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ABSTRACT

The reflection response of strongly scattering media often
contains complicated interferences between primaries and (in-
ternal) multiples, which can lead to imaging artifacts unless
handled correctly. Internal multiples can be kinematically
predicted, for example by the Jakubowicz method or by the in-
verse scattering series (ISS), as long as monotonicity, that is,
“correct” temporal event ordering, is obeyed. Alternatively, the
(conventional) Marchenko method removes all overburden-
related wavefield interactions by formulating an inverse prob-
lem that can be solved if the Green’s and the so-called focusing
functions are separable in the time domain, except for an overlap
that must be predicted. For acoustic waves, the assumptions
of the aforementioned methods are often satisfied within the
recording regimes used for seismic imaging. However, elastic

media support wave propagation via coupled modes that travel
with distinct velocities. Compared to the acoustic case, not only
does the multiple issue become significantly more severe, but also
violation of monotonicity becomes much more likely. By quan-
tifying the assumptions of the conventional Marchenko method
and the ISS, unexpected similarities as well as differences be-
tween the requirements of the two methods come to light. Our
analysis demonstrates that the conventional Marchenko method
relies on a weaker form of monotonicity. However, this advantage
must be compensated by providing more prior information, which
in the elastic case is an outstanding challenge. Rewriting, or re-
mixing, the conventional Marchenko scheme removes the need
for prior information but leads to a stricter monotonicity condi-
tion, which is now almost as strict as for the ISS. Finally, we in-
troduce two strategies on how the remixed Marchenko solutions
can be used for imperfect, but achievable, demultiple purposes.

INTRODUCTION

In seismic exploration, structural images are often derived from
a single-sided reflection response. However, traditional imaging
methods assume single-scattering reflections (primaries only), such
that other events, in particular multiples, create artifacts, which can
be significant when the imaging target is buried under a strongly
scattering overburden. In elastic media, this problem is worse: each
interface couples compressional (P) and shear (S) waves, increasing
the number of (unwanted) events drastically. Additionally, due to
different propagation speeds of elastic modes, the (converted) pri-
maries associated with an individual reflector arrive at different
times, distributing information about this reflector in time. Hence,
imaging artifacts can arise not only from (converted) multiples but

also from converted primaries, that is, forward-scattered waves.
Reflection data-driven methods are not (yet) capable of predicting
forward scattering, but they are theorized to be able to handle
(converted) multiples.
Wave-equation-based demultiple methods, such as Jakubowicz

(1998), or the inverse scattering series (ISS, Weglein et al., 1997), pre-
dict and adaptively subtract internal multiples under two assumptions:

1) that the temporal ordering of primaries corresponds to the
reflector ordering in depth, and

2) that internal multiples are recorded after their generating primaries
(i.e., primaries associated with the internal multiple generators),

where temporal order refers to the vertical traveltime. These
requirements, known as monotonicity conditions, are satisfied for
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acoustic waves, except for special cases shown by Nita and Weglein
(2009). In elastic media, however, violation of monotonicity becomes
much easier because of mode conversions (Sun and Innanen, 2019).
A Marchenko-equation-based alternative for acoustic waves al-

lows removal of all internal multiples associated with an entire
group of layers at once, without adaptive subtraction (Broggini
et al., 2012; Wapenaar et al., 2013; Slob et al., 2014). This method
formulates an inverse problem with two equations (derived from
reciprocity theorems) and four unknowns: the up- and downgoing
Green’s functions as well as the so-called up- and downgoing fo-
cusing functions. Numerous studies on the topic feature the Green’s
and focusing functions, which are separable in the time domain,
except for an unavoidable overlap (χþ). Given this overlap, two un-
knowns can be eliminated by muting. Subsequently, two coupled
Marchenko equations are obtained and solved for the focusing func-
tions, which, once found, yield the Green’s functions. Eventually,
upon multidimensional deconvolution of the retrieved Green’s
functions, overburden-related scattering interactions, including in-
ternal multiples, can be removed. We refer to this approach as the
conventional Marchenko method.
The elastodynamic extension of the Marchenko method bears

several challenges. First, speed differences between modes can lead
to a second overlap (χ−), which to date cannot be predicted without
knowing the medium and only vanishes conditionally. Second, the
previously mentioned unavoidable overlap (χþ) between the
Green’s and the focusing functions is no longer easily predictable
without additional constraints or significantly more prior informa-
tion (Wapenaar and Slob, 2015). Similar restrictions have been en-
countered by prior work on inverse scattering of coupled modes.
Nevertheless, these cases ignore the overlaps, either by assuming
sufficiently small velocity differences between modes (Zakharov
and Shabat, 1973; Bava and Ghione, 1984) or by excluding cou-
pling (Ware and Aki, 1969).
To overcome the challenge related to the overlap χþ, we derive

a remixed, as opposed to the above-mentioned conventional,
Marchenko method: the Green’s and focusing functions are trans-
formed such that the unavoidable, highly complex, overlap (χþ) re-
mixes into a trivial one. This strategy can be seen as a combination
and generalization of the Marchenko schemes by van der Neut and
Wapenaar (2016) and Dukalski et al. (2019).
The Marchenko method uses the aforementioned assumptions

about the overlaps to separate the Green’s functions from the focus-
ing functions. To date, these requirements have not been sufficiently
investigated and have not been compared to the monotonicity con-
ditions of the ISS. Moreover, the requirements of the Marchenko
method and the ISS are only formulated verbally, which makes a
direct comparison of the requirements difficult. Therefore, we quan-
tify these assumptions in a form of medium, angle of incidence, and
redatuming depth dependent separability conditions. This analysis
demonstrates that the monotonicity assumptions of the ISS are very
similar to, but stricter than, the separability condition of the conven-
tional Marchenko method. After remixing, the Marchenko method
can be applied without prior medium information (no need for the
overlap χþ). Although, compared to the conventional Marchenko
scheme, the separability condition becomes stricter, it still remains
slightly more relaxed than the monotonicity assumption (1) of the
ISS. This advantage of the (remixed) Marchenko method comes
from handling the overburden as one complex multiple generator,
rather than a stack of independent multiple generators.

Finally, we demonstrate how the solutions of the remixed
Marchenko method can be used to remove internal multiples that
postdate their generating primaries. In contrast to the ISS, which
encounters the same limitation, see assumption (2), the remixed
Marchenko method tracks the error caused by the remaining inter-
nal multiples. This tracked error is expected to persist in field data
studies (Ravasi et al., 2016; Staring et al., 2018), but it could be
eliminated by transforming the remixed solutions back to the con-
ventional ones, using energy conservation and the minimum-phase
property of the focusing function, similar to Dukalski et al. (2019).
The latter strategy relies on the reconstruction of a minimum-phase
matrix from its normal product, which is subject to ongoing
research and will be published elsewhere.
This paper is structured as follows. First, we briefly outline the

conventional Marchenko scheme, quantify its assumptions as a
separability condition, and interpret the required initial estimate.
Second, we derive the remixed Marchenko scheme, which leads to
a stricter separability condition. Third, we quantify the monotonic-
ity conditions of the ISS, which we compare to the requirements of
the aforementioned (remixed) Marchenko method. Finally, we illus-
trate our findings with numerical examples. In this analysis, we assume
that surface-related multiples are removed during preprocessing, and,
thus, we use the terms multiples and internal multiples interchange-
ably. Although we consider the simplest yet a nontrivial case, horizon-
tally layered elastic media, our analysis is already highly relevant for
the Middle East (El-Emam et al., 2001; Reinicke et al., 2019), and it
extends qualitatively to more general cases.

