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ABSTRACT

Correct handling of strong elastic internal multiples
remains a challenge for seismic imaging. Methods aimed
at eliminating them are currently limited by monotonicity
violations, a lack of a-priori knowledge about mode conver-
sions, or unavailability of multicomponent sources and
receivers for not only particle velocities but also the traction
vector. Most of these challenges vanish in acoustic media
such that Marchenko-equation-based methods are able, in
theory, to remove multiples exactly (within a certain wave-
number-frequency band). In practice, however, when applied
to (elastic) field data, mode conversions are unaccounted for.
Aiming to support a recently published marine field data
study, we build a representative synthetic model. For this
setting, we demonstrate that mode conversions can have a
substantial impact on the recovered multiple-free reflection
response. Nevertheless, the images are significantly improved
by acoustic multiple elimination. Moreover, after migration
the imprint of elastic effects is considerably weaker and
unlikely to alter the seismic interpretation.

INTRODUCTION

The subsurface offshore Middle East bears large amounts of
hydrocarbons, however, their exploration and hence value, depend
on reliable seismic images. The geology of the region is comprised
of many, predominantly horizontal strata and occasional low relief
structures (the exploration targets), that are buried under a water
layer. As a result, the actual horizons and the imaging artifacts re-
sulting from any of the countless multiple reflections are visually
indistinguishable, making multiple suppression particularly chal-
lenging. Moreover, in such strongly and frequently scattering

media, one expects internal multiples to be visible as a complex
wavefield rather than individual events (O’Doherty and Anstey,
1971; Resnick et al., 1986). As a result, kinematic prediction of
internal multiples followed by adaptive subtraction (e.g., Weglein
et al., 1997; Jakubowicz, 1998; Ikelle, 2006) poses a high risk of
primary energy damage. In contrast, Marchenko-equation-based
demultiple methods attempt to handle internal multiples not only
kinematically but also with correct amplitude. The demultiple step
itself is often formulated either as an Amundsen (2001)-type decon-
volution (van der Neut and Wapenaar, 2016), or as a multidimen-
sional convolutional filter (Dukalski and de Vos, 2020).
Recently, there have been several attempts to study the applicabil-

ity of Marchenko methods to region-characteristic geological set-
tings. Elison et al. (2020) as well as Reinicke and Dukalski
(2020) have shown acoustic synthetic examples where Marchenko
multiple elimination suppresses multiple-induced complex interfer-
ence patterns. These implementations are relatively simple as they
only require a single user-defined temporal mute and there is no
need to identify primaries to predict multiples. Moreover, Marche-
nko methods have shown to correctly handle all multiple generators
simultaneously thanks to higher order term corrections. The success
of this completely data-driven approach is contingent on the data
being an accurate representation (in amplitude and phase) of the
physical scattering processes in the subsurface.
Subsequently, Staring et al. (2020) applied acoustic Marchenko

multiple elimination on marine field data acquired in the region.
Unlike the acoustic synthetics, however, the field data contain mode
converted events generated by scattering below the water bottom.
Thus, the data are inconsistent with the acoustic scattering
assumption of the used algorithm, casting some doubt over the val-
idity of the results. In contrast to kinematically predicting and adap-
tively subtracting multiples, Marchenko methods rely on higher
order terms to retrieve true amplitude predictions and to suppress
crosstalk. This higher amplitude fidelity could potentially result in a
higher sensitivity to ignoring elastic effects. To date, the validity of
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such acoustic approximation had been largely unexplored and poorly
understood, with no clarity over the nature and the severity of the
potential errors. To better understand the suitability of the acoustic
Marchenko algorithm in the region and to validate the work of
Staring et al. (2020), we conduct an elastic synthetic study using
a region-representative 2D model based on well-log measurements.
We further contrast their approach to what the fully elastic demultiple
method would ideally require over its acoustic counterpart. A few
simpler examples of applying an acoustic Marchenko scheme on
a known elastic medium can be found in the literature (da Costa Filho
et al., 2016, 2018). In our discussion, we consider three key aspects:
(1) availability of multicomponent data with true amplitudes, (2) a
temporal mute and (3) a monotonicity assumption.
In acoustic media, these requirements can be realistically met.

The multicomponent data can be reduced to a single (compres-
sional) mode and the temporal mute is derived from a single pseu-
doboundary (similarly to the mute used by van Borselen, 2002;
Berkhout and Verschuur, 2005; Ikelle, 2006). The assumption (iii),
monotonicity, requires “correct” temporal ordering of events (ten
Kroode, 2002; Nita and Weglein, 2009). Although often satisfied,
this assumption can be violated, particularly in the presence of large
velocity variations and steep angles of incidence, e.g., the far-offset
water bottom reflection. Evaluating the Marchenko solver with
these monotonicity violations can lead to amplitude errors which
can negatively impact the demultiple result (Reinicke et al.,
2020). However, monotonicity violations can often be reduced us-
ing simple preprocessing tools such as dip-filtering.
For elastodynamic waves, Marchenko methods (Wapenaar and

Slob, 2015; Reinicke et al., 2020) alike other notable internal de-
multiple methods (e.g., the elastic inverse scattering series, Coates
andWeglein, 1996) encounter fundamental challenges. The require-
ment (1) is naturally violated by streamer acquisition, which only
measures pressure (i.e., tensile stress) and in modern systems also
particle velocities but not the shearing stresses. Furthermore, the
temporal mute (2) generalizes to one pseudoboundary for each
source-receiver combination of pressure and shear waves, which
increases the dependency on the user and the knowledge of the sub-
surface. In contrast to the acoustic case, the requirement (3) can be
easily violated due to coupling between modes with significant
differences in propagation speeds (Sun and Innanen, 2019; Reinicke
et al., 2020). As a result, even for small angles of incidence, elastic
data can easily violate monotonicity. Contrary to the acoustic case,
the monotonicity problem is typically no longer localized in the
wavenumber-frequency domain and cannot be handled by dip dis-
crimination.
In this work, we first summarize the theory of the Marchenko

demultiple method. Second, we explain how the synthetic model
is built and compare the acoustic with the marine reflection re-
sponse. Third, the reflection responses are used to retrieve Marchen-
ko multiple elimination results for structural imaging. Without
further research, it is not possible to provide a meaningful
amplitude-versus-offset (AVO) analysis because, to date, there is
insufficient evidence that the presented acoustic Marchenko demul-
tiple scheme preserves the true AVO behavior at the target level.
Finally, the acoustic and marine results are respectively used to an-
alyze the nature of the predicted multiples and the impact of ignor-
ing elastic effects. Since our analysis excludes surface-related
multiples, henceforth, the term multiples refers to the internal ones
only.

