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With the Marchenko method it is possible to retrieve Green’s functions between virtual sources in
the subsurface and receivers at the surface from reflection data at the surface and focusing func-
tions. A macro model of the subsurface is needed to estimate the first arrival; the internal multiples
are retrieved entirely from the reflection data. The retrieved Green’s functions form the input
for redatuming by multidimensional deconvolution (MDD). The redatumed reflection response is
free of internal multiples related to the overburden. Alternatively, the redatumed response can be
obtained by applying a second focusing function to the retrieved Green’s functions. This process
is called Marchenko redatuming by double focusing. It is more stable and better suited for an
adaptive implementation than Marchenko redatuming by MDD, but it does not eliminate the
multiples between the target and the overburden. An attractive efficient alternative is plane-wave
Marchenko redatuming, which retrieves the responses to a limited number of plane-wave sources
at the redatuming level. In all cases, an image of the subsurface can be obtained from the reda-
tumed data, free of artefacts caused by internal multiples. Another class of Marchenko methods
aims at eliminating the internal multiples from the reflection data, while keeping the sources and
receivers at the surface. A specific characteristic of this form of multiple elimination is that it
predicts and subtracts all orders of internal multiples with the correct amplitude, without needing
a macro subsurface model. Like Marchenko redatuming, Marchenko multiple elimination can be
implemented as an MDD process, a double dereverberation process, or an efficient plane-wave
oriented process. In this paper we systematically discuss the different approaches to Marchenko

redatuming, imaging and multiple elimination, using a common mathematical framework.

INTRODUCTION

Building on the autofocusing method of Rose (2001,
2002), Broggini and Snieder (2012) showed how the
Marchenko method can be used to retrieve the 1D
Green’s function between a virtual source in the sub-
surface and a receiver at the surface from the reflection
response at the surface. Unlike in seismic interferome-
try (Campillo and Paul, 2003; Wapenaar, 2003; Schus-
ter et al., 2004; Bakulin and Calvert, 2006; Gouédard
et al., 2008), no physical receiver is needed at the po-
sition of the virtual source. The generalization of this
Green’s function retrieval method to 3D situations
(Wapenaar et al., 2014) formed the basis for the devel-
opment of Marchenko redatuming and imaging meth-
ods (Behura et al., 2014; Broggini et al., 2014). The
main characteristic of these methods is that internal
multiples are dealt with in a data-driven way. A sub-
surface image obtained with the Marchenko method
is free of artefacts related to internal multiples. The
required input consists of the reflection response at
the surface (deconvolved for the seismic wavelet and
free of surface-related multiples) and an estimate of
the direct arrivals of the Green’s functions. The lat-

ter can be obtained from a macro model of the subsur-
face. Hence, the required input is the same as that for
standard redatuming and imaging of primary reflec-
tions; the information needed to deal with the internal
multiples comes entirely from the reflection response
at the surface.

Since the introduction of the Marchenko method in
geophysics, many variants have been introduced. In
the initial approach, redatuming was achieved by ap-
plying multidimensional deconvolution (MDD) to the
downgoing and upgoing Green’s functions retrieved
with the Marchenko method (Broggini et al., 2014;
Ravasi et al., 2016). To obtain a more stable method,
suited for adaptive implementation, redatuming by
double focusing was developed (van der Neut et al.,
2015¢; Staring et al., 2018). An important efficiency
gain was achieved with the plane-wave Marchenko re-
datuming approach (Meles et al., 2018). In all these
approaches, sources and receivers are redatumed from
the surface to virtual sources and receivers at one
or more depth levels in the subsurface. This re-
quires a macro model of the overburden. To make the
Marchenko method less sensitive to the macro model,
it was proposed to extrapolate the virtual sources and



receivers upward to the acquisition surface (Meles et
al., 2016; van der Neut and Wapenaar, 2016). This led
to a class of Marchenko multiple elimination methods,
i.e., methods in which the sources and receivers stay
at the surface while the internal multiples are elimi-
nated from the data (Zhang et al., 2019a,b; Pereira
et al., 2019; Elison et al., 2020; Dukalski and de Vos,
2020; Meles et al., 2020; Staring et al., 2021).

In this paper we discuss the different Marchenko
methods in a systematic way, show their mutual re-
lations and discuss the specific properties of each
method. By using a consistent way of presenting these
methods, using a unified notation, we hope to convey
the systematics of the many Marchenko methods that
are currently around. The emphasis will be on expla-
nations with cartoon-like figures. Numerical examples
and field data applications can be found in the refer-
enced literature.