Notation

We consider 2D lossless horizontally layered elastic media in the
x-z coordinates. According to Snell’s law, horizontal slownesses sx
(i.e., horizontal ray-parameter) are conserved according to

sx ¼
sinðαP∕SðzÞÞ
cP∕SðzÞ

¼ constant; (1)

where the subscripts refer to P- and S-waves. Further, αP∕S and cP∕S
are the propagation angle with respect to the vertical axis (z) and the
propagation velocity, respectively. A representation in the horizon-
tal-slowness intercept-time domain ðsx; τÞ allows separation of 2D
wavefields Uðx; z; tÞ into a set of decoupled 1D wavefields

Uðsx; z; τÞ ¼
Z

∞

−∞
Uðx; z; τ þ sxxÞdx: (2)

In this paper, we use the terms time and intercept time interchange-
ably; that is, the entire analysis considers the vertical traveltime, as
opposed to the total traveltime.
We restrict our analysis to propagating waves, that is, jsxj ≤ 1∕cP

(assuming cP > cS), and we neglect measurement-induced limi-
tations, such as a finite bandwidth, because here we wish to focus
on a fundamentally physical (not measurement-borne) limitation.
Further, we work with P- and S- one-way wavefields (Frasier, 1970;
Ursin, 1983), organized in 2 × 2 matrices per discrete horizontal
slowness and time as

Uðsx; z; τÞ ¼
�
UPP UPS

USP USS

�
ðsx; z; τÞ: (3)

Q12 Reinicke et al.
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The elements of the arbitrary wavefield Uðsx; z; τÞ are associated
with source- (the second subscript) and receiver-side (the first
subscript) wavefield potentials (P and S).
Finally, we introduce a detail-hiding notation that omits coordi-

nates and implies temporal convolutions when two matrices U1 and
U2 are multiplied; for example, U1U2 stands forZ

∞

−∞
U1ðsx; z; τ − τ 0ÞU2ðsx; z; τ 0Þdτ 0: (4)

MARCHENKO GREEN’S FUNCTION RETRIEVAL

Suppose all of the multiples due to the overburden above the re-
datuming depth zi shall be removed. For this purpose, we might use
the Green’s functions, G−;þðsx; z0; zi; τÞ and G−;−ð−sx; z0; zi; τÞ,
associated with downward- “þ” and upward- “−” radiating sources
(the second superscript) at the redatuming depth zi, respectively,
and recordings of upgoing waves “−” (the first superscript)
at acquisition level z0 (see Figure 1). From these Green’s functions,
a redatumed reflection response Rrdðsx; zi; τÞ, free of overburden-
related scattering, can be obtained by solving

G−;þ ¼ −σzG−;−RT
rdσz; (5)

via an Amundsen (2001) deconvolution. Here, we exploit wavefield
symmetries in horizontally layered media by means of a transpose
in the P-S space (superscript “T”) and through the diagonal matrix
σz ¼ diag½δðτÞ;−δðτÞ�, where δðτÞ is a temporal delta spike. These
symmetries allow us to proceed with the retrieved Green’s functions
G−;�, although they are associated with horizontal slownesses sx of
the opposite sign (a derivation can be found in Appendix A). The
challenge is to retrieve these Green’s functions from a reflection
response Rðsx; z0; τÞ recorded at a scattering-free surface z0 at the
top, which can be accomplished by a Marchenko method.
First, we highlight the underlying assumptions and the prior

information required by the conventional Marchenko method. Sec-
ond, we provide a physical interpretation of the prior information,
and, finally, we propose an alternative Marchenko formulation,
which trades prior information for stricter assumptions. It will be
shown that the conventional Marchenko method as well as its alter-
native formulation rely on separability conditions, which we ex-
press quantitatively. In the next section, this quantification will
allow us to compare the requirements of the Marchenko method
to those of the ISS.

Quantitative separability condition

We briefly outline the elastodynamic Marchenko method,
derived by one of the authors (Wapenaar, 2014), and we quantify
the assumptions as a separability condition.
Instead of predicting multiples by combining all possible triplets

of primaries associated with the overburden (Coates and Weglein,
1996), the Marchenko method solves an inverse problem formed by
two equations, the convolution- and correlation-type representation
theorems

G−;þ þ F−
1 ¼ RFþ

1 ; (6)

ðG−;−Þ� þ Fþ
1 ¼ R†F−

1 ; (7)

with four unknowns: the Green’s functions G−;� and the focusing
functions F�

1 ðsx; z0; zi; τÞ. The latter ones are defined in a truncated
medium that is identical to the overburden, but scattering-free above
z0 and below zi. The superscripts denote a time reversal (�) and a
time reversal combined with a transpose in the P-S space (†). Fur-
ther, an illustration of equations 6 and 7 can be found in Figure 1 for
an acoustic medium and in Figures 2a and 3a for an elastic medium.
In an attempt to constrain equations 6 and 7, two temporal pro-

jectors P� are applied as a Hadamard matrix product in the P-S
space (details about the projectors can be found in Appendix B).
In other publications, the projectors also are referred to as window
functions; both terms describe exactly the same operator. Without
loss of generality, the projectors preserve the focusing functions, but
mute the Green’s functions, except for the temporal overlaps,
P−½G−;þ� ¼ χ− and Pþ½ðG−;−Þ�� ¼ χþ, such that equations 6
and 7 simplify to

χ− þ F−
1 ¼ P−½RFþ

1 �; (8)

χþ þ Fþ
1 ¼ Pþ½R†F−

1 �: (9)

Note that keeping the overlap χ− explicit will lead to key insights of
this paper. The solution strategy hopes that the overlaps χ� can be
estimated such that the inverse problem resembles a set of coupled
Marchenko equations that can be solved recursively as

Fþ
1 ¼

X∞
k¼0

Ξk with Ξk ¼ Pþ½R†P−½RΞk−1��; (10)

using Ξ0 ¼ −χþ − Pþ½R†χ−� as the initial estimate, and assuming
convergence of the series (which has been shown for the acoustic
case, Dukalski and de Vos, 2017). From the retrieved solution Fþ

1 ,
the remaining unknowns can be constructed.
Estimating the overlaps remains very challenging. To proceed,

the Marchenko method first assumes that χ− is a null matrix O,
and, second, that it requires χþ as prior information (a physical in-
terpretation of χþ follows in the next subsection).
The assumption χ− ¼ O demands that the focusing function F−

1

and the Green’s function G−;þ remain separable in the time domain
(see the F−

1 /G
−;þ separability in Figures 1a and 2a). Although true

for 1.5D acoustic media, this assumption can be violated in 1.5D
elastic media (see Figure 2b), and it only holds under the χ−-sepa-
rability-condition

Xi−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ < 2ΔzðiÞsðiÞz;P; (11)

which we derive in Appendix B. Variables ΔzðkÞ and sðkÞz;P∕S denote
the thickness and the vertical slownesses of P- and S-waves in the
kth layer, respectively (the layer labeling is depicted in Figure 5a).
The right side of equation 11 describes the two-way traveltime of a
P-wave through the ith layer (embedding the redatuming level), and
the left side is the one-way traveltime difference between a P- and
an S-wave propagating from the shallowest to the deepest interface
of the overburden. Note that the separability condition becomes
stricter if identical projectors Pþ ¼ P− are used.

