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ABSTRACT

The Marchenko multiple elimination (MME) and trans-
mission compensation schemes retrieve primary reflections
in the two-way traveltime domain without model informa-
tion or using adaptive subtraction. Both schemes are derived
from projected Marchenko equations and are similar to each
other, but they use different time-domain truncation opera-
tors. The MME scheme retrieves a new data set without in-
ternal multiple reflections. The transmission-compensated
Marchenko multiple elimination scheme does the same and
additionally compensates for transmission losses in the
primary reflections. Both schemes can be solved with an
iterative algorithm based on a Neumann series. At each iter-
ation, a convolution or correlation between the projected fo-
cusing function and the measured reflection response is
performed, and, after each convolution or correlation, a trun-
cation in the time domain is applied. After convergence, the
resulting projected focusing function is used for retrieving
the transmission-compensated primary reflections and the
projected Green’s function is used for the physical primary
reflections. We have determined that internal multiples are
removed by using time-windowed input data that only con-
tain primary reflections. We evaluate both schemes in detail
and develop an iterative implementation that reproduces the
presented numerical examples. The software is part of our
open-source suite of programs and fits into the Seismic Unix
software suite of the Colorado School of Mines.

INTRODUCTION

The Marchenko algorithm can eliminate internal multiple reflec-
tions in reflection data (Behura et al., 2014; Slob et al., 2014;

Wapenaar et al., 2014a). For these schemes, up- and downgoing
focusing functions, with a focal point in the subsurface, are retrieved
by solving the coupled Marchenko equations. Green’s functions can
be computed once these focusing functions are known. A virtual re-
flection response, with an acquisition surface placed in the subsur-
face, can be obtained by deconvolving the solved up- and downgoing
Green’s functions (Broggini et al., 2014; Slob et al., 2014; Wapenaar
et al., 2014b; Van der Neut et al., 2015b; Matias et al., 2018). Based
on the constructed virtual reflection response, an artifact-free image
at the focal point can be created. The measured single-sided reflection
response and a smooth velocity model are required for the implemen-
tation of these Marchenko redatuming schemes. The iterative imple-
mentation of the Marchenko redatuming scheme has been discussed
in detail, and the software has been published by Thorbecke et al.
(2017). Lomas and Curtis (2019) illustrate the concepts of the Mar-
chenko method for redatuming and imaging with reproducible scripts
in MATLAB. A Marchenko implementation is also part of PyLops
(Ravasi and Vasconcelos, 2020).
A wide range of applications has been developed that are based

on solutions of the Marchenko equations. Singh et al. (2015)
modify the Marchenko scheme to account for free-surface-related
multiple reflections. Dukalski and de Vos (2017), Ravasi (2017),
and Singh et al. (2017) extend the Marchenko redatuming scheme
for marine seismic data and show its performance in numerical and
field examples. Meles et al. (2018) propose a different time-focus-
ing condition of the Marchenko redatuming scheme for retrieval
of virtual plane-wave responses. The plane-wave scheme allows
multiple-free imaging at a fraction of the computational cost of the
regular Marchenko scheme. Wapenaar et al. (2017) derive the
homogeneous Green’s function retrieval scheme from the Marche-
nko equations, in which the homogeneous Green’s function be-
tween any two points inside a medium can be retrieved from the
measured single-sided reflection response. Ravasi et al. (2016),
Jia et al. (2018), Staring et al. (2018), Mildner et al. (2019), and
Pereira et al. (2019) apply the Marchenko method successfully
on field data. Sripanich et al. (2019) derive a method that can es-
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timate the initial focusing functions from data that does not rely on a
velocity model for mildly varying media. Mildner et al. (2019) de-
velop a method to estimate a source wavelet from the Marchenko
focusing functions that enables more precise Marchenko redatum-
ing. The Marchenko redatuming scheme also has been extended
from acoustic media to elastic (da Costa Filho et al., 2014; Wape-
naar, 2014) and dissipative (Slob, 2016) media. Lomas et al. (2020)
develop a vertical seismic profile (VSP) Marchenko imaging meth-
odology that enables imaging of horizontal and vertical structures.
Marchenko-based methods also have been developed for dealing

with internal multiple reflections in the two-way traveltime domain.
Meles et al. (2015) combine convolutional interferometry with the
Marchenko redatuming scheme to approximately attenuate internal
multiple reflections. Meles et al. (2017) and da Costa Filho et al.
(2017) introduce a method that can directly construct primaries
without the need for adaptive subtraction. Van der Neut and Wape-
naar (2016) project the coupled Marchenko equations to the surface
by convolving both sides of the equations with the initial Green’s
function to reduce the requirement of model information. The
schemes for Marchenko multiple elimination (MME) (Zhang and
Staring, 2018) and transmission-compensated Marchenko multiple
elimination (T-MME) (Zhang et al., 2019) are derived from the pro-
jected equations to eliminate all orders of internal multiple reflec-
tions without model information or adaptive subtraction. In this
case, the projected focusing functions are regarded as regular filters
that are defined within an offset independent time window; hence,
they are truly model independent. The MME scheme retrieves the
primaries from the reflection data, whereas T-MME retrieves the
transmission-compensated primaries from the upgoing filter function.
The MME scheme also has been tested on numerical and field data
(Zhang and Slob, 2020a). The examples in Zhang and Slob (2019)
show that all orders of internal multiple reflections are successfully
eliminated by both schemes. Zhang and Slob (2019) extend the
MME scheme to account for free-surface-related multiple reflections.
Thus, free-surface and internal multiple reflections are removed in
one step without adaptive subtraction or model information.
In this paper, we describe the implementation of the MME and T-

MME schemes in detail. Both schemes eliminate internal multiple
reflections without the need for model information or adaptive sub-
traction. Only a reflection response without a source wavelet and
free-surface-related multiple reflections is required as input. This
paper is organized as follows. In the “Theory” section, we briefly
review the equations of the MME and T-MME schemes. In the im-
plementation section, the processing details are explained step by
step, and this section provides a user’s first step with the MME and
T-MME schemes. The mechanism of the algorithm is illustrated
with a simple three-reflector 1.5D horizontally layered model. This
simple model is chosen to keep the number of events limited and to
allow for an explanation that can be followed more easily. The
method is not limited to simple models and can be applied success-
fully to complicated 3D media as well (Zhang and Slob, 2020c).
The software accompanying this paper contains scripts and

source code to reproduce all of the numerical examples presented
in this paper. The code also can be found at its GitHub repository
(Thorbecke et al., 2017; Thorbecke and Brackenhoff, 2020), where
the most recent version and latest developments are available. The
commands to reproduce all figures in this paper can be found in the
directory marchenko/demo/mme. The README_PRIMARIES
in that directory explains in detail how to run the scripts. A more

complicated (lateral varying) model can be found in the directory
marchenko/demo/twoD. This example will take several hours to
compute the reflection data and is not discussed here. To reproduce
the figures and to carry out a few pre- and postprocessing steps,
Seismic Unix (Cohen and Stockwell, 2016) is required.

