation 59.
onsider the configuration of Figure 5. The boundary �D now con-

ists of an acquisition surface �D0, a horizontal surface �D1 between
� and the source domain Ds, and a cylindrical surface �Dcyl with a
ertical axis through x� �Figure 5 is a side-view of this configura-
ion�. When we let the radius of this cylindrical surface go to infinity,
he contribution of the boundary integral over �Dcyl vanishes for
ody waves. The boundary integral over �D1 contains an evanescent
ave contribution and a contribution proportional to the square of

he reflection coefficients of the interfaces in domain D �Wapenaar
nd Berkhout, 1989�. Ignoring these contributions and assuming
hat the medium and interfaces in D are lossless and the contrasts �Ĥ
nd �Ĥb defined by equations 60 and 61 are negligible in D, we ob-
ain from equation 59 �using equation 57�

ˆ �x�,x�,�� = − 	
�D0

KḠ
ˆ *�x�,x,��KNxĜ�x,x�,��d2x ,

�66�

r, using equation 51,

û�x�,�� = − 	
�D0

KḠ
ˆ *�x�,x,��KNxû�x,��d2x . �67�

his expression formulates inverse extrapolation of the wavefield
ˆ �x,�� at acquisition surface �D0, because of sources below this sur-
ace, to any point x� between this surface and the sources. It is a gen-
ralization of the Kirchhoff-Helmholtz integral for inverse wave-
eld extrapolation �Schneider, 1978; Berkhout, 1985; Bleistein,
987; Tygel et al., 2000�, with applications in seismic migration. Un-
ike in the derivation of equation 63 for forward extrapolation, we as-
umed that the medium and interfaces in D are lossless. When the
edium and/or interfaces in D are not lossless, we can choose the

eference parameters as follows: Ā
ˆ

= Â*, B̄
ˆ

= − B̂†, and Ȳ
ˆ

= Ŷ*.As
consequence, the contrast functions �Ĥ and �Ĥb defined by equa-

ions 60 and 61 are zero, so equations 66 and 67 remain valid. How-
ver, this choice of reference parameters implies that the Green’s

unction Ḡ
ˆ �x�,x,�� propagating through the reference medium is

∂ 1

S

r x'

x''

x
n

G*(x', x, )−̂

∞

ω

Ĝ(x', x'', )ω

Ĝ(x, x'', )ω

∂ 0

∂ cyl

igure 5. Configuration for inverse wavefield extrapolation.
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rowing exponentially �to compensate for the exponential decay in
he wavefield û�x,���. Hence, the implementation of the inverse ex-
rapolation integral for attenuating media should be done with ut-

ost care to avoid instabilities �Mittet et al., 1995; Zhang and Wap-
naar, 2002�.

oundary integral representation (perfect interfaces)

We derive a representation for the scattered wavefield above a per-
ectly coupled interface. Consider the configuration of Figure 6, in
hich �D1 represents an interface. Assuming the contrasts �Ĥ and
Ĥb defined by equations 55 and 56 are negligible in D, we obtain

rom equation 54 �using equation 57�

ˆ �x�,x�,�� = Ḡ
ˆ �x�,x�,��

− 	
�D1

Ḡ
ˆ �x�,x,��NxĜ�x,x�,��d2x . �68�

e define the Green’s matrix as a superposition of an incident and a
cattered contribution, as stated by

Ĝ�x,x�,�� = Ĝinc�x,x�,�� + Ĝsct�x,x�,�� , �69�

here Ĝinc�x,x�,�� = Ḡ
ˆ �x,x�,��. Equation 68 remains valid when

utside D, i.e., in the lower half-space, the actual and reference me-
ium parameters are different. We choose the reference parameters
n the lower half-space such that they are continuous across �D1, and
omogeneous, isotropic, and nonporous beyond some finite domain
n the lower half-space. Consequently,