A BRIEF THEORETICAL OVERVIEW

Data-driven demultiple methods assume consistency between the
medium, the data and the algorithm, i.e., all three should be either
acoustic or elastic. Violations of this consistency can lead to errors,
e.g., by processing elastic data with acoustic demultiple algorithms.
In a marine acquisition configuration, however, an elastic reflection
response is recorded in an acoustic layer, i.e., we measure compres-
sional data which have an imprint of elastic scattering effects that
occur below the water bottom. Therefore, it remains unclear
whether we should opt for an acoustic or elastic demultiple algo-
rithm. Here, we discuss the acoustic version of the Marchenko de-
multiple theory used in the field data example by Staring et al.
(2020) in the context of elastic waves. This discussion also high-
lights theoretical challenges of elastic Marchenko demultiple meth-
ods, particularly for marine data, which are ignored by the acoustic
algorithm and will help to understand resulting artifacts in the
numerical results. The theory section focuses on challenges and
differences that occur when applying Marchenko methods in the
elastic and marine cases as opposed to the acoustic one. Readers
who are less familiar with Marchenko methods may find it helpful
to start with the acoustic theory. As introduction to Marchenko re-
datuming and demultiple, we would respectively refer to the work
by Wapenaar et al. (2014) and Slob et al. (2014) as well as by van
der Neut and Wapenaar (2016), Elison et al. (2020), Dukalski and
de Vos (2020), and Reinicke et al. (2020), in this order.

Marine acquisition

Elastodynamic wavefields in 3D laterally varying media are a
function of five variables: (1) source- and (2) receiver-side field
types for P-, S1- and S2-waves, their respective locations,
(3) x ¼ ðx; y; zÞ and (4) x 0, as well as (5) the angular frequency
ω. For our purposes, we organize these fields in 3 × 3 matrices
in the P-S space,

Dðx 0; x;ωÞ ¼
0
@ DP;P DP;S1 DP;S2

DS1;P DS1;S1 DS1;S2

DS2;P DS2;S1 DS2;S2

1
Aðx 0; x;ωÞ:

(1)

For example, the DS1;Pðx 0; x;ωÞ component is the response to a di-
pole P-wave source with frequency ω at x, recorded as an S1-wave
by a monopole receiver at x 0. Moreover, wavefields are wavelet-free
unless specified explicitly and the medium is lossless. In 2D space,
the wavefield matrices can be reduced to 2 × 2 as theDS2;S2 element
is decoupled.
Data-driven demultiple methods rely on temporal convolutions

and correlations combined with matrix multiplications in the P-S
space and summations of sources and receivers. Using detail-hiding
operator notation (Berkhout, 1982; Wapenaar, 1989), products such
as DADB represent the extrapolation of the field DBðx 0 0; x;ωÞ with
DAðx 0; x 0 0;ωÞ according to,

DADB ¼
Z

DAðx 0; x 0 0;ωÞDBðx 0 0; x;ωÞd2x 0 0; (2)

which is evaluated for all frequencies ω and where the integrand
involves matrix multiplications in the P-S space.
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We consider a marine acquisition with sources and receivers
inside the water layer at z0 ¼ 0 m (no free surface). The water layer
does not support shear-wave propagation and hence only P-waves
can be injected and recorded (see illustration in Figure 1), resulting
in a reflection response with a single nonzero component,

R∪ðx 0
0; x0;ωÞ ¼

0
@R∪

P;P 0 0

0 0 0

0 0 0

1
Aðx 0

0; x0;ωÞ: (3)

The contributions to the R∪
P;P component include,

1) nonconverted primaries and multiples (they travel as P-waves
only),

2) mode-converted primaries and multiples (they partially travel as
S-waves below the water bottom),

3) head and surface waves originating from the elastic medium in-
cluding the fluid-solid interface at the water bottom (e.g., for
more details, see de Hoop and van der Hijden, 1984).

These three contributions are depicted in Figure 1 in green, red and
purple, respectively.
We exclude head and surface waves from our analysis because

the literature offers little analysis whether, or how, they are handled
by demultiple methods.
Fully acoustic media (zero shear-wave velocity everywhere) on

the other hand do not support S-waves. The resulting acoustic re-
flection response only contains nonconverted P-waves which are
kinematically identical to those in the marine data (contributions
1 and partially 3). The amplitudes of these nonconverted P-waves,
however, differ for acoustic and marine data. Given this difference,
we use the term marine data in our paper exclusively to refer to
elastic data.

Data-driven multiple elimination

Data-driven demultiple methods can be sensitive to differences
between acoustic and marine data. This is particularly true for the
amplitude-preserving Marchenko methods. Dukalski and de Vos
(2020) show that Marchenko demultiple algorithms can be seen to
provide higher order terms (involving more than a single correlation
and convolution of windowed data) to the scheme by van Borselen
(2002) and Ikelle (2006), thus, we review the two latter ones first.
Consider a pseudoboundary that separates the overburden

(z0 < z < zi) from the target (z > zi). Based on the corresponding
primaries, the data are segmented in a shallow (s) and a deep (d) part
which are respectively preserved by the disjoint mutes (complemen-
tary time windows) Θ∪

s ½·� and Θ∪
d ½·� with,

P ¼ Θ∪
s ½P� þΘ∪

d ½P�: (4)

Here, the mute functions include the required domain transforma-
tions. Next, e.g., using van Borselen (2002), first-order multiples
with two bounces below and one above the aforementioned
pseudoboundary are kinematically predicted using temporal data
correlation and convolution according to,