THEORY

In this section, we give a brief overview of the theory of the MME
and T-MME schemes. The acquisition surface is located at the sur-
face boundary ∂D0. The reflection response Rðx0; x 0

0; tÞ is measured
with the source and receiver positioned at x 0

0 and x0, which is free
from free-surface-related multiple reflections and source wavelet.
The time is denoted t.

MME

As presented by Zhang et al. (2019), we give the equations of the
MME scheme as

Rtðx 0
0; x

0 0
0 ; t ¼ t2Þ ¼ Rðx 0

0; x
0 0
0 ; t ¼ t2Þ

þ
X∞
m¼1

M2mðx 0
0; x

0 0
0 ; t ¼ t2; t2Þ; (1)

with

M2mðx00;x000 ;t;t2Þ¼
Z þ∞

t0¼0

Z
∂D0

Rðx0000 ;x00;t
0ÞHðt−t0−εÞdx0000 dt0

×
Z þ∞

t00¼0

Z
∂D0

Rðx0;x0000 ;t00ÞHðt0−tþt2−t00−εÞ

× M2ðm−1Þðx0;x000 ;t−t0 þt00;t2Þdx0dt00; (2)

and initialization

M0ðx 0
0; x

0 0
0 ; t; t2Þ ¼ −ðHðtþ t2 − εÞ −Hðtþ εÞÞ

× Rðx 0
0; x

0 0
0 ;−tÞ; (3)

where Rt denotes the retrieved data set without internal multiple
reflections at time t2 and H indicates the Heaviside function,
which is used to apply the offset independent truncation window
ðε; t2 − εÞ in the equations. The constant ε indicates a small positive
value, which can be taken as the half source time duration in prac-
tice. The initialization of the scheme (with M0) is the time-reversed
shot record at shot position x 0 0

0 for times between ðε; t2 − εÞ. The Rt

in the left side of equation 1 is the same shot record, but without
internal multiples. We follow Zhang and Staring (2018) and make
time t2 constant and independent of the source and receiver posi-
tions in the reflection response. Note that the integration is carried
out over the receiver coordinate for both integrals, the same as
implemented in the source code. The second term in the right side
of equation 1 predicts all of the internal multiple reflections cor-
rectly. Equation 3 indicates that the measured reflection response
is the only input of the MME scheme given in equation 1. To re-
trieve a data set without internal multiple reflections for all times t,
this process must be repeated for all times t2.
Equation 2 contains the terms that correct for the internal multi-

ples that are present in Rðx 0
0; x

0 0
0 ; tÞ. To better explain the right side

of equation 2, we divide the expression into two parts:
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M2mðx00;x000 ;t;t2Þ¼
Z þ∞

t0¼0

Z
∂D0

Rðx0000 ;x00;t
0ÞHðt−t0−εÞ

×M2m−1ðx0000 ;x000 ;t−t0;t2Þdx0000 dt0; (4)

M2m−1ðx0000 ;x000 ;t−t0;t2Þ

¼
Z þ∞

t00¼0

Z
∂D0

Rðx0;x0000 ;t00ÞHðt0−tþt2−t00−εÞ

× M2ðm−1Þðx0;x000 ;t−t0þt00;t2Þdx0dt00: (5)

Equation 4 is a time-domain convolution of R with M integrated
over the spatial coordinate x 0 0 0

0 , which is the receiver position of
the shot at x 0 0

0 . Equation 5 is a time-domain correlation of R with
M integrated over the spatial coordinate x0, which is the receiver
position of the shot at x 0 0 0

0 . The Heaviside function in equation 4
is to exclude negative times for t − t 0 < ε and only use the causal
time inM2m−1. In equation 5, the functionM2ðm−1Þ contains nonzero
values for times larger than t2 − ε. These times should not contrib-
ute to the integral, and the Heaviside function guarantees that
M2ðm−1Þ does not have a contribution to the integration result for
values of t 0 0 þ t − t 0 > t2 − ε. Note that equations 4 and 5 perform
very similar operations (they differ by a sign change) and are imple-
mented by a single function. To evaluate equation 2, this function is
applied two times. The convolution terms are the even-numbered
operations with this function, and the correlation terms are the
odd-numbered operations.
To better explain the method and for illustration purposes, the

summation of the evenM terms in equation 4 is defined as the field:

k−1;iðx 0
0; x

0 0
0 ; t; t2Þ ¼ Rðx 0

0; x
0 0
0 ; t; t2Þ

−
Xi

m¼1

Z þ∞

t 0¼0

Z
∂D0

Rðx 0 0 0
0 ; x 0

0; t
0ÞHðt − t 0 − εÞ

× M2m−1ðx 0 0 0
0 ; x 0 0

0 ; t − t 0; t2Þdx 0 0 0
0 dt 0: (6)

We can evaluate equation 6 also for t ≥ t2 − ε and the equation can
be further split in the time domain as follows:

k−1;iðx00;x000 ;t;t2Þ¼
�
v−1;iðx00;x000 ;t;t2Þ t< t2−ε
u−1;iðx00;x000 ;t;t2Þ t≥ t2−ε

; (7)

where u−1 and v−1 are similar to the projected Green’s function and
focusing function in the regular Marchenko scheme as defined in
Van der Neut and Wapenaar (2016). The minus superscript in equa-
tions 6 and 7 refers to upgoing wavefields at the receiver location
x 0
0. To solve for M in equations 1 to 3, k−1 is not needed. The time
values in M between ε and t2 − ε are used to solve the Marchenko
equations and compute a value at t2 in u−1 . The solution for time t2
in the MME scheme is collected from u−1 at t ¼ t2.
Similarly for the summation of the terms in equation 5, a down-

going function is defined as

vþ1;iðx 0 0 0
0 ; x 0 0

0 ; t; t2Þ

¼
Xi

m¼1

Z þ∞

t 0 0¼0

Z
∂D0

Rðx0; x 0 0 0
0 ; t 0 0ÞHðt 0 − tþ t2 − t 0 0 − εÞ

× M2ðm−1Þðx0; x 0 0
0 ; tþ t 0 0; t2Þdx0dt 0 0; (8)

where vþ1 is similar to the projected focusing function in the regular
Marchenko scheme as defined in Van der Neut and Wapenaar
(2016). In vþ1 , the multiple annihilator is created, and this is dem-
onstrated in the “Numerical examples” section. Equation 8 only
holds for ε < t < t2 − ε. The plus superscript in equation 8 refers
to downgoing wavefields. To solve the MMEMarchenko equations,
vþ1 is not needed and is only defined for illustration purposes to
explain the mechanism of the method.
Time t2 is the instant two-way traveltime in which the solution of

the Marchenko equation is computed. The primary reflection is col-
lected from u−1 for every time instant t2. This is a computationally
expensive way because only one sample is collected in the output.
Nevertheless, this process is fully automated and implemented with-
out any human interaction or model information. It is possible to
collect more than one sample around the instant time t2 and to take
bigger time steps, but the number of samples to use around t2 must
take into consideration the frequency bandwidth of the data. This
statement is supported by examples in the detailed discussion of the
implementation and allows the implementation of a faster algorithm.
In this MME scheme, the primary is collected from the original

reflection data. The Marchenko scheme removes all overlapping in-
ternal multiples from earlier reflections, and the primary is untouched
and keeps the physical reflection amplitude as present in the data.

