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ABSTRACT

Iterative substitution of the multidimensional Marchenko equa-
tion has been introduced recently to integrate internal multiple
reflections in the seismic imaging process. In so-called Marche-
nko imaging, a macro velocity model of the subsurface is required
to meet this objective. The model is used to back-propagate the
data during the first iteration and to truncate integrals in time dur-
ing all successive iterations. In case of an erroneous model, the
image will be blurred (akin to conventional imaging) and artifacts
may arise from inaccurate integral truncations. However, the
scheme is still successful in removing artifacts from internal
multiple reflections. Inspired by these observations, we rewrote
the Marchenko equation, such that it can be applied early in a
processing flow, without the need of a macro velocity model. In-

stead, we have required an estimate of the two-way traveltime
surface of a selected horizon in the subsurface. We have intro-
duced an approximation, such that adaptive subtraction can be
applied. As a solution, we obtained a new data set, in which all
interactions (primaries and multiples) with the part of the medium
above the picked horizon had been eliminated. Unlike various
other internal multiple elimination algorithms, the method can be
applied at any specified target horizon, without having to resolve
for internal multiples from shallower horizons. We successfully
applied the method on synthetic data, where limitations were re-
ported due to thin layers, diffraction-like discontinuities, and a
finite acquisition aperture. A field data test was also performed,
in which the kinematics of the predicted updates were demon-
strated to match with internal multiples in the recorded data,
but it appeared difficult to subtract them.

INTRODUCTION

The occurrence of internal multiple reflections is a long-standing
issue in seismic reflection imaging for marine acquisition (Hadidi
and Verschuur, 1997; Van Borselen, 2002) and land acquisition
(Alá’i and Verschuur, 2006; Kelamis et al., 2006; El-Emam et al.,
2011). Various methods have been developed to predict and subtract
internal multiples from recorded seismic data. In internal multiple
elimination (IME), this is done in a layer-stripping fashion by back-
propagating the recorded data to the various multiple generators in
the subsurface and applying an algorithm based on multidimensional
convolution and adaptive subtraction (Berkhout and Verschuur,
2005) or inversion (Ypma and Verschuur, 2013). As shown by Ja-
kubowicz (1998), the back-propagation step can be replaced by a
multidimensional crosscorrelation with primary reflections from the
multiple generators. This approach requires identification of the in-
ternal multiple generators in the input data, but does not depend on a

macro velocity model. The subtraction of the predicted internal multi-
ples is typically applied with a least-squares matching filter, in which
a minimum-energy criterion is imposed on the preserved primary re-
flections (Verschuur and Berkhout, 2005). Various case studies have
demonstrated the success of this methodology to field data (Griffiths
et al., 2011; King et al., 2013; Song et al., 2013; Cypriano et al., 2015).
Internal multiple reflections can also be estimated from the third

(and higher order) term(s) in the inverse scattering series (ISS), de-
rived from the Lippmann-Schwinger equation (Weglein et al., 1997)
or from the Bremmer coupling series (Malcolm and de Hoop,
2004). Unlike in IME, all internal multiples are estimated at once,
rather than through layer stripping. The ISS methodology can be
interpreted as a migration-demigration process (Verschuur, 2013;
Löer et al., 2016). Because any error in the macro model that is
encountered during migration is compensated during demigration,
the methodology appears to be relatively insensitive for errors in the
macro model. However, computing the ISS requires accurate input
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data with a relatively broad frequency band. Incomplete data, inac-
curate source signature deconvolution, seismic attenuation, and
other factors often require a matching filter to subtract the multiples
predicted by the ISS from recorded field data, as shown by several
studies (Matson et al., 1999; Luo et al., 2011; de Melo et al., 2014).
Recently, it was shown that internal multiple reflections can also

be eliminated by solving the multidimensional Marchenko equation
(Behura et al., 2014; Slob et al., 2014; Wapenaar et al., 2014b). With
this approach, up- and downgoing Green’s functions are retrieved at
an arbitrary level in the subsurface. By multidimensional deconvo-
lution of the retrieved upgoing Green’s functions with the retrieved
downgoing Green’s functions at this level and evaluating the result
at zero delay time (the imaging condition), an image emerges with-
out artifacts from internal multiple reflections (Wapenaar et al.,
2012; Broggini et al., 2014). The multidimensional deconvolution
step can be expanded as a Neumann series and it can be shown that
only the first term in this series contributes to the imaging condition
(van der Neut et al., 2013). Because this first term is identical to the
deconvolution of the retrieved upgoing Green’s function with only
the first event in the downgoing Green’s function, an artifact-free im-
age can also be constructed by crosscorrelation (or deconvolution) of
these quantities, as demonstrated by van der Neut et al. (2015b).
Ravasi et al. (2016) apply the Marchenko equation to marine field

data to image a local target zone either from above or below. Vas-
concelos et al. (2015) demonstrate the effectiveness of the method-
ology in complex media and illustrate how prior knowledge of the
medium’s reflectivity can be integrated. Liu et al. (2016) use the
Marchenko equation for local imaging below and above a borehole
by combining seismic records at the surface with vertical seismic
profile data. Although we restrict ourselves to solutions of the acous-
tic-wave equation in this paper, the Marchenko equation can also be
derived for elastic media (da Costa Filho et al., 2014, 2015; Wapenaar
and Slob, 2014). Consequently, the theory that is derived in this paper
might also be extended to the elastic case.
Similar to the ISS and the method of Jakubowicz (1998), Mar-

chenko imaging requires accurate reflection data. The source sig-
nature, source/receiver ghosts, and free-surface multiples should
be removed from the initial recordings. Because seismic attenuation
is not accounted for in the underlying theory (Wapenaar et al.,

2014a) and the recorded data are generally incomplete (van der
Neut et al., 2015a), amplitude mismatch is expected in the predicted
internal multiples. To compensate for this mismatch, it can be ben-
eficial to apply Marchenko imaging adaptively. Van der Neut et al.
(2015b) describe a procedure for this, in which an adaptive pro-
cedure is applied at each image point. However, evaluation of the
Marchenko equation at each image point individually tends to be
expensive from a computational point of view.
As shown by Broggini et al. (2014), Marchenko imaging is not

very sensitive to errors in the macro velocity model. To understand
this observation, we should realize that, apart from blurring effects
and imperfect integral truncations at high offsets, velocity errors
manifest themselves mainly as time shifts in the retrieved Green’s
functions (similar to migration). By redatuming the retrieved Green’s
functions back to the acquisition surface through multidimensional
convolution, we can undo this shift (similar to demigration), as illus-
trated by Meles et al. (2016). Hence, the combination of Marchenko
redatuming and multidimensional convolution can be interpreted as a
migration-demigration process, similar to other IME schemes. By
predicting internal multiples at various depth levels in the subsurface
and redatuming them to the acquisition level, an IME scheme can be
derived (Meles et al., 2015). Alternatively, we can retrieve primary
reflections at each depth level and redatum them to the acquisition level
(Meles et al., 2016). This procedure requires processing multiple depth
levels in a top-down approach, akin to various other IME schemes.
In this paper, we show how all interactions with the medium

above a single horizon can be removed without first having to proc-
ess shallower horizons. Moreover, we avoid the migration-demigra-
tion process that is embedded in the approach of Meles et al. (2015)
by deriving an alternative Marchenko equation that can be evaluated
directly at the acquisition level without a macro velocity model.
Instead, we make use of a two-way traveltime surface of a single
horizon that can be picked in the recorded data. The output of our
scheme is a new data set that would be recorded if the medium
above the selected horizon was nonreflective. These data can be
migrated below the picked horizon, without suffering from any in-
teraction with the overburden. We start with the derivation of an
alternative Marchenko equation, which can be solved without a
macro velocity model. Then, we show how the result can be used

for IME by adaptive subtraction. The methodol-
ogy is applied to a simple and a more complex
synthetic data set and to marine field data. Fi-
nally, we discuss similarities and differences with
existing IME methods. For the reader’s conven-
ience, we have provided a table with the various
operators and wavefields that occur in Table 1.

CONVENTIONAL
REPRESENTATIONS

In this paper, we indicate time as t and spatial
locations as x ¼ ðχ ; zÞ, where χ denotes the
horizontal (x and y) coordinates and z denotes
depth. An arbitrary wavefield is expressed as
PðχR; zr; χ S; zs; tÞ, where xS ¼ ðχ S; zsÞ is the
source location and xR ¼ ðχR; zrÞ is the receiver
location. Note that we use lower case subscripts
for z and upper case subscripts for x and χ . Con-
sequently, we can easily define multiple source

Table 1. Overview of the operators and wavefields that occur in this paper.

Operator Wavefield

R Convolution with Gþ
d Direct downgoing Green’s function

reflection response Uþ
d Same, projected to acquisition surface

R⋆ Crosscorrelation with Gþ
m Coda of downgoing Green’s function

reflection response Uþ
m Same, projected to acquisition surface

Θty
tx Truncation of data G− Upgoing Green’s function

outside ½tx; ty� U− Same, projected to acquisition surface

Ω Combination of operators fþ1d Direct downgoing focusing function

Θt2
t0R

⋆Θt2
t0R δ Same, projected to acquisition surface

Ω⋆ Combination of operators fþ1m Coda of downgoing focusing function

Θ−t0
−t2RΘ−t0

−t2R
⋆ vþm Same, projected to acquisition surface

MðζÞ Convolution with ζ f−1 Upgoing focusing function

where ζ ¼ Uþ
m∕Uþ

d v−1 Same, projected to acquisition surface
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and receiver locations at a specified depth level. We introduce the
temporal Fourier transform