It is impossible to discuss all existing Marchenko
methods in a single paper. At various places we in-
clude references for variants that are not discussed
here. In particular, the discussion in this paper is re-
stricted to acoustic methods for lossless media. For
a discussion of the Marchenko method in dissipative
media we refer to Slob (2016) and for elastodynamic
Marchenko methods to Wapenaar and Slob (2014), da
Costa Filho et al. (2014) and Reinicke et al. (2020).
Throughout the paper we assume that the input data
are properly sampled. For Marchenko methods that
compensate for the effects of irregular sampling, see
Haindl et al. (2018), Peng et al. (2019) and van IJs-
seldijk and Wapenaar (2021). Recent developments
on the integration of the Marchenko method with full
waveform inversion (Cui et al., 2020; Shoja et al.,
2020) and Marchenko methods without up/down de-
composition (Diekman and Vasconcelos, 2021; Kiraz
et al., 2021; Wapenaar et al., 2021) are also beyond
the scope of this paper.

MARCHENKO REDATUMING AND IMAGING

Seismic redatuming is the process of virtually mov-
ing sources and/or receivers from the acquisition sur-
face to a new depth level (or ‘datum plane’) in the
subsurface. Traditionally this is done with one-way
wave field extrapolation operators (or ‘focusing oper-
ators’) which account for primaries only (Berkhout,
1982; Berryhill, 1984). Classical wave field extrapo-
lation and redatuming methods that account for in-
ternal multiples exist (Wapenaar et al., 1987; Mul-
der, 2005), but they require a very detailed subsurface
model. Redatuming methods that are based on seis-
mic interferometry (Schuster et al., 2004; Bakulin and
Calvert, 2006; van der Neut et al., 2011) do not need
a subsurface model, but they require the presence of
actual receivers at the depth level to which one wants
to redatum the sources.

Broggini and Snieder (2012) showed that with the
Marchenko method the same can be achieved as with
seismic interferometry, at least in 1D, without requir-
ing actual receivers in the subsurface. This was the
inspiration for the research into 3D Marchenko reda-
tuming and imaging, which is extensively discussed in
this section. Marchenko redatuming is a data-driven
method to create virtual sources and receivers in the
subsurface. It accounts for internal multiples in the
overburden, it only needs a macro model of the over-
burden and it does not require the presence of actual
receivers in the subsurface.

Focusing functions

The focusing function plays an essential role in
the Marchenko method. It is a 3D generalization of
the ‘fundamental solution’ in 1D scattering problems
(Lamb, 1980). On the other hand, from the seismic
perspective it can be seen as a generalization of the
3D focusing operator used in traditional redatuming,
accounting for internal multiples. Here we discuss its
basic properties. In the section “Retrieval of focusing
functions” we show how it can be retrieved from the
reflection response at the surface.

Consider a 3D inhomogeneous lossless acoustic
medium, with propagation velocity ¢(x) and mass
density p(x), where x = (x1,z2,x3) is the Cartesian
coordinate vector. Here x; and zo are the horizon-
tal coordinates, in the following denoted by vector
xg = (21, 22); o3 is the depth coordinate. For 2D sit-
uations, the coordinate vectors reduce to x = (1, z3)
and xi = x1, respectively. The acquisition bound-
ary at &3 = x3 is denoted as Sy. Throughout this
paper we assume that Sy is a transparent boundary
and that the upper half-space is homogeneous. We
choose a focal point x4 = (Xg, 4,23 4) in the subsur-
face, with xyg 4 = (%1,4,%2,4) (Or Xg 4 = 1,4 in the
2D situation) and 3 4 > x30, and define a boundary
Sa at the focal depth z3 4. We define a truncated
version of the medium, which is identical to the ac-
tual medium above S4 and reflection free below S4.
We introduce the focusing function f1(x,x4,t) (with
t denoting time) in this truncated medium. It con-
sists of a downgoing part f;'(x,xa,t) and an upgo-
ing part f] (x,x4,t) (the superscripts + and — re-
fer to the propagation direction at the first coordi-
nate vector, here x). The downgoing focusing func-
tion fi (xg,%4,t), with xg at Sy, is defined such that
fi7(x,xa4,t) focuses at x = x4 and t = 0 and contin-
ues as a diverging downgoing field into the reflection-
free half-space below S 4. The upgoing focusing func-
tion f] (xgr,Xa,t) is the response of the truncated
medium to f;'(xs,%4,t), observed at xg at Sg. Both
the downgoing and upgoing functions are visualized in
Figure la. Note that downgoing and upgoing waves
meet each other at interfaces in such a way that only
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FIG. 1 (a) Focusing functions f; and f; in the truncated
medium. (b) The focusing function f; (xs,xa,t) (fired
x4, variable xs) with xs at So and xa at Sa. (¢) The
focused field fit (xs,x4,t) (fized x4, variable x'y ) with x/y
and xa at Sa.

