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Passive seismic interferometry by multidimensional deconvolution

Kees Wapenaar', Joost van der Neut!, and Eimer Ruigrok’

ABSTRACT

We introduce seismic interferometry of passive data by
multidimensional deconvolution (MDD) as an alternative to
the crosscorrelation method. Interferometry by MDD has the
potential to correct for the effects of source irregularity, as-
suming the first arrival can be separated from the full re-
sponse. MDD applications can range from reservoir imaging
using microseismicity to crustal imaging with teleseismic
data.

INTRODUCTION

Under specific conditions, the crosscorrelation of wavefields ob-
served at two receivers yields the impulse response between these
receivers. This principle is known as Green’s function retrieval or
seismic interferometry. Wapenaar et al. (2008a) and Schuster (Seis-
mic Interferometry, in press) provides an overview of this rapidly ex-
panding field of research.

In many situations, it can be advantageous to replace the correla-
tion process by deconvolution. One of the advantages is that decon-
volution compensates for the properties of the source wavelet; an-
other advantage is that it is unnecessary to assume the medium is
lossless. Snieder et al. (2006) deconvolve passive wavefields ob-
served at different depth levels and show that this leads to an esti-
mate of the impulse response. They apply it to earthquake data re-
corded at different heights at Pasadena, California’s Millikan library
and obtain the impulse response of the building. Mehta et al. (2007)
use a similar approach to estimate the near-surface properties of the
earth from passive recordings in a vertical borehole. Both approach-
es employ a 1D deconvolution process.

Various authors have shown that multidimensional deconvolution
(MDD), applied to controlled-source data with receivers at a con-
stant depth level (for example, at the ocean bottom or in a horizontal
borehole), can obtain the response of a redatumed source without
needing a model. Wapenaar and Verschuur (1996) and Amundsen

(1999) use MDD of wavefields recorded at the ocean bottom to ob-
tain the response of the subsurface without ocean-bottom and sur-
face-related multiples. Schuster and Zhou (2006) and Wapenaar et
al. (2008b) discuss MDD of controlled-source data in the context of
seismic interferometry.

In this letter, we propose a method for seismic interferometry of
passive data by MDD and show that, under specific circumstances,
the method compensates for irregularities in the source distribution.
This is an important difference with crosscorrelation methods,
which rely on the condition that waves are equipartitioned (Malcolm
etal., 2004; Snieder etal., 2007). The condition is fulfilled, for exam-
ple, when the sources are distributed regularly along a closed surface
and the power spectra of the sources are identical. MDD compen-
sates for anisotropic illumination without requiring knowledge
about the positions and spectra of the sources.

IMPLICIT GREEN’S FUNCTION
REPRESENTATION

We consider an arbitrary inhomogeneous anisotropic dissipative
medium in which we define a domain D enclosed by a boundary 9D
with outward-pointing normal vector n = (n,n,,n3). In the space-
frequency (x, ) domain, the Rayleigh-Betti reciprocity theorem for
elastodynamic wavefields is given by (Aki and Richards, 1980)
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(1)

where 0; = 0,(x, w) represents the particle velocity (the circumflex
denotes the frequency domain), 7; = 7;(x, ) is the traction (with ;
= #,n,, where 7,, is the stress), and f; = fi(x, w) is the external vol-
ume force. The lowercase subscripts i, j, etc., take on the values 1, 2,
and 3; Einstein’s summation convention applies to repeated lower-
case subscripts. The uppercase subscripts A and B refer to two inde-
pendent elastodynamic states. The medium parameters in ) are as-
sumed to be the same in both states; outside D they may be different,
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whereas at dD) different boundary conditions may apply for the
wavefields in states A and B.

Note that the products ; 47, 5, etc., in the frequency domain corre-
spond to convolutions (v; 4%, etc.) in the time domain. For this
reason, we call equation 1 a reciprocity theorem of the convolution
type. In previous work, we start with correlation reciprocity theo-
rems, leading to representations for Green’s function retrieval by
crosscorrelation. Here we use the convolution theorem of equation 1
to derive an implicit representation for Green’s function retrieval by
MDD.