Elastodynamic Marchenko conditions Q13
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Figure 1. Illustration of the (a) convolution- and (b) correlation-type representation theorems. This figure depicts an acoustic experiment to
help the interpretation of the elastic experiments shown in Figures 2 and 3. The representation theorems describe a scattering experiment:
special fields (the focusing functions F�

1 ) are injected into a medium (see the arrows labeled “in”), the arrow diagram in the center depicts the
scattering paths for a single horizontal slowness sx (marked with black arrows in the sx-τ gathers), and another special field scatters back to the
recording surface z0 (see the arrows labeled “out”). Note that all wavefields are consistently color coded in Figures 1–3. The scattering of Fþ

1
[violet in panel (a)] and F−

1 [red in panel (b)] by a (a) time-forwarding and (b) time-reversing medium results in superpositions of focusing and
Green’s functions F−

1 þG−;þ and Fþ
1 þ ðG−;−Þ�, respectively. The top trace shows the true (violet) and retrieved (orange) focusing functions

Fþ
1;PP and F̄þ

1;PP, respectively. The last event of F
−
1 (event I) and the first event of G−;þ (event II) are represented by the red and green paths,

respectively (also see the sx-τ gathers). Similarly, the first event of Fþ
1 (event III) and the last event of ðG−;−Þ� (event V) are highlighted by the

violet and green travel paths, respectively. The fastest multiple coda of ðG−;−Þ� (event IV) propagates along the blue path. At the recording
surface z0, the overlap between focusing and Green’s functions only contains a direct wave (events III and V). The overlap(s) between focusing
and Green’s functions appear to have a trivial sx-dependency (illustrated by the sx-τ gathers); however, this will change in the elastic case (see
Figure 2). For illustration purposes, all responses are convolved with a 30 Hz Ricker wavelet. Medium parameters can be found in Appendix C.
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Figure 2. (a) Idem as Figure 1a for the same medium supporting elastic wave propagation (arbitrarily chosen SP component shown). Com-
pared to the acoustic experiment shown in Figure 1a, the number of scattering paths increased drastically because at each interface the injected
wavefield is reflected and transmitted as P- and S-waves. Moreover, creation of a P-wave focus requires injection of P- (the gray color for Fþ

1;PP)
and S-waves (the violet color for Fþ

1;SP). Due to the mode coupling, the F−
1 /G

−;þ separability is only violated for sufficiently large horizontal
slownesses, jsxj > 2.54 × 10−4 sm−1 (indicated by the black arrows inside the top-right sx-τ gather). For smaller horizontal slownesses, the
separability conditions (see equations 11 and 12) are satisfied and the Marchenko method retrieves the correct focusing function (see the top
trace). (b) Idem as panel (a), except that the thickness of the focusing layer is reduced such that the first event ofG−;þ

SP (event II) predates the last
event of F−

1;SP (event I), leading to a temporal overlap (see the black ellipse in the illustration and the red-green area overlap in the sx-τ gathers).
If we erroneously assume zero overlap χ− ¼ O, the Marchenko method forces the overlapping part of the Green’s function to become part of
the upgoing focusing function F̄−

1 . As a result, the retrieved downgoing focusing function F̄þ
1 contains an artifact (see the orange arrow) that

cancels a multiple generated by event II. The other artifacts of the retrieved focusing function F̄þ
1 (e.g., approximately τ ¼ −1.25 s) are caused

by similar mechanisms but are not immediately easy to interpret here.
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Figure 3. (a) Idem as Figure 1b but now the medium is elastic and contains an additional interface (an arbitrarily chosen SP component is
shown). Because the additional layer generates so many extra events, we do not draw all paths in the illustration. In contrast to the acoustic case
in Figure 1b, creation of a P-wave focus requires injection of P- (the gray color is for F−

1;PP) and S-waves (the red color is for F
−
1;SP). Due to P-S

coupling at each interface, the overlap χþ, which is bounded by the first event of Fþ
1 (event III) and the last event of ðG−;−Þ� (event V), contains

not only a direct wave but all forward-scattered waves. The sx-τ gather shows that the temporal separation between forward-scattered waves
(e.g., events III, V, and VI) and multiples (e.g., event IV) decreases with the increasing horizontal slowness. (b) Idem as Figure 3a, except that
the second interface from above has been moved downward, creating a thinner layer (the layer thickness is reduced from 250 to 50 m). As a
result, the overlap χþ contains not only the forward-scattered waves but also fast multiples (see event IV in the ellipse). Approximating the
overlap χþ only by forward-scattered waves, that is, ignoring fast multiples such as event IV, leads to an erroneous focusing func-
tion F̄þ

1 (see the orange and violet traces for comparison). Errors occur not only within the temporal extent of the overlap χþ but also at
other times.
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Physical interpretation of the overlap χ�

In 1.5D acoustic media, the overlap χþ is a direct wave propa-
gating from the redatuming level zi to the acquisition surface z0.
Wapenaar and Slob (2015) demonstrate that, in elastic media, the

unavoidable overlap χþ does not simply consist of direct P- and S-
waves, but of all waves that forward scatter from the redatuming
level zi to the acquisition surface z0 (such as events III and V in
Figures 1b and 3a). This interpretation is a special case. In general,
a multiple coda propagating mainly as P-wave may outpace for-
ward-scattered waves propagating mainly as S-waves; for example,
see events IVand III in Figure 3b, respectively. These multiple-coda
events become part of the overlap χþ, and we refer to them as fast
multiples. The occurrence of fast multiples is prevented if the
χþ-separability-condition

Xi−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ < 2 minfΔzðkÞsðkÞz;Pjk ∈ ½1; i�g (12)

holds (derived in Appendix B). The minimum function minf·g se-
lects the smallest element of the given set, which in this case is the
delay between the fastest multiple coda and the corresponding for-
ward-scattered wave propagating from zi to z0.
If the separability condition in equation 12 is violated, the con-

ventional Marchenko method requires the fast multiples as prior
information. Even in the special case in which equation 12 holds
such that the overlap χþ simplifies to only forward-scattered waves,
it still consists of 2n−1 events per elastic component, where n is the
number of reflectors inside the overburden. Thus, finding the initial
estimate χþ without further constraints appears very unrealistic for
an unknown model.

Marchenko method with trivial initial estimate

In this section, we modify the conventional Marchenko scheme
to remove the need for prior information contained by χþ in
exchange for a stricter separability condition.
We exploit the freedom to convolve the representation theorems

in equations 6 and 7 with an arbitrary time-dependent matrix
Bðsx; zi; z0; τÞ from the right as

U−;þ þ V−
1 ¼ RVþ

1 ; (13)

ðU−;−Þ� þ Vþ
1 ¼ R†V−

1 ; (14)

where we introduce V�
1 ¼ F�

1 B, U−;þ ¼ G−;þB, and
U−;− ¼ G−;−B�. This approach allows us to arrive at a different
set of equations and can be interpreted as a form of preconditioning
(Dukalski and de Vos, 2017). Like Dukalski et al. (2019), Mildner
et al. (2019), and Elison et al. (2020), we assume an unknown,
although later recoverable, B, contrary to other authors who use a
known B (van der Neut and Wapenaar, 2016; Meles et al., 2018;
Reinicke et al., 2018).
Next, we define the unknown B such that the overlap χþ unfolds

onto an identity. This strategy can be seen as applying an unknown
transformation (convolution with B) that maps the typically un-
known initial guess χþ onto a trivial one. As a result, the solutions
also are transformed from F�

1 to V�
1 ¼ F�

1 B. We emphasize that
operator B is not a mere time shift as in the acoustic scheme by

van der Neut and Wapenaar (2016), nor is it a form of a wavelet as
in the scheme by Dukalski et al. (2019) and Elison et al. (2020), but
it is a much more general matrix filter. Now, equation 14 can be
easily separated as

Pþ
B ½ðU−;−Þ�� ¼ χBþ ¼ I; (15)

Pþ
B ½Vþ

1 � ¼ Vþ
1 ; (16)

where I is an identity matrix multiplied by a temporal delta function.
Note that projector Pþ

B can be very different from projector Pþ in
equation 9 (details about the projectors can be found in
Appendix B). After applying a projector to equation 13, such that

P−
B½U−;þ� ¼ χB−; (17)