PðχR; zr; χ S; zs;ωÞ ¼
Z þ∞

−∞
dte−jωtPðχR; zr; χ S; zs; tÞ; (1)

where j is the imaginary unit and ω is the angular frequency. In the
derivations that follow, we will often switch between the time and
frequency domain, depending on the nature of the problem. The
seismic reflection response is expressed in the time domain as
RðχB; za; χA; za; tÞ, where za denotes the acquisition depth level at
which the data are recorded (i.e., the earth’s surface). We emphasize
that the reflection response does not contain a source signature. This
means that the source signature should be deconvolved from the re-
corded data in practice. The sources and receivers are located at the
acquisition surface Λa, being a transparent boundary at za. It is as-
sumed that a nonreflective half-space exists above this level. In prac-
tice, this means that free-surface multiples should first be removed
from the recorded data. However, the formulation can be extended
to include free-surface multiples, as shown by Singh et al. (2015).
Besides the reflection data, we make use of the so-called focusing
function f1ðχA; za; χF; zf; tÞ, being a particular solution of the
source-free wave equation in a medium that is identical to the physi-
cal medium between the levels za and zf, but which is reflection-free
outside this domain. The focusing function is designed, such that it
focuses at the focal point xF ¼ ðχF; zfÞ, with zf > za. We define Λf

as a horizontal boundary of all potential focal χF points at depth zf .
Finally, we define the Green’s function GðχF; zf; χA; za; tÞ for the
case that a source is excited at xA and a receiver is positioned at
the focal point xF. Unlike the focusing function, the Green’s function
is defined in the same medium as the recorded data. The focusing
function and Green’s function can be partitioned by separating their
downgoing constituents (indicated by superscriptþ)Gþ and fþ1 , and
their upgoing constituents (indicated by superscript −) G− and f−1 .
Here, the upgoing and downgoing constituents are power-flux nor-
malized (Wapenaar et al., 2014a). As a consequence of this normali-
zation, these wavefields obey additional reciprocity relations, which
will be exploited in this paper.
Most methodologies in seismic data processing can be interpreted

by the actions of linear (e.g., migration, deghosting, etc.) operators on
the recorded seismic data. In Marchenko redatuming, it seems more
natural to interpret the recorded data as an operator, acting (multiple
times) on (estimates of) the focusing function (van der Neut et al.,
2015a). We adopt a similar philosophy in this paper. To simplify
the notation, we introduce operator R for multidimensional convo-
lution of an arbitrary wavefield PðχB; za; χ S; zs; tÞ with the recorded
reflection data, according to

fRPgðχA;za;χ S;zs;tÞ¼
Z þ∞

−∞
dτ

Z
Λa

d2χBRðχA;za;χB;za;τÞ

PðχB;za;χ S;zs;t−τÞ: (2)

An equivalent operatorR⋆ is introduced for multidimensional cross-
correlation with the recorded reflection data:

fR⋆PgðχA;za;χ S;zs;tÞ¼
Z þ∞

−∞
dτ
Z

Λa

d2χBRðχA;za;χB;za;τÞ

PðχB;za;χ S;zs;tþτÞ: (3)

Slob et al. (2014) and Wapenaar et al. (2014b) introduce two rep-
resentations from which the multidimensional Marchenko equation
can be derived. The first of these representations is of the convo-
lution type and describes a multidimensional convolution of the
downgoing part of the focusing function fþ1 with the reflection data.
We write this expression with the notation of equation 2 as

f−1 ðχA; za; χF; zf; tÞ þ G−ðχF; zf; χA; za; tÞ
¼ fRðfþ1d þ fþ1mÞgðχA; za; χF; zf; tÞ: (4)

In this representation, we have separated the downgoing part of the
focusing function into a direct part fþ1d and a coda fþ1m. The direct
part focuses the direct wavefield. It is essentially a classical reda-
tuming operator that can be computed by inversion of the direct
wavefield because it propagates in the physical medium. In practice,
fþ1d is generally approximated by a time-reversed wavefield in a
smooth macro velocity model (Broggini et al., 2014). If the medium
was homogeneous between levels za and zf , the coda fþ1m would
vanish, as would f−1 on the left side of equation 4. In this special
case, equation 4 resembles a conventional redatuming scheme that
ignores scattering in the overburden (Berryhill, 1984), where the
upgoing Green’s function G− can be interpreted as redatumed data
with a source at the acquisition level and a receiver at the focal point.
However, when the medium is heterogeneous between za and zf , a
conventional redatuming scheme fails because reflections from the
overburden will be mispositioned, leading to artifacts in the reda-
tumed data space (Malcolm et al., 2007). Considering equation 4,
these artifacts can be understood intuitively. Because fþ1m and f−1
are nonzero in this case, fþ1d by itself is insufficient for reconstruction
of the upgoing Green’s function in this environment. The Marchenko
equation as presented by Wapenaar et al. (2014a) can be interpreted
as a tool to retrieve the missing components fþ1m and f−1 , such that
equation 4 can be used for retrieval of G−, even below a hetero-
geneous overburden.
The second representation is of the correlation type and describes

a multidimensional crosscorrelation of the upgoing part of the fo-
cusing function f−1 with the reflection data. We write this represen-
tation with the help of equation 3 as

fþ1dðχA;za;χF;zf;tÞþfþ1mðχA;za;χF;zf;tÞ
−Gþ

d ðχF;zf;χA;za;−tÞ
−Gþ

mðχF;zf;χA;za;−tÞ¼fR⋆f−1 gðχA;za;χF;zf;tÞ: (5)

This result is only valid when the evanescent field is neglected. Hori-
zontally propagating waves are not accounted for (Wapenaar et al.,
2014b) and should be removed from the data. On the left side of
equation 5, we find the downgoing focusing function fþ1 ðtÞ and the
polarity- and time-reversed downgoing Green’s function −Gþð−tÞ.
Both these quantities are partitioned in a direct part (indicated by sub-
script d) and a coda (indicated by subscript m). In Marchenko reda-
tuming, it is strictly assumed that Gþ

mðtÞ arrives later in time than
Gþ

d ðtÞ. As a direct consequence of this assumption, fþ1mðtÞ arrives
later in time than fþ1dðtÞ (Wapenaar et al., 2014a; van der Neut et al.,
2015a). If the medium was homogeneous between za and zf , the
right side of equation 5 would vanish, as would fþ1mðtÞ and Gþ

mð−tÞ
on the left side. In this special situation, we find that the time-reversed
downgoing Green’s function and the focusing function are identical.
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In case of a heterogeneous overburden, however, this equality is no
longer satisfied due to scattering losses in the overburden. Hence, the
other terms in the equation should also be evaluated in this case.
The direct part of the downgoing focusing function can be inter-

preted as the inverse of the direct part of the downgoing Green’s
function. In the frequency domain, this can be expressed as (Wa-
penaar et al., 2014a)

δðχ 0
F − χFÞ

¼
Z
Λa

d2χBG
þ
d ðχ 0

F; zf; χB; za;ωÞfþ1dðχB; za; χF; zf;ωÞ; (6)

where δðχ 0
F − χFÞ is a spatially band-limited 2D delta function in

space. We emphasize that equation 6 is only valid when the wave-
fields are power-flux normalized. By deriving an equivalent repre-
sentation for the situation, where za and zf are interchanged and
applying source-receiver reciprocity, it follows that we may also
write

δðχ 0
B − χBÞ

¼
Z
Λf

d2χFG
þ
d ðχF;zf;χ 0

B;za;ωÞfþ1dðχB;za;χF;zf;ωÞ: (7)

Note that in equation 7, the integral is carried out over Λf, whereas
in equation 6, the integral is carried out over Λa. In this paper, we
will use equation 7 extensively to collapse the direct part of the fo-
cusing function into a delta function at the acquisition surface.

REVISED REPRESENTATIONS

Wapenaar et al. (2014a) demonstrate how the multidimensional
Marchenko equation can be derived from equations 4 and 5. The
Marchenko equation could then be solved, given the reflection data
R and an estimate of fþ1d, which typically requires the use of a macro
velocity model. In this paper, we take a different route by rewriting
equations 4 and 5, such that they can be solved without knowledge
of the direct focusing function. This is achieved by a multidimen-
sional convolution of these representations with the direct wavefield
Gþ

d ðχF; zf; χP; za;ωÞ, where xP ¼ ðχP; zaÞ is a projection point at
the acquisition surface. For notational convenience, we define these
projections in the frequency domain. We introduce the following
definitions for the projected focusing functions:

v−ðχA;χP;ωÞ

¼
Z
Λf

d2χFG
þ
d ðχF;zf;χP;za;ωÞf−1 ðχA;za;χF;zf;ωÞ; (8)

and

vþmðχA;χP;ωÞ

¼
Z
Λf

d2χFG
þ
d ðχF;zf;χP;za;ωÞfþ1mðχA;za;χF;zf;ωÞ: (9)

Because the projection point is always located at the acquisition
surface throughout this paper, we omit to indicate depth za in the
arguments of all projected wavefields, for notational convenience.
We may refer to the quantities v− and vþm as virtual events, which is

a terminology that was originally introduced by Ikelle (2006), who
studies similar wavefields and demonstrates their use for IME. In a
similar way as we did for the focusing function, we introduce the
following projection of the upgoing Green’s function:

U−ðχP;χA;ωÞ

¼
Z
Λf

d2χFG
þ
d ðχF;zf;χP;za;ωÞG−ðχF;zf;χA;za;ωÞ: (10)

The wavefield U− can be interpreted as a subset of the reflection
data. This subset contains no data before the two-way traveltime
of a fictitious reflector at horizon Λf. In Figure 1a, we illustrate
that primaries are part of U−ðtÞ, whereas all multiples with a final
(receiver side) reflection point above Λf (as illustrated in Figure 1b)
are not part of this wavefield. Hence, particular internal multiples
can be removed from the data by the retrieval ofU−ðtÞ. In Figure 1c
and 1d, we also show internal multiples with their final (receiver
side) reflection point below Λf. Because these multiples are part of
U−ðtÞ, they need to be removed by an additional processing step, as
we will show later in the paper. If we convolve equation 4 with
Gþ

d ðχF; zf; χP; za;ωÞ and integrate over χF, we find with the help
of equations 7–10:

v−ðχA;χP;tÞþU−ðχP;χA;tÞ¼fRðδþvþmÞgðχA;χP;tÞ: (11)

In this expression, we defined

fRδgðχA; χP; tÞ ¼ RðχA; χP; tÞ; (12)

being the data as recorded at the acquisition surface. Due to the
projection, the direct part of the focusing function has collapsed to
a delta function. A similar projection can be applied in equation 5.
Because the downgoing Green’s function is time reversed in this
expression, this wavefield will be crosscorrelated (rather than con-
volved) by this projection. Therefore, we define the following quan-
tities in the frequency domain:

Uþ
d ðχP;χA;ωÞ

¼
Z
Λf

d2χFG
þ�
d ðχF;zf;χP;za;ωÞGþ

d ðχF;zf;χA;za;ωÞ; (13)

and

Uþ
mðχP;χA;ωÞ

¼
Z
Λf

d2χFG
þ�
d ðχF;zf;χP;za;ωÞGþ

mðχF;zf;χA;za;ωÞ: (14)

Now, if we convolve equation 5 (after Fourier transformation) with
Gþ

d ðχF; zf; χP; za;ωÞ and integrate over χF, it follows (after inverse
Fourier transformation) that

δðχP − χAÞδðtÞ þ vþmðχA; χP; tÞ − Uþ
d ðχP; χA;−tÞ

− Uþ
mðχP; χA;−tÞ ¼ fR⋆v−gðχA; χP; tÞ; (15)

where we made use of equations 7–9, 13, and 14. Once again, the
direct part of the focusing function has collapsed to a delta function.
In the next section, we will derive a Marchenko equation from
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expressions 11 and 15, which can be solved for the functions v− and
vþm, without knowledge of the initial focusing function.