the direct arrival of the focusing function, denoted by
ffrd (x,x4,t), reaches the focal point.

The propagation of the focusing function through
the truncated medium, from Sy to S4, is formally de-
scribed by

[ (% xa,t) = (1)

/dxs/ T(xy, x5, ) fi (x5, %x4,t —t')dt,
So 0

for x/; at Sa, where T(x/y,%g,t) is the transmission
response of the truncated medium. Throughout the
paper we assume that downgoing and upgoing fields
are power-flux normalized (Frasier, 1970; Kennett et
al., 1978; Ursin, 1983; Chapman, 1994), which ex-
plains why expressions like equation 1 do not contain
the vertical spatial derivative of one of the functions
under the integral. The formal focusing conditions are

F (K xast) = 8(xj 4 — xm,4)0(t), (2)
fl_(fo’XA’t) =0, (3)

for x/y at Ss. From equations 1 and 2 it fol-
lows that f;"(xs,%4,t) is by definition the inverse
of T(xa,xg,t). For the truncated medium of Fig-
ure la, the downgoing function f; (xs,%4,t), con-
volved with a wavelet, is shown in grey-level display in
Figure 1b. Its direct contribution fff q(xs,x4,t) is a
hyperbolic-like event at negative time (actually this is
the traditional one-way focusing operator (Berkhout
and Wapenaar, 1993)). If no scattering occurred be-
tween Sy and S 4, this would be the complete focus-
ing function. However, in a scattering medium, ad-
ditional events are present in f;"(xs,%a,t) (as visu-
alized in Figures la and 1b), which avoid that mul-
tiply scattered waves reach S,. Figure 1c shows the
focused field f; (x4,%4,t), with x/; at Sa, obtained
by emitting f;"(xs,%a,t) (convolved with a wavelet)
into the truncated medium, according to equation
1. The amplitudes are clipped to emphasize the de-
tails. Note that there are no artefacts related to
multiple scattering. Nevertheless, the focused field
deviates from the desired result, expressed by equa-
tion 2. The explanation is that, in practical situa-
tions, the aperture is finite and focusing functions do
not compensate for evanescent waves, which implies a
spatial band-limitation (Berkhout and van Wulfften
Palthe, 1979, App. C). Moreover, in practice the
seismic wavelet implies a temporal band-limitation.
Hence, the delta functions in equation 2 (and in the re-
mainder of the paper) should be interpreted as band-
limited delta functions. Consequently, in practice the
downgoing focusing function f;"(xs,%4,t) is actually
a band-limited inverse of the transmission response
T(x4,Xg,t).

Representations

We discuss two representations, which formulate
mutual relations between Green’s functions and the
focusing functions introduced in the previous section.
First we introduce the decomposed Green’s functions
G~ (xg,xa,t) and G7 (xR, Xa,t), with x4 at Sy
inside the medium and x g at the acquisition boundary
Sg, see Figure 2a. Unlike the focusing functions, the
Green’s functions are defined in the actual medium,
which in general is inhomogeneous also below S 4. Fol-
lowing common conventions, the second coordinate
vector (here x 4) denotes the position of the impulsive
source and the first coordinate vector (here xpg) that
of the receiver. In the same order, the superscripts de-
note the propagation directions at the source and re-
ceiver. Since the half-space above Sy is homogeneous,
only upgoing waves arrive at the receiver.