P−
B½V−

1 � ¼ V−
1 ; (18)

we can simplify equations 13 and 14 to

χB− þ V−
1 ¼ P−

B½RVþ
1 �; (19)

Iþ Vþ
1 ¼ Pþ

B ½R†V−
1 �: (20)

Compared to equations 8 and 9, the overlaps χ� are remixed into
χB− and χBþ ¼ I; thus, we refer to B as the remixing operator. For the
special case in which the remixed overlap χB− remains zero, we can
retrieve remixed solutions

Figure 4. Effect of remixing on temporal separation, illustrated
analogously to Figures 2 and 3. Remixing reduces the temporal dis-
tance between F−

1 and G−;þ (see the gray and black bar) by the du-
ration of the remixing operator (see the black bar). We depict the
first (superscript α) and last (superscript Ω) events of F−

1 (red),G−;þ
(green), and B (blue). The traveltimes of the first and the last events
of B are derived in Appendix B.
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Vþ
1 ¼

X∞
k¼0

Ξk; with Ξk ¼ Pþ
B ½R†P−

B½RΞk−1�� (21)

using a trivial initial estimate Ξ0 ¼ −χBþ. Further onwards, we will
introduce a demultiple strategy that only requires the resulting re-
mixed Green’s functions U−;� as input.
The advantage of a trivial initial estimate, χBþ ¼ I, comes at a

cost: although unknown, the remixing operator is associated with
a source at the surface at z0 and a receiver at the redatuming depth
zi. Thus, B moves the focal point to the acquisition surface. This
process reduces the temporal separation between the focusing func-
tion F−

1 and the Green’s functionG−;þ by the temporal extent of the
remixing operator (see Figure 4). As a result, an originally zero
overlap χ− ¼ O can become nonzero, χB− ≠ O. This is because
the remixed Marchenko method relies on the χB− separability con-
dition (a derivation can be found in Appendix B)

Xi−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ < ΔzðiÞsðiÞz;P; (22)

which is stricter than the χ−-separability-condition of the conven-
tional Marchenko method (see equation 11). The effect of satisfy-
ing, or violating, the aforementioned separability conditions is
summarized in Table 1.

MONOTONICITY CONDITIONS OF THE ISS

The ISS relies on monotonicity assumptions (1) and (2) (see the
“Introduction” section), which, to the best of our knowledge, have

always been formulated verbally. We quantify these assumptions in
the form of two inequalities. Subsequently, we compare them
against the conventional and remixed Marchenko methods.

Quantifying monotonicity in terms of separability
conditions

Consistent with the previous section, we aim to remove multiples
related to the overburden above zi. Monotonicity assumption (1) in
the introduction requires that the P-wave traveltime through each
layer inside the overburden is sufficiently long to separate the (con-
verted) primaries of adjacent reflectors in time (compare Figure 5a
and 5b), and it must hold for each elastic component. This require-
ment can be formulated as a separability condition (derived in
Appendix B)

Xj−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ < ΔzðjÞsðjÞz;P; ∀ j ∈ ½2; i�: (23)

Monotonicity assumption (2) states that multiples are recorded
after their generating primaries and can be formulated as (derived
in Appendix B)

Xi−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ < minfΔzðkÞsðkÞz;Pjk ∈ ½1; i�g: (24)

Violating monotonicity causes erroneous multiple predictions at
the arrival times of the primaries (e.g., see Figure 16 in Sun and
Innanen, 2019). Subsequent match subtraction of the mispredicted
multiples may affect the primaries.

Analysis of Marchenko and ISS
separability conditions

Now, we compare the assumptions of the
conventional and remixed Marchenko methods
(see equations 11, 12, and 22) with the monoto-
nicity assumptions of the ISS (see equations 23
and 24).
All of the aforementioned methods rely on

separability conditions that have the same term
on the left side. This term describes the travel-
time difference between P- and S-waves propa-
gating from the shallowest to the deepest
reflector of the overburden. Hence, the likeli-

Figure 5. Two primary reflections (an arbitrarily chosen SS component) that (a) obey
and (b) violate monotonicity assumption (1). (c) A multiple that predates a primary of
one of its generators, violating monotonicity assumption (2). The dashed and sinusoidal
lines represent the P- and S-waves, respectively. The layers are labeled with respect to
the redatuming depth zi.

Table 1. A summary of the effect of satisfying and violating the separability conditions of the conventional and the remixed
Marchenko method. The left side (l.s.) of all inequalities in this table is

Pi−1
k�1 Δz�k��s�k�z;S − s�k�z;P�.

Separability condition Satisfied Violated

Conventional χ− l.s. < 2ΔzðiÞsðiÞz;P (equation 11) χ− ¼ O χ− ≠ O with finite duration

χþ l.s. < 2 minfΔzðkÞsðkÞz;Pjk ∈ ½1; i�g
(equation 12)

χþ only contains
forward-scattered waves

χþ contains forward-scattered waves
and fast multiples

Remixed χB− l.s. < ΔzðiÞsðiÞz;P (equation 22) χB− ¼ O χB− ≠ O with finite duration

χBþ unconditionally (by definition χBþ ¼ I) χBþ ¼ I not applicable

Q18 Reinicke et al.
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hood of violating these separability conditions increases with depth
and vertical slowness differences between the P- and S-waves
(sz;S − sz;P).
The remixed Marchenko scheme and the ISS can be evaluated

without prior medium information, which results in a fair compari-
son: the χB-separability-condition of the remixed Marchenko scheme
is nearly identical to the monotonicity assumption (1) of the ISS
(compare equations 22 and 23). However, the condition for the re-
mixed Marchenko scheme (see equation 22) only needs to be obeyed
by the redatuming layer i, rather than by each layer inside the over-
burden (see equation 23). For example, a sufficiently slim layer inside
the overburden can be prohibitive for the ISS whereas the remixed
Marchenko method can handle it as long as the redatuming layer i
provides sufficient temporal support ΔzðiÞsðiÞS;P. Hence, the require-
ment of the remixed Marchenko scheme, that is, the separability
of V−

1 from U−;þ, can be seen as a relaxed version of the monoto-
nicity condition (1). This advantage of the (remixed) Marchenko
method can be understood through the fundamentally different nature
of the two algorithms: the ISS is applied in a fashion that scans
through the data along the time, or (pseudo)depth, direction; that
is, it treats the medium as a stack of individual multiple generators
(although there is no need for identifying the generators). In contrast,
the (remixed) Marchenko method exploits scattering relations be-
tween wavefields associated with a shallow and a deep part of the
medium, where the separation between shallow and deep is arbitrary
(Dukalski and de Vos, 2020). Once retrieved, these wavefields can be
used to remove multiples generated by the shallow medium (i.e., the
overburden). Thus, the overburden is handled as one complex multi-
ple generator.
The χ−-separability-condition of the conventional Marchenko

method is more relaxed (compare equations 11, 22, and 23). This
relaxation emerges due to a missing factor of two on the left side of
equation 11; that is, the conventional Marchenko scheme demands
temporal separability in terms of the one- instead of the two-way
traveltime (F−

1 ↔ V−
1 and G−;þ ↔ U−;þ). However, the more re-

laxed separability condition must be compensated by estimating
the remaining overlap χþ, that is, by providing prior information.
Hence, the remixed Marchenko method trades prior information for
a stricter assumption. This trade-off is not discussed by van der Neut
and Wapenaar (2016) because they do not consider forward-scat-
tered waves.
Further, elastic overburden removal through the ISS entails a high

risk of violating the monotonicity assumption (2), which is quanti-
fied by equation 24: with increasing depth, the right side of the con-
dition decreases or remains constant, whereas the left side increases.
In other words, increasing the depth leads to a higher probability of
fast multiples occurring, that is, multiples outpacing their generat-
ing primaries. Fast multiples also can be encountered by the conven-
tional Marchenko method, which requires them to be included in
the initial estimate. Again, due to the one- and two-way traveltimes,
the occurrence of fast multiples in the conventional Marchenko
method and the ISS differs by a factor of two (compare equations 12
and 24). The remixed Marchenko scheme encodes the effect of fast
multiples in the remixing operator B, which allows us to solve the
scheme with a trivial initial estimate. However, the remixing oper-
ator remains in the retrieved solutions (V�

1 and U−;�). Hence, the
remixed Marchenko scheme tracks, but does not remove, the impact
of fast multiples (which will become obvious in equation 26 in the
next section).