T-MME

Internal multiple reflections and transmission losses in primary
reflections can be accounted for by the T-MME scheme (Zhang
et al., 2019). The equation is given by

Rrðx 0
0; x

0 0
0 ; t ¼ t2Þ ¼ Rðx 0

0; x
0 0
0 ; t ¼ t2Þ

þ
X∞
m¼1

M̄2mðx 0
0; x

0 0
0 ; t ¼ t2; t2Þ; (9)

with

M̄2mðx 0
0; x

0 0
0 ; t; t2Þ

¼
Z þ∞

t 0¼0

Z
∂D0

Rðx 0 0 0
0 ; x 0

0; t
0ÞHðt − t 0 þ εÞdx 0 0 0

0 dt 0

×
Z þ∞

t 0 0¼0

Z
∂D0

Rðx0; x 0 0 0
0 ; t 0 0ÞHðt 0 − tþ t2 − t 0 0 þ εÞ

M̄2ðm−1Þðx0; x 0 0
0 ; t − t 0 þ t 0 0; t2Þdx0dt 0 0 (10)

and

M̄0ðx 0
0; x

0 0
0 ; t; t2Þ ¼ −ðHðtþ t2 þ εÞ −Hðtþ εÞÞ

Rðx 0
0; x

0 0
0 ;−tÞ; (11)

where Rr denotes the retrieved data set without internal multiple
reflections and transmission losses in primary reflections. The trun-
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cation window in equation 10 is different from the window in equa-
tion 2, which guarantees that the second term in the right side of
equation 9 predicts the internal multiple reflections and transmis-
sion losses in primary reflections. In equation 10, the Heaviside
function guarantees that M̄2ðm−1Þ does not have a contribution for
values of t 0 0 þ t − t 0 > t2 þ ε. In contrast to equation 5, time t2 is
now part of the integration and is included in the sum of M̄2m. Still,
as given in equation 11, the measured reflection response is the only
input to solve the T-MME scheme given in equation 9.
The primary reflection is, different than in the MME scheme, col-

lected from v̄−1 , which achieves the transmission compensation.
There is no need to define k̄−1 because v̄−1 is already part of M̄2m.
The scheme is applied for every time instant t2 and has the same
advantages and disadvantages as the MME scheme. In the T-MME
scheme, the amplitude of the primary is automatically transmission
compensated because it is the only way to predict and attenuate
internal multiples from earlier primary reflections. We will return
to this remark in the explanation of Figure 1.
The MME and T-MME schemes require only the measured re-

flection response R as input. The reflection response R needs to be
deconvolved for the source-wavelet, and the free-surface-related
multiple reflections must be removed. The output of a surface-re-
lated multiple elimination (Verschuur et al., 1992) scheme can meet
these requirements. Diffracted and refracted waves are beyond the
capability of both schemes, and a detailed analysis about these lim-
itations can be found in Zhang et al. (2019).

MARCHENKO ALGORITHM

The basic Marchenko algorithm (MME) is explained in Algo-
rithm 1. The arrays in this algorithm are stored in C-order; the last
(right-most) addressed dimension is contiguous in memory. The
discrete dimensions of these arrays are within square brackets
½ : : : �, and the arguments of function calls are within regular brack-

ets ð : : : Þ. The only data input of the algorithm is the measured re-
flection data R. These reflection data must be properly preprocessed
as explained in Brackenhoff et al. (2019). The preprocessing must
take care of the following:

1) Elimination of free-surface multiples. Note that there is also a
very similar Marchenko algorithm that takes into account free-
surface multiples as well. Ravasi (2017) discusses a redatuming
algorithm similar to Singh et al. (2015) and requires a smooth
model of the medium, whereas Zhang and Slob (2019) remove
all multiples and do not need any model information.

2) Sufficient (i.e., alias-free) sampling in the spatial receiver and
shot direction. Note that there are Marchenko-based methods
that can fill in missing shotpoints or receiver locations, under
the assumption that the available data are unaliased (Wapenaar
and van IJsseldijk, 2020).

3) Compensation for dissipation.
4) Shot amplitude regularization.
5) Deconvolution for the source wavelet.

Following Algorithm 1, the preprocessed reflection data are read
from the disk, transformed (by fast Fourier transform [FFT] oper-
ator Ff : : : g) to the frequency (ω) domain, and all shots and receiv-
ers are stored into the memory. This is the first step in the algorithm
and the only significant data read. One single shot record (with shot
number j), from which we want to suppress the internal multiples, is
selected from this reflection data in the next step. This shot record is
transformed back to time, time reversed (R�), and stored in array
DD. The first loop in the algorithm loops over the selected number
of time samples that are processed to attenuate internal multiples.
Typically, this represents all samples in the shot record, with a pos-
sible exclusion of the number of samples to the first reflection event
in the selected shot record. For each time sample ii, the iterative
Marchenko algorithm is executed. The largest difference from
the algorithm described in Thorbecke et al. (2017) is that time-trun-

cation along the first arrival time (from a focal
point in the subsurface) is replaced by a constant
time-truncation and the computation of a first
arrival time is not needed anymore. The initial-
ization of the algorithm by M0 is from the same
shot record j from which we would like to at-
tenuate the internal multiples (DD). The term
M0 is a copy of the time-reversed shot record
(see equation 3) and is set to zero from the first
sample 0 to sample nt − iiþ nε, where nt is the
total number of samples in the shot record. The
extra samples of nε take into account the time
duration of the wavelet to exclude a possible re-
flection event at time ii. The initialization of k−1;0
is a complete (no time muting is carried out) copy
of the shot record that still contains all of the in-
ternal multiples that we would like to remove.
With these two initializations, the iterations of