For a source at xg at the acquisition boundary Sy,
the Green’s function G™F(xpg,xg,t) is by definition
the reflection response of the medium. We denote this
by R(xg,xs,t). The following relations hold between
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FIG. 2 (a) Green’s functions in the actual medium. (b)
The left-hand side of equation 4 (fized xa, variable xg).
(c) The left-hand side of equation 5.

the power-flux normalized Green’s functions and fo-
cusing functions (Slob et al., 2014; Wapenaar et al.,
2014)

G_’+(XR,XA7t) + ff(XR,XA,t) = (4)
/ dxs/ R(xp,xs,t')f{ (x5,%a,t —t')dt’
So 0

and
G~ (xR, xa,—t) + fi (Xr,xa,1) = (5)

0
/dxs/ R(xg,xs, —t") fi (xg,%4,t —t')dt/,
So —00

see also the Appendix. The time integration bound-
aries acknowledge the fact that the reflection re-
sponse R(xg,Xg,t) is a causal function of time, i.e.,
R(xpr,xs,t < 0) = 0. Both equations account for
internal multiple scattering. Equation 4 is exact,
whereas in equation 5 evanescent waves are neglected.
The interpretation of equation 4 is as follows. The
right-hand side quantifies the reflection response of
the actual medium to the downgoing focusing func-
tion fif(xs,%4,t). The left-hand side shows that this

reflection response consists of the upgoing focusing
function f] (xg,%xa,t) (the blue rays arriving at Sy in
Figure 1a) and the Green’s function G™ 7 (xg, x4, t).
The latter can be understood as follows. In Figure 1a
it can be seen that the focal point x4 acts as a virtual
source at t = 0 for downgoing waves. Figure 2a shows
that the response to this virtual source is the Green’s
function G~ % (xg,xa,t) (the green rays in this fig-
ure). Equation 5 is interpreted in a similar way. The
right-hand side quantifies the reflection response of the
time-reversed actual medium to the upgoing focusing
function f; (xs,x4,t). The left-hand side shows that
this reflection response consists of the downgoing fo-
cusing function f;"(xg,xa,t) and the time-reversed
Green’s function G—~ (xpg, x4, —t). The functions on
the left-hand sides of equations 4 and 5, convolved
with a wavelet, are shown in grey-level display in Fig-
ures 2b and 2c, respectively.

Recall that we assume that Sy is a transparent
boundary and that the half-space above Sy is homoge-
neous. Hence, the reflection response R in equations
4 and 5 contains no surface-related multiples, which
complies with the situation after surface-related mul-
tiple elimination (Verschuur et al., 1992; van Groen-
estijn and Verschuur, 2010). Alternatively, equations
4 and 5 can be modified to account for surface-related
multiples in R (see Ware and Aki (1969) for the 1D
situation and Singh et al. (2017) and Dukalski and de
Vos (2018) for 2D and 3D situations). A further dis-
cussion on the inclusion of surface-related multiples in
the representations is beyond the scope of this paper.

Retrieval of focusing functions

Assuming R is known, equations 4 and 5 form a
system of two equations for four unknowns (f;", fi,
G—" and G77). An inspection of Figures 2b and
2c reveals that the Green’s functions reside in other
time intervals than the focusing functions. We discuss
window functions to suppress the Green’s functions
from equations 4 and 5, so that we are left with a
system of two equations for two unknowns. To define
a time window for equation 4, we need to know the
first possible arrival of G~ (xg,xa,t). This would
occur when there would be a reflector just below S 4.
For the first possible arrival of this Green’s function
we write

{G™ " (xR, %, ) Foirst X Ta(XR,X4,1), (6)

where ‘first’ stands for ‘first possible’, Ty is the direct
arrival of the transmission response of the medium
between Sy and Sy (which is also the direct arrival of
G~ 7, see Figure 2a), and  stands for ‘proportional
to’. Note that we ignored the reflection coefficient
of the hypothetical reflector (this is justified since
we only use equation 6 to derive the time window).
We denote the arrival time of the direct transmission



response as tq(xg,x4). Hence, G777 (xg,x4,t) can
be suppressed from equation 4 by applying a time
window that removes everything beyond ¢t = ¢, =
ta(xr,x4) — € (the dashed line in Figure 2b). Here
€ is a small positive time constant (typically half the
duration of a wavelet), to account for the fact that
in practice all terms in equations 4 and 5 are band-
limited. To define a time window for equation 5,
we need to know the last arrival of the time-reversed
Green’s function G~ (xg, x4, —t). This is given by
the time-reversed direct arrival, hence

{G_’_(XR,XA, _t)}last = —Td(XR,XA, —t) (7)