We let 91D consist of 91, coinciding with the earth’s free surface
(not necessarily planar), and a hemisphere ¢, with infinite radius in
the lower half-space (Figure 1). The contribution of dD; to the
boundary integral in the left-hand side of equation 1 vanishes be-
cause of Sommerfeld’s radiation condition. If we would take free-
surface boundary conditions at d1), in both states, then the integral
over dD, would vanish as well. To retain a nonzero integral over
a1y, we choose different boundary conditions for the wavefields in
states A and B at dl),. In state B, we assume free-surface boundary
conditions, as in the actual situation (Figure 1b); butin state A, we let
), be a transparent surface (Figure 1a).

In state A, we choose a point source of volume force at x,
somewhere in the lower half-space; hence, fk_A(x,w) = Sip(x
— X,)8(x4, w), where 85p(x — X,) is a 3D Dirac delta function and
§i(x4, w) is the source spectrum. For the wavefield emitted by this

a) 2

\
\
/ B \
1 1
1 1
: ;
1 1
: /
\ ,
\ ,
\ A //
y 3 ,
y
\ ® O e
" X, -

b)

Figure 1. Medium configuration and wavefields in states A and B. In
the reference state (A), 9D, is a transparent surface; in the actual state
(B), itis a free surface. The rays represent full responses between the
indicated source and receiver points, including primary and multiple
scattering caused by inhomogeneities of the medium and (in state B)
by the free surface. In state A, the source is a point source of volume
force at x,; in state B, itis a point source of surface traction at xz. The
Green'’s functions shown in state B are the reciprocal versions, with a
receiver at Xp.

source, we write 0; 4(X, w) = (X, X4, ») and fia(x,0) = ?j(x,XA,w),
where the bars denote the reference situation with the transparent
surface 91D, (see Figure 1a).

In state B, we introduce a source in terms of a boundary condition
at the free surface d1),. This is possible because, at a free surface, the
traction is zero everywhere except where a source traction is applied.
We define a point source of surface traction with unit amplitude in
the x,-direction at xze dl),, according to 7 5(x,w) = &,p(x
— X3) 0, for x € 91, where 8,p(x — X3) is a 2D Dirac delta func-
tion in 91Dy and 8, is the Kronecker delta function. The response of
this unit source is expressed in terms of a Green’s function, accord-
ing to 9, 5(x, w) = éjm(x,xg,w) = ém,-(xB,x, w). This is the Green’s
function of the actual medium, including the reflections of the free
surface at 91D, (see Figure 1b).

Substituting these sources and wavefields into equation 1, taking
f,,B(x, ) = 0, we obtain

j ij(XB’X, w)t_j(X,XA,a))dZX
D,

= _{ﬁm(XB7XA’w) - 6m(XB7XA’w)}v (2)

with 9,,(Xp, X4, w) = Goi(Xps X1, ©)5(X 4, @) denoting the observed
passive data at the free surface, attributable to a source in the subsur-
face (hence, it can be seen as the transmission response of the medi-
um). The values ,,(Xz, X4, @) and ?j(x,xA, w) represent the responses
in the reference state of the same subsurface source; under specific
conditions (see next section), these can be estimated from the ob-
served data 0,,(Xz, X4, ).

Equation 2 is an implicit representation of the convolution type
for the Green’s function ém (X, X, ) with source and receiver at the
free surface dD, (i.e., the reflection response of the medium, includ-
ing an integrable singularity for x = x;). If it were a single equation,
the inverse problem would be ill posed. However, equation 2 exists
for each source position x, and for each available source component
at x4. Solving this ensemble of equations for (A;m‘,-(xs,x, w) involves
MDD, as we show in the next section.

Although in the derivation we assume a point source of volume
force at x,, a similar derivation shows that equation 2 holds equally
well for other types of sources at x,, such as volume-injection or
shear-dislocation sources (e.g., resulting from fault slip). The source
also is not necessarily a point source. For an extended source, both
sides of equation 2 can be integrated over x, along the extended
source, yielding an equation with exactly the same form but with 9,
0,,and ?j being the responses of the extended source.

MULTIDIMENSIONAL DECONVOLUTION (MDD)

Here we discuss the solution of equation 2 for the acoustic situa-
tion. In a later section, we indicate the required modifications for the
elastodynamic situation.