	
�D1

Ḡ
ˆ �x�,x,��NxĜinc�x,x�,��d2x = O; �70�

ence,

ˆ sct�x�,x�,�� = − 	
�D1

Ḡ
ˆ �x�,x,��NxĜsct�x,x�,��d2x , �71�

r, using equation 51,

ûsct�x�,�� = − 	
�D1

Ḡ
ˆ �x�,x,��Nxûsct�x,��d2x . �72�

ote the analogy with equation 63 for forward wavefield extrapola-
ion. The main difference is that û in equation 63 is the upgoing
avefield because of sources below �D1, whereas ûsct in equation 72

s the upgoing scattered wavefield at interface �D1 because of sourc-
s above this interface. This scattered wavefield can be expressed in
erms of a reflection operator acting on the incident wavefield at �D1.
or example, for the acoustic situation, it can be written as
xûsct�x,���− R�x,�KNxûinc�x,��, where R�x,� is the local an-
le-dependent reflection coefficient. This is a generalization of what
s commonly known as the Kirchhoff approximation �Bleistein,
984�.

oundary integral representation (imperfect interfaces)

The derivation for the scattered wavefield above an imperfect in-
erface is somewhat different. The interface is now represented by
Dint, whereas �D is a sphere with infinite radius. From equation 54,
e thus obtain �using equation 57�
Ĝ�x�,x�,�� = Ḡ
ˆ �x�,x�,��

− 	
�Dint

Ḡ
ˆ �x�,x,���Ĥb�x,��Ĝ�x,x�,��d2x ,

�73�

ith �Ĥb defined by equation 56. Various choices are possible for
he reference medium. Let us choose a reference medium that is
dentical to the actual medium, except that it has an interface with

erfect coupling, i.e., Ȳ
ˆ

= O, and hence Z̄
ˆ

= I. For �Ĥb, we thus ob-
ain �assuming small Ŷ�

�Ĥb = KMTN�I − Ẑ�M � j�KMTNŶM . �74�

oreover, for this choice, the reference Green’s function
¯̂ �x�,x�,�� in equation 73 is equal to the actual Green’s function
ˆ �x�,x�,�� in equation 68.

Equation 73 is an integral equation of the second kind for
ˆ �x�,x�,��. It can be solved iteratively, according to

�Ĝ�x�,x�,����k� = Ḡ
ˆ �x�,x�,��

− 	
�Dint

Ḡ
ˆ �x�,x,���Ĥb�x,��

��Ĝ�x,x�,����k−1�d2x , �75�

or k�1, with

�Ĝ�x�,x�,����0� = Ḡ
ˆ �x�,x�,�� . �76�

olume integral representation

The derivation for a volume integral representation is similar to
hat for the imperfect interfaces, but instead of the contrast function
Ĥb at the internal interfaces, we consider the contrast function �Ĥ

igure 6. Configuration for boundary integral representation.
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n D, see Figure 7. For �D we take again a sphere with infinite radius.
ence,

Ĝ�x�,x�,�� = Ḡ
ˆ �x�,x�,��

− 	
D

Ḡ
ˆ �x�,x,���Ĥ�x,��Ĝ�x,x�,��d3x ,

�77�

ith �Ĥ defined by equation 55. The iterative solution of this inte-
ral equation is given by

�Ĝ�x�,x�,����k� = Ḡ
ˆ �x�,x�,��

− 	
D

Ḡ
ˆ �x�,x,���Ĥ�x,��

��Ĝ�x,x�,����k−1�d3x , �78�

or k�1, with

�Ĝ�x�,x�,����0� = Ḡ
ˆ �x�,x�,�� . �79�

or k = 1, equation 78 is the Born approximation, which is frequent-
y used as a representation of primary data in modeling and inversion
Cohen and Bleistein, 1979; Raz, 1981; Bleistein and Cohen, 1982;
arantola, 1984; Miller et al., 1987; Wu and Toksöz, 1987; Orista-
lio, 1989�. For k�1, equation 78 represents a Neumann series ex-
ansion, which can be used for modeling primaries as well as inter-

igure 7. Configuration for volume integral representation.