(the factor —1 follows from the sign-convention for the
source for upgoing waves in G~ (Wapenaar, 1996),
but this sign is irrelevant for the derivation of the time
window). Hence, G™ 7 (xp, x4, —t) can be suppressed
from equation 5 by applying a time window that re-
moves everything before t = t, = —tq(xg,x4)+€ (the
dashed line in Figure 2¢). Note that ¢, = —t;,. Based
on this analysis, we define two time windows as

O.(xR,x4,t) = 0t —1t,) =0t +tq—¢€), (8)
@b(XR,XA,t) = 9(tb—t) :9( d—E—t), (9)

where 6(t) is the Heaviside step function (or, in prac-
tice, a tapered version of the Heaviside step function).
These windows suppress the Green’s functions and
pass the focusing functions f;" and f;, except the
direct arrival f1+ a(xRr,x4,t), which coincides with the
- (XRv XA,

last arrival of G™ —t), see Figure 2c.

A few words of caution are needed here. First, equa-
tion 6 is only correct for limited offsets: at large off-
sets, refracted waves in G may arrive earlier than
Tq. Second, in a laterally varying strongly scattering
medium, diffraction events in the focusing functions
may be unintentionally suppressed by the time win-
dows. Third, in practice the inherent band-limitation
may cause partial interference of focusing functions
and Green’s functions, particularly in the case of thin
layers (i.e., thin compared to the wavelength). In this
paper we assume that offsets are limited, lateral vari-
ations are mild, and layers are not thin. Dukalski et
al. (2019) discuss how to account for thin layering,
assuming the medium is horizontally layered.

Application of the window ©,(xg,x4,t) to both
sides of equation 4 gives

fi (xR, xa,t) = (10)
o0
@b/ dxs/ R(xg,xs,t') fi (xs,%a,t —t')dt'.
So 0

Similarly, applying ©,(xg,x4,t) to both sides of

equation 5 we obtain

f1 (XR7XA7 f1 d(xR7XA7t) - (11)

@ dXS /
So

The term f1+d on the left-hand side of equation 11

accounts for the fact that f1 4 is not passed by the
window, see Figure 2c. Equatlons 10 and 11 form
a coupled system of Marchenko equations. We show
how f;” and f; can be retrieved, assuming R and f1+ d
are known. We adopt the compact operator notation

(xr,xs, —t") fi (xs5,%x4,t —t')dt".

introduced by van der Neut et al. (2015b). In this
notation, equations 10 and 11 read
fi = ORI, (12)
7= ©uR [T + [y, (13)
with superscript * denoting time-reversal. For sim-

plicity we use the same fonts for operators as for
wave fields. Operations like Rf," stand for a (multidi-
mensional) convolution process (see right-hand side of
equation 10), whereas operations containing a time-
reversal, like R*f;", stand for a correlation process
(see right-hand side of equation 11). Window func-
tions are always applied in a multiplicative sense. Sub-
stitution of equation 12 into equation 13 gives

fif = 0.RORf + fl. (14)

The product notation ©,R*O, R f1+ should be under-
stood in the sense that operators and window func-
tions act on all terms to the right of it, hence it stands
for ©,(R*(Oy(Rf;"))). For notational convenience we
will not use the brackets. We rewrite equation 14 as

{5 — @aR*@bR}flJr = f;:dv (15)
This equation can

where J is the identity operator.
be solved by

K
fi =) {0.R R} 1, (16)

k=0

where K is the number of iterations needed for the
scheme to converge with acceptable accuracy (conver-
gence is guaranteed for K — oo (Dukalski and de Vos,
2018)). Other approaches to solve equation 15 are pro-
posed by van der Neut et al. (2015a), Dukalski and de
Vos (2018) and Becker et al. (2018). Once f;' is found,
fi follows from equation 12. We call equation 16 the
Marchenko scheme. As input it requires the reflec-
tion response R(xg,Xg,t) at the acquisition bound-
ary (i.e., the reflection measurements after surface-
related multiple elimination and deconvolution for the
wavelet) and the direct arrival f;"(xg,x4,t) of the fo-
cusing function. Analogous to equations 1 and 2, the
latter is related to the direct arrival of the transmis-



sion response via
O(x, 4 — Xn,4)0(t) = (17)

oo
/ dXR/ Td(X%’Xthl)frd(XR7XA7t - t/)dtla
So 0 '