Note that the discussed separability conditions only consider the
temporal event ordering, but they neglect the amplitudes of the
events. Errors due to violating the separability conditions may be
negligible close to zero-incidence where mode conversions are
weak, but they become increasingly significant with the increasing
angle of incidence.
Moreover, the separability conditions are domain-dependent.

Among others, Sun and Innanen (2016) have addressed this issue in
the context of the ISS. For Marchenko methods, the separation of fo-
cusing functions from the Green’s functions typically is performed in
the space-time domain (Wapenaar et al., 2014) or in the linear Radon
domain (Slob et al., 2014). The separation in the latter domain is fa-
vorable, particularly in 1.5D media, because horizontal slownesses
can be treated separately, reducing the risk of unwanted overlaps.
It may be possible to relax the separability conditions further by con-
sidering another domain, which will be subject to future investigation.

DEMULTIPLE STRATEGIES FOR REMIXED
MARCHENKO SCHEME

Now, we propose two demultiple strategies derived from the re-
mixed Marchenko solutions. The first one only requires the remixed
solutions but does not remove all of the overburden interactions.
The second one aims to remove all of the overburden interactions

Figure 6. Reflection response (the black traces) and demultiple re-
sult (the red traces) according to equation 26 (arbitrarily chosen PP
component, sx ¼ 2 × 10−4 s m−1). Panel (a) shows a close-up of the
box in panel (b). Again, the dashed and sinusoidal lines represent
the P- and S-waves, respectively. The illustration highlights (1) some
of the overburden interactions removed by the demultiple scheme
(the black lines) and (2) the four strongest events remaining in the
redatumed result (the red and blue lines). Event A is the desired
target-related primary reflection, events B and D are forward-scat-
tered waves, and event C (highlighted in blue) is a fast multiple. The
dotted lines point to the arrivals associated with the illustrative ar-
rows. For illustration purposes, all of the responses are convolved
with a 30 Hz Ricker wavelet, and a global scaling factor is used to
adjust the demultiple result to the reflection response.
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by exploiting energy conservation and the minimum-phase property
of the focusing function. The latter approach is discussed only con-
ceptually and may enable the recovery of the focusing function Fþ

1 ,
which will be discussed further in the future.

Remixed Marchenko demultiple method

The two Green’s functions G−;� are related by the redatumed
reflection response Rrd (see equation 5) that is free of overburden
interactions and, thus, is a form of overburden-borne multiple and
forward-scattering elimination. In contrast, the remixed Green’s func-
tions U−;� are mutually related by a target reflection response R

U−;þ ¼ −σzU−;−R; (25)

which can be retrieved using deconvolution (still per horizontal
slowness sx). By inserting an identity B�ðB�Þ−1 in equation 5,
multiplying the result by B from the right, and using the definitions
of the remixed Green’s functions (see discussion of equation 14),
we see that the target response R is related to the redatumed reflec-
tion response Rrd by

R ¼ ðB�Þ−1RT
rdσzB: (26)

In this process, we introduce a convolutional and matricial, more
general, Moore-Penrose pseudoinverse of B, denoted by the super-
script “−1.” Even though in our numerical experiments B is
always invertible, we currently cannot offer any proof to assume
invertibility in general. Moreover, for band-limited signals, the ma-
trix inverse does not exist outside the spectral band of the signal,
analogously to wavelet deconvolution. Unlike the Green’s function
G−;�, the remixed ones are easily calculable provided that the sepa-
rability condition in equation 22 holds. The target reflection re-
sponse R (see equation 26) is the desired redatumed reflection
response, dressed with all overburden interactions described by
B on the source and receiver sides. In a 1.5D acoustic case, B com-
mutes with the redatumed reflection response Rrd, and the product
ðB�Þ−1B cancels except for a time shift defined by the overburden.
However, in 2D, this is no longer the case. In the elastic situation, in
the absence of fast multiples (see equation 12) B is an inverse time-
reversed forward-scattered transmission through the overburden.
This insight ties back to the statement in the “Introduction” section
that forward-scattering cannot be predicted by existing methods. If
equation 12 is violated, B also carries the imprint of fast multiples
(e.g., see Figures 6 and 7 in Appendix D).
Moreover, the impact of forward scattering and fast multiples can

be understood and tracked through the remixing operator (see equa-
tion 26). If the remixing operator can be retrieved, the aforemen-
tioned errors could even be corrected. This convenience is
possible because the (remixed) Marchenko method only relies on
linear scattering relations between fields defined in the overburden
only and fields defined in the entire medium. In contrast, demultiple
schemes that predict multiples only kinematically do not yet offer
the opportunity to track the above-mentioned errors.

Alternative demultiple strategy

We conjecture that it could be possible to remove all of the over-
burden interactions, including forward scattering and (fast) multi-
ples, by exploiting further physical constraints: energy conservation

and the minimum-phase property of the focusing function. In the
following, we make the first steps in this direction.
The up- and downgoing focusing functions conserve energy by

ðFþ
1 Þ†Fþ

1 − ðF−
1 Þ†F−

1 ¼ I; (27)

that is, the net energy injected at z0 equals the transmitted energy at
zi — a delta source at time zero. First, by evaluating energy con-
servation of the remixed focusing function, V�

1 ¼ F�
1 B, and

using equation 27, we obtain the normal product of the remixing
operator

ðFþ
1 BÞ†Fþ

1 B − ðF−
1BÞ†F−

1B ¼ B†B: (28)

Second, we find a convolutional and matricial Moore-Penrose pseu-
doinverse of B†B, and we convolve the result by the remixed focus-
ing function Vþ

1 from the left and right as

Fþ
1 BðB†BÞ−1ðFþ

1 BÞ† ¼ Fþ
1 ðFþ

1 Þ†: (29)

The result is the normal product of the desired focusing function
Fþ
1 and can be seen as a generalized power spectrum. Note that

equations 27–29 also hold for band-limited wavefields. If the focus-
ing function Fþ

1 can be retrieved from its normal product Fþ
1 ðFþ

1 Þ†,
the desired Green’s functions and hence the redatumed reflection
response Rrd, free of all overburden interactions, can be obtained
(from equation 5).
We aim to retrieve the focusing function Fþ

1 from its normal prod-
uct using a physical constraint. The focusing function Fþ

1 is an in-
verse of a transmission response. In 1D acoustics, this relation
implies that the focusing function is a minimum-phase scalar func-
tion, except for a linear phase shift and hence possesses a unique
amplitude-phase relationship through the Kolmogorov relation
(Claerbout, 1985). This property allows Dukalski et al. (2019) and
Elison et al. (2020) to factorize the (scalar) normal product Fþ

1 ðFþ
1 Þ†

and thereby predict short-period multiples that are generated in a
horizontally layered acoustic overburden. In our case, the focusing
function as a matrix is still an inverse transmission and therefore
remains a minimum-phase object in a matrix sense. Tunnicliffe-
Wilson (1972) proposes a method that factorizes the normal prod-
ucts of a subclass of minimum-phase matrices. The generalization
of this method is the subject of ongoing research and will be
published in the future. If this strategy can be successfully imple-
mented, there is no need to retrieve the unknown operator B. For an
interested reader, however, we still present a numerical example of
B in Appendix D.