MARCHENKO EQUATION

When deriving the Marchenko equation, we should account for
the final bandwidth of the data. For this purpose, we introduce a
zero-phase wavelet WðtÞ with finite support ½−tw; tw� that imposes
band limitation. This wavelet can be chosen arbitrarily within the
bandwidth of the recorded data. We convolve equations 11 and 15
with this wavelet, leading to

v͡−ðχA;χP;tÞþU͡−ðχP;χA;tÞ¼fRðδ͡þ v͡þmÞgðχA;χP;tÞ; (16)

and

δðχP − χAÞ͡δðtÞ þ v͡þmðχA; χP; tÞ
− U͡þ

d ðχP; χA;−tÞ − U͡þ
mðχP; χA;−tÞ

¼ fR⋆v͡−gðχA; χP; tÞ: (17)

In these equations, the ͡ symbol denotes that a
wavefield has been convolved with WðtÞ. We
will now show how a Marchenko equation can
be derived from these results. To do so, we apply
time windowing through operators of the form

Θty
tx , where tx ≤ ty. The action of such an operator

on an arbitrary wavefield PðχA; χB; tÞ is defined
as

fΘty
txPgðχA; χB; tÞ ¼ ðθðt − txÞ
− θðt − tyÞÞPðχA; χB; tÞ: (18)

In this expression, θðtÞ is a Heaviside function
(where θðtÞ ¼ 0 for t < 0, θðtÞ ¼ ð1∕2Þ for
t ¼ 0, and θðtÞ ¼ 1 for t > 0). Note that operator

Θty
tx preserves the signal in the domain ½tx; ty�, but

removes all samples outside this domain. The
truncation times txðχA; χBÞ and tyðχA; χBÞ are de-
fined as functions of source and receiver coordi-
nates, which we have omitted for notational
convenience.
In the conventional Marchenko equation, trun-

cations are applied to equations 4 and 5, using a
one-way traveltime surface of the direct wave
t1ðχA; χFÞ, which can be computed from a macro
velocity model. In practice, t1ðχA; χFÞ is chosen
tw (half the support of the wavelet) before the di-
rect wavelet to account for the finite-frequency
content of the data. We make use of the fact that
the Green’s functions and focusing functions re-
side in different sections of the time domain (van
der Neut et al., 2015a), as indicated in Figure 2a.
As shown in Figure 2b, the wavefields that occur
in equations 16 and 17 are also separated in time.
Because all wavefields have been redatumed
with the direct wavefield, truncations should now
be applied at two-way traveltimes, rather than at

the one-way traveltimes. We define t2ðχA; χPÞ as a two-way trav-
eltime surface of a potential reflector at horizon Λf , which can be
picked in the recorded data. The part of the medium above this hori-
zon can be interpreted as the overburden. Our objective is to remove
all interactions with this overburden from the recorded data. Note
that Λf does not necessarily need to be horizontal. A more impor-
tant criterion is that any upgoing wave at this horizon should arrive
at least tw after the direct downgoing wave, being a fundamental
assumption to derive the Marchenko equation. In case of thin layers,
this assumption is not always fulfilled, posing limitations to the
methodology, as pointed out by Slob et al. (2014). In the examples,
wewill show that the method still works well in case boundaryΛf is
moderately dipping. The exact limitations for nonhorizontal Λf will
not be investigated in this paper, but they are assumed to be similar
to other IME schemes that use pseudoboundaries in the subsurface,
such as those of Jakubowicz (1998), Van Borselen (2002), Ver-
schuur and Berkhout (2005), Griffiths et al. (2011), and many
others. Intersections of Λf with medium discontinuities can result

Figure 1. Illustration of equation 10. (a) Primaries that have passed horizon Λf are con-
structed by multidimensional convolution ofGþ

d ðχF;zf;χP;za;tÞ andG−ðχF;zf;χA;za;tÞ.
(b) Internal multiples with the last (receiver side) reflection point above Λf are not con-
structed with equation 10. Hence, these multiples are not part of U−ðχP; χA; tÞ. (c and d)
Internal multiples with the last (receiver side) reflection point below Λf are being con-
structed in equation 10. Hence, these multiples are part of U−ðχP; χA; tÞ.
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in artifacts and are to be avoided. For an illustration of such arti-
facts, see Meles et al. (2016).
Further, we define a traveltime surface t0ðχA; χPÞ to differentiate

between direct wave propagation and internal multiple reflections.
This traveltime surface should separate the wavefields U͡þ

d ðtÞ and ͡δðtÞ
from U͡þ

mðtÞ and v͡þmðtÞ. As shown in Figure 2b, t0 should be picked
just after t ¼ 0 to meet this objective. Because of the finite-frequency
content of the data, such separation can only be established if the
internal multiples are sufficiently delayed in terms of traveltime.
As in conventional Marchenko redatuming, the resolution is limited
by t0ðχP; χPÞ ¼ tw at zero offset, being half the support of the wave-
let. In the numerical examples, we show how t0ðχA; χPÞ can be esti-
mated at nonzero offsets.
Given the traveltime surfaces t0ðχA; χPÞ and t2ðχA; χPÞ, we can

construct a window operator Θt2
t0 , which effectively removes all data

later than t2, the redatumed direct wavefield (arriving just before t0)
and all acausal components. Because U͡−ðtÞ contains no information
before t2, it follows that fΘt2

t0U͡
−gðtÞ ¼ 0. Further because v͡−ðtÞ con-

tains no data outside the interval ½t0; t2�, we find fΘt2
t0 v͡

−gðtÞ ¼ v͡−ðtÞ.
Consequently, applying the operator Θt2

t0 to equation 16 yields

v͡−ðχP; χA; tÞ ¼ fΘt2
t0Rð͡δþ v͡þmÞgðχA; χP; tÞ: (19)

Based on a similar reasoning, it follows that fΘt2
t0 v͡

þ
mgðtÞ ¼ v͡þmðtÞ,

fΘt2
t0
͡δgðtÞ ¼ 0, fΘt2

t0U͡
þ
mgð−tÞ ¼ 0, and fΘt2

t0U͡
þ
d gð−tÞ ¼ 0. Hence,

the action of Θt2
t0 on equation 17 yields

v͡þmðχA; χP; tÞ ¼ fΘt2
t0R

⋆v͡−gðχA; χP; tÞ: (20)

Equations 19 and 20 can be combined to derive a revised Marchenko
equation. This is done by substitution of equation 19 into equation 20,
yielding

fΩ͡δgðχA; χP; tÞ ¼ v͡þmðχA; χP; tÞ − fΩv͡þmgðχA; χP; tÞ; (21)

with the kernel

Ω ¼ Θt2
t0R

⋆Θt2
t0R: (22)

Similar to the Marchenko equation of Wapenaar et al. (2014a), equa-
tion 21 is a Fredholm integral equation of the second kind, which can
be expanded as a Neumann series. This yields the solution

v͡þmðχA; χP; tÞ ¼
X∞
k¼1

fΩk ͡δgðχA; χP; tÞ: (23)

Here, Ωk means that operator Ω is applied k times. As shown by
Fokkema and van den Berg (1993), convergence of this series is guar-
anteed if jfΩkδgðχA; χP; tÞj2 → 0 as k → ∞, where subscript 2 de-
notes the l2-norm. This condition is satisfied when the norms of
operatorsR andR⋆ are less than one, meaning that jRPj2 ≤ jPj2 and
jR⋆Pj2 ≤ jPj2 for any wavefieldP. An equivalent solution for v͡− can
be found by substituting equation 23 into equation 19, leading to

v͡−ðχP; χA; tÞ ¼
X∞
k¼0

fΘt2
t0RΩk ͡δgðχP; χA; tÞ: (24)

This result is almost similar to the solution of the multidimensional
Marchenko equation of Wapenaar et al. (2014a), which can also be
written as a series (van der Neut et al., 2015a). However, because the
focusing functions are projected to the acquisition surface, the initial
focusing function is replaced by a spatial and temporal delta function
δðχP − χAÞ͡δðtÞ, which is independent of a macro velocity model. As
a consequence, the signals should not be truncated at one-way trav-
eltimes, as in the solution of the original Marchenko equation, but at t0

(just after the redatumed direct wavefield that maps
at t ¼ 0) and at the two-way traveltime t2 of a fic-
titious reflector at horizon Λf.
To retrieve the projected wavefield U͡−ðtÞ,

equation 23 can be substituted into equation 16.
After applying the window operator Θ∞

t2 to the re-
sult and using the relations fΘ∞

t2 v͡
−gðtÞ ¼ 0 and

fΘ∞
t2 U͡

−gðtÞ ¼ U͡−ðtÞ, we find

U͡−ðχP; χA; tÞ ¼
X∞
k¼0

fΘ∞
t2 RΩk ͡δgðχP; χA; tÞ:

(25)

The first term in this series can be interpreted as
the truncated data. The remaining terms describe
the internal multiples that should be subtracted
from the truncated data to preserve only the events
that obey equation 10. As we explained earlier in
the paper, U͡−ðtÞ can be interpreted as reflection
data, where particular multiples, as indicated in
Figure 1b, have been eliminated. However, the
multiples that are indicated in Figure 1c and 1d
are still part of U−ðtÞ and should be eliminated
by another processing step. This step will be de-
rived in the following section.