a) b)
al multiples. For a discussion on the convergence aspects, see
okkema and van den Berg �1993�. Applications for the prediction
f internal multiples in nonlinear inversion are discussed by, e.g.,
nieder �1990�, Ten Kroode �2002� and Weglein et al. �2003�.

urface-related multiple prediction and
limination (convolution approach)

Surface-related multiple prediction and elimination was intro-
uced by Berkhout �1985� and Verschuur et al. �1992� and it was
ased on reciprocity theory by Fokkema and van den Berg �1993�
nd van Borselen et al. �1996�. The latter approach is generalized for
he wave phenomena discussed in this paper as follows. Let �D con-
ist of the acquisition surface �D0 and a hemisphere �D1 with infinite
adius in the lower half-space �we assume that, beyond some finite
adius, the medium in the lower half-space is homogeneous, isotro-
ic, and nonporous�. The Green’s matrix Ĝ�x�,x�,�� in this configu-
ation �with x� and x� at �D0� represents the actual data, including the
ultiples related to �D0, see Figure 8a. In the half-space below �D0,

he reference medium is specified as identical to the actual medium.
n the upper half-space, the reference parameters are homogeneous,
sotropic, and nonporous, and specified as continuous across �D0.

ence, the Green’s matrix Ḡ
ˆ �x�,x�,�� in the reference medium rep-

esents the data without surface-related multiples, see Figure 8b. The
elation between the two Green’s matrices follows from equation 54
nd is given by

Ḡ
ˆ �x�,x�,�� − Ĝ�x�,x�,��

= 	
�D0

Ḡ
ˆ �x�,x,��NxĜ�x,x�,��d2x . �80�

his expression can be used as the basis for modeling as well as elim-
nation of surface-related multiples. For modeling applications, we

ssume that Ḡ
ˆ �x�,x�,��, the response without surface-related multi-

les, is known. Then Ĝ�x�,x�,��, the response with surface-related
ultiples, can be found by solving equation 80 iteratively, according

o

�Ĝ�x�,x�,����k� = Ḡ
ˆ �x�,x�,��

− 	
�D0

Ḡ
ˆ �x�,x,��Nx�Ĝ�x,x�,����k−1�d2x ,

�81�

or k�1. The initial estimate is given by the response without multi-
les; hence,

�Ĝ�x�,x�,����0� = Ḡ
ˆ �x�,x�,�� . �82�

hen equation 80 is used for multiple elimination, then Ĝ�x�,x�,��
s the known response, and equation 80 is solved iteratively, accord-
ng to
igure 8. Configuration for multiple elimination.
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�Ḡˆ �x�,x�,����k� = Ĝ�x�,x�,��

+ 	
�D0

�Ḡˆ �x�,x,����k−1�NxĜ�x,x�,��d2x ,

�83�

or k�1. This time, the initial estimate is given by the response with
ultiples; hence,

�Ḡˆ �x�,x�,����0� = Ĝ�x�,x�,�� . �84�

he product under the integral in equation 83 represents a convolu-
ion process, producing high-order multiples from primaries and
ower-order multiples, which, after addition to the first term, com-
ensate the multiples in Ĝ�x�,x�,��.

urface-related multiple prediction and
limination (correlation approach)

Schuster �2001� and Berkhout and Verschuur �2003� suggest an
lternative to the convolution-based multiple prediction and elimi-
ation approach, based on correlations. For the configuration dis-
ussed above, assuming in addition that the medium is lossless, we
btain from equation 59