the Marchenko algorithm can start. In each iter-
ation, an updated field is computed by the inte-
gration of Mi with R. This integration process is
called synthesis, produces the output RMi, and is
explained in more detail below. Depending on
the iteration number i, being odd or even, differ-
ent time muting windows are in use to mute

d) T-MME

a) MME

c) MME

b) T-MME

Figure 1. Comparison of the MME and T-MME schemes. (a and b) A selected time t2
equal to the two-way traveltime of the third reflector. The time-truncation window is
indicated with a red dotted line. The dotted lines are events that are excluded in Mi,
and the solid lines are events included in Mi, after application of the time window.
(c and d) A time between two reflectors.
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events in RMi and to compute an updatedMiþ1. For even iterations,
the times between ii − nε and nt are set to zero, and, for odd iter-
ations, the times between 0 and iiþ nε are set to zero. Only in the
odd iterations is k−1;i updated with the unmuted Miþ1. In this update
of k−1;i, internal multiples around time ii are attenuated. This is the
update represented in equation 1, where the update M2m is in fact
one even and one odd iteration in the implemented Marchenko al-
gorithm and, hence, the notation with 2m − 1 in equation 6.
In the regular redatumingMarchenko algorithm (Thorbecke et al.,

2017), the truncation windows follow the first arrival time of a focal
point in the subsurface. In the MME algorithm, the focal point is
projected on the surface and the time-truncation is conveniently
chosen at a constant time. The flat time window has the big advan-
tage that it requires no additional model or data information. Meles
et al. (2020) demonstrate that, in the application of the multiple
elimination algorithm to dipping plane waves, a time truncation
consistent with the dip angle must be used.
Depending on the position of strong reflectors, typically, 10–50

Marchenko iterations are needed for each time sample ii in the se-
lected shot record. The presence of strong reflectors in the shallow

part makes the convergence slow at large time instances; see also
Figure 8. The reason is that higher order multiples are attenuated
with events that are created in v−1 and that are removed again later
when the first-order multiple is finally removed by a converged
multiple attenuator. When the first-order multiple is removed, all
multiples are removed; hence, all earlier higher order multiple at-
tenuator artifacts will also vanish. Once the iterations are finished,
the output of sample ii of the updated Marchenko result u−1 is stored
in sample ii in the multiple free shot record Rt and the final output
of the program that represents the selected shot record with attenu-
ated internal multiples. It is a computationally intensive task to
solve the Marchenko equations for each sample ii in the shot record.
Algorithm 2 is a faster (10–20x) implementation of Algorithm 1.
In Algorithm 2, after the Marchenko equations are solved at time

sample ii − 1, the next time sample ii is initialized with the result of
time sample ii − 1 (Zhang and Slob, 2020b). The idea is that to
remove the internal multiples at the next time sample there is no
need to start from scratch and remove the multiples that were al-
ready removed in the previous time sample. For every next time
sample, all earlier attenuated multiples need to be attenuated plus
one (or a few) more. In the Marchenko update for the new time
sample, only the multiples that were not removed previously need
to be removed. This is a small deviation from the previous results,
and usually two iterations are sufficient to accomplish the update for

Algorithm 1. The basic Marchenko algorithm, without
transmission loss compensation, as implemented in the
provided source code. Integer time sample number it, which
runs from istart to iend, represents time t � it � Δt. The
number of recorded time samples is nt, the time duration of
the source signature ε � nε � Δt, and time sample ii
represents instant time t2 � ii � Δt. The number of receivers
in R is Nrecv, and the number of shots is Nshots. The i loop
represents the number of Marchenko iterations ni. Note that
the sample expression nt − it stands for negative time −t.

Main begin

Read SU-style input parameters

Initialization, reading of input parameters, and allocate arrays

READ(R½Nshots; iω; Nrecv�)
DD½Nrecv; it� ¼ F−1fR�½j; iω; Nrecv�g
for ii←istart to iend do

M0½Nrecv; it� ¼
�

0 0 < it < nt − iiþ nε
−DD½Nrecv; it� nt − iiþ nε ≤ it < nt

k−1;0½Nshots; it� ¼ DD½Nrecv; nt − it�
vþ1;i½Nshots; it� ¼ 0

for i←0 to ni do

synthesis(R;Mi; RMi)

Miþ1½Nshots; it� ¼ RMi½Nshots; nt − it�
if (i % 2 == 0) then

Miþ1½Nshots; it� ¼ 0; ii − nε < it < nt
vþ1;iþ1½Nshots; it� ¼ vþ1;i½Nshots; it� þMiþ1½Nshots; it�

else

k−1;iþ1½Nshots; it� ¼ k−1;i½Nshots; it� −Miþ1½Nshots; nt − it�
Miþ1½Nshots; it� ¼ 0; 0 < it < nt − iiþ nε

end

end

Rt½j; Nshots; ii� ¼ k−1;ni ½Nshots; ii�
end

end

Algorithm 2. Faster Marchenko algorithm that uses previous

results from time instant ii − 1 (k−;�ii−1�1;n−1 ; ) as input for the
current time instant ii.

Main begin

Read SU-style input parameters

Initialization, reading of input parameters, and allocate arrays

READ(R½Nshots; iω; Nrecv�)
DD½Nrecv; it� ¼ F−1fR�½j; iω; Nrecv�g
for ii←istart to iend do

k−1;0½Nshots; it� ¼ k−;ðii−1Þ1;ni
½Nshots; it�

M0½Nshots;it�
¼
�

0 0< it<nt− iiþnε
DD½Nshots;nt− it�−k−1;0½Nshots;nt− it� nt− iiþnε≤ it<nt

for i←0 to ni do

synthesis(R;Mi; RMi)

Miþ1½Nshots; it� ¼ RMi½Nshots; nt − it�
if (i % 2 == 0) then

Miþ1½Nshots; it� ¼ 0; ii − nε < it < nt
else

Miþ1½Nshots; it� ¼ Miþ1½Nshots; it� −DD½Nrecv; it�
k−1;iþ1½Nshots; it� ¼ −Miþ1½Nshots; nt − it�
Miþ1½Nshots; it� ¼ 0; 0 < it < nt − iiþ nε

end

end

Rt½j; Nshots; ii� ¼ k−1;ni ½Nshots; ii�
end

end
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the next time sample. The initial M0 in the fast algorithm is the
difference between the original data (DD) and k−;ðii−1Þ1; n−1 ; the already
estimated internal multiples from time sample ii − 1. The initial k−1;0
is the previous result k−;ðii−1Þ1; n−1 . With these initializations, the update
term RMi contains only a small correction because it is based on a
converged previous result that is very close to the actual solution. To
get the complete internal multiple in Miþ1, DD is added to RMi