Figure 2. The wavefields that are discussed in this paper reside in different sections of
the time domain. (a) The wavefields in equations 4 and 5 separate at the one-way trav-
eltime of the direct wave t1 (van der Neut et al., 2015a). (b) Wavefields in the revised
equations 16 and 17 separate at t0, which is chosen just after t ¼ 0 to account for the
finite-frequency content of the data and at t2, which is the two-way traveltime of the
overburden.
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The projected downgoing Green’s functions U͡þ
d ðtÞ and U͡þ

mðtÞ can
be constructed by a similar procedure. For the retrieval of U͡þ

d ðtÞ, we
introduce window operator Θþt0

−t0 , which removes all but the reda-
tumed direct wavefield, mapping at the origin of the gathers (i.e.,
at t ¼ 0 and χA ¼ χP). We will use the observations that fΘþt0

−t0 v͡
þ
mg

ð−tÞ¼0, fΘþt0
−t0 U͡

þ
mgðtÞ¼0, fΘþt0

−t0 U͡
þ
d gðtÞ¼U͡þ

d ðtÞ, and fΘþt0
−t0 δ͡g

ðtÞ¼δ͡ðtÞ. Based on these conditions, it now follows from the action
of Θþt0

−t0 on equation 17 (after substituting equation 24 and time
reversing all wavefields and operators) that

U͡þ
d ðχP; χA; tÞ ¼ ͡δðχP − χAÞ͡δðtÞ

−
X∞
k¼0

fΘþt0
−t0RΘ−t0

−t2R
⋆Ω⋆k ͡δgðχP; χA; tÞ: (26)

Here, we have defined additionally

Ω⋆ ¼ Θ−t0
−t2RΘ−t0

−t2R
⋆: (27)

Equation 26 can be useful to estimate the scattering transmission
losses in the medium. Remember that U͡þ

d ðtÞ can be interpreted as
the autocorrelation of the downgoing wavefield at horizon Λf in the
actual medium (see equation 13). It is interesting to observe that this
measure can be computed without a macro velocity model. The only
requirements are a two-way traveltime curve that allows us to define
the truncation time for the window operator and the recorded reflec-
tion data to construct operators R and R⋆.
Instead of U͡þ

d ðtÞ, we can also choose to isolate U͡þ
mðtÞ in the left

side of equation 17 (after time reversing all wavefields and opera-
tors). This is done by applying the window operator Θ∞

t0 , removing
all information before t0. By realizing that fΘ∞

t0 v͡
þ
mgð−tÞ ¼ 0,

fΘ∞
t0 U͡

þ
d gðtÞ ¼ 0, fΘ∞

t0
͡δgðtÞ ¼ 0, and fΘ∞

t0 U͡
þ
mgðtÞ ¼ U͡þ

mðtÞ, we
find (after substituting equation 24)

U͡þ
mðχP;χA;tÞ¼−

X∞
k¼0

fΘ∞
t0 RΘ−t0

−t2R
⋆Ω⋆kδ͡gðχP;χA;tÞ: (28)

Wewill see in the next section how this result can be used to remove
the remaining internal multiples from U͡−ðtÞ.

INTERNAL MULTIPLE ELIMINATION

As we mentioned before, the wavefield U͡−ðtÞ as computed in
equation 25 can be interpreted as a subset of the recorded data that
has reflected at least once below Λf, where internal multiples “at the
receiver side” (such as those that are indicated by Figure 1b) have
been removed. At this point, however, the IME process is incomplete
because other undesired interactions with the overburden are still pre-
served in U͡−ðtÞ, as indicated by Figure 1c and 1d. In the remainder of
this paper, we will show how the events that are encoded in the pro-
jected downgoing wavefield U͡þ

mðtÞ (as computed in equation 28) can
be used to remove all remaining internal multiples from the projected
upgoing wavefield U͡−ðtÞ, leading to a new data set, which does not
contain primary and multiple reflections from the overburden.
We start with a forward model from Wapenaar et al. (2011),

where the upgoing wavefield G͡− at level Λf is related to the down-
going wavefield G͡þ at the same level, through the following inte-
gral representation (expressed in the frequency domain):

G͡−ðχF; zf; χA; za;ωÞ

¼
Z
Λf

d2χGXfðχF; zf; χG; zf;ωÞðG͡þ
d ðχG; zf; χA; za;ωÞ

þ G͡þ
mðχG; zf; χA; za;ωÞÞ: (29)

Once again, we separated the downgoing wavefield into a direct
part Gþ

d and a coda Gþ
m. Further, XfðχF; zf; χG; zf;ωÞ is a reflection

response at xF due to a source at xG. Both these locations are at
horizon Λf and special boundary conditions are applied, such that
the medium is nonreflective above this horizon (which is indicated
by subscript f). Hence, XfðtÞ contains no (first- and higher-order)
interactions with the medium above Λf.
Equation 29 can be redatumed to the acquisition surface. To do

so, we realize that the direct part of the downgoing Green’s function
can be expressed as

G͡þ
d ðχG; zf; χA; za;ωÞ

¼
Z
Λa

d2χQG͡
þ
d ðχG; zf; χQ; za;ωÞδðχQ − χAÞ: (30)

For the coda of the downgoing Green’s function, we assume the
existence of a function ζ, such that

G͡þ
mðχG; zf; χA; za;ωÞ

¼
Z
Λa

d2χQG͡
þ
d ðχG; zf; χQ; za;ωÞζðχQ; χA;ωÞ: (31)

When we substitute equations 30 and 31 into equation 29 and we
convolve both sides withGþ

d ðχF; zf; χP; za;ωÞ (where integration is
carried out over χF), it follows that with the help of equation 10,
after changing the order of the integrals that

U͡−ðχP;χA;ωÞ

¼
Z
Λa

d2χQR͡fðχP;χQ;ωÞðδðχQ − χAÞþ ζðχQ;χA;ωÞÞ; (32)

where we introduced

R͡fðχP; χQ;ωÞ

¼
Z
Λf

d2χF

Z
Λf

d2χGG
þ
d ðχF; zf; χP; za;ωÞXf

× ðχF; zf; χG; zf;ωÞG͡þ
d ðχG; zf; χQ; za;ωÞ: (33)

The wavefield R͡f can be interpreted as reflection data, in the ab-
sence of interactions with the overburden. As illustrated in Figure 3,
R͡f indeed does not contain internal multiples from the overburden.
To retrieve this wavefield, we realize that equation 32 can also be
recognized as a Fredholm integral equation of the second kind. We
can rewrite this equation in the time domain as

U͡−ðχP;χA;tÞ¼ R͡fðχP;χA;tÞþfMðζÞR͡fgðχP;χA;tÞ: (34)

Here, we defined the following kernel for multidimensional convo-
lution of an arbitrary wavefield PðχP; χA; tÞ with ζ:
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fMðζÞPgðχP; χA; tÞ

¼
Z þ∞

−∞
dτ

Z
Λa

d2χQPðχP; χQ; τÞζðχQ; χA; t − τÞ: (35)

A Neumann series expansion of equation 34 leads to

R͡fðχP; χA; tÞ ¼
P∞

k¼0fð−MðζÞÞkU͡−gðχP; χA; tÞ: (36)

Equation 36 is the first main result of this paper. It can be used to
compute a data set R͡f , which is free from interactions with the over-
burden (see Figure 3). Convergence is once again guaranteed as
long as the norms of operators R and R⋆ are less than one. Using
this result requires knowledge of function ζ. To recover this func-
tion, we convolve equation 31 with Gþ�

d ðχ ; zf; χP; za;ωÞ and inte-
grate over χ. After substitution of equations 13 and 14, we find

U͡þ
mðχP;χA;ωÞ¼

Z
Λa

d2χQU͡
þ
d ðχP;χQ;ωÞζðχQ;χA;ωÞ: (37)

Because U͡þ
d and U͡þ

m can be computed by the series expansions in
equations 26 and 28, the function ζ can be computed by inversion of
equation 37. By such inversion, the scattering transmission losses
that are encoded in U͡þ

d are removed from U͡þ
m and the waveletWðωÞ

is deconvolved.
We will now illustrate the validity of equation 36 with a synthetic

1D experiment. In Figure 4a and 4b, we show the velocity and den-

sity of a model with four layers. The reflection data of this model are
shown in Figure 4c, in which we convolved with a Ricker wavelet
with a peak frequency of 20 Hz. In the data, we pick traveltime t2 ¼
1.5 s to indicate the overburden, which is indicated by the dashed
line. This traveltime corresponds to a horizon Λf at zf ¼ 1500 m.
Although this depth does not need to be known in practice, we have
indicated it in the figure for convenience. We evaluate the first 50
terms in the series in equation 25 (see Figure 4d). As we explained
in Figure 1, we have removed internal multiples at the receiver side
by this procedure. However, certain internal multiples remain, such
as the event that is indicated by the black circle in the figure. By
deconvolving the wavefields U͡þ

m and U͡þ
d (as obtained by the series

in equations 28 and 26), we can obtain ζ (see equation 37). Using ζ
and U͡−, we can compute R͡f with equation 36. The results are
shown in Figure 4e. As explained by the cartoons in Figure 3,
all internal multiples from the overburden have been eliminated
by this procedure.