Θ∪
d ½R∪�Θ∪

s ½R∪��Θ∪
d ½R∪�; (5)

where the superscript * denotes complex-conjugation in the
space-frequency domain (x 0; x;ω). The resulting predictions are

adaptively subtracted from the input data, which bears the risk
of damaging desired primaries. Moreover, this strategy is
sensitive to erroneous predictions when the shallow data Θ∪

s ½R∪�
contain multiples that are correlated with the deep data Θ∪

d ½R∪�,
a so-called multiple leakage. Even in acoustic media, the leakage
can grow significantly with an increasing number of reflectors.
In the marine case, however, the number of primaries and multiples
increases drastically as the data contain converted modes (contribu-
tions 1 and 2). Hence, compared to acoustic data, there is an even
higher risk for marine data of erroneous predictions and of damag-
ing primaries via adaptive subtraction. The leakage can be reduced
by using a recursive top-down approach in which the pseudoboun-
dary is moved from shallower towards deeper levels.
Marchenko methods use higher order terms allowing them not

only for kinematic but also for true-amplitude predictions of multi-
ples. This amplitude fidelity removes the need for adaptive subtrac-
tion such that the nature of multiples is no longer restricted to
individual events. Contrary to the top-down approach of lower order
approximations, Marchenko methods are free of leakage such that
they can handle the entire overburden at once, e.g., see the analytic
example by Slob et al. (2014) or the elastic example with numerical
accuracy by Reinicke et al. (2020). Nevertheless, the input data
must be consistent with the scattering relations of the Marchenko
algorithm (derived from the acoustic or elastic wave equation in
heterogeneous media). This requirement is violated when applying
acoustic Marchenko methods on marine data that contain elastic
contributions (see points 1 and 2 discussed below equation 3). At-
tempts of marine field data applications still show seismic-like re-
sults, however, without offering any proof of correct multiple
elimination (e.g., Ravasi et al., 2016; Jia et al., 2018; Mildner et al.,
2019; Staring et al., 2020). Assessing the results can be challenging
without a reference, especially, when multiples generate complex
interference patterns dominated by specific frequencies. Such
nature of the multiples is likely to be observed in field data as geo-
logical media, particularly in the region, often contain numerous

Figure 1. Illustration of the reflection response (R∪
P;P component) in

a marine configuration with sources and receivers in the water layer.
The acquisition level is inside an acoustic medium (water) which only
supports propagation of P-waves such that S-waves are absent. How-
ever, below the water bottom the medium is elastic (solid) and thus
generates primaries and multiples not only for nonconverted
(green) but also for mode-converted (red) P-waves. Moreover, the
reflection response can contain head and surface waves (purple).
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reflectors (O’Doherty and Anstey, 1971). Hence, it is necessary to
investigate on synthetic models (a) whether the nature of multiples
observed in field data can be reproduced and (b) in which setting
acoustic approximations produce reliable demultiple results. In this
study, we carry out such complex synthetic investigation to validate
the field data result by Staring et al. (2020).

(Acoustic) Marchenko demultiple theory

In the Marchenko demultiple method the key element is the
dereverberation operator Vðx0; x 0

0;ωÞ which is used to remove
multiples from the reflection response R∪. Note that all equations
in this work are derived from fundamental scattering relations and
can be interpreted in the context of both acoustic and elastic waves.
Under assumptions discussed here, the dereverberation operator

can be retrieved in a data-driven way through the relation,

V ¼
X∞
k¼0

Ωk with Ωk ¼ Θs½Θ∪
s ½Ωk−1R∪�R∪��; (6)

as initially proposed for acoustic waves by van der Neut and
Wapenaar (2016) where V is denoted as vþ. The series is initiated
with an identity operator I (e.g., a band-limited delta spike at zero-
offset and zero time),

Ω0 ¼ V −Θs½V� ¼ I; (7)

and a single temporal horizon to define the mute Θ∪
s ½·� (the latter

is identical to van Borselen, 2002; Ikelle, 2006). Moreover, the
temporal mute Θs½·� separates the dereverberation operator in an
identity and a coda (see equation 7).
Two underlying assumptions of this strategy can be violated in the

acoustic case. First, the identity and the coda can overlap in the time
domain due to short-period multiples. Hence, insisting on an identity
as initial value Ω0 leads to an erroneous solution (Slob et al., 2013).
Nevertheless, in some cases, the true V can still be recovered using
additional constraints (Dukalski et al., 2019; Elison et al., 2020). Sec-
ond, the function Θ∪

s ½·� uses a time horizon to separate the data into a
shallow and deep part which contain overburden- and target-borne

primaries, respectively. This temporal separation can be accomplished
only if so-called monotonicity conditions are satisfied, which we
discussed recently for the elastic Marchenko demultiple method
(Reinicke et al., 2020). Although monotonicity violations can also
occur in acoustic media (discussed by Nita and Weglein, 2009, in
the context of another demultiple algorithm), they are fortunately
not an issue for reflection data of nearly 1.5D media such as the
region. An exception is the water bottom reflection which is recorded
after primary reflections of deeper structures at far-offsets (see offset
gathers before wavenumber-frequency filtering in the section on
“Application to marine data of synthetic model of the region”).
In nearly 1.5D media, however, these components can be easily
and inconsequentially removed during preprocessing, e.g., via
dip-filtering. In the next section, we will see that the monotonicity
issue is even more challenging in the elastic case.
The actual demultiple step is the so-called double dereverberation

(DDR),

R∪
DDR ¼ VΘ̄∪

d ½R∪V̄�: (8)

Dukalski and de Vos (2020) show that the DDR exactly removes
source- and receiver-side reverberations generated by the overburden
only (i.e., primaries and peg-leg multiples, compare Figure 2a and
2b). Alternatively to the DDR in equation 8, the retrieved dereverb-
eration operators can be used either indirectly in a multidimensional
deconvolution-like equation (van der Neut and Wapenaar, 2016), or
directly in a closed-formula (Dukalski and de Vos, 2020) to remove a
wider class of multiples including overburden-only as well as over-
burden-target reverberations. The remaining target-only multiples
could potentially be removed by retrieving the dereverberation oper-
ator not for a single but for a range of pseudoboundaries (analogous
to the Marchenko multiple elimination schemes by Ware and Aki,
1969; Zhang et al., 2019). In terms of computational costs, however,
the DDR is advantageous particularly in 3D cases because it requires
neither a multi-dimensional deconvolution nor the retrieval of dere-
verberation operators for a range of pseudoboundaries. The dereverb-
eration operators with and without a bar (see equation 8) act on the
source- and receiver-side respectively. For sufficiently flat reflectors,
the two operators are related to a very good approximation via

Figure 2. Illustration of different classes of multiples. (a) The reflection response R∪ contains primaries (green) and multiples that are gen-
erated only by the overburden (red) or the target (white) or by the overburden and the target together (black). (b) DDR retrieves a reflection
response R∪

DDR without source- and receiver-side peg leg multiples and without overburden-borne primaries (see equation 8). For acoustic
media, the solid arrows represent nonconverted P-waves. In elastic media, however, the solid arrows represent forward-scattered waves as
indicated in (c).
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source-receiver reciprocity which was exploited by Staring et al.
(2020). For elastic waves, this approximation includes a transpose
in the P-S space (superscript) T according to,

Vðx0; x 0
0;ωÞ ¼ V̄Tðx 0

0; x0;ωÞ: (9)

In a more general situation, the source-side operator V̄ can be re-
trieved analogously to equation 6, except that the reflection operator
is applied on shot gathers (i.e., R∪ acts from the left instead of the
right side) and the separation functions Θ̄s½·� and Θ̄∪

s ½·� need to be
defined for interchanged sources and receivers.