NUMERICAL EXAMPLES

For horizontally layered media, all required wavefields can be
modeled efficiently by wavefield extrapolation without band limi-
tation (Kennett and Kerry, 1979; Hubral et al., 1980). Further, we
choose the P- and S-wave velocities as well as the horizontal slow-
nesses such that all events are on-sample; that is, the arrival times of
all events are integer multiples of the temporal sampling interval
(the medium parameters are specified in Appendix C). This allows
us to better inspect the separability conditions of the conventional
and remixed Marchenko methods because measurement-induced
limitations are absent.

Q20 Reinicke et al.
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First, we consider the experiment in Figure 2a that satisfies the
χ−-separability-condition of the conventional Marchenko method
stated by equation 11. Using the correct initial estimate χþ, which
is obtained by applying the projector Pþ (defined in Appendix B)
to a modeled Green’s function (i.e., the medium is known a priori),
the elastodynamic Marchenko method finds the correct focusing
function (see the trace in Figure 2a). However, when repeating
this experiment for the model in Figure 2b, which violates the
χ−-separability-condition in equation 11, the projector P− errone-
ously preserves the first event of G−;þ (event II). Assuming that
χ− ¼ O forces this event to become part of the focusing function
F̄−
1 (the bar distinguishes retrieved from true solutions). To cancel

multiples caused by this event, the retrieved F̄þ
1 contains an artifact

(see the orange arrow in Figure 2b). Through the same mechanism,
further artifacts are introduced.
Second, for the experiment shown in Figure 3a, which still

satisfies the χ−-separability-condition in equation 11 as well as
the χþ-separability-condition in equation 12, the Marchenko series
(see equation 10) finds the correct solution (see the trace in Fig-
ure 3a), using the forward-scattered part of the Green’s function
ðG−;−Þ� as the initial estimate. By downward shifting the second
interface, as depicted in Figure 3b, equation 12 is violated and
the overlap χþ is populated with fast multiples. If the initial estimate
ignores these fast multiples, the Marchenko series does not con-
verge to the true solution. For example, event IV, which is a (fast)
multiple belonging to the Green’s function, is now (erroneously)
part of the focusing function (indicated by the orange-dotted line
in Figure 3b). To compensate for these errors, the Marchenko series
introduces further artifacts (in particular, see the errors after
t ¼ −0.6 s in Figure 3b).
Third, we repeat the previous experiment with the remixed Mar-

chenko scheme, which simplifies the highly sophisticated initial es-
timate χþ to a trivial one χBþ ¼ I. We use the remixed solutions to
remove multiples according equation 26. Because there is only one
reflector below the redatuming level, one would hope to eliminate
all scattering effects except for a single primary (event A in Fig-
ure 6). Indeed, a significant amount of overburden interactions
has been removed, revealing the primary A, which was masked
by a strong multiple (see the traces and illustration in Figure 6).
Nevertheless, the redatumed response still contains forward-scat-
tered waves (e.g., events B and D) as well as fast multiples
(e.g., event C). These remaining scattering effects are caused by
remixing. The corresponding operator (B) is angle dependent be-
cause it is implicitly defined by the overlap χþ (see the sx-τ gathers
shown in Figure 3; for an explicit example, see Appendix D). Fol-
lowing the alternative demultiple strategy that aims to remove all
overburden interactions, we can already recover the normal product
of the desired focusing function Fþ

1 near-perfectly (no figure), with
a relative error below 1 ppm (for the model in Figures 3b and 6).
Experiments on retrieving the focusing function from its normal
product are beyond the scope of this paper.

CONCLUSION

Our analysis reveals that the conventional Marchenko method,
similarly to the ISS, relies on a form of monotonicity, but in terms
of one- instead of two-way traveltime. The former is a less
restrictive condition. However, this advantage of the conventional
Marchenko method must be compensated by providing an initial
estimate, that is, prior information, which becomes challenging

in practice. To remove the need for prior information, we introduce
the remixed Marchenko scheme, which allows for a fair comparison
with the requirements of the ISS. The remixed Marchenko scheme
still relies on a less restrictive form of monotonicity than the ISS
because it only requires the redatuming layer, instead of each layer
in the overburden, to be sufficiently thick (in terms of the P-wave
traveltime). Through this comparison, we gain significant insights
about challenges of the elastic demultiple problem. We believe that
these advances, and addressing the problems raised in this paper,
are essential for further development of a full elastic Marchenko
method.
Moreover, we present two strategies on how the remixed

Marchenko equations can be used for multiple elimination. The first
one can be easily implemented and removes all multiples that arrive
after their generating primaries. The second strategy aims to remove
all overburden-related effects, including forward scattering and
(fast) multiples, by removing the remixing operator from the
Marchenko solutions. For this purpose, additional physical con-
straints are taken into account, namely, energy conservation and
the minimum-phase property of the (delayed) focusing function.
The latter constraint is often associated with wavelets, but it is
in fact a property of an entire wavefield, which we propose to
exploit. Using a minimum-phase constraint for the prediction of for-
ward-scattered waves and fast multiples requires minimum-phase
matrix factorization, which is subject to ongoing research.
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APPENDIX A

DERIVATION OF THE REDATUMING RELATION

In this appendix, we derive the expression in equation 5 that re-
lates the redatumed reflection responseRrdðsx; zi; τÞ to the retrieved
Green’s functions G−;�ð�sx; z0; zi; τÞ. For this derivation, we write
all of the coordinates explicitly, but matrix products still imply tem-
poral convolutions according to equation 4.
The starting point is the more familiar redatuming relation

G−;þðsx; zi; z0; τÞ ¼ Rrdðsx; zi; τÞGþ;þðsx; zi; z0; τÞ: (A-1)

Next, we use source-receiver reciprocity (Wapenaar, 2014)

G∓;þðsx; zi; z0; τÞ ¼ �½G−;�ð−sx; z0; zi; τÞ�T; (A-2)

and to interchange source and receiver in equation A-1

Elastodynamic Marchenko conditions Q21
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G−;þðsx; z0; zi; τÞ ¼ ½G−;þð−sx; zi; z0; τÞ�T;
¼ ½Gþ;þð−sx; zi; z0; τÞ�T½Rrdð−sx; zi; τÞ�T;
¼ −G−;−ðsx; z0; zi; τÞ½Rrdð−sx; zi; τÞ�T: (A-3)

In horizontally layered media, wavefields associated with positive
and negative horizontal slownesses sx are mutually related through
multiplication by a Pauli matrix σz (multiplied by a temporal delta
spike) from the left and right, which yields

G−;þðsx; z0; zi; τÞ
¼ −σzG−;−ð−sx; z0; zi; τÞσzσz½Rrdðsx; zi; τÞ�Tσz;
¼ −σzG−;−ð−sx; z0; zi; τÞ½Rrdðsx; zi; τÞ�Tσz: (A-4)

APPENDIX B

DERIVATION OF SEPARABILITY CONDITIONS

In this appendix, we formulate the separability conditions of the
ISS and of the original as well as the remixed representation the-
orems. Furthermore, we derive explicit expression of the projectors
P� and P�

B .
Consider a homogeneous layer (labeled by k) of thickness ΔzðkÞ

as well as P- and S-wave velocities cðkÞP and cðkÞS . For a plane wave
with horizontal slowness sx, P- and S-waves propagate with the
vertical slowness

sðkÞz;P∕S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcðkÞP∕SÞ−2 − s2x

q
: (B-1)

The resulting one-way traveltime of such a plane wave through
layer k is

τðkÞP∕S ¼ ΔzðkÞsðkÞz;P∕S: (B-2)

In the following, we assume that the P-wave velocity

cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

ρ

s
(B-3)

is greater than the S-wave velocity

cS ¼
ffiffiffi
μ

ρ

r
(B-4)

de Hoop (1995), which is the case for most materials: the shear
modulus μ and the density ρ are always positive. The first Lamé
parameter λ can be negative, but for all natural materials known
to the authors the relation λ > −μ holds.