ADAPTIVE SOLUTION

It is obvious that the retrieval of R͡fðtÞ from equation 36 depends
on knowledge of the wavefields U͡−ðtÞ, U͡þ

d ðtÞ, and U͡þ
mðtÞ. As

shown in the previous section, the computation of these wavefields
requires the two-way traveltime of a fictitious horizontal reflector at
Λf and accurate operators R and R⋆, which should be computed
from the recorded reflection data at the acquisition surface. How-
ever, as we discussed in the introduction of this paper, the construc-

tion of these operators requires complete input
data and accurate knowledge of the source signa-
ture. The underlying theory does not account for
seismic attenuation, which could result in ampli-
tude mismatch when the individual terms in the
series of U͡−ðtÞ, U͡þ

d ðtÞ, and U͡þ
mðtÞ (i.e., equa-

tions 25, 26, and 28) are added together. As a
consequence, the retrieval of R͡fðtÞ through equa-
tion 36 will be inaccurate.
Alternatively, we could add the individual com-

ponents in the series of equation 36 adaptively. By
substituting equations 25 and 28 into equation 36,
we can derive an expression for adaptive IME.
This is the second main result of this paper:

R͡fðχP;χA; tÞ≈ R͡f0ðχP;χA; tÞ−α1ðtÞ
�M͡f1ðχP;χA; tÞ−α2ðtÞ �M͡f2ðχP;χA; tÞ:

(38)

Here, we have defined

R͡f0ðχP; χA; tÞ ¼ fΘ∞
t2 R͡gðχP; χA; tÞ; (39)

as the data after truncation at horizon Λf

M͡f1ðχP; χA; tÞ
¼ −fΘ∞

t2 RΘt2
t0R

⋆Θt2
t0R͡gðχP; χA; tÞ; (40)

as the predicted internal multiples “at the receiver
side,” and

Figure 3. Illustration of equation 33. (a) Primaries that have passed horizon Λf are con-
structed by multidimensional convolution of Gþ

d ðχF; zf; χP; za; tÞ, XfðχF; zf; χG; zf; tÞ,
andGþ

d ðχG; zf; χQ; za; tÞ. (b-d) Internal multiples with at least one reflection point above
Λf are not constructed with equation 33. Hence, these multiples are not part of
RfðχP; χQ; tÞ.
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M͡f2ðχP;χA;tÞ¼−fMðW−1Θ∞
t0 RΘ−t0

−t2R
⋆δ͡ÞΘ∞

t2 R͡gðχP;χA;tÞ;
(41)

as the remaining multiples. To arrive at this result, we estimated ζðtÞ
from U͡−

mðtÞ by deconvolving with thewavelet, wherewe assumed that

ζðχP; χA; tÞ ∝ fW−1U͡þ
mgðχP; χA; tÞ; (42)

being an approximation to the inversion that is prescribed in equa-
tion 37. Here, and in equation 41, W−1 is an operator to deconvolve
with waveletWðtÞ. Note that the transmission losses are not taken into
account by this operation (hence the left and right sides of equation 42
have different amplitudes, explaining the use of the ∝ sign). We have
ignored terms in the series that require more than three crosscorrela-
tions with the reflection response. As a consequence of the missing
terms and the approximation that is introduced in equation 42, the am-
plitudes of the predicted internal multiples M͡f1 and M͡f2 are incorrect.
We aim to compensate for this mismatch by matching filters α1 and α2
in equation 38. In this paper, we parameterize these filters as single
scalars that are found by minimizing the l2-norm of the output gathers
of R͡f in equation 38. Here, we aim to address the most dominant (first
order) internal multiples in the data only. However, because the am-
plitude mismatch can be nonstationary, it might be useful to implement
matching filters in sliding windows in the time domain, as typically
applied in other IME schemes (Verschuur and Berkhout, 2005).
These filters may also compensate for other defi-
ciencies that might occur as a consequence of
inaccurate source signature deconvolution, rem-
nants of source/receiver ghosts, seismic attenua-
tion, and data incompleteness.
To illustrate the adaptive procedure, we apply

equation 38 to the synthetic model that was
evaluated in Figure 4a and 4b. The recorded R͡ðtÞ
and truncated data R͡fðtÞ are shown in Figure 5a
and 5b. In Figure 5c and 5d, we display the pre-
dicted multiples M͡f1ðtÞ and M͡f2ðtÞ. These wave-
fields have been scaled with scalars α1 and α2,
which are found by minimizing the l2-norm of
R͡fðtÞ, as computed in equation 38. In Figure 5e,
we show the truncated data, after the predicted
multiples have been subtracted. Note that the
dominant internal multiple from the overburden,
arriving at t ¼ 1.8 s, has been subtracted well.
However, as the 50 terms of the series that were
evaluated in Figure 4 have been truncated with
the current procedure, it is not possible to find
matching filters for complete elimination of all
internal multiples. Hence, the prediction result is
not optimal and weaker internal multiples, as in-
dicated by the black circles in Figure 5e, remain
present in the output gather. This could be over-
come by using nonstationary filters (Fomel, 2006).

INTERPRETATION

To understand the proposed IME process, we
interpret the involved multidimensional crosscor-
relations by subtracting traveltimes along com-
mon raypaths at the stationary points of the under-

lying integrals. This is an interpretation that is commonly used in
seismic interferometry (Schuster, 2009), which is also well-known in
the field of IME (Ikelle, 2006) and Marchenko redatuming (van der
Neut et al., 2015a). In Figure 6a and 6b, we show how the internal
multiples “at the receiver side” are predicted by M͡f1 through the
crosscorrelations of three primary reflections. It follows from Fig-
ure 6c and 6d how the remaining multiples are predicted by M͡f2

through a similar process.
In all cases, the mechanism for the internal multiple retrieval is

closely related to that from other IME schemes, such as the method
of Jakubowicz (1998), the ISS (Weglein et al., 1997), the work of
Ten Kroode (2002), and source-receiver interferometry (Löer et al.,
2016). In each of these methodologies, the data are crosscorrelated
twice to retrieve internal multiple reflections. Although this double
crosscorrelation process does predict all first-order internal multiples
in the data, spurious events and copies of the primary reflections are
also created. To avoid the retrieval of these unwanted quantities, par-
ticular truncations should be applied. These truncations are often de-
signed, such that the so-called “lower-higher-lower” (LHL) condition
is obeyed, meaning that the second reflection point should always be
located higher than the first and third reflection points for an event to
be a (first-order) internal multiple. In the term M͡f1 that is described in
equation 40, the required truncations are imposed in a way that is
closely related to the multiple elimination scheme of Ten Kroode
(2002) and Löer et al. (2016), which can be derived from source-
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Figure 4. Illustration of equation 36, the first main result of this paper. (a) Velocity
model (inm∕s) and (b) density model (in kg∕m3). (c) Reflection data R͡ðtÞ. (d) Wavefield
U͡−ðtÞ after applying equation 25. The black circle indicates an internal multiple from
the overburden that has not (yet) been eliminated. (e) Wavefield R͡fðtÞ after applying
equation 36. All series have been truncated after 50 terms, and ζ has been retrieved by
deconvolution of the retrieved wavefields U͡þ

m and U͡þ
d . The dashed lines indicate the

depth (in practice unknown) and traveltime t2 (picked) of horizon Λf . We emphasize
that only the picked traveltime (t2 ¼ 1.5 s) and the reflection response have been used
for the computations.
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receiver interferometry and the ISS. Similarly, we can infer relations
with the multiple elimination schemes of Jakubowicz (1998) and Van
Borselen (2002), when studying the term M͡f2 that is described in
equation 41. We will now look at these connections in more detail.
In the ISS, the LHL condition is imposed by truncating integrals in

depth. As shown by Ten Kroode (2002), the ISS methodology can be
rewritten by truncating integrals in time, under the assumption of
traveltime monotonicity. This result has been modified further by
Löer et al. (2016), leading to the following first-order prediction
mechanism for internal multiples:

MtðχP;χA;tÞ¼
4

ðcρÞ2
Z þ∞

−∞
dτ 0

Z
Λa

d2χ 0Dðχ 0;χP;τ 0Þθðt−τ 0−ϵÞ

×
Z þ∞

−∞
dτ

Z
Λa

d2χDðχ 0;χ ;τÞθðτ 0−τ−ϵÞDðχ ;χA;t−τ 0þτÞ:

(43)

In this equation, c is the propagation velocity, ρ is the density, and ϵ is
a small constant to account for the finite-frequency band of the data
(i.e., the source signature). The computed wavefield Mt contains a
first-order estimate of internal multiples at time t in the data. One
truncation is imposed by the Heaviside function θðt − τ 0 − ϵÞ,
enforcing thatDðt − τ 0 þ τÞ will arrive after DðτÞ for any τ. Another
truncation is imposed by the Heaviside function θðτ 0 − τ − ϵÞ,
enforcing that Dðτ 0Þ will arrive after DðτÞ for any τ. Together, these
truncations ensure that the LHL condition is always satisfied.

Note that we can rewrite equation 40 as

M͡f1ðχP; χA; tÞ ¼ θðt − t2Þ
Z þ∞

−∞
dτ 0

×
Z
Λa

d2χ 0Rðχ 0; χP; τ 0Þθðt − τ 0 − ϵÞ

×
Z þ∞

−∞
dτ

Z
Λa

d2χRðχ 0; χ ; τÞθðt2 − ðt − τ 0 þ τÞÞ

× R͡ðχ ; χA; t − τ 0 þ τÞ; (44)

where ϵ accounts for finite frequency effects. This result is similar
but not identical to equation 43. The difference between both equa-
tions is a consequence of the different objectives of the IME
schemes. Ten Kroode (2002) and Löer et al. (2016) aim to remove
all reflections that originate from a subsection of the data that is
truncated at t − ϵ, where t is the output time. Because the truncation
is applied just before the output time, the primaries are preserved.
However, all internal multiples with delay time > ϵ are removed. In
our scheme, we remove all reflections that originate from a subsec-
tion of the data that is truncated at t2. This includes the primaries
that arrive before t2 and internal multiples before, at, and after t2.
Hence, the truncations of Ten Kroode (2002) and Löer et al. (2016)
depend only on the output traveltime t, whereas the truncations in
our scheme are fixed by our choice for t2. To see this, we could
substitute t2 ¼ t − ϵ into equation 44. After this operation, the first
Heaviside function on the right side becomes redundant and the re-
sult can be written as

M͡f1ðχP;χA;tÞ¼
Z þ∞

−∞
dτ 0

Z
Λa

×d2χ 0Rðχ 0;χP;τ 0Þθðt−τ 0−ϵÞ

×
Z þ∞

−∞
dτ

Z
Λa

d2χRðχ 0;χ ;τÞθðτ 0−τ−ϵÞ

×R͡ðχ ;χA;t−τ 0þτÞ: (45)

This equation is identical to equation 43, apart
from the scaling factor 4∕ðcρÞ2, which can be
attributed to the different normalization of D
(see Ten Kroode, 2002; Löer et al., 2016) and
the reflection data R as defined in this paper.
The third term M͡f2 in equation 38 vanishes when
evaluated at t ¼ t2 þ ϵ. Hence, equation 45 or 43
is sufficient for a first-order estimate of all inter-
nal multiples in this case, as also demonstrated
by Löer et al. (2016).
Based on this observation, it is not hard to see

how the scheme of Löer et al. (2016) could be
extended to remove all internal multiples at trav-
eltime t with correct amplitudes. By substituting
equation 25 into equation 36 and evaluating the
result at t2 ¼ t − ϵ, we find only the following
terms with nonzero contributions:

R͡tðχP; χA; tÞ ¼
P∞

k¼0fRΩk
t
͡δgðχP; χA; tÞ;

(46)
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Figure 5. Illustration of equation 38, the second main result of this paper. (a) Reflection
data R͡ðtÞ. (b) Truncated data R͡f0ðtÞ from equation 39. Predicted multiples (c) M͡f1ðtÞ
and (d) M͡f2ðtÞ from equations 40 and 41 after applying matching filters, which are
parameterized by single scalars. (e) Data R͡fðtÞ after the predicted multiples have been
subtracted, following equation 38. The black circles indicate internal multiples from the
overburden that have not been completely eliminated.
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where the kernel should be truncated at traveltime t2 ¼ t − ϵ, ac-
cording to

Ωt ¼ Θt−ϵ
t0 R⋆Θt−ϵ

t0 R: (47)

In equation 46, which can be considered as the third main result of
this paper, R͡t is the data after IME. The first term (k ¼ 0) on the
right side of equation 46 is the reflection data fR͡δgðtÞ ¼ R͡ðtÞ and
the remaining terms represent internal multiples that are to be sub-
tracted from the first term. Because Ten Kroode (2002) and Löer
et al. (2016) derive their results from the third term of the ISS
(where data are crosscorrelated twice), their multiple prediction
mechanism corresponds to the second term in equation 46 (where
data are also crosscorrelated twice). Ramírez and Weglein (2005)
show that ISS-based internal multiple predictions can be improved
by adding the fifth term of the ISS (where data are crosscorrelated
four times) to the third term. Hence, the fifth term of the ISS seems
closely related to the third term in equation 46 (where data are also
crosscorrelated four times). In 2D or 3D, operator Θt−ϵ

t0 could be
designed by following two-way traveltime surfaces, which can
be computed for any traveltime and offset in the data, using for in-
stance stacking velocities. Although this is considered a useful topic
for further research, it reaches beyond our present scope.
As an illustration, we evaluate the series in equation 46 on the

model that was presented earlier in Figure 4a and 4b. The first term
of the series (k ¼ 0) is shown in Figure 7a. Note
that this term is equivalent to the recorded reflec-
tion data. In Figure 7b, we show the second term
of the series (k ¼ 1). As explained by Löer et al.
(2016), this term contains all internal multiples
with erroneous amplitudes. Rather than adding
this contribution adaptively to the first term, as
suggested by Löer et al. (2016), we may evaluate
more terms from the series, obviating the need
for adaptive filters. The next three terms are
shown in Figure 7b and 7d. In Figure 7e, we
show the result after adding the first four terms
of the series together. Note that the three primary
reflections that are present in the data have sur-
vived the procedure, whereas all internal multi-
ples have been effectively removed. This result
demonstrates the validity of equation 46 for IME.
In this paper, we have truncated the data at the

selected traveltime surface t2 of the overburden,
rather than just before the output time at t − ϵ.
Hence, there is an additional term M͡f2 in equa-
tion 38, which predicts internal multiples that have
crossed the interface Λf to arrive at t > t2. The
construction of these multiples is demonstrated
in Figure 6c and 6d. It is observed that the mecha-
nism in Figure 6d is closely related to the scheme
of Van Borselen (2002), who derives his results
from the method of Jakubowicz (1998). In the
scheme of Van Borselen (2002), all multiples that
have crossed the horizon Λf (which is referred to
as a pseudoboundary) are also predicted by a dou-
ble crosscorrelation process and particular trunca-
tions. These truncations ensure that the first and
third reflection points are located below Λf,
whereas the second reflection point is located

above this horizon. To ensure that all internal multiples are removed
from the data, a scan should be made over various horizons Λf in a
top-down approach. In our methodology, such a scan is not required
because all internal multiples that are described in Figure 6 are pre-
dicted at once, given that M͡f1 and M͡f2 are evaluated in equation 38.
Hence, our method has the potential to reduce the computation time
for IME below a single target horizon by a factor of Nh∕2, where Nh

is the number of horizons above the target horizon (expressed in two-
way traveltime) that should be evaluated by the other algorithms. The
factor 1∕2 is included because we have to compute terms M͡f1 and
M͡f2 in equation 38, rather than one term as in the other methods.

SIMPLE SYNTHETIC EXAMPLE

We will test the IME scheme that is described in equation 38 on
two synthetic data sets and field data. For the first test, which we
discuss in this section, we use a synthetic model that has been de-
scribed in more detail by Wapenaar et al. (2014b). The propagation
velocity is shown in Figure 8. At the acquisition surface, seismic
data are modeled with 301 sources and 301 receivers on a fixed
spread with a spacing of 10 m. Absorbing boundary conditions are
applied at the top of the model, and the direct wave has been re-
moved. The reflection response has been modeled with a flat fre-
quency spectrum for an optimal design of the operators R and R⋆.
The data R͡ðχP; χA; tÞ have been computed by convolving this

Figure 6. Illustration of the construction of the first-order multiples. In (a and b), we
show how multiples at the “receiver side” are constructed by evaluation of M͡f1 in equa-
tion 40. In (c and d), we show how other multiples are constructed by evaluation of
M͡f2 in equation 41. In each case, the data are crosscorrelated twice and particular trun-
cations are being applied in the time domain. Solid raypaths denote positive traveltimes.
Dashed raypaths denote negative traveltimes, which are subtracted from the positive
traveltimes. The white squares and diamonds are stationary points at the surface that
contributed to the underlying integrals.
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reflection response with a Ricker wavelet with a peak frequency
of 20 Hz.
In Figure 9a, we show an arbitrary shot record of the reflection

data R͡ðχP; χA; tÞ. In these data, we pick a two-way traveltime sur-
face t2ðχP; χAÞ of a fictitious reflector that is located somewhere
below the overburden, as indicated by the dashed white line in
the figure. To emphasize our relative independence on velocity in-
formation, we have picked this surface not very accurately, slightly
above the first reflector of our interest, roughly following the move-
out of this reflector. With the dashed white line in Figure 8, we

interpret the picked horizon as belonging to a fictitious reflector
at some depth level zf below the overburden. Although t2 deter-
mines which internal multiples are to be removed, the accuracy
of our picks seems not very important for the robustness of the al-
gorithm. This is not the case for traveltime surface t0 that will be
discussed in the following paragraph.
We partition the data into two subsets. In the first subset, we re-

move all information after t2. Because the data are causal and the
direct wave has been removed, all gathers are empty before t0, mak-
ing the first subset equivalent to fΘt2

t0 R͡gðχP; χA; tÞ, which should
enter through equation 40. In the second subset,
we remove all information before t2. This subset
is equivalent to fΘ∞

t2 R͡gðχP; χA; tÞ, which is the
wavefield that should enter through equation 41.
To conduct the remaining computations that are
required for the evaluation of equation 38, t0
should be known. To determine this traveltime
surface, we apply the filterR⋆ to the first subset.
In Figure 9b, we display an arbitrary shot of the
resulting wavefield fR⋆Θt2

t0 R͡gðχP; χA; tÞ. We
find a strong event at the origin, being a super-
position of all autocorrelated events from the
overburden. This event can be interpreted as the
update of Uþ

d ð−tÞ, which is given by the second
term in equation 26. For the IME scheme to
work, this update should be excluded from the
update of v͡þmðtÞ (appearing at t > 0). This is done
by selecting a traveltime surface t0ðχP; χAÞ just
after the event in the origin, as indicated by
the dashed white line in Figure 9b. Although this
procedure is not hard to apply in an automated
fashion, we emphasize the importance of the
accuracy of this truncation. As in conventional
Marchenko redatuming, we cannot process inter-
nal multiples beyond a certain resolution, which
is determined by the frequency content of the
data (Slob et al., 2014). Within our procedure,
the resolution is determined by our choice for
t0. This traveltime surface should be sufficiently
far from the origin to exclude the updates of
U͡þ

d ð−tÞ, but it should be sufficiently close to
the origin to address internal multiples from fine layers. The optimal
choice for t0 is a trade-off that depends on the frequency content,
data quality, and geology. In practice, it can be useful to apply a
taper for the required truncations at t0. In this example, we have
used a short taper of two time samples only.
Now that we have determined the traveltime surfaces t2 and t0,

we can compute all three terms in equation 38. In Figure 10a, we
show a common-offset section of the truncated input data R͡f0 at
500 m offset. We have indicated the primary reflections of interfaces
1–5, which we also pointed out in the model in Figure 8. A strong
imprint of internal multiples can be observed. In Figure 10b, we
show the same section, after IME has been applied with equation 38.
Note that the primaries 1–5 have been well-preserved by the oper-
ation, whereas various internal multiples have been removed. Below
these interfaces, however, internal multiples (from the overburden
and interfaces 1–5) have not been eliminated completely. This is a
consequence of truncating the series and relying on global matching
filters. To improve this performance, one could try to include more
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Figure 7. Illustration of equation 46, the third main result of this paper. (a) Reflection
data R͡ðtÞ, being equivalent to the first term of the series (k ¼ 0). (b) Second (k ¼ 1),
(c) third (k ¼ 2), and (d) fourth (k ¼ 3) terms of the series. (e) Result R͡tðtÞ after the first
four terms of the series have been added together.
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Figure 8. Synthetic model for the simple synthetic example. The
colorbar represents the propagation velocity in meters per second.
The dashed line represents a fictitious horizon Λf . Interfaces 1–5
have been marked.
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terms of the series and to apply the matching filters either in local
sliding windows (Verschuur and Berkhout, 2005) or by nonstation-
ary regression (Fomel, 2006). The subtracted internal multiples M͡f1

and M͡f2, which are described by the second and third terms in equa-
tion 38, are displayed in Figure 10c and 10d, respectively. Here, we
have parameterized the matching filters by single scalars, which are
found by minimizing the least-squares norm of the output gather
R͡f0ðtÞ. Note that the reflectors above Λf are relatively strong com-
pared with the reflectors below Λf in this example. Hence, the dom-
inant internal multiples are of the kind that is described in Figure 6a.
Because these internal multiples are all predicted by M͡f1 rather than
by M͡f2, the predictions of M͡f1 (Figure 10c) are relatively stronger
than those of M͡f2 (Figure 10d).
The results can also be analyzed in the common-midpoint (CMP)

domain. As an example, we pick the CMP location at 1000 m and
display the data as a function of offset in Figure 11. As expected, the
predicted internal multiples have different moveouts than the pri-
mary reflections. This observation is even more clear after NMO
correction (see Figure 12). Note the strong interference of the pri-
maries and internal multiples at the time interval [1 and 1.4 s]. This
interference could easily obstruct velocity analysis, as we illustrate
with the semblance plots for this interval, which are shown in Fig-
ure 13. The dashed black line in this figure represents the semblance
picks that were used for the NMO correction in Figure 12, which we
assume to be representative for the primary reflections in the data.
Note the strong obstructions that are caused by the internal multi-
ples in Figure 13a, which have been almost completely eliminated
in Figure 13c. It should be remembered that we have used no veloc-
ity information for this procedure other than the estimates of the
traveltime surfaces t0 (determining the minimum
delay time for an event to be considered an in-
ternal multiple) and t2 (defining what we con-
sider as overburden).