(Zhang and Slob, 2020b).
In this fast algorithm, only one pair of even-odd iterations is

needed to reach convergence. In principle, we could solve the
equations only one time and use that result to update all other time

samples. On simple models of numerically modeled data, this works
fine indeed. However, on geologically complicated models of
numerically modeled data and on field data, we have to do a full
update every 10–20 recursive updates and the speed-up of the faster
algorithm is limited to one order of magnitude. On complex data
sets, we would advise beginning with the basic algorithm and then
verifying if the fast algorithm can be used to speed up the compu-
tations. The reason for this limited use of the fast algorithm is that,
for complex data sets and a large number of iterations, artifacts, for
example, introduced by a limited aperture, can get amplified. The
primary reflections will still converge, but numerical artifacts are
not accounted for in the algorithm and can diverge. In the iterative
scheme, each update adds two iterations to the already computed
result based on, for example, 30 iterations. With 10 iterative up-
dates, 20 iterations are added and can cause artifacts being amplified
to signal level.
In the algorithm, we solve the Marchenko equations for each

sample ii. From the theory, we know that the first event after sample
ii is a primary reflector (all multiple reflections generated by the
reflectors before sample ii are removed by the scheme). Hence,
a few samples after sample ii will still be free of internal multiples.
We could make larger steps with ii and use the Marchenko result for
several samples (at least nε samples because that is the time reso-
lution with which we already are working) after sample ii. This can
speed up the code by nε (typically 20) times. This is similar to the
fast algorithm, but without making any iterations and directly using
the previous computed result.
The synthesis process shown in Algorithm 3 computes the sec-

ond integrant in the right side of equation 2. The synthesis function
is a straightforward matrix-vector multiplication. The reflection
data are stored in such a way that the innermost loop, which sums
over the receiver positions within a shot, is contiguous in memory.

To speed up the computation, a parallel OpenMP
region is carried out over the outer Nshots loop.
An alternative implementation of the synthesis
process is to make the frequency loop the outer
loop and use a BLAS dgemv function to compute
the matrix-vector multiplication. This implemen-
tation also will be efficient when all shots are
computed at the same time and the BLAS ma-
trix-matrix dgemm function becomes the kernel
of the synthesis process. Note that in the synthe-
sis process, the integration is carried out over the
number of receivers per shot and each integration
result is stored at the shot position. Thus, after
the synthesis process Nshots output traces are
computed.
From a computational point of view, the trans-

mission-compensated algorithm (T-MME) is the
same as the MME algorithm, except for the ap-
plication of the time-truncation window. The
sample length of the wavelet (nε) is applied in
the opposite time direction for the T-MME algo-
rithm. The extra samples of nε in the MME al-
gorithm take into account the length of the
wavelet to exclude a possible event at instant
time ii in the initialization and update of Mi.
Suppose that time ii is the two-way traveltime
of a reflector (see Figure 1a). The reflection of
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Figure 2. Four layer model with (a) velocity and (b) density parameters. (c) A shot record,
with source position x ¼ ðx ¼ 0; z ¼ 0Þ and receivers at xR ¼ ðx ¼ xr; z ¼ 0Þ; the
source wavelet in R has a flat frequency spectrum from 5 to 90 Hz.

Algorithm 3. Marchenko synthesis kernel with iω � i � Δω�
� 2π

nt�Δt
�
.

Synthesis(R½Nshots; iω; NrecvÞ;M½Nshots; it�; RM½Nshots; it�)
begin

Fop½iω; Nshots� ¼ FfM½Nshots; it�g
RM½Nshots; t� ¼ 0

#pragma omp parallel for

for k←0 to Nshots do

for iω←ωmin to ωmax do

for i←0 to Nrecv do

sum½iω� ¼ sum½iω� þ R½k; iω; i� � Fop½iω; i�
end

end

RM½k; it� ¼ F−1fsum½iω�}
end

End
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the reflector is excluded in Mi in the MME algorithm (Figure 1a),
but it is included in M̄i in the T-MME algorithm (Figure 1b). In the
T-MME algorithm, the reflected event at instant time ii ends up in
the updated v̄−1 , whereas in the MME algorithm the reflected event
from the original shot record ends up in u−1 . When the instant time ii
is chosen between two reflectors, there is no difference between the
updates made in the MME (Figure 1c) or T-MME (Figure 1d)
scheme.
To get to the T-MME scheme from Algorithm 1, one has to re-

place in the defined time windowsþnε with −nε. Then, Rt becomes
Rr that contains the transmission-compensated primary reflections.

NUMERICAL EXAMPLES

The Marchenko algorithm is illustrated with a 1.5D horizontally
layered model shown in Figure 2. The numerical modeling is
carried out with a finite-difference modeling program (Thorbecke
and Draganov, 2011) that is also included in the software package.
The input source signature, to model the reflection response
Rðx 0

0; x 0 0
0; tÞ, is approximately a sinc-function with a flat spectrum

of amplitude one between fmin and fmax (5–
90 Hz) to represent a deconvolved source wave-
let. In the finite-difference program for modeling
Rðx 0

0; x 0 0
0; tÞ, a source of vertical force is

chosen. The receivers are placed at z ¼ 0 and
measure the pressure field. A fixed spread ac-
quisition is chosen between −2250 and 2250 m,
and the distance between the 901 source/receiver
positions is 5 m. The receiver traces have a time
sampling interval of 4 ms and 1024 recorded
time samples.

The first iterations

Figure 3 demonstrates the first iteration of
equation 5 with m ¼ 1 to compute M1 for time
sample number 276 (t = 1.100 s) from M0. Time
sample 276 corresponds to the zero-offset arrival
time of the third reflector. In this first step, all
shots in the reflection data R are correlated with
a time-windowed shot record. In our example,
we use the middle shot record; R0ðxR; x ¼
ð0; 0Þ; tÞ (shot number j ¼ 451). Before the cor-
relation is carried out, the selected shot record is
first set to zero beyond time sample 276 − nε,
multiplied by−1 and time reversed, at which mo-
ment we have M0ðtÞ in equation 3. In Figure 3b,
the shot record is convolved with a Ricker wave-
let to reduce the ringing of the flat spectrum
of the (deconvolved) wavelet present in R (Fig-
ure 3a). The number of nε (in this example
nε ¼ 20) samples excludes the reflection from
the third reflector in M0. In Figure 3, the middle
shot record of R (Figure 3a, where we used
source receiver reciprocity) is correlated with
the time windowed M0ð−tÞ (Figure 3b) to give
the result in Figure 3c. The events in Figure 3b
include the first and second reflections and the
first internal multiple between the first and sec-
ond reflectors. In the correlation result (Fig-

ure 3c), we see the autocorrelation of the three reflection events
around t ¼ 0 (with events at negative times appearing at the bottom
of the panel). Note that the long train of events starting at the pos-
itive time axis in Figure 3c can interfere with events at the end of the
time axis. To overcome this time interference, we usually pad the
time axis with zeros before the transformation to the frequency do-
main where the correlation is computed.
The correlation result is time reversed and is shown in Figure 3d

for the first 400 samples. There are only three events in Figure 3d,
and these originate from correlation with the three events in Fig-
ure 3b with the first three events (r1; r2;m1) in the shot record. Ac-
cording to the integral in equation 5, to obtain an output trace ofM1

the traces in Figure 3d are summed together. The stationary points
of the events in Figure 3d give a contribution in the result of the
summation. Besides the stationary points, truncated events (in time
and space) give unwanted contributions that show up as artifacts in
the final result.
The integration result is set to zero for samples larger than