Theoretical challenges of Marchenko demultiple in the
marine case

For marine data, three problems can occur in the Marchenko de-
multiple scheme in equations 6–8: (1) noninvertible transmissions
and hence (non)existence of the dereverberation operator V, as well
as (2 and 3) challenging implementation of the separation functions
(2) Θs½·� and (3) Θ∪

s ½·�.
We analyze the overburden transmissions T↑

sðx0; xi;ωÞ and
T↓
sðxi; x0;ωÞ as their inverses can be used to define the

dereverberation operator. These transmissions are associated with
a shallow medium (indicated by subscript s as in equation 4) that
is identical to the true one in the overburden but homogeneous be-
low (z > zi). Shear waves cannot be measured or injected in the
water layer such that the transmissions reduce to,

T↑
s ¼

0
@ T↑

P;P T↑
P;S1 T↑

P;S2
0 0 0

0 0 0

1
A; (10)

and

T↓
s ¼

0
B@

T↓
P;P 0 0

T↓
S1;P 0 0

T↓
S2;P 0 0

1
CA: (11)

Moreover, the transmissions are split in a direct part and a coda,
e.g., according to,

T↑
s ¼ T↑

s;dir þ T↑
s;coda: (12)

In simple cases, the direct transmission T↑
s;dir can be a direct wave.

Its physical meaning, however, can be much more general and de-
pends on our choice for the separation function Θs½·� which we will
discuss subsequently.
Next, the dereverberation operator can be defined as an inverse

transmission that is extrapolated by its direct part. Hence, we can
write the receiver- and source-side operators respectively as,

V ¼ T↑
s;dirT

↑−1
s (13)

and

V̄ ¼ T↓−1
s T↓

s;dir: (14)

With equations 12 and 13 it becomes clearer why the dereverber-
ation operator V is an identity plus a coda (see equations 6 and 7).
In the marine case, however, the definition in equations 13 and 14

is problematic because the matrices T↑
s and T↓

s are not invertible
(see equations 10 and 11). To resolve this issue, we generalize the
matrix inverse to a Moore-Penrose pseudoinverse (we still denote
pseudoinverses by the superscript −1 instead of + to avoid con-
fusion with downgoing waves which are often denoted by super-
script +). Thus, the dereverberation operators V and V̄ can be seen
as a product of a row and a column matrix (see equations 10 and 11
and equations 13 and 14), resulting in a single nonzero element,
e.g.,

V ¼ T↑
s;dirT

↑−1
s ¼

0
@VP;P 0 0

0 0 0

0 0 0

1
A: (15)

The reduction of V from a matrix to a scalar makes equations 6 and
8 dimensionally consistent. It remains unclear, however, whether
VP;P or another scalar filter exists that correctly removes (mode-
converted) multiples according to the DDR in equation 8 or using
the larger closed-form formula from Dukalski and de Vos (2020).
Even if it does, it is not clear whether it is obtained by evaluating
equation 6.
The second problem involves the function Θs½·� which ought to

separate the dereverberation operator V into an identity I and a coda
V − I. The explicit definition of Θs½·� must be consistent with our
choice for the direct transmission (T↑

s;dir and T↓
s;dir) which in turn

affects the dereverberation operator (see equations 13 and 14). This
mutual dependency between the separation function Θs½·� and the
direct transmission plays a pivotal role. On the one hand, a simple
direct transmission is desirable because application of the dereverb-
eration operator removes the effect of the transmission coda T↑

s;coda
but not of its direct part T↑

s;dir (see equations 12 and 13). On the
other hand, we would like for the implementation of the separation
function Θs½·� to require a minimum amount of prior information to
keep the method data-driven. Existing implementations define the
function Θs½·� as a temporal mute that preserves causal parts only
such that the direct transmission is “chosen” implicitly. For nearly
1.5D acoustic media, the resulting direct transmission can be
as simple as a direct wave (van der Neut and Wapenaar, 2016).
In presence of thin layers such as in the region, however, the direct
transmission can also include short-period multiples (Dukalski et al.,
2019; Elison et al., 2020). For more complicated geometries as well
as for elastic media, the direct transmission can generalize even fur-
ther to: (a) waves that scatter without changing their vertical propa-
gation direction as depicted in Figure 2c (also known as forward-
scattered waves; Wapenaar, 2014), and (b) (fast) multiples that ar-
rive before the direct wave (see Figure 3 in Reinicke et al., 2020). In
realistic media, the remaining impact of such direct transmission
could be a significant source of interference. Hence, the elastic
DDR would benefit from a smarter definition of the function Θs½·�,
additional constraints, or both.
The third problem occurs because monotonicity violations are

much more likely in elastic media compared to acoustic ones, par-
ticularly for large differences between the P- and S-wave velocities,
cp and cs. This is often the case for geological media and increases
the possibility of multiples “outpacing” their generating primaries
(Reinicke et al., 2020). The latter work demonstrates that insisting
on a simple temporal mute for the function Θ∪

s ½·� can lead to an
erroneous dereverberation operator. Since such artifacts are due
to undesired temporal overlaps, they are expected to be more
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noticeable for steeper events. The three discussed problems address
fundamental questions beyond the scope of our paper but will be
subject to future research.
In view of the theoretical challenges, we apply an acoustic

Marchenko demultiple scheme in this paper and assess the impact
of ignoring elastic effects. This analysis considers the parameter re-
gime needed for structural imaging in nearly 1.5D media such as in
the region. We hypothesize that, in this setting, forward-scattering
and monotonicity violations are dominated by mode conversions
which are weak for small angles of incidence, and thus, these effects
can be reduced by dip- filtering. Remaining (mode-converted) for-

ward-scattering and monotonicity violations may potentially cause
artifacts when applying acoustic Marchenko demultiple schemes.
For sufficiently large cp∕cs ratios, however, these artifacts have dif-
ferent moveout behavior than the nonconverted P-waves, and thus,
perhaps may be suppressed further during migration.
Lastly, we would like to make a remark on the notation. For

acoustic and marine data, all fields in equations 6–8 reduce from
3 × 3 matrices in the P-S space to a single (P, P) component per
frequency and source/receiver location, VP;P and R∪

P;P, respectively.
Thus, we use a simplified notation,

R∪
P;P → R; ~R;

VP;P → V; ~V;

V̄P;P → V̄; ~̄V;

Θs;d½·�;Θ∪
s;d½·� → Θs;d½·�;Θ∪

s;d½·�;
Θ̄s;d½·�; Θ̄∪

s;d½·� → Θ̄s;d½·�; Θ̄∪
s;d½·�; (16)

where fields without and with a tilde are associated with acoustic
and marine data respectively.