KḠ
ˆ *�x�,x�,��K + Ĝ�x�,x�,��

= 	
�D0

KḠ
ˆ *�x�,x,��KNxĜ�x,x�,��d2x

+ 	
�D1

KḠ
ˆ *�x�,x,��KNxĜ�x,x�,��d2x . �85�

he products under the integrals in equation 85 represent a correla-
ion process, producing primaries and low-order multiples from
igher-order multiples. Unlike in the convolution representation, the
ntegral along �D1 in equation 85 does not vanish when the medium
n the lower half-space is homogeneous, isotropic, and nonporous
eyond some finite radius. On the other hand, it vanishes due to scat-
ering loss when the medium in the lower half-space is sufficiently
nhomogeneous �Wapenaar, 2006�.

nterferometry (correlation approach)

Seismic interferometry deals with the generation of new seismic
esponses by cross-correlating wavefield measurements at different
eceiver positions �Claerbout, 1968; Weaver and Lobkis, 2001;
chuster, 2001; Wapenaar et al., 2002; Campillo and Paul, 2003;
erode et al., 2003; Schuster et al., 2004; Sabra et al., 2005; Draga-
ov et al., 2007�. The measurements take place in the actual medium,
o, the basic expression for interferometry is obtained by taking the
eference state equal to the actual state in the representation of the
orrelation-type, equation 59. Using the symmetry properties of Ĝ,
ˆ , B̂, Ẑ , and N , this yields
� x
�D�x��Ĝ�x�,x�,�� + �D�x��Ĝ†�x�,x�,��

= − �
�D

Ĝ�x�,x,��NxĜ†�x�,x,��d2x

+ 	
D

Ĝ�x�,x,���Ĥ�x,��Ĝ†�x�,x,��d3x

+ 	
�Dint

Ĝ�x�,x,��K�Ĥb*�x,��KĜ†�x�,x,��d2x ,

�86�

ith

�Ĥ = − 2�I�Â� + B̂ + B̂†, �87�

�Ĥb = MT�J − Ẑ†JẐ�M . �88�

quation 86 is a general representation of the Green’s matrix be-
ween x� and x� in terms of cross-correlations of observed fields at x�
nd x� because of sources at x on the boundary �D, on the internal
mperfect interfaces �Dint, as well as in the domain D. The inverse
ourier transform of the left-hand side is �D�x��G�x�,x�,t�
�D�x��GT�x�,x�,− t�, from which G�x�,x�,t� is obtained by taking

he causal part �assuming x� is located in D�. When the medium and
nterfaces are lossless, it suffices to have sources on �D only, see Fig-
re 9. Note that �D is not necessarily a closed surface: When the me-
ium is sufficiently inhomogeneous �D can be an open surface
Wapenaar, 2006�. On the other hand, when the medium is dissipa-
ive throughout D and the radius of �D is sufficiently large, the
oundary integral vanishes and sources are required throughout D
Snieder, 2006; Snieder et al., 2007�.

The application of equation 86 in its current form requires inde-
endent measurements of the impulse responses of different types of
ources at all x involved in the integrals. The right-hand side can be
odified into a direct cross-correlation �i.e., without the integrals� of

iffuse field observations at x� and x�, the diffusivity being caused by
distribution of uncorrelated noise sources, either on �D �for loss-

ess media� or in D �for dissipative media� �Wapenaar et al., 2006�.
Equation 86 has also important applications in efficient modeling

nd inversion �van Manen et al., 2005, 2006�. As mentioned above,
or the lossless situation, only the boundary integral over �D needs to
e evaluated. Hence, by modeling the responses of a distribution of

x' 

x 

x'' 

n 

Ĝ(x', x'',   ) ω 

Ĝ(x', x,   ) ω 
Ĝ(x'', x,   ) ω 

∂ 

igure 9. Configuration for interferometry �correlation approach�.
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SM16 Wapenaar
ources on the 2D boundary, equation 86 allows us to determine the
esponses of all possible sources in the 3D volume enclosed by the
oundary. This is very useful, for example, in nonlinear inversion,
here the Green’s functions between all possible pairs of points in a
olume are needed �see e.g., Weglein et al., 2003�.

nterferometry (convolution approach)