Separability of conventional representation theorems

In the following, we derive the separability conditions implied by
the conventional Marchenko scheme.
First, we analyze the separability of the focusing function F−

1

from the Green’s function G−;þ on the left side of equation 6.
To guarantee separability, the last and first events of the focusing
and Green’s functions must satisfy the condition

τΩðF−
1;abÞ < ταðG−;þ

ab Þ; (B-5)

for each elastic component combination ab. Here, the functions τα
and τΩ denote the first and last arrival times at the recording level z0,
respectively. We sum the one-way traveltimes along the travel path
of the last event of F−

1;ab (e.g., for F
−
1;SP, see event I in Figure 2a, and

see Figure 5 for layer labeling i0∕1)

τΩðF−
1;abÞ ¼ τð0Þa þ

Xi−1
k¼1

τðkÞS − τði0Þb ; (B-6)

and along the travel path of the first event ofG−;þ
ab (e.g., forG−;þ

SP see
event II in Figure 2a),

ταðG−;þ
ab Þ ¼ τð0Þa þ

Xi

k¼1

τðkÞP þ τði1Þb : (B-7)

We substitute equations B-6 and B-7 in equation B-5, replace the
one-way traveltimes by equation B-2, and obtain the χ−-separabil-
ity-condition of equation 11

Xi−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ < 2ΔzðiÞsðiÞz;P: (B-8)

Second, we derive a condition under which the overlap χþ sim-
plifies to the forward-scattered part of the Green’s function ðG−;−Þ�.
This scenario requires that the fastest multiple coda of the (time
reversed) Green’s function ðG−;−Þ� reaches the recording level
before the first event of the focusing function Fþ

1 (which defines
the first event of the overlap χþ)

τΩ½ðG−;−
m;abÞ�� < ταðFþ

1;abÞ: (B-9)

Here, we use subscriptm to refer to the multiples of a wavefield. We
sum the one-way traveltimes along the path of the fastest multiple
coda of the Green’s function ðG−;−

m;abÞ� (e.g., for ðG−;−
m;SPÞ�, see event

IV in Figure 3a) by

τΩ½ðG−;−
m;abÞ�� ¼−τð0Þa −

Xi−1
k¼1

τðkÞP −2minfτðkÞP jk∈ ½1; i�g− τði0Þb ;

(B-10)

and along the travel path of the first event of the focusing function
Fþ
1;ab (e.g., for Fþ

1;SP, see event III in Figure 3a)

ταðFþ
1;abÞ ¼ −τð0Þa −

Xi−1
k¼1

τðkÞS − τði0Þb : (B-11)

We substitute equations B-10 and B-11 in equation B-9, express the
one-way traveltimes according to equation B-2, and arrive at the
χþ-separability-condition

Xi−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ < 2 minfΔzðkÞsðkÞz;Pjk ∈ ½1; i�g:

(B-12)

Q22 Reinicke et al.
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This condition can only be satisfied if the separability condition in
equation B-8 holds.
If the separability condition in equation B-8 holds, the projector

P−, acting as a Hadamard matrix product in the P-S space, separates
the convolution-type representation theorem in equation 6 accord-
ing to

P−½G−;þ� ¼ χ− ¼ O; (B-13)

P−½F−
1 � ¼ F−

1 : (B-14)

We define the projector P−, such that all events after the last arrival
of the focusing function F−

1 are muted,

P−
ab ¼ H½−τ þ τΩðF−

1;abÞ� ¼ Hð−τ þ τð0Þa þ
Xi−1
k¼1

τðkÞS − τði0Þb Þ;

(B-15)

where we use equation B-6. The function HðτÞ denotes the Heav-
iside function, Hðτ < 0Þ ¼ 0 and Hðτ ≥ 0Þ ¼ 1. In analogy, the cor-
relation-type representation theorem in equation 7 can be separated
with a projector Pþ as

Pþ½ðG−;−Þ�� ¼ χþ; (B-16)

Pþ½Fþ
1 � ¼ Fþ

1 ; (B-17)

that mutes all events before the first arrival of the focusing
function Fþ

1 ,

Pþ
ab ¼ H½τ − ταðFþ

1;abÞ� ¼ Hðτ þ τð0Þa þ
Xi−1
k¼1

τðkÞS þ τði0Þb Þ:

(B-18)

In the latter expression, we use equation B-11.

Separability of remixed representation theorems

In the section, "Marchenko method with trivial initial estimate,"
we introduce an unknown operator B to transform the overlap χþ
between the focusing function Fþ

1 and the Green’s function ðG−;−Þ�
to a trivial one. Thus, the remixed correlation-type representation
theorem in equation 14 is separable by definition, except for an
identity matrix. However, the separability of the remixed convolu-
tion-type representation theorem in equation 13 is not guaranteed
and is assessed below.
The remixed representation theorem in equation 13 is separable if

the last event of the remixed focusing function V−
1 arrives at the

recording surface before the first event of the remixed Green’s
function U−;þ

τΩðV−
1;abÞ < ταðU−;þ

ab Þ; (B-19)

which can be rewritten as

τΩðF−
1;aSÞ þ τΩðBSbÞ < ταðG−;þ

aP Þ þ ταðBPbÞ: (B-20)

Now, we define the first and last arrival times of the remixing
operator B. The remixing operator projects the Green’s function
ðG−;−Þ� onto an identity matrix plus an acausal coda. Hence, the
first event of the remixing operator coincides with the first event
of the inverse ððG−;−Þ�Þ−1. For example, the first, but time reversed,
event of BPS is depicted by path V in Figure 3b. We sum the one-
way traveltimes along this path for an arbitrary component ab by

ταðBabÞ ¼ τði0Þa þ
Xi−1
k¼1

τðkÞP þ τð0Þb : (B-21)

Further, we heuristically assume that the remixing operator has
the same temporal extent as the overlap χþ between the focusing
function Fþ

1 and the Green’s function ðG−;−Þ�, which isP
i−1
k¼1ðτðkÞS − τðkÞP Þ. As a result, the one-way traveltime of the last

event of the remixing operator is

τΩðBabÞ ¼ τði0Þa þ
Xi−1
k¼1

τðkÞS þ τð0Þb : (B-22)

Thorough empirical investigations confirm this result. Upon
substituting equations B-6 and B-7 and equations B-21 and B-22
in equation B-20 and using equation B-2, we find the χB−-separabil-
ity-condition for the remixed Marchenko scheme

Xi−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ < ΔzðiÞsðiÞz;P: (B-23)

Note that the choice of level zi within the ith layer (labeling i0∕1) is
used for the derivation but is dropped in the separability conditions
in equations B-8, B-12, and B-23.
Now, we derive expressions for the remixed projectors P�

B .
Analogous to the derivation of the separability conditions, we use
arrival times of first and last events of specific wavefields to find
the remixed projectors. From equations 15 and 16, it follows that
the remixing operator B unfolds the overlap χþ between focusing
function Fþ

1 and Green’s function ðG−;−Þ�, except for an identity
matrix. As a consequence, the diagonal elements of the projector
Pþ
B should only preserve positive times, including time zero to ac-

count for equation 15, such that

Pþ
B;PP ¼ Pþ

B;SS ¼ HðτÞ: (B-24)