APPLICATION TO MARINE DATA OF SYNTHETIC
MODEL OF THE REGION

In this section, we want to better understand the nature of multi-
ples and impact of elastic effects in a very realistic example. For this
purpose, we conduct a synthetic study that aims to be representative
for the field data example presented by Staring et al. (2020) and
apply the workflow summarized in Figure 3. This processing work-
flow is designed for the acoustic case in which the assumptions of
the Marchenko demultiple theory can be satisfied sufficiently well.
Except for modeling, the marine data set is subject to identical
processing steps such that we can assess the impact of ignoring elas-
tic effects on the demultiple results.
First, acoustic and marine reflection responses are modeled using

sources and receivers inside the water layer. Second, preprocessing
steps are applied to closely meet the assumptions of the Marchenko
series in equation 6, at least for the acoustic case. Third, the
dereverberation operator is retrieved, the DDR is applied and the
results are migrated. Finally, the observations made in the acoustic
and the marine experiments are evaluated.

Modeling acoustic and marine reflection responses

A 2D synthetic model (x-z space) is built based on a well-log
from the region including P- and S-wave velocities (cP∕S) as well
as densities (ρ). The model building includes four steps. First, the
well-log measurements sampled at every 0.5 ft are interpolated to a
regularized grid of 0.1 mm. Second, the resulting log data are band-
limited according to the desired depth sampling interval Δz (10 m)
and down-sampled correspondingly. Third, the well-log only pro-
vides recordings below a depth of approximately 75 m. The bathym-
etry is known and allows us to extrapolate the well-log for the top
25 m. For the remaining 40 m between the water bottom and the
onset of the well-log, we duplicate the top 40 m that are recorded and
multiply each of its entries by a random number between 0.95 and
1.05. The strength of the resulting water bottom reflection is in agree-
ment with the field data used by Staring et al. (2020). Fourth, as the

Figure 3. Overview of the synthetic experiments including (a) the
processing workflow and (b) the evaluation of the results. The ex-
periments are repeated using firstly acoustic and secondly marine
reflection data. After preprocessing including wavelet deconvolu-
tion and wavenumber-frequency filtering, the acoustic data satisfies
the assumptions of the Marchenko series in equation 6 to a high
degree, and thus, allows us to analyze the nature of (some of) the
overburden-borne multiples and serves as benchmark. The marine
data, however, violates several of the aforementioned assumptions
even after preprocessing, which can (and will) lead to erroneous
demultiple and imaging results. The acoustic benchmark allows us
to assess the properties and the severity of the errors caused by elas-
tic effects.
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regional geology is considered to be nearly 1.5D, we include small
variations of layer thicknesses, a gentle regional dip as well as minor
faults and channels (see Figure 4a and 4b). For steps one to three, we
observe that different parameter choices (different interpolation
schemes, Δz ∈ f2 m; 5 m; 10 mg as well as soft and hard water bot-
toms), lead to nearly identical reflection responses using a 30 Hz
Ricker wavelet.
In this controlled experiment, acoustic and elastic reflection re-

sponses, R and ~R, respectively, can be modeled using the modeling
tool fdelmodc by Thorbecke and Draganov (2011). Since the pre-
sented theory excludes surface-related multiples, the reflection data
are modeled using absorbing boundary conditions. This simplifica-
tion allows us to exclude potential inaccuracies due to surface-related
multiple elimination from our analysis. The reflection responses are
acquired at z0 ¼ 0 m inside the water layer using vertical dipole
sources convolved with a 30 Hz Ricker wavelet and monopole
receivers. In this experiment, we use 401 collocated sources and
receivers with spatial and temporal sampling rates of Δx ¼ 12.5 m

andΔt ¼ 4 ms, respectively. The choice of source/receiver types and
sampling intervals is important because equation 6 relies on recursive
wavefield extrapolations which require correctly scaled spatio-
temporally unaliased data. The resulting reflection responses R
and ~R as well as their difference are shown in Figure 5.

Data preprocessing

Next, two preprocessing steps are applied to ensure that the data
closely meet the requirements of the Marchenko demultiple
method. These steps include first source wavelet deconvolution and
second a wavenumber-frequency (kx-f) filter (see kx-f panels in
Figure 5).
The second step is discussed in more detail because it can play an

important, however poorly explored, role for Marchenko demultiple
methods. According to the presented theory, this filter is needed to
exclude wavenumber-frequency components that are associated
with evanescent waves on the boundaries of the overburden at z0
and zi. As a side effect, at least in nearly 1.5D media, the filter re-
moves (some of the) steeply dipping events in the offset gathers
which violate monotonicity assumptions, e.g., the water bottom
reflection at far offsets. An additional practical reason for wave-
number-frequency filtering, however, is to avoid divergence of
equation 6, e.g., due to spatio-temporally aliasing without denser
sampling. In our experience, divergence or the emergence of strong
artifacts can also be caused by other effects. Hence, choosing an
appropriate wavenumber-frequency support is not always straight-
forward. To keep the spectrum as wide as possible, increasingly
narrower wavenumber-frequency filters are tested until the series
in equation 6 converges reasonably well within 20 iterations (see
Figure 6). The chosen wavenumber-frequency filter is defined
by the velocity c ¼ 3.50 km s−1 and the maximum frequency
fmax ¼ 80 Hz.

Marchenko solver

Acoustic and marine dereverberation operators (V and ~V) are re-
trieved using 20 terms of equation 6. The separation function Θs½·�
is defined as a tapered Heaviside function Hðt − ðjx0 − x 0

0j∕cÞ − ϵÞ
in the time domain. It removes the spatio-temporally band-limited
identity with c ¼ 4.5 km s−1 and a small ϵ > 0 s to account for the
temporal width of the source wavelet. The separation function Θ∪

s ½·�

on the other hand applies a tapered temporal mute that removes
arrivals after the two-way P-wave traveltime through the overbur-
den. The convergence curves and the retrieved dereverberation op-
erators are shown in Figures 6 and 7, respectively. The convergence
behavior is very similar to the one observed in the complementary
field data study (compare to Figure 7 in Staring et al., 2020). Fur-
thermore, the series converges slightly faster for the marine ( ~V) than
the acoustic (V) solution. We speculate that the convergence rates of
the series differ because in this case the marine reflection data con-
tains slightly weaker nonconverted P-waves than the corresponding
acoustic data.