COMPLEX SYNTHETIC EXAMPLE

In the second example, we make use of a model
that was provided by Saudi Aramco (see Fig-
ure 14). This model contains a few difficult fea-
tures, such as a varying thin layer (indicated as
layer x in the figure) in the shallow subsurface
and various pinch-outs, causing diffraction-like
phenomena. From a theoretical point of view, we
know that both phenomena cause fundamental
problems for using the multidimensional Marche-
nko equation because the underlying causality ar-
guments that we used to define the truncation
times are no longer satisfied (van der Neut et al.,
2015a). Despite these limitations, we will show in
this section that the proposed methodology is ro-
bust and that a significant portion of internal mul-
tiples can be eliminated in this environment with
the help of equation 38.
The data are modeled with a Ricker wavelet

with 15 Hz peak frequency. Operators R and
R⋆ have been obtained by stabilized deconvolu-
tion of the data with the (known) source wavelet.
The acquisition array consists of 301 sources and
301 receivers on a fixed spread with 10 m spac-
ing. To avoid truncation artifacts, the first and last
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Figure 9. (a) Shot record of the recorded data R͡ðχP; χA; tÞ with
fixed χA ¼ 0 m. The white curve depicts a two-way traveltime
curve t2ðχP; χAÞ that we picked in this record just above the earliest
reflector of our interest. Amplitudes have been clipped at 10% of the
strongest arrival in the gather. (b) Shot record of the crosscorrelated
data fR⋆Θt2

t0 R͡gðχP; χA; tÞ with fixed χA ¼ 0 m. The white curve
depicts the traveltime curve of t0ðχP; χAÞ that we picked in this re-
cords to remove the contributions at the origin. The black curve
depicts the time-reversed traveltime curve −t0ðχP; χAÞ. Amplitudes
have been clipped at 5% of the strongest arrival in the gather.

CMP location (m)

T
im

e 
(s

)

500 1500 2500

1

1.2

1.4

1.6

1.8

CMP location (m)

T
im

e 
(s

)

500 1500 2500

1

1.2

1.4

1.6

1.8

CMP location (m)

T
im

e 
(s

)

500 1500 2500

1

1.2

1.4

1.6

1.8

CMP location (m)

T
im

e 
(s

)

500 1500 2500

1

1.2

1.4

1.6

1.8

1
2

3
4

5

a) b)

c) d)

Figure 10. A common-offset gather at 500 m offset, (a) before and (b) after IME.
In (c and d), we show the internal multiple predictions of M͡f1 and M͡f2, respectively
(single scalars have been used for the matching filters α1 and α2). Primary reflections
from interfaces 1–5 have been marked. All other events are internal multiples. The
dashed white line represents the CMP location that is evaluated in Figures 11 and
12. All amplitudes have been clipped at 50% of the strongest arrival in (a).
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25 sources of the array have been tapered with a cosine taper. In
Figure 15a, we show a shot record of the input data R͡ðχP; χA; tÞ.
As in the previous example, we pick a two-way traveltime surface
t2ðχP; χAÞ below the lowest primary reflector of the overburden,
following roughly the moveout of this reflector in the CMP domain.
This surface is indicated by the dashed white line in the figure. We
assume that this traveltime surface corresponds to some fictitious
reflector at depth level zf , which is located somewhere below
the overburden, as indicated in Figure 14. Although this boundary
is not exactly horizontal, this is not expected to harm the method-

ology severely. The data are truncated and crosscorrelated to obtain
the wavefield fR⋆Θt2

t0 R͡gðχP; χA; tÞ, which is shown in Figure 15b.
Although an automatic procedure could be applied here, we have
picked the traveltime surface t0ðχP; χA; tÞ manually, as indicated in
the figure. To address the fine layer (indicated as layer x in Fig-
ure 14) in the shallow subsurface in the best possible way, we avoid
the use of a taper when designing the truncation operators.
Now that the traveltime surfaces t2 and t0 have been determined,

we can compute the truncated data R͡f0 and subtract the multiple
predictions of M͡f1 and M͡f2. For the matching filters, we have used
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Figure 11. A CMP gather for the CMP location at
1000 m, (a) before and (b) after IME. In (c and d),
we show the internal multiple predictions of M͡f1
and M͡f2, respectively (single scalars have been
used for the matching filters α1 and α2). Primary
reflections from interfaces 1–5 have been marked.
The dashed white line indicates the offset that is
evaluated in Figure 10. All amplitudes have been
clipped at 50% of the strongest arrival in (a).
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Figure 12. A CMP gather after NMO correction
for the CMP location at 1000 m, (a) before and
(b) after IME. In (c and d), we show the internal
multiple predictions of M͡f1 and M͡f2, respectively
(single scalars have been used for the matching fil-
ters α1 and α2). Primary reflections from interfaces
1–5 have been marked. The dashed white line in-
dicates the offset that is evaluated in Figure 10. All
amplitudes have been clipped at 50% of the
strongest arrival in (a).
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single scalars that were found by minimizing the l2-norm of the
output gather. The result of this operation is shown in Figure 16.
Note that most of the events with moderate dips have been sub-
tracted well. However, in some parts of the gather where steeper
dips occur (for instance within the black box in the figure), various
internal multiples remain. This limitation could be the result of data
incompleteness (especially at the left edge of the acquisition array)
and the fact that the diffractionlike features are not obeying some of
the causality arguments that undergird the multidimensional Mar-
chenko equation (van der Neut et al., 2015a). However, despite
these limitations, we observe that all predicted multiples (also
within the black box) correspond to physical events in R͡f0. Hence,
it might be possible to improve the performance of our algorithm
with more sophisticated matching filters.
In Figure 17, we visualize the results as a function of offset for a

CMP at 2000 m. As expected, the predicted multiples have a differ-

ent moveout than the primary reflections from interfaces 1–3, which
are indicated in the figure. We observe that internal multiples have
been removed at small offsets, whereas the method has failed at
larger offsets. It is well-known that the retrieval of internal multiples
requires particular stationary points to be sampled by the acquisition
array (van der Neut et al., 2015a). Because this array is truncated
(with a relatively long taper of 25 sources), some retrieved events
can be inaccurate, hampering the multiple subtraction process, es-
pecially at higher offsets.
Despite these limitations, the consequences for velocity analysis

are significant. This is demonstrated in Figure 18a–18c, showing
semblance plots of the input data, the predicted internal multiples
and the output data. Although the semblances of interfaces 1–3 can
easily be observed, also in Figure 18a, the gather is overwhelmed by
stronger internal multiples (especially in the zone that is indicated
by the dashed black ellipse). Note that these multiples have been
largely removed in Figure 18c, whereas the constructive interfer-
ence of the primary reflections 1–3 has been improved.
As in the previous example, the gather M͡f1 contains relatively

more internal multiples than M͡f2. This has been explained before,
given the fact that the dominant internal multiples are of the type
that is illustrated in Figure 6a (where all reflection points are located
above Λf). This is a direct consequence of our choice for the trun-
cation surface t2, determining which part of the overburden we
choose to be eliminated (and how). To illustrate this, we reprocess
the data for an alternative traveltime surface t 02, being the upper
white curve in Figure 15a. It is assumed that t 02 corresponds to a
fictitious reflector at a relatively shallow boundary Λ 0

f, which is in-
dicated approximately in Figure 14. Note that this horizon varies
smoothly with CMP location and that it intersects with medium dis-
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Figure 13. Semblance plot of (a) the input data, (b) the predicted
internal multiples, and (c) the data after IME. The dashed black line
is the trend that we picked for the NMO correction in Figure 12.
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Figure 15. (a) Shot record of the recorded data R͡ðχP; χA; tÞ with
fixed χA ¼ 0 m. The lower white curve depicts a two-way traveltime
curve t2ðχP; χAÞ that we picked in this record just above the earliest
reflector of our interest. The upper white curve depicts an alternative
traveltime curve t 02ðχP; χAÞ. Amplitudes have been clipped at 10% of
the strongest arrival in the gather. (b) Shot record of the crosscor re-
lated data fR⋆Θt2

t0 R͡gðχP; χA; tÞ with fixed χA ¼ 0 m. The white
curve depicts the traveltime curve of t0ðχP; χAÞ that we picked in
this record to remove the contributions at the origin. The black curve
depicts the time-reversed traveltime curve −t0ðχP; χAÞ. Amplitudes
have been clipped at 5% of the strongest arrival in the gather.
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continuities. Although the exact consequences of
these observations are still to be explored, they
do not seem to harm the methodology. We re-
compute all gathers with this renewed truncation
time and show the results in the CMP domain in
Figure 19. Note that the IME process has once
more been successful at near offsets, whereas
it fails at higher offsets. However, unlike in Fig-
ure 17, the dominant internal multiples are in
gather M͡f2 rather than in M͡f1. To understand this
observation, we should realize that because level
Λ 0
f is relatively shallow, most internal multiples

are of the type that is illustrated in Figure 6d
(where the first and last reflection points are lo-
cated below Λ 0

f). This type of internal multiples
is predicted by M͡f2 rather than by M͡f1. In fact,
evaluating the predictions for different traveltime
surfaces t2 could be used as a diagnostic tool for
the origin of the various internal multiples in the
data. Such a tool might be especially relevant in
cases where different types of internal multiples
are significantly interfering.