for x4 and x/; at S4. Hence, flfd(XR,xA,t) is the (in
practice band-limited) inverse of Ty(x4,xpg,t). When
a macro model of the medium between Sy and Sy
is available, Ty can be derived from this model and
inverted to obtain fl‘f q- For convenience, this inver-
sion is often approximated by time-reversal, according
to ffd(xR,xmt) ~ Tq(xa,%xR,—t). The Marchenko
scheme appears to be quite robust with respect to am-
plitude and timing errors in the direct arrival of the fo-
cusing function (Broggini et al., 2014; Wapenaar et al.,
2014). Nevertheless, for horizontally layered media
the amplitude of the direct arrival can be corrected,
using the principle of energy conservation (Mildner et
al., 2019). For highly complex media it can be ad-
vantageous to account for wavefield complexity in the
initial estimate of the focusing function (Vasconcelos
et al., 2015; Vasconcelos and Sripanich, 2019). In the
section “Marchenko multiple elimination” we discuss
methods that are independent of the direct arrival of
the focusing function.

The essential expressions for the retrieval of the fo-
cusing functions, i.e., the Marchenko equations and
the Marchenko scheme in compact operator form, are
summarized in Box 1. This box also shows the main
expressions for the other methods discussed in the cur-
rent section “Marchenko redatuming and imaging”.

Retrieval of Green's functions (source redatuming)

Once the focusing functions have been found, the
next step is the retrieval of the Green’s functions. We
define time windows ¥, (xg,x4,t) and Uy(Xg,X4,1t)
via

\Ilmb(XR,XA,t) = 1_®a,b(xRaXA7t)- (18)
Note that the windows W, ;(xg,x4,t) are comple-
mentary to O, ,(Xg,x4,t), defined in equations 8 and
9. Hence, they pass the Green’s functions and sup-
press the focusing functions, except ffr ¢ see Figure 2c.

Application of ¥y (xpg,X4,t) to both sides of equation
4 thus gives

G T (xR, xa,t) = (19)

\I’b/ dXS/ R(XR,Xs,t,)ff_(XS,XA,t7tl)dtl.
S() 0

Similarly, applying ¥,(xg,Xx4,t) to both sides of
equation 5 yields

G_’_(XRy XA, _t) + flfd(XR7 XA, t) = (20)

0
\Ila/ dXS / R(XR7XS7 _tl)fl_ (XSa XAvt - t/)dt/
So — 00

We interpret these expressions as follows. The reflec-
tion response on the right-hand sides is the response
to an actual source at xg, observed by an actual re-
ceiver at xg, both at the acquisition surface Sg. This
is visualized in Figure 3a. The Green’s functions on
the left-hand sides are responses to a virtual source
for downgoing waves (equation 19) and upgoing waves
(equation 20) at x4 in the subsurface, observed by the
actual receiver at xp at the surface. Hence, equations
19 and 20 accomplish source redatuming from xg at
the acquisition surface Sy to virtual-source position
x4 in the subsurface. Figure 3b visualizes equation
19.

Equation 19 and Figure 3b resemble the virtual-
source method proposed by Bakulin and Calvert
(2006), except that in their formulation the actual re-
ceivers are situated in a horizontal borehole and, in-
stead of using a Marchenko-derived focusing function,
they use a windowed time-reversed response between
sources at the surface and an actual receiver at x4 in
the borehole. Hence, when measurements are avail-
able in a borehole, their method enables the retrieval
of the response to a virtual source at x4 below a com-
plex overburden. Note, however, that their method
does not account for internal multiples.

In the compact operator notation, equations 19 and
20 for source redatuming become

ra = WRfT, (21)
Gra™ = VaR'fy = fy, (22)

where the subscripts R and A on the left-hand sides
refer to the actual receiver position xg at the surface
Sp and the virtual-source position x4 at the datum
plane S 4 in the subsurface. In the following we discuss
different methods to redatum also the receivers from
the surface to a virtual-receiver position xg at S 4.

Receiver redatuming by MDD

We define the reflection response at datum plane
Sa of the target below Sa as Ria(xp,Xa,t) =
G~ (xp,xa,t), with x4 and xp both at S (sub-
script ‘tar’ stands for ‘target’). Note that, when
Gt (xp,xa,t) is defined in the actual medium, it
not only contains the response of the medium below
S, but also multiples between reflectors below and
above S4 (the dashed rays in Figure 4a). We define
a truncated medium, which is identical to the actual
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FIG. 3 (a) Reflection response at the surface. Only a few
rays are shown, mainly to indicate in which direction a
wave leaves a source and arrives at a receiver, but note
that the reflection response includes all primary and inter-
nal multiple reflections. (b) Visualization of equation 19
(source redatuming). The red Tays indicate the focusing
function (shown in more detail in Figure 1a) and the solid
green rays represent the Green’s function (shown in more
detail in Figure 2a).

medium below S4 and reflection free above S4 (note
that this is complementary to the truncated medium
in which the focusing functions are defined). We de-
note the reflection response at S of this truncated
medium as R (xp,%4a,t) = G~ (xp,%x4a,t). Obvi-
ously this response does not contain the kind of mul-
tiples mentioned above (Figure 4b).