276 − nε and ends up as a trace at position zero (the middle trace)
ofM1 shown in Figure 3e. In Figure 3e, the truncation appears to be
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Figure 3. Computational steps to computeM1 fromM0 at time sample number 276. The
middle shot record from R is shown in (a); time truncated after sample 276 − nε, and
convolved with a Ricker wavelet, it givesM0 in (b). Time correlation of (a) with (b) gives
(c). After time reversal of (c) and applying the time window again gives (d). The traces in
(d) are summed together, and only the stationary point of events above sample 276 − nε
will end up in the middle trace ofM1 (e). The mute window nε samples later than t ¼ 0
are needed to mute the autocorrelation of the first event. The labeled events ri indicate
the ith reflector and ml the lth multiple. (c) The labeled correlated events are
c0 ¼ r�1:r1 þ r�2:r2 þm�

1:m1, c1 ¼ r�2:r1 þm�
1:r2, and c2 ¼ m�

1:r1.
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at sample 160, but that is the truncation in Figure 3b shifted upward
in time with the arrival time of the first reflector. The truncation at
sample 276 − nε is indicated with a dotted line. There are two hy-
perbolic events visible and a few linear artifacts. The first hyper-
bolic event originates from correlation of events r�2:r1 and events
m�

1:r2, and the second hyperbolic event from the first internal multi-

ple and first reflector c2 ¼ m�
1:r1. The linear events are unwanted

artifacts due to truncation and can be suppressed by applying a
smooth taper at the truncation boundaries in time and space.
Figure 4 demonstrates the computation of the second iteration to

compute M2 from M1 (Figure 3e) according to equation 4 with
m ¼ 1. The reflection data (Figure 4a) are convolved withM1 (Fig-

ure 4b) that contains three main events: a linear
artifact (a1) and two correlation results (c1 and
c2). Convolving M1 with the middle shot record
of the data R gives Figure 4c. The hyperbolic
events in M are now back at the same times
as the reflection events in the shot record. The
linear artifacts in M1 also convolve with all
events in R and introduce many (mostly linear)
artifacts. The convolution result is reversed in
time (Figure 4d), and, after the integration in
equation 4 over the lateral coordinate xR, it be-
comes the middle trace in M2 (Figure 4e). Most
of the linear artifacts are reduced in amplitude
due to the destructive interference in the integra-
tion, only the “a2 ¼ r1:a1” artifact is still present
in M2. The first term in the sum in equation 1 is
now computed: M2. The last events in the time
reverse of M2, presented in Figure 4e, will al-
ready attenuate the multiple event m1 in the shot
record.
To compute M1 (in general, odd-numbered

updates to Mi), events are shifted backward in
time (correlation) with the times of the events
in M0. To compute M2 (even-numbered updates
toMi) fromM1, events are shifted forward (con-
volution) in time. The even and odd iterations are
treated differently in the scheme. Each even iter-
ation updates Mi and vþ1 , and each odd iteration
updates Mi and k−1 . The scheme reverts the time
axis for each iteration, hence, the time windows,
which set time samples to zero, also switch.
These time windows, for sample 276, are shown
in Figure 5. In these time windows, a smooth co-
sine-shaped transition zone is used to reduce the
time-truncation artifacts.

Multiple removal in action

The results in Figure 6 are partial solutions of
the Marchenko equations computed for time
sample ii ¼ 200. After applying the time win-
dow, which sets all samples inM0 to zero beyond
200 − nε, there are no internal multiple reflec-
tions present anymore in M0. The times between
0 and sample 200 include r1 and r2, but not m1;
see Figure 3b. In the first iteration to compute vþ1 ,
according to equation 8, one extra event in vþ1
(Figure 6a event c1) is created to correct for
the amplitude of the second reflector in v−1 . Note
that the time windows in Figure 6a appear to be
around sample 80, but this is the time window
applied in M0 shifted by the correlation to neg-
ative times and time reversed. The amplitude of
this event c1 converges to the amplitude that can
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Figure 4. Computational steps to compute M2ðx; x; tÞ from M1 at time sample number
276. The middle shot record from R is shown in (a) and M1 truncated after sample 276
(and computed in Figure 3e) in (b). Time convolution of (a) with (b) gives (c). After time
reversal of (c) and applying the time window again gives (d). The traces in (d) are
summed together, and only stationary events later than sample nt − 276þ nε end up
in the middle trace of M2 (e). The labeled events ri indicate the ith reflector, ml is
the lth multiple, and an is the nth artifact. The labeled events from the convolution
between (a) R and (b) M1 are a2 ¼ r1:a1; a3 ¼ r2:a1; a4 ¼ m1:a1; d1 ¼ r1:c1;
d2 ¼ r1:c2 þ r2:c1, and d3 ¼ r2:c2 þm1:c1.
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and is within the nε samples.
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annihilate the amplitude of the first multiple. Applying the con-
verged vþ1 on the reflection data through equation 4 causes all multi-
ples arising from bounces between the first and second reflector to
vanish from the data in equation 1. The scheme finishes without
ever having “seen” the multiple; from r1 and r2 alone, it created
an event that can attenuate all of the internal multiples between
these reflectors. The arrows in Figure 6c, which shows k−1;30ðtÞ
and is computed according to equation 6, point at the multiples that
are already partly gone. The multiples are only partly removed be-
cause only a small offset range of r2 is used at sample 200. Repeat-
ing the scheme for samples larger than 200 will include larger
offsets of r1 and r2 and also attenuate the higher offsets for all in-
ternal multiples between r1 and r2.
For the investigation of the amplitudes of the event in vþ1 , we as-

sume, for the sake of argument, that the reflection coefficient is a
constant. The primary reflections in Figure 3b have local reflection
a1; a2 for, respectively, the events labeled r1; r2. We consider the sit-
uation in Figure 6, for time sample 200 that only creates one extra
event in vþ1 . We demonstrate that, after sufficient iterations, the event
in vþ1 has converged to an amplitude that can cancel the first-order
multiple and hence all higher order multiples related to that event. For
sample 200,M0 contains only the primary reflections r1; r2 that have
amplitude:

ra1 ¼ a1; (12)

ra2 ¼ ð1 − a21Þa2: (13)