Multiple elimination and migration

The dereverberation operator retrieval is followed by two
processing steps. Firstly, the DDR is evaluated with the aim to re-
move peg-leg multiples, and secondly, the results are migrated.

Figure 4. Synthetic model representative for the region: (a) P- and
(b) S-wave velocity models. Dashed white lines indicate the record-
ing level z0 and the boundary between the overburden and the target
at zi. The dotted black rectangle indicates the imaging area.
(c) Reference P-wave velocity model with smooth overburden.
The density models are not shown but have the same geometry
as the respective P-wave velocity models.
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The impact of the dereverberation operator can be seen by
comparing the following four quantities:

1) the late reflection response Θ̄∪
d ½R�

2) the so-called single dereverberation (SDR) Θ̄∪
d ½RV̄�

3) the DDR VΘ̄∪
d ½RV̄�

4) the predicted multiples R − VΘ̄∪
d ½RV̄�

Here, the source-side dereverberation operator V̄ is obtained
using equation 9, which is a very good approximation in this
case because the medium is nearly horizontally layered. For
the marine case, these quantities are obtained by replacing
the acoustic responses R and V with the marine ones ~R and
~V. All of these responses are shown in the offset gathers and

wavenumber-frequency spectra in Figures 8
and 9, respectively.
Next, the target reflection responses shown in

Figures 8 and 9 are migrated (see Figure 10). The
imaging area (D) is restricted to the black rectan-
gle in Figure 4a, which is shown as a magnifica-
tion in Figure 10. The choice of the migration
algorithm should not matter for our purposes.
In this example, we use a prestack Kirchhoff
depth migration (PSKDM) algorithm
(e.g., Schneider, 1978), combined with a smooth
velocity model. Further, a maximum offset of
�1.6 km is considered for the migration (see
dashed white lines in Figure 8). The band-limited
reflectivity of the target area could be a good
reference if the target were simple, velocity var-
iations were small and the DDR aimed to remove
all multiples (generated within the overburden,
within the target, and between the overburden
and the target). However, these conditions do
not apply to the presented example, thus, the
band-limited reflectivity is not shown.

Evaluation

The assumptions of the Marchenko method
are closely satisfied by the preprocessed acoustic
data. Thus, we first inspect the acoustic results to
evaluate the nature of the predicted multiples and
compare the retrieved DDR response against an
approximate modeled reference (see “Acoustic
results” in Figure 3). Secondly, we benchmark
the marine results against the acoustic ones to
analyze the impact of ignoring elastic effects
and violating some of the assumptions of the
Marchenko demultiple method (see “Marine re-
sults” in Figure 3).

Acoustic results

First, the impact of the DDR on acoustic data
is analyzed in the offset gathers before and after
migration. The retrieved dereverberation opera-
tor V is predominantly characterized by a com-
plex interference pattern rather than individual
events (see top-left panel in Figure 7a). Corre-
spondingly, the SDR and the DDR appear to re-
move a significant amount of strongly interfering
multiples from the input data (compare the first
four panels in 8a). Here, we focus on times be-
tween t ¼ 1 s and t ¼ 1.3 s because this time
window is used for the migration of the selected
imaging area. Within this window, the SDR and
DDR results reveal previously hidden arrivals

Figure 5. (a) Reflection responses of the acoustic and elastic models as well as their differ-
ence (see columns one, two and three respectively). The responses are shown before (rows
one and three) and after (row two) applying a (tapered) wavenumber-frequency (kx-f) filter,
defined by c ¼ 3.50 km s−1 and fmax ¼ 80 Hz (indicated by the black shadow with a
white outline in right-most kx-f panel). In all figures, we show the temporal instead of
the angular frequency with f ¼ ω∕2π. Moreover, the color-coded central traces (shown
in panels b and c) allow for a better amplitude comparison. The wavenumber-frequency
panels show that kx-f filtering removes the most significant differences betweenR and ~R. In
the kx-f panels, source wavelet deconvolution has been applied and red dashed lines in-
dicate the maximum velocity on the boundaries z0 and zi (cp ¼ 3.78 km s−1). The space-
time and the wavenumber-frequency panels respectively are clipped at 5% and at 50% of
the maximum value of the panel in the first column.
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which potentially are desired primaries (see white arrows in the first
three panels in Figure 8a). An analogous observation can be made in
the migrated images in which the DDR uncovers structures that
were originally masked by complex, potentially multiple-induced
artifacts (see the first three panels in Figure 10a). There is a subtle
amplitude difference between the migrated DDR result and
the reference in the vicinity of ðx; zÞ ¼ ð0.0 km; 2.0 kmÞ in Fig-
ure 10. This difference is the imprint of an overburden-target multi-
ple that is not meant to be removed by the DDR and that is not
generated by the approximate reference with a smooth overburden.
The overburden-target multiple can be removed by applying a de-
convolution-based Marchenko demultiple scheme instead of the
DDR, the respective result is shown in Fig. 6.11 of Reinicke
(2020). The discussion of deconvolution-based schemes is outside
of the scope of this paper, which focuses on the impact of elastic
effects on the dereverberation operator recovery, rather than on how
the latter is used in multiple suppression.
Second, the action of the DDR becomes very apparent in the

wavenumber-frequency spectra. Here, the late reflection response
Θ̄∪

d ½R� and the coda of the dereverberation operator Θs½V� have
some coinciding notches and peaks (see white arrows in the respec-
tive kx-f panels in Figures 7 and 9). When applying the SDR and
DDR, the dereverberation operator partially fills
the multiple-induced spectral notches of the re-
flection response. Furthermore, the multiples
predicted by the DDR are dominated by frequen-
cies approximately 20 and 55 Hz (see Figure 9).
A similar observation is made in the field data
example by Staring et al. (2020) where the pre-
dicted multiples also contain a peak around
f ¼ 20Hz and frequencies above approximately
40 Hz were excluded.
Third, based on the above observations, we in-

vestigate whether multiple-induced imaging arti-
facts can be better illustrated using the spectra
of the images. A detailed visual comparison of
the images is challenging because they are domi-
nated by finely layered nearly horizontal struc-
tures. Thus, we opt for an alternative analysis:
A 2D spatial Fourier transformation is applied
to the images Φðx; zÞ in Figure 10, taking into ac-
count the selected imaging area D according to,

Φðkx; kzÞ ¼
ZZ

D
Φðx; zÞe−iðkxxþkzzÞdxdz:

(17)

Next, the absolute value of the result is summed
for all horizontal wavenumbers,

ΦðkzÞ ¼
X
kx

jΦðkx; kzÞj: (18)

The resulting kz-spectrum is smoother when
derived from the DDR result VΘ̄∪

d ½RV̄� instead
of the late reflection response Θ̄∪

d ½R� (see center
panel in Figure 11a). Moreover, the
kz-spectrum of the predicted multiples is
dominated by two peaks approximately

kz ¼ 0.1 m−1 and kz ¼ 0.14 m−1 (see first panel in Figure 11a).
A similar nature of the predicted multiples with two characteristic
low-wavenumber peaks is observed in the kz-spectrum shown in
the field data study by Staring et al. (2020).