We first define ?,-(X,XA, w) = — 6,,,nl,ﬁ(x,xA, w), where p is the
acoustic pressure in the reference state. Substituting into equation 2

and multiplying both sides by —n,, gives
f é(xB$X’ w)ﬁ(X7XAaw)d2X
aD,

= 6(XB9XA»(1)) - ﬁ(XB’X/‘nw)’ (3)



Seismic interferometry by deconvolution A53

where 0(Xp,Xa, @) = 1,,0,(Xp. X, @) and 0(Xp,Xa, @) = 10X
X4, ) are the normal components of the particle velocity in the actu-
al and in the reference states, respectively. Similarly, G(XB,X, )
= n,,,n‘,-ém,»(xg,x, w) is the Green’s function in the actual state with a
normal traction source and a normal particle velocity receiver at the
free surface.

Before we show how G(xB,x, ) can be resolved from equation 3
by MDD, we discuss a way to extract the reference responses U and ﬁ
from the observed passive data (X, X4, ). Assume that the subsur-
face consists of an inhomogeneous target below a relatively smooth
overburden and that the source at x, is located below the target. As-
suming the source wavelet is a transient, the transmission response
without free surface multiples, i.e., ﬁ(xB,xA, ), can be estimated
from the transmission response with free surface multiples,
0(x,X4, w), by applying a time window in the time domain and mul-
tiplying the result by one-half (to correct for the absence of the
downgoing wavefield in the reference state). Both ¢ and p are upgo-
ing waves at the transparent surface 9Dy, so p can be obtained from o
using a one-way wave equation for upgoing waves. For example,
when d1), is planar and the medium just below 91, is laterally in-
variant, we can use the relation p = (p/q)v, where the tilde denotes
the ray-parameter domain, p is the mass density, and g is the vertical
slowness.

Next, we invert equation 3 for é(x,;,x, ). In matrix notation
(Berkhout, 1982), this equation can be written as

GP=V-V 4)

(variables in boldface sans-serif font denote matrices containing dis-
cretized wavefields). A column of V contains U(Xp,X4, ) for a fixed
source position x, and variable receiver positions x; (all for the same
frequency component w). Assuming responses 0 (Xg, X4, w) are avail-
able for independent sources, they are stored in the different columns
of V [hence, arow of V contains & (xp,X,, w) for a fixed receiver posi-

tion x, and variable source positions x,]. Matrices é, P, and V are
organized in a similar way.

The matrix equation can be solved per frequency component—for
example, via weighted least-squares inversion—according to

G = (V- V)WP(PWP' + &), (5)

where the superscript T denotes transposition and complex conjuga-
tion, W is a diagonal weighting matrix, | is the identity matrix, and >
is a stabilization parameter. The matrix W is used to compensate for
large variations in the energy of the observed responses, whereas €2
prevents evanescent wave components from becoming unstable in
the inversion. In general, W and € are frequency dependent. Apply-
ing the matrix inversion of equation 5 for each frequency component
and transforming the result to the time domain is equivalent with
MDD in the time domain.

With the actual sources only below a target area, the direct wave in
é(xs,x, ) will not be reconstructed properly. In practice V- Vin
equation 5 is, for convenience, replaced by Vv, causing another error
in the direct-wave reconstruction. The erroneous direct-wave contri-
bution is removed by muting the final resultin the time domain.

Note that the matrix product GPin equation 4 is a discretized rep-
resentation of the integral in the left-hand side of equation 3. This
discretization assumes regular sampling of the receiver coordinate x
in ﬁ(x,xA,w). This is not a very severe assumption because the re-

ceivers are at the surface and their positions are known. In the case of
irregular sampling, a regularization procedure (Duijndam et al.,
1999) could be applied prior to MDD.

A more important observation is that MDD according to equation
5 can be carried out without knowing the source positions and the
medium parameters (similar to crosscorrelation interferometry) and
without assumptions with respect to the regularity of the source posi-
tions x, (the latter property is unique for the MDD approach). More-
over, the MDD approach compensates for different types of sources,
variations in power spectra, nonuniform radiation characteristics,
and even spatially extended sources (e.g., plane-wave sources with
different directions) because all of these effects are accounted for in
the underlying equation 3. The quality of the MDD result depends
mainly on the source density. An intuitive criterion is that the aver-
age horizontal distance between the sources should be smaller than
half the minimum horizontal wavelength.

NUMERICAL EXAMPLE 1: IRREGULAR SOURCE
DISTRIBUTION BELOW A TARGET

We illustrate the potential of MDD to account for irregular source
distributions at the hand of 2D data modeled in a simple, horizontally
layered, lossless medium.