Figure 7 is a sketch of the reflection paths and re-
flection and transmission coefficients for this two-
reflector case. According to equation 5, for the
first iteration M0 is correlated with R and inte-
grated over the receiver coordinate. After applying
the time window on M1 only one event remains:
event c1 ¼ r�2:r1 in Figure 6a with the amplitude

ca1;1 ¼ a1ð1 − a21Þa2: (14)

The second subscript in ca1;1 indicates the iteration
number. This event is convolved with R in the
next iteration (according to equation 4), and, after
time windowing, only one event r1:c1 remains at
the time of the reflection of the second reflector
with the amplitude

ca1;2 ¼ a21ð1 − a21Þa2: (15)

In each next iteration, alternating between equations 5 and 4, an-
other multiplication with a1 is added; in general, for iteration i, we
have

ca1;i ¼ ða1Þið1 − a21Þa2: (16)

Summation of all odd ca1;i iterations i gives the final amplitude of the
multiple annihilation event c1 in v

þ
1 . The initialization of v

þ
1 is zero,

and the summation of the odd terms leads to

Xni
i¼0

ca1;1þ2i ¼
Xni
i¼0

ða1Þ1þ2�ið1−a21Þa2

¼ a1a2−a31a2þa31a2−a51a2þa51a2−a71a2þ : : :

≈ a1a2: (17)

Application of vþ1 to the data creates multiple-free data in the re-
sulting u−1 and is shown in Figure 6c. The first-order internal multi-
ple from the data and the multiple annihilation event c1 in Figure 6a,
with amplitude a1a2, will meet each other in time just below the
first reflector. At that point in time, the annihilator cancels the
first-order downgoing internal multiple and, with that, all other re-
lated multiples. To be able to cancel the first downgoing internal
multiple, the annihilator must have the same amplitude as that
event. The first-order multiple event m1 in Figure 3b has the am-
plitude

ma
1 ¼ −ð1 − a21Þa22a1: (18)

After convergence of the scheme, the multiple annihilator event c1
is convolved with the second reflector r2 of R in the next iteration
and arrives at the same time as m1 and has the same amplitude as
ma

1:
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Figure 6. Creation of the event (labeled c1) that annihilates all of the internal multiples
between the first and second reflectors; the artifact a1 is ignored in the analysis. (a) The
vþ1;1ðtÞ for the first Marchenko iteration at sample number ii ¼ 200. (b) The convergence
of the maximum amplitude in c1 is shown as a function of the iteration count. (c) The
annihilated multiples in k−1;30ðtÞ after 30 iterations.

Figure 7. Sketch of the raypaths and reflection and transmission
coefficients in a three-layer constant-velocity and variable-density
model. The local reflection coefficients of the first and second re-
flector are a1 and a2, respectively.
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c
ara

2

1 ¼ a1a2:ra2

¼ ð1 − a21Þa22a1: (19)

This result is added to the data to cancel the internal multiple at m1

as shown in Figure 6c and equation 1. Furthermore, convolution of
c1 with m1 will create the annihilator of the second-order multiple;

hence, c1 will automatically annihilate all higher order multiples
as well.
To complete the amplitude analysis, the amplitude of the second

reflector in v̄−1 (from the equivalent of equation 7 for the T-MME
scheme) can be computed according to equation 10 and is con-
structed from the even amplitude terms in equation 16. The initial-
ization of v̄−1 is the time reversed shot record (DD in Algorithm 1).
Summation of all even ca1;i iterations i at the time of the second
reflector creates the final amplitude for the second reflector in v̄−1 :

a2 ¼ ð1 − a21Þa2 þ
Xni
i¼1

a2�i1 ð1 − a21Þa2

¼ a2 − a21a2 þ a21a2 − a41a2 þ a41a2 − a61a2 þ : : :

≈ a2: (20)

This shows that the transmission-compensated local reflectivity can
be collected from v−1 as implemented in the T-MME scheme. The
approximation sign is due to a limited number of iterations in the
numerical implementation.
Figure 8 is obtained in the same way as Figure 6b, but with high-

contrast layers. The velocity of the layers is the same as used in
Figure 6, but the density contrast between the layers has been in-
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Figure 9. The term Mi fields for a focal time at sample ii ¼ 276; the zero-offset arrival of the third reflector. All figures are plotted with the
same clipping factor.
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Figure 8. Convergence of the maximum amplitude of the event (la-
beled c1 in Figure 6a) that annihilates all the internal multiples be-
tween the first and second reflector in a high-contrast medium.
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creased from a factor 3 (1000–3000) to 10 (500–5000). Compared
to Figure 6b, the convergence is much slower in this high-contrast
medium. In equation 17, the higher order terms will have larger
values in high-contrast media and require more iterations for con-
vergence.

Higher iteration counts

The first few iterations for the update terms Mi are shown in Fig-
ure 9. The truncation time is chosen at sample 276, and a first-order
multiple of the second layer is present in the initialization shot-record
M0 after time truncation. For higher numbers of iterations, the update
terms become smaller in amplitude, indicating that the scheme con-
verges. All of the updates show the same number of events, and only
the amplitude of the events changes during the iterations.
In the odd iterations, the function k−1;iðtÞ (see equation 6) is up-

dated with the odd Mið−tÞ terms and four selected iterations are
shown in Figure 10. After two iterations, all order multiples are pre-
dicted, but with incorrect amplitudes. In the following iterations, the
removal of higher order multiples is improved because the removal
of the first-order multiple improves. After 20 iterations, the internal
multiple events (indicated with arrows) have further attenuated
and are not visible anymore; compare Figure 10b with 10h. The

higher order multiples do not have to be removed by extra events
in vþ1 , but they are removed automatically by removing the first-or-
der multiple.
In Figure 10f, one can observe that the first internal multiple

(pointed at by the top arrow) is already attenuated beyond sample
276 − nε þ 1, but it is not yet completely attenuated before sample
276 − nε. The first 276 − nε samples belong to v−1 , where the in-
formation on attenuation of the internal multiple is constructed,
whereas samples from 276 − nε þ 1 onward belong to u−1 , where
the multiple is already attenuated. The constant-time cross section
(for all lateral positions) in k−1;i at sample 276 is stored in the final
output Rt at sample 276. In the v−1 part (between samples 1 and 276)
of k−1 , the second reflector has its local reflection coefficient as am-
plitude, whereas in the u−1 part (from sample 276 onward) it has its
physical amplitude with two-way transmission effects.