Figure 6. Convergence of the Marchenko series in equation 6 using
the wavenumber-frequency filtered reflection data shown in Fig-
ure 5. The series is initiated with an identity and only updates
the coda of the dereverberation operator. Therefore, the conver-
gence is measured via the L2 norm of the coda update Vk − Vkþ1
at each iteration kþ 1. The black and red lines are associated with
the acoustic and marine data, respectively.

Figure 7. (a) Dereverberation operators V and ~V retrieved via equation 6 using the pre-
processed acoustic and marine reflection responses R and ~R, respectively. The x-t and
kx-f panels are respectively clipped at the 99 percentile of the panel in the first column.
The amplitudes of the x-t panels can be compared easier via the color-coded central
traces shown in panel b. Moreover, the kx-f panels only show the coda of
the dereverberation operator because the initial estimate (an identity) firstly is not re-
trieved but user-defined and secondly only adds a constant to the spectrum. The dashed
red lines are associated with the same velocity as in Figure 5 (cp ¼ 3.78 km s−1) to
simplify the comparison of wavenumber-frequency spectra across figures. The white
arrows point to maxima in the wavenumber-frequency spectrum that, as will be shown,
fill in multiple-induced notches when the DDR is applied.
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Finally, an approximate reference response is modeled and
compared against the DDR result. Since the model contains nu-
merous reflectors, the multiples are expected to strongly interfere.
Moreover, the predominantly horizontal layering makes it difficult
to structurally discriminate between overburden-borne multiples
and target primaries. Hence, a reference is needed to assess the
quality of the demultiple result. For this purpose, we model a tar-
get reflection response RðrefÞ using an acoustic model that is iden-
tical to the true one below, zi, but has a smooth overburden (see

Figure 4c). The smoothness allows us to model scattering-free
transmissions through the overburden, which excludes multiples
as well as scattering-induced transmission losses. The response
RðrefÞ, however, is only an approximate reference for the DDR
result and the following differences are expected. (1) Target-over-
burden-target multiples persist after applying the DDR demultiple
method (see Figure 2a and 2b) but they are absent in the reference.
(2) Contrary to the reference RðrefÞ, the DDR result contains scat-
tering-induced losses of the direct transmission through the actual

Figure 8. Target reflection responses and multiples predicted by the DDR. The target responses include late data (Θ̄∪
d ½R�), SDR and DDR

results (Θ̄∪
d ½RV̄� and VΘ̄∪

d ½RV̄�) and the modeled reference (RðrefÞ). The panels are retrieved from the (a) acoustic and (b) marine data, re-
spectively. The multiples predicted by the DDR are not dominated by individual events but appear as a complicated interference pattern. The
difference between the DDR results obtained from acoustic and marine data is dominated by steep events that are associated with conversions
to slow propagating S-waves. The dashed white lines indicate the maximum offset that will be used for migration. Except for the modeled
reference RðrefÞ, all panels are clipped at the 99 percentile of the late acoustic data Θ̄∪

d ½R�. As the modeled reference RðrefÞ does not include
overburden-borne transmission losses, it is clipped independently at its 99 percentile.
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overburden, i.e., these responses will have different amplitudes.
(3) Imperfect smoothening of the overburden can lead to a minor
global phase shift between the reference and the DDR response.
The retrieved DDR result VΘ̄∪

d ½RV̄� indeed compares to the mod-
eled reference RðrefÞ as expected. These two responses share a near-
perfect kinematic match at early times (see white arrows in the re-
spective panels in Figure 8) while they increasingly divert towards
late times where more target-overburden-target
multiples are expected. The SDR and DDR intro-
duce an interference pattern at t ¼ 1.9 s that is
absent in the reference response (see Figure 8a).
This effect could be generated by targert-
overburden-target multiples that are potentially
suppressed in the late reflection response through
destructive interference with source- and
receiver-side multiples. Since recordings after
about t ¼ 1.3 s do not contribute to the selected
imaging area, it is no surprise that the images de-
rived from the DDR result and the reference are
nearly identical (compare respective panels in
Figure 10). The wavenumber-frequency and im-
age spectra of the late reflection response and
the reference differ by sharp notches (see respec-
tive panels in Figures 9 and 11). After applying
the DDR, these differences are significantly
reduced, indicating that the character of the

observed multiples is more noticeable in these domains than in the
offset gathers.

Marine results

First, the impact of elastic effects is analyzed by comparing the
acoustic against the marine reflection data. The strongest

Figure 9. Similar as Figure 8 but after transformation to the wavenumber-frequency domain and source-wavelet deconvolution; the panels are
retrieved from the (a) acoustic and (b) marine data, respectively. Interferences with overburden-borne multiples cause notches in the wave-
number-frequency spectrum of the late reflection response Θ̄∪

d ½R� which can be seen by comparing it against the reference RðrefÞ (see white
arrows). These notches coincide with the maxima of the dereverberation operator (see white arrows in Figure 7), and are partially filled by SDR
and DDR (see Θ̄∪

d ½RV̄� and VΘ̄∪
d ½RV̄�). The wavenumber-frequency spectra of the predicted multiples also contain characteristic peaks and

troughs suggesting that the multiples do not appear as individual events in the offset gathers but rather as more complicated interference
patterns. The dashed red lines are associated with the same velocity as in Figure 5 (cp ¼ 3.78 km s−1). Except for the modeled reference
RðrefÞ, all panels are clipped at the 99 percentile of the late acoustic data Θ̄∪

d ½R�. As the modeled reference RðrefÞ does not include overburden-
borne transmission losses, it is clipped independently at its 99 percentile.