Consider the configuration in Figure 2a, which consists of a hori-
zontally layered target below a homogeneous overburden. The green
triangles at the free surface denote 51 regularly spaced vertical geo-
phones with Ax; = 40 m (only nine geophones are shown). The
blue dots below the layered target denote 250 irregularly spaced
sources with average Ax; = 20 m. These sources emit sequentially
(in arbitrary order) transient acoustic waves. The central frequency
of the sources is distributed randomly between 10 and 30 Hz. The re-
sponses are registered by the geophones at the surface, yielding
12,750 traces of 6 s, sampled with Ar = 5 ms. These are the passive
datarepresented by v(X,X,1).

Figure 2b shows v(x,X,,?) for fixed x,, (a subsurface source some-
where around x; = 0 m) and variable x (denoting the geophone po-
sitions at the surface). The time origin # = 0 in this figure does not
need to correspond with the source action; any source time shiftis re-
moved in the subsequent correlation or deconvolution process.

First, we apply seismic interferometry (Green’s function retriev-
al) by crosscorrelation. For a fixed (but unknown) source position
X,, we crosscorrelate the trace at the central receiver (x = 0) with
the traces at all other receivers. We repeat this for all sources and sum
the result per receiver over all sources. The causal part of the result is
an estimate of the reflection response (the Green’s function) at all re-
ceivers at the free surface, resulting from a source at x = 0 and ¢
= 0. By time reversing the acausal part and adding this to the causal
part (to improve the signal-to-noise ratio, or S/N), we obtain the re-
sult shown by the red traces in Figure 2¢ (only every fifth trace is
shown). The black dashed traces in this figure represent the directly
modeled reflection response. Note that the arrival times of the inter-
ferometric result nicely match those of the directly modeled result,
but the waveforms and amplitudes are not accurately reconstructed.
Moreover, the interferometric results are somewhat noisy because of
the irregularities in the source distribution and the variations in the
source spectra.

Next, we apply interferometry by MDD, as discussed in the previ-
ous section. The first arrivals (including internal multiple scattering
in the target) in v(x,x,,?) are well separated in time from the surface-
related multiples, so the reference response 0(xX,X,4,7) is extracted



A54

easily by applying a time window, indicated by the dashed box in
Figure 2b. Then p(x,x,,7) is approximated by multiplying 0(x,X4,7)
with pc/cos a(x), where c is the propagation velocity of the overbur-
den and «(x) is the angle between the propagation direction of the
first arrival at x and the normal at the surface [this angle can be esti-
mated from the local time dip of (X, X4,7)].

In the next step, v and p are Fourier transformed and stored in ma-
trices V and P, which are created for each frequency component. The
Green’s matrix G is obtained by applying equation 5 (with V-V
replaced by \7). Using source-receiver reciprocity, we add the trans-
pose of Go improve the S/N. Taking the central column and apply-
ing an inverse Fourier transform gives G(x3,0,t) for variable Xp.
This Green’s function is represented by the red traces in Figure 2d
(every fifth trace is shown); the black dashed traces in this figure rep-
resent the directly modeled result (results have been convolved with
the same wavelet). Arrival times, waveforms, and amplitudes match
very well, and the noise level is significantly lower than in Figure 2c.

NUMERICAL EXAMPLE 2: SOURCES
SANDWICHED BETWEEN LAYERS

One of the underlying assumptions of MDD is that the reference
response 0(X,X,,7) can be separated from the observed passive data
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v(X,X,4,7). This is not always possible by time windowing because of
interference of later arrivals in 0(x,X,,7) with, for example, the sur-
face-related multiples in v(x,X,4,7). What we can do in such cases is
to ignore the later arrivals and approximate (X, X,,7) by the first ar-
rival inv(x,X,,) (including the short-period internal multiples). Fol-
lowing this procedure, equation 5 still retrieves the main reflection
events in the Green’s function correctly, but it will also result in spu-
rious events. In the following example, we show that, in specific situ-
ations, these spurious events may disappear.

We consider the same configuration as in Figure 2a but with one
reflector added at depth level x; = 2400 m, which is below the
sources. Figure 3a shows the response of one of the sources. The true
reference response 0(x,X,,7) now also contains reflections from this
deeper reflector, but we approximate it by extracting the first arrival
from v(x,x,,?) (indicated by the dashed box in Figure 3a). The refer-
ence response p(X,Xy,1) is obtained in the same way from 0(x,Xy, )
as in the previous example (hence, it also contains only the first arriv-
al).