Different time instances

In Figure 11, the Marchenko equations are solved for different
time samples ii and it is possible to investigate how k−1 changes
for larger sample numbers. It is observed that, not only at sample
ii but also before and beyond ii, the events related to internal multi-
ples are attenuated. Sample point 276 corresponds to the arrival time
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Figure 10. Updates for k−1;i for a focal time at sample t2 ¼ 276 after i iterations. The arrow indicates the first- and second-order internal
multiple between the first and second reflector.
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of the third reflector. The times in Figure 11a–11d are all before
sample 276, and we do not observe a change in the number of
events. However, going from sample 246 (Figure 11a) to 276 (Fig-
ure 11d), one can see that the multiple, arriving in time between the
second and third reflectors, gets more and more attenuated at larger
and larger offsets. This also explains the success of the fast algo-
rithm: to compute the solution in the next time sample, there is only
a small change needed and a few iterations are sufficient to solve for
the multiple attenuation at higher offsets. When the sample time ii
passes the arrival time of the third reflector, a nonphysical event
(pointed out by an arrow in Figure 11e–11h) appears just below
the arrival time of the second reflector. This nonphysical reflector
is the annihilator event in vþ1 that compensates all internal multiples

created between the second and third reflector. The cancelation of
the internal multiples is observed at larger time samples (Fig-
ure 11e–11h); all internal multiples related to the third reflector
are canceled out.
Figure 12a and 12b shows sketches of the situation in which the

time instant ii corresponds to a depth above or below the third re-
flector, respectively. The event that compensates all internal multi-
ples related to the second reflector (the green arrow in Figure 12a)
coincides in traveltime with the reflection of the second reflector
and also compensates for the transmission loss of the
reflection from the second reflector. The internal multiples related
to the third reflector are compensated by the red-arrow event (Fig-
ure 12b) which coincides with the reflection time of the third re-
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Figure 11. The term k−1 after 32 iterations with different time instants ii ¼ 246 to ii ¼ 316 with steps of 10 samples. From each panel, a
constant-time cross section is selected at ii and all of these cross sections make up the multiple-free data. The arrows point to an event that
compensates all internal multiples created between the second and third reflectors.
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Figure 12. Compensation of internal multiples by
events (colored lines) that are created by the Mar-
chenko method, applied for a point (a) above and
(b) below the third reflector. The three reflectors
are numbered from top to bottom.
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flector. This event is also reflected by the second reflector (the up-
ward red arrow) and creates the nonphysical reflection event
observed in Figure 11e–11h and pointed out by an arrow.
Figure 13a–13d shows the same pictures as in Figure 9a–9d and

Figure 13e–13h shows the same as Figure 10b, 10d, 10f, and 10h, but
now with the T-MME scheme (Zhang et al., 2019). The T-MME
scheme for time sample 276 includes the reflection of the third re-
flector because the timewindow is now 276þ nε. This extra reflector
introduces new events in M̄i. In the k̄−1;i terms, the nonphysical pri-
mary, just below the second reflector, is clearly visible. After 20 iter-
ations, Figure 13h looks very similar to Figure 11f (time instant 296).
The difference is that in the T-MME scheme the truncation starts at
t2 þ ε (sample 276+8) and the value at t2 (time sample 276) is ex-
actly right in v− for the local reflection coefficient and stored in the
final data output (Rr½276�), whereas, in the MME scheme of Fig-
ure 11g, the truncation starts at t2 − ε (sample 296–8) and the value
at t2 (time sample 296) in u− is the correct value for the physical
primary and is stored in the final data output (Rt½296�).
In the example for the MME scheme, we have shown (in equa-

tion 20) that the reflection strength of the second reflector was
modified in v−1 from its physical amplitude to its local reflection
coefficient as the amplitude. It is exactly this feature that T-
MME exploits. When the Marchenko schemes reach the arrival time

of a reflector, there is a decision to be made where to put the re-
flection of that reflector. Setting the truncation time to t2 − ε, the
time instant t2 is correctly obtained in u−1 . Changing the truncation
time from t2 − ε to t2 þ ε, the time instant t2 is correctly obtained in
v−1 instead of in u−1 . It is the time duration of the source wavelet that
allows us to make this choice. By taking t2 − ε, an error is intro-
duced in v−1 and hence u−1 is correct at t2, whereas by taking t2 þ ε
the error is in u−1 and v−1 will be correct at t2.
The transmission-compensated (T-MME) scheme retrieves pri-

mary reflections with local reflection coefficients, whereas, in the
regular (MME) scheme, the primary reflections keep their two-way
reflection coefficients that include transmission losses. The local
reflection retrieval of the T-MME scheme is exact for a horizontally
layered medium, but, in laterally varying media, it is approximately
true (Zhang et al., 2019). The only computational difference
between the T-MME and MME schemes is the position of the
time-truncation window.

CONCLUSION

In this paper, we have demonstrated step by step the correct and
effective elimination of internal multiple reflections from the acous-
tic reflection response using the truncation time instant as a free
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Figure 13. (a)–(d) The M̄i fields for a focal time at sample t2 ¼ 276 with the transmission-compensated scheme T-MME after i ¼ 1; 2; 3; 4
iterations. (e)–(h) The k̄−i fields for a focal time at sample t2 ¼ 276 with the transmission-compensated scheme T-MME after i ¼ 2; 4; 10; 20
iterations. All figures are plotted with the same clipping factor.
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parameter. With a simple four-layer model, we showed that in a
1.5D model MME retrieves the primary reflections with their physi-
cal amplitude whereas T-MME retrieves the primary reflections
with their local reflection coefficient. The examples also show that,
when a first-order internal multiple is eliminated, the whole train of
multiples associated with that first-order multiple is eliminated as
well. This is achieved by a single multiple annihilator that is com-
puted from only primary reflections in the data. The compute ker-
nels of the two schemes are identical and consist of a matrix vector
product that alternates between a time correlation and a time con-
volution. Exact and efficient computation of the discrete correla-
tions and convolutions is done with an FFT routine. The only
difference between MME and T-MME is the implementation of
the time truncation. MME excludes a chosen time window before
the truncation time instant and obtains the result after the scheme
has converged by evaluating the equation at the truncation time in-
stant. T-MME includes a chosen time window after that time instant
and obtains the result directly from the value at the truncation time
instant when the scheme has converged. For each truncation time
instant, the iterative scheme computes the multiple annihilators and
the corresponding reflection output. The current standard imple-
mentation takes every data time sample as a truncation time; the
faster implementation can take larger time steps for the truncation
time by exploiting the finite frequency bandwidth of the data.
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