The target reflection response Ri..(Xp,%4,t) and
the virtual-source responses defined in equations 19
and 20 are mutually related via

(xR, Xa,t) (23)

/ dXB / T XRaXB) )Rtal‘(XB7ant - tl)dt/
Sa

(Wapenaar, 1996; Amundsen, 2001; Reinicke et al.,
2020). This relation is visualized in Figure 4c. The fi-
nite time integration interval follows from the fact that

both quantities under the integral are causal func-
tions of time. Equation 23 describes a multidimen-
sional convolution, along time and space. Hence, re-
solving the target reflection response Ryi..(Xp,Xa,t)
from this equation is a multidimensional deconvolu-
tion (MDD) process, which redatums the receivers
from Sy to S4. We thus obtain the redatumed reflec-
tion response Ri.:(Xp,X4,t), with its virtual source
at x4 and its virtual receiver at xg, both at S4. In
principle all effects of the overburden, including its in-
ternal multiple reflections, are completely removed by
the redatuming process. For a field data application
we refer to Ravasi et al. (2016).

This MDD redatuming method resembles a pro-
cess called rigorous redatuming, proposed by Mulder
(2005), which also retrieves the target reflection re-
sponse Ri.:(Xp,X4,t) from the reflection data at the
surface. This method requires an accurate model of
the medium between Sy and S, explaining the pri-
maries and the internal multiples. On the contrary,
the Marchenko-based method only needs a macro
model that explains the direct transmission response
Ty between Sg and S4. The information needed to
explain the internal multiples comes directly from the
reflection response at the surface, see equation 16.

In the compact operator notation, equation 23 be-
comes

Gph = —GrpRiar (24)
In this notation, receiver redatuming by MDD is for-
mally described by

Rtar = (GR B) 1G (25)

Note that GI_%:X and Gp'p both depend linearly on
fl":d (see equations 12, 16, 21 and 22).

plitude errors in f1+ q are for the larger part cancelled
in redatuming by MDD. This cancellation is complete
when the medium is horizontally layered; it is approx-
imate in a laterally varying medium. The redatumed
response Riar(Xp,Xa,t) is free of internal multiples
related to the overburden and can be used as input
for imaging the target zone, for example by standard
reverse-time migration (RTM). Although this does not
remove internal multiples in the target zone, it yields
a significant improvement over applying RTM to the
reflection response at the surface. We refer to Brog-
gini et al. (2014) for numerical examples.

Hence, am-

Instead of inverting G’ 5, the target response Riar
can be resolved directly from equation 24 by recasting
the problem in terms of linear operators, which avoids
the stabilization of (G’ 5) ! needed in equation 25
(Luiken and van Leeuwen, 2020).

The redatuming method we discuss in the next sec-
tion is based on an explicit expression for Ry, and is
therefore better equipped for practical applications.
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FIG. 4 (a) The reflection response Riar(XB,Xa,t) =
G (xp,xa,t) in the actual medium. (b) The reflection
response Riar(xp,%xa,t) = G (xp5,%a,t) in the trun-
cated medium. (c) Visualization of equation 28. The
Green’s functions are shown in more detail in Figure 2a
and the reflection response Riar(X5,Xa,t) in Figure 4b.