For the first experiment in this model, we consider sources that are
perfectly aligned at depth level x; = 1400 m. The result of interfer-
ometry by MDD is shown in Figure 3b and is compared with the di-
rectly modeled response (a larger portion of the time axis is shown
than in Figure 2). We see a good match for the main events, but we
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Figure 2. Numerical example of seismic interferometry with irregular sources. (a) Configuration with a horizontally layered target below a ho-
mogeneous overburden and a free surface. The irregularly distributed sources below the target emit transient signals sequentially. (b) Response
of one of the sources. (c) Result of interferometry by crosscorrelation (red traces) compared with the directly modeled response of a source at x

= O (black dashed traces). (d) Result of interferometry by MDD.
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also see a spurious event (indicated by the arrow) interfering with the
target response because of the approximations in v and p (this spuri-
ous event can be interpreted as the result of the deconvolution of the
reflected wave by the first arrival).

We repeat the experiment with the same model but this time with
the irregular source distribution of Figure 2a. The result is shown in
Figure 3c. The spurious event completely disappears, but all other
events (including the response of the reflector below the sources) re-
main untouched. The randomness of the source depths destroys the
coherency of the spurious event related to the reflector below the
sources. Draganov et al. (2004) first discussed this effect for the
crosscorrelation method.
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Figure 3. Numerical example for the configuration of Figure 2a, with
an extra reflector below the sources. (a) Response of one of the
sources. (b) Result of interferometry by MDD when the sources are
aligned at a constant depth. Note the spurious event in the target re-
sponse. (c) Result of interferometry by MDD with irregularly dis-
tributed sources. Note the absence of spurious events.

REVISITING THE ELASTODYNAMIC SITUATION

We indicate the required modifications for applying MDD to the
elastodynamic situation. Equation 2 is an exact implicit representa-
tion for the elastodynamic Green’s function ém /(Xp,X,w) in an arbi-
trary inhomogeneous anisotropic dissipative medium. Similar to the
acoustic situation, the main complication for resolving ém ;1s that the
reference responses v,, and ?j must be extracted from the observed
data 0,,(x,X4, w). Assuming transient sources, we propose to (1) de-
compose the particle velocity data at the free surface into upgoing
(quasi-) P- and S-waves, (2) extract the first arrivals to obtain an ap-
proximation of the P and S reference responses, and (3) recompose
these responses into the reference particle velocity ¥,, and traction ?j
The effect of the approximations in o and;_j on the retrieved Green’s
function remains to be investigated.

Another issue is that equation 2 has the appearance of three equa-
tions (m = 1,2,3) for nine unknown Green’s functions ém ;- Solving
this apparent ill-posedness requires that there be multiple types of
sources in the subsurface (e.g., forces in different directions) in addi-
tion to many source positions. Note that the different types of sourc-
es do not need to share the same positions.

CONCLUSIONS

We propose passive seismic interferometry by MDD as an alter-
native to the crosscorrelation method. The main advantage of MDD
is its relative insensitivity to irregular source distributions. More-
over, it can be applied to dissipative media. The main complication is
the underlying assumption that the reference response can be sepa-
rated from the observed data. We have discussed the application for
sequentially recorded responses of transient sources in configura-
tions for which the surface-related multiples do not interfere signifi-
cantly with the first arrival. When these assumptions are fulfilled
only partially, MDD still recovers the main events accurately but
spurious events appear as well. However, spurious events related to
reflectors below the sources are largely suppressed because of the
randomness of the source positions.

Unlike in the crosscorrelation method, in MDD the responses at
all receivers are involved simultaneously in the matrix inversion.
This matrix inversion makes MDD more costly than crosscorrela-
tion. Moreover, it requires a regular receiver grid, or at least a grid
that is dense enough to allow regularization.

The choice for applying passive seismic interferometry by cross-
correlation or by MDD depends on many factors. In some cases, it
may be useful to use a hybrid approach of MDD and crosscorrela-
tion. Because the crosscorrelation method does not rely on the sepa-
ration of the first arrival, it can be used to identify which events in the
MDD result are actual reflections and which are spurious events. De-
spite the underlying assumptions of MDD, we believe its relative in-
sensitivity for irregularities in the source distribution makes it an at-
tractive approach for various applications, ranging from reservoir
imaging and characterization using microseismic data to crustal im-
aging with teleseismic data.
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