MARINE DATA TEST

In this section, we will test the proposed algo-
rithm on 2D streamer data. For more information
on these data, see Abtheyab et al. (2013). For our
test, we select a relatively simple part of the data,
covering 4000 m at the surface. The data have
been recorded with 25 m source spacing and
12.5 m receiver spacing. By source-receiver reci-
procity and interpolation on the source side, we
regularize the recorded data to a fixed spread
with 321 source and receiver locations with
12.5 m spacing. Cosine tapers have been applied
to the first and last 25 source locations. We in-
terpolated the missing near offsets by NMO cor-
rection and cubic spline interpolation, following
Verschuur (1991). Free-surface multiples have
been removed (although remnants may occur
in the data) and an estimate of the source signa-
ture has been deconvolved to obtain the operators
R and R⋆. A

ffiffi
t

p
correction has been applied to

account for 3D geometric spreading. For illustra-
tive purposes, we have stacked the data after
NMO correction in Figure 20a. The overburden
is characterized by a package of strong reflectors,
which we expect to generate internal multiples
deeper in the gathers. These strong shallow re-
flectors are also evident in an interpolated shot
record, which we show in Figure 20b. Below
these reflectors, we pick the traveltime surface
t2, which is indicated by the white line in the fig-
ure. We assume that this surface corresponds to
the two-way traveltime of a fictitious reflector at
the depth level of Λf , as indicated in Figure 20a.
Note that the surface varies smoothly in time as
we vary its location, which is not expected to
harm the methodology, as long as the causality
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Figure 16. A common-offset gather at 200 m offset, (a) before and (b) after IME. In (c
and d), we show the internal multiple predictions of M͡f1 and M͡f2, respectively (single
scalars have been used for the matching filters α1 and α2). Primary reflections from
interfaces 1–3 have been marked. The dashed white line represents the CMP location
that is evaluated in Figure 17. The dashed black box indicates an area, where the multi-
ple elimination process is incomplete. All amplitudes have been clipped at 50% of the
strongest arrival in (a).
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properties in Figure 2 are satisfied. As in the previous examples, we
have crosscorrelated the truncated data to compute fR⋆Θt2

t0 R͡gðχP;
χA; tÞ, which is shown in Figure 20c. As indicated by the dashed
lines, we have picked a traveltime surface t0 just after the autocor-
related events in the origin, allowing us to compute the wavefields
R͡f0, M͡f1, and M͡f2, as they appear in equation 38.
In Figure 21, we show the truncated input data R͡f0, as well as the

predicted multiples M͡f1 and M͡f2. As in the previous examples, we
have used single scalars to match the internal multiple predictions to
R͡f0. A gain with t has been applied to the output gathers to boost the
later arrival times. Further, we have clipped the amplitudes heavily

at 10% of the maximum value in R͡f0. Overall, the quality of the
predictions in M͡f1 seems better than in M͡f2. Several events match
with internal multiples in the input data R͡f0, as indicated by markers
1–3. The match is not perfect, which could be due to seismic at-
tenuation, 3D effects, imperfect source signature deconvolution,
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have been largely removed by the algorithm.
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Figure 20. (a) Stack of the field data. The white line indicates boun-
dary Λf, defining the depth of the overburden, which we want to
eliminate. (b) Shot record of the interpolated data R͡ðχP; χA; tÞ with
fixed χA ¼ 0 m. The lower white curve depicts a two-way travel-
time curve t2ðχP; χAÞ that we have picked just below the strongest
reflectors in the overburden. (c) Shot record of the crosscorrelated
data fR⋆Θt2

t0 R͡gðχP; χA; tÞ with fixed χA ¼ 0 m. The white curve
depicts the traveltime curve of t0ðχP; χAÞ that we have picked to
remove the contributions at the origin. The black curve depicts
the time-reversed traveltime curve −t0ðχP; χAÞ.
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Figure 19. A CMP gather for the CMP location at
2000 m, (a) before and (b) after IME. Here, the
traveltime surface t 02 (corresponding to a shallow
boundary Λ 0

f) has been used, rather than t2 (corre-
sponding to the deeper boundary Λf). In (c and d),
we show the internal multiple predictions of M͡f1
and M͡f2, respectively (single scalars have been
used for the matching filters α1 and α2). All ampli-
tudes have been clipped at 25% of the strongest
arrival in (a).
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source/receiver ghosts, and other effects that are not accounted for
in the theory. We observe correlations between the predictions in
M͡f1 and M͡f2 as well, such as indicated by markers 4 and 5. This
can be understood intuitively because the multiples that are pre-
dicted in Figure 6b and 6c have similar traveltimes when horizontal
variations are mild. It should be observed that events 4 and 5, and
various other events in the gather, interfere strongly with the primar-
ies, other internal multiples, and the remnants of free-surface multi-
ples. Hence, the assumption that the l2-norm of the output gathers
should be minimized seems unsatisfied for these data and, conse-
quently, we find great difficulty in subtracting the predictions from
the input gathers. Here, it should be emphasized that the amplitudes
of the predicted multiples are relatively small (remember that the
gathers in Figure 21 are strongly clipped).

DISCUSSION

As we have demonstrated with a 1D example, all orders of in-
ternal multiples can be removed with equation 36, if a sufficient
number of updates are being evaluated. However, because we have
to crosscorrelate multiple times with the recorded data, the signal
quality tends to degrade in higher order terms (mainly due to incom-
plete deconvolution of the source signature and the presence of
noise in the data), which seems undesirable for robust applications.
Moreover, by interpreting each update of the iterative scheme indi-
vidually (van der Neut et al., 2015a) or by analyzing an arbitrary
case study, it can be reasoned that higher order updates play a role
mainly to balance amplitudes, rather than to predict unknown arriv-
als. For these reasons, we have decided to truncate the series and to
include only double crosscorrelations with the data. By doing so,
we have shown that the first-order internal multiples can be sub-
tracted well with global adaptive filters, but that inaccuracies occur
in the amplitudes of higher order multiples and at high offsets, due
to the finite acquisition aperture. To overcome these inaccuracies,
more accurate and localized matching filters can be implemented,

following the experiences with equivalent IME algorithms (Ver-
schuur and Berkhout, 2005; Fomel, 2006).
We have mentioned various similarities with existing IME

schemes. The derived result is different from the ISS-based schemes
of Ten Kroode (2002) and Löer et al. (2016) in the sense that we
make use of a selected horizon in the subsurface. It differs from the
algorithms of Jakubowicz (1998) and Van Borselen (2002) in the
sense that it can be applied at any depth level in the subsurface,
without the need for layer stripping. In all schemes, the recorded
data are crosscorrelated twice. However, the integral truncations are
different. In this paper, we have shown that two types of truncations
should be imposed to derive the multidimensional Marchenko equa-
tion. Truncation at time t2 is applied to define an overburden,
whereas truncation at time t0 is applied to define the shortest delay
time for an event to be considered an internal multiple. Depending
on the frequency band of the data, a reverberation of a thin layer is
considered part of the direct wavefield, unless it separates suffi-
ciently in time from this wavefield. Because truncation at t0 sepa-
rates the direct wavefield from the internal multiples, it plays an
essential role for any multiple elimination scheme to perform well.
In the original Marchenko imaging scheme of Wapenaar et al.
(2014b), both kinds of truncations are applied just before the
one-way traveltime surface t1 of the direct wavefield. In our adapted
scheme, the first truncation is applied at the two-way traveltime sur-
face t2 of a fictitious reflector in the subsurface, whereas the second
truncation is applied by separating autocorrelated events from cross-
correlated events, using the traveltime surface t0. We observe that t0
can be picked naturally without relying on a macro model, by fol-
lowing the strong event that occurs at the origin of crosscorrelated
data and adding some ϵ > 0 to account for the bandlimited source
signature. Because the second truncation is applied at one-way trav-
eltime t1 in the original Marchenko scheme, the moveout of this
truncation depends directly on the macro model, rather than on
the observed data. Hence, we can speak of our new truncation strat-
egy as being data driven, versus the model-driven truncations that
were prescribed byWapenaar et al. (2014b). Potential advantages or
disadvantages of both procedures may deserve further research.

CONCLUSIONS

We have derived a Marchenko equation that does not depend on a
macro velocity model. To solve this equation, we require a two-way
traveltime surface of a horizon in the subsurface and single-sided
reflection data. Our solution is a data set, in which all interactions
with the part of the medium above the selected horizon have been
eliminated. The solution can be written as a series. By truncating
this series, we can derive an algorithm for IME, which can be imple-
mented by adaptive subtraction. If we apply the truncations just be-
fore the output time, rather than at the traveltime of a selected
horizon, the prescribed procedure becomes similar to other IME
schemes that have been derived from ISS. Similarities can also be
found with particular data-driven IME schemes that predict all mul-
tiples, which have crossed a predefined horizon in the subsurface.
However, unlike these specific schemes, internal multiples that have
never crossed the specified horizon are also eliminated by the meth-
odology that is proposed in this paper. Hence, the method can be
applied at any horizon in the subsurface, without having to evaluate
shallower horizons. The procedure has been demonstrated success-
fully on synthetic data, in which limitations exist due to diffraction-
like discontinuities in the medium, fine layers, and a finite-acquisition
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Figure 21. The CMP gathers after NMO correction for the CMP lo-
cation at 2500 m. (a) The truncated data R͡f0, (b) predicted multiples
in M͡f1, and (c) predicted multiples in M͡f2 (single scalars have been
used for the matching filters α1 and α2). Amplitudes have been
clipped at 10% of the strongest arrival in R͡f0 and the gathers have
been gained with t. Some events have been indicated by markers 1–5.
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aperture. Because the method requires no macro model, it can be
applied early in a seismic processing workflow, for instance, to im-
prove velocity analysis, as we have demonstrated with semblance
plots. In a field data test, the predicted internal multiples appeared
to be kinematically correct, but we faced difficulties in subtracting
these predictions from the input gathers.
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