Figure 10. Images obtained from the target reflection responses in Figure 8. The images
are derived from the (a) acoustic and (b) marine data, respectively. The images in each
column of (a) and (b) are clipped at the 99 percentile of the respective image in (a). A
magnification of cp-model shows the imaging area. The images are computed via the
PSKDM algorithm.
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differences are steep events in the offset gathers that vanish at zero
offset (see top row in Figure 5a). Hence, they are likely to
be associated to mode conversions to slower traveling S-waves.
Furthermore, there are amplitude deviations at far-offsets, i.e., larger
angles of incidence, where mode conversions tend to be stronger.
Analogously, these most significant differences are found towards
the outer edges of the wavenumber-frequency cone, which are re-
moved during preprocessing (see kx-f panels in Figure 5). Thus, the
preprocessed acoustic and marine reflection operators only feature
minor differences, that appear to be small variations of the AVO
behavior (see right column in Figure 5a).
Second, we compare the Marchenko results obtained from acous-

tic and marine data prior to migration. Although some features show
a high level of agreement, significant discrepancies are observed for
the dereverberation operators (see right column in Figure 7a) as well
as for the various target responses (compare Figure 8a and 8b and
Figure 9a and 9b). These differences have a nature similar to those
observed between acoustic and marine reflection data, i.e.,
steep events in the offset gathers. We speculate that they are caused
by slower propagating mode-converted waves that are only present
in the marine data.
Finally, the migration significantly reduces the differences be-

tween the acoustic and marine demultiple results (compare Fig-
ure 10a and 10b). The impact of elastic effects on the images is
very subtle, which makes a detailed comparison challenging. Their
kz-spectra, however, reveal that the images derived from acoustic
and marine data mostly differ around kz ¼ 0.16m−1 (indicated
by vertical dashed lines in Figure 11). This difference is not intro-
duced by the DDR algorithm but it is already present in the in-
put data.

DISCUSSION

This synthetic case study improves our understanding of the de-
multiple results obtained in a recent field data example by Staring
et al. (2020). Similar to other practical applications, their evaluation
of the results was limited to a comparison between seismic data
before and after multiple elimination. Initially, the aforementioned
authors were particularly puzzled by the nearly monochromatic
behavior of the predicted multiples. However, the work presented

here indicates that the observed nature of multiples can indeed be
expected in geological settings akin to the region. Further, our syn-
thetic and their field data results are in near-perfect agreement on
(1) the convergence behavior of the dereverberation operator
retrieval and (2) the image spectra of the predicted multiples. Hence,
our work provides supporting evidence for these field data results.
Our analysis focuses on structural imaging of the geology in the

region, i.e., our insights may not generalize to other applications or
geological settings. The consistency between acoustic Marchenko
algorithms and marine reflection data decreases with increasing an-
gles of incidence. Hence, it remains unclear whether the resulting
offset-dependent amplitude variations provide reliable subsurface
information, which is important, e.g., for AVO analysis or geologies
beyond nearly 1.5D geometries. In particular in elastic media, the
target primary will always be convolved with a train of forward-
converted waves, which (a) is often ignored in AVO analysis
and (b) cannot be removed within the framework of (existing) Mar-
chenko methods without detailed prior knowledge the subsurface
(Reinicke et al., 2020). For the future, it would be very valuable
to conduct a synthetic study for sub-salt exploration targets where
multiple elimination also remains an outstanding challenge (e.g., by
including elastic effects in the synthetic salt body example by Vas-
concelos et al. 2015). Moreover, our assessment excludes intrinsic
attenuation which is not a first-order problem in the region. In other
areas such as onshore Middle East, however, significant losses can
be induced by the complex near-surface geology (Mokhtar et al.,
1988). Existing Marchenko schemes that account for intrinsic at-
tenuation unfortunately require often unavailable two-sided data in-
cluding measurements above and below the target (Slob, 2016).
Hence, it would be desirable to approximate and compensate for in-
trinsic attenuation prior to Marchenko multiple elimination which
only uses single-sided illumination. Analogously to our study as well
as in view of the amplitude fidelity and the higher order terms argu-
ment made prior, such approximations need to be carefully inspected
using representative synthetics which will be subject to future re-
search.
Elastic effects pose unresolved theoretical challenges for internal

demultiple methods. In the context of Marchenko methods, these
fundamental questions are related to the existence of the dereverb-
eration operator as well as the implementation of the separation

functions. Due to these challenges, existing field
data examples apply Marchenko methods using
an acoustic approximation. However, there is a
high risk of drawing incorrect conclusions from
the results without cautiously analyzing the im-
pact of ignoring elastic effects. In our synthetic
study, the acoustic Marchenko demultiple
method appears to be robust toward elastic ef-
fects in marine data. Moreover, elastic effects
present in the data before and after multiple
elimination have nearly no impact on the mi-
grated images.
Based on our experience from this project, we

would like to highlight a few remarks on the im-
plementation and theory. As for other Marchenko
applications, accurate data preprocessing was
crucial, yet realizable, for marine data. In this case,
it was necessary to include a wavenumber-
frequency filter in the preprocessing workflow

Figure 11. Vertical-wavenumber spectra of the images in Figure 10, computed accord-
ing to equations 17 and 18 and associated with the (a) acoustic and (b) marine cases,
respectively. A significant difference between (a) and (b) is observed at kz ¼ 0.16 m−1

(indicated by the vertical dashed lines).

WC52 Reinicke et al.

D
ow

nl
oa

de
d 

08
/3

0/
21

 to
 1

45
.9

4.
67

.7
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
20

-0
85

0.
1



to ensure that the assumptions of the Marchenko method are closely
satisfied. We would like to emphasize that the DDR algorithm does
not alter the amplitudes of the desired primaries, which facilitates the
evaluation of the results. Other Marchenko demultiple methods are
based on a multidimensional deconvolution, which allows them to
remove a wider class of multiples, however, they do not allow for a
direct comparison between the input and output data. Moreover, the
presented Marchenko theory aims to remove multiples, while other
Marchenko formulations additionally apply redatuming (e.g., see
Wapenaar et al., 2014). The marine case is challenging for both of
these strategies because the existence of the respective demultiple
operators is no longer guaranteed. Multiple elimination without re-
datuming, however, may be easier because we can hope that an iden-
tity is still a good initial estimate for the dereverberation operator.

CONCLUSION

In the presented synthetic example, the acoustic Marchenko
method appears to correctly remove acoustic multiples and seems
undeterred by elastic effects. The DDR scheme uses similar oper-
ations and data as conventional internal demultiple methods but pre-
serves true amplitudes. This advantage enables Marchenko methods
to handle multiples without the need for adaptive subtraction. The
nature of multiples in field data can often be very complex as,
e.g., observed in the aforementioned field data application. To better
understand and evaluate respective demultiple results, we found it
extremely useful to conduct a representative synthetic case study.
The similarities between these independently obtained results em-
phasize the relevance and reliability of the presented work.
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