The first arrival times of the individual matrix elements
Vþ
ab ¼ Fþ

1;acBcb only differ by an a-wave propagation of Fþ
1;ac and

a b-wave propagation of Bcb, through the top layer. Hence, the
diagonal elements of the projector Pþ

B in equation B-24 can be
generalized to an arbitrary projector element

Pþ
B;ab ¼ H½τ þ ð1 − δabÞΔzð0Þðsð0Þz;a − sð0Þz;bÞ�; (B-25)

where δab denotes the Kronecker delta.
Next, we derive an expression for the projector P−

B. The remixing
operator is not designed to modify the focusing function F−

1 or the
Green’s functionG−;þ in a special way. Therefore, in a general case,
the arrival time of the last event of the remixed focusing function
V−
ab ¼ F−

1;acBcb is obtained by adding the last arrival times of the
focusing function F−

1;aS and the remixing operator BSb:

Elastodynamic Marchenko conditions Q23
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P−
B;ab ¼ Hðτ − ½τΩðF−

1;aSÞ þ τΩðBSbÞ�Þ;

¼ H½τ − Δzð0Þðsð0Þz;a þ sð0Þz;bÞ − 2
Xi−1
k¼1

ΔzðkÞsðkÞz;S�; (B-26)

where we use equations B-2, B-6, and B-22.
Although the expressions for the remixed projectors might appear

complicated, they can be constructed easily from (1) a smooth P-
and S-wave velocity model combined with (2) an estimate of the
position of the shallowest reflector and (3) an estimate of the posi-
tion of the reflector above the redatuming depth. The latter estimate
could be obtained, for example, by selecting a redatuming depth
below a strong reflector that can be easily localized. Compared
to the conventional elastodynamic Marchenko method, the required
a priori knowledge is significantly reduced.

From monotonicity to separability conditions

In this appendix, we quantify the monotonicity assumptions of
the ISS as separability conditions.
The monotonicity assumption (1) requires temporal ordering of

primaries according to the reflector ordering in depth. Hence, for an
arbitrary elastic component of the reflection response Rab, the slow-
est primary associated with an interface j − 1 (at the bottom of layer
j − 1) must reach the recording surface before the fastest primary
associated with the next, deeper, interface j (see Figure 5):

τΩðRðj−1Þ
ab Þ < ταðRðjÞ

ab Þ: (B-27)

The superscripts refer to (converted) primary reflections associated
with interfaces j − 1 and j. Now, we sum the traveltimes along the
travel path of these two primaries, leading to

τΩðRðj−1Þ
ab Þ ¼ τð0Þa þ 2

Xj−1
k¼1

τðkÞS þ τð0Þb ; (B-28)

and

ταðRðjÞ
ab Þ ¼ τð0Þa þ 2

Xj

k¼1

τðkÞP þ τð0Þb : (B-29)

Next, we substitute equations B-28 and B-29 in equation B-27,
replace the traveltimes by equation B-2, and obtain a separability
condition

Xj−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ < ΔzðjÞsðjÞz;P: (B-30)

Redatuming from the recording level z0 to zi requires that all of the
interfaces between these two depth levels satisfy monotonicity; that
is, equation B-30 becomes the separability condition in equation 23.
The monotonicity assumption (2) requires that multiples are re-

corded after their generating primaries. Hence, for redatuming to the
depth level zi the slowest primary reflection associated with the in-
terface i − 1must predate the fastest multiple generated by the same
interface

τΩðRði−1Þ
ab Þ < ταðRði−1Þ

m;ab Þ; (B-31)

where Rði−1Þ
m;ab represents the multiples generated by the interface

i − 1. Again, we sum the traveltimes along the paths of these two
events

τΩðRði−1Þ
ab Þ ¼ τð0Þa þ 2

Xi−1
k¼1

τðkÞS þ τð0Þb (B-32)

and

ταðRði−1Þ
m;ab Þ ¼ τð0Þa þ 2

Xi−1
k¼1

τðkÞP þ 2 minfτðkÞP jk ∈ ½1; i�g þ τð0Þb :

(B-33)

Upon substituting equations B-32 and B-33 in equation B-31 and
replacing the traveltimes by equation B-2, the monotonicity
assumption (2) can be written as

Xi−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ < minfΔzðkÞsðkÞz;Pjk ∈ ½1; i�g; (B-34)

which is the separability condition in equation 24. Note that, for
multiple generators above the interface i − 1, the condition in equa-
tion B-34 is relaxed because the left side will remain constant or
decrease, whereas the right side will remain constant or increase.

Table C-1. The medium parameters used for the experiment
shown in Figures 1 and 2a (for the acoustic experiment, the
S-wave velocity is set to zero). The focusing depth is at
zf � 1902.07 m. The experiment shown in Figure 2b uses the
same medium parameters, except that the bottom interface is
moved from z � 2501.07 to z � 2299.00 m.

zðmÞ cPðms−1Þ cSðms−1Þ ρðkgm−3Þ
−∞–500 1993.63 898.38 4200

500–1700 1897.78 1099.20 1100

1700–2501.07 2500.00 1386.75 6000

2501.07–∞ 2695.26 1611.32 3500

Table C-2. The medium parameters used for the experiment
shown in Figure 3a. The focusing depth is at zf � 1703.42 m.
The experiment shown in Figure 3b uses the same medium
parameters, except that the second interface from above is
moved from z � 1250.56 to z � 1452.63 m.

zðmÞ cPðms−1Þ cSðms−1Þ ρðkgm−3Þ
−∞–500 1993.63 898.38 1100

500–1250.56 2500 1796.05 4200

1250.56–1503.15 1505.43 1050.85 1700

1503.15–2304.24 1900.00 1006.04 6000

2304.24–∞ 2695.26 1396.65 3500

Q24 Reinicke et al.
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APPENDIX C

MEDIUM PARAMETERS

This appendix contains the medium parameters used for the
experiments shown in Figures 1–3 (see Tables C-1 and C-2). Note
that the values of the medium parameters are adjusted to ensure all
events associated with the horizontal slowness sx ¼ 2 × 10−4 m are
recorded on-sample; that is, the traveltime of each event is an in-
teger multiple of the temporal sampling interval. The values are
within a reasonable range but are not associated with any specific
material. We use exaggerated density contrasts to generate strong,
well-visible events. In realistic media, the contrasts may be weaker
but are much more numerous. Hence, there will be many weak, as
opposed to a few strong, converted waves. The Marchenko method
and the separability conditions are independent of the number and
strength of these events; thus, our analysis also holds in more
realistic media.

APPENDIX D

NUMERICAL EXAMPLE OF THE REMIXING
OPERATOR

In this appendix, we determine and show the remixing operator
associated with the experiment in Figure 6. Because, to our knowl-
edge, operator B cannot be computed directly, we obtain it indi-
rectly. First, we retrieve V�

1 by solving the remixed representation
theorems (provided that the χB−-separability-condition in equation 22
holds) and model F�

1 through wavefield extrapolation. Second,
we obtain the remixing operator B by solving

V�
1 ¼ F�

1 B (D-1)

by deconvolution. We carry out this deconvolution for up- and
downgoing fields independently to confirm that both cases lead
to the same solution. The resulting remixing operator (see Fig-
ure D-1) has a finite duration of

τΩðBPPÞ − ταðBPPÞ ¼ 0.18 s; (D-2)

which is equal to the expected one (using equations B-2, B-21,
and B-22) of

τΩðBPPÞ − ταðBPPÞ ¼
Xi−1
k¼1

ΔzðkÞðsðkÞz;S − sðkÞz;PÞ: (D-3)

Moreover, the remixing operator contains a fast multiple at τ ¼ τc,
which constructs event C in Figure 6 via equation 26. At zero
incidence, the remixing operator simplifies to a single event (see the
sx-τ gather in Figure D-1c).
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