When the dissipation of the medium is significant, interferometry
ccording to the correlation approach requires a distribution of
ources throughout the medium. As an alternative, Slob and Wap-
naar �2007� and Slob et al. �2007� propose a convolution approach
o interferometry. Taking the reference state equal to the real state in
he convolution-type representation of equation 54 and using the
ymmetry property of Ĝ gives

��D�x�� − �D�x���Ĝ�x�,x�,��

= �
�D

Ĝ�x�,x,��NxKĜT�x�,x,��Kd2x . �89�

his is a representation of the Green’s matrix between x� and x� in
erms of cross-convolutions of observed fields at x� and x� due to
ources at x on the boundary �D only. Note that one of the observa-
ion points should be inside this boundary and the other outside, see
igure 10 �otherwise, the left-hand side of equation 89 vanishes�.
here are no restrictions with respect to the losses in the medium.
he application of equation 89 requires independent measurements
f the impulse responses of different types of sources at all x��D; a
odification for uncorrelated noise sources is not possible for the

onvolution approach.

CONCLUSIONS

Starting with a unified matrix-vector-form wave equation and
oundary conditions for acoustic, electromagnetic, elastodynamic,
oroelastic, and electroseismic waves, we derived general convolu-
ion- and correlation-type wavefield representations. We discussed
pplications including forward and inverse wavefield extrapolation,
oundary integral representations for perfect and imperfect interfac-
s, volume integral representations �the Born approximation and the
eumann series expansion�, multiple elimination, and seismic inter-

erometry, the latter two both in terms of convolutions and correla-
ions. Each of these applications is a generalization of the well-es-
ablished acoustic representations for any of the wave phenomena
overned by the unified wave equation.

x'

x

x''

n

Ĝ(x', x'', )ω

Ĝ(x', x, )ω
Ĝ(x'', x, )ω

∂

igure 10. Configuration for interferometry �convolution approach�.
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APPENDIX A

THE DIVERGENCE THEOREM OF GAUSS
IN MATRIX-VECTOR FORM

For a scalar field a�x�, the divergence theorem of Gauss reads

	
D

�ia�x�d3x = �
�D

a�x�nid
2x . �A-1�

ere, we modify this theorem for the differential operator matrix Dx

ppearing in equations 1 and 9. Let DIJ denote the operator in row I
nd column J of matrix Dx. The symmetry of Dx �equation 12� im-
lies DIJ = DJI. We define a matrix Nx, which contains the compo-
ents of the normal vector n, organized in the same way as matrix Dx.
ence, NIJ = NJI, where NIJ denotes the element in row I and column
of matrix Nx. If we replace the scalar field a�x� by aI�x�bJ�x�, we
ay generalize equation A-1 to

	
D

DIJ�aI�x�bJ�x��d3x = �
�D

aI�x�bJ�x�NIJd
2x , �A-2�

here the summation convention applies to repeated capital Latin
ubscripts, which may run from 1 to 4, 6, 12, 16, 18, or 22, depending
n the choice of operator Dx. Applying the product rule for differen-
iation and using the symmetry property DIJ = DJI, we obtain for the
ntegrand in the left-hand side of equation A-2,

DIJ�aIbJ� = aIDIJbJ + �DJIaI�bJ,

= aTDxb + �Dxa�Tb , �A-3�

here a and b are vector functions, containing the scalar functions
I�x� and bJ�x�, respectively. Rewriting the integrand in the right-
and side of equation A-2 in a similar way, we obtain the divergence
heorem of Gauss in matrix-vector form

	
D

�aTDxb + �Dxa�Tb�d3x = �
�D

aTNxbd2x . �A-4�

inally, we consider a variant of this equation. We replace a by Ka,
here K is the real-valued diagonal matrix introduced in equations
0–12, obeying the property K = K−1. Using equation 12, we thus
btain

	
D

�aTKDxb − �Dxa�TKb�d3x = �
�D

aTKNxbd2x . �A-5�
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