Source and receiver redatuming by double focusing

Consider again equation 19, which describes source
redatuming. Receiver redatuming can be formulated
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FIG. 5 Visualization of equation 26 (receiver redatuming),
applied to the output of 19 (source redatuming, see Figure
3b). The combination of these two processes (captured by
equation 28) is called redatuming by double focusing. The
red rays indicate the focusing function (shown in more de-
tail in Figure 1a) and the purple rays represent the re-
datumed reflection response at Sa in the actual medium
(shown in more detail in Figure 4a).

in a similar way, according to
Rtar (X37 XA, t) = (26)
o0
/ de/ [T (xr,xB,t = )G (xp, x4, t")dt’
§0 0

(van der Neut et al., 2017; Wapenaar et al., 2019),
where Ry (xp5,%x4,t) = G (xp,%4,t), with x4 and
xp both at S4 (see the Appendix for details). The
Green’s function under the integral, G (xg,x4,1),
is the output of equation 19, which describes how
the actual sources at xg are focused onto the vir-
tual source at x4, see Figure 3b. Similarly, equation
26 describes how the actual receivers at xr are fo-
cused onto the virtual receiver at xp, see Figure 5.
Hence, the combination of equations 19 and 26 can be
seen as a double focusing process, which is also clearly
seen in Figure 5. Note that the redatumed response
Riar(Xp, X 4,t) is defined in the actual medium, hence,
apart from the response of the target below S 4, it also
contains multiples between reflectors below and above
Sa. This can be seen as a disadvantage compared
with redatuming by MDD, which delivers the response
Riar(xp,%4,t) in the truncated medium (Figure 4b).
However, the fact that redatuming by double focusing
does not require inversion often outweighs this disad-
vantage.

In the compact operator notation, equation 26 be-
comes

Rur = [T'GRL, (27)

where superscript ¢ denotes operator transposition
(the operator ffr t acts on the receiver coordinate in-



stead of on the source coordinate). Combined with

equation 21 this gives
Riar = fiPURSf (28)

We call this source and receiver redatuming by dou-
ble focusing. Note the similarity with the classical
redatuming scheme (Berkhout, 1982; Berryhill, 1984;
Berkhout and Wapenaar, 1993), which in the compact
operator notation reads

Rtar ~ f Rfld (29)

Recall that ffr 4 is the direct contribution of focusing

operator fl+ , see Figures la and 1b. Hence, equa-
tion 29 only accounts for primary waves. Operator
fi in equation 28, on the other hand, accounts for
primaries and internal multiple reflections in the over-
burden (the region between Sy and Sy).

Upon substitution of equation 16 into equation 28,
we obtain

Rtar - fl t\IIbeld
= (FQF D URET = (O ) T RQS +

with Q = ©,R*O,R (Staring et al., 2018). The first
term on the right-hand side stands for primary re-
datuming. Each of the subsequent terms in this ex-
pansion accounts for the prediction and subtraction
of a specific order of internal multiple reflections. In
theory the scheme converges, so when the reflection
response is accurately known there is no need to ap-
ply this subtraction adaptively. However, in practice
there will be imperfections in R. The expansion in
equation 30 opens the possibility to implement the
redatuming scheme in an adaptive way, by applying
weighting factors or adaptive filters, which will make
Marchenko redatuming more robust (van der Neut et
al., 2015¢). We emphasize that an adaptive implemen-
tation is only needed to compensate for imperfections
in the reflection response and for attenuation but not
for limitations of the theory. Field data applications
of this method (2D and 3D) are presented by Staring
et al. (2018) and Staring and Wapenaar (2020).

Once the data have been redatumed, they can be
used as input for imaging of the target zone below
the redatuming level S4. In principle any migration
scheme can be used for this. This will lead to an im-
age of the target zone, free of artefacts related to in-
ternal multiples in the overburden. However, internal
multiples related to the target and multiples between
reflectors below and above S4 may still lead to arte-
facts. In the field data applications mentioned above,
these multiples do not play a significant role. Nev-
ertheless, there is a way to further reduce the effects
of these remaining multiples. Instead of redatuming
to a single depth level, redatuming can be carried out
to multiple depth levels, followed by migration of the

(—F{ U RQS) (30)

regions between these depth levels. Ultimately, reda-
tuming can be carried out to all depth levels where
an image is required, followed by selecting the zero-
offset component at zero time of the redatumed data,
i.e., Riar(Xp,xp,t = 0). This function, for all xp in
the region of interest, forms an image 7y, (xp) of the
local reflection coefficient, free of artefacts related to
all multiple reflections. Since in the latter approach
only the ¢ = 0 component of Ry, is selected, it suf-
fices to replace f;™* in equation 28 by f1+ct1 and skip
the window function ¥;,. Hence, the imaging scheme
thus becomes

Tim = (fICtinl—F)xB:xA,t:()a (31)

where 7y, stands for ri, (x5).

Virtual seismology

The redatumed response Riar(Xp,X4,t), obtained
by the double focusing method (equation 28), stands
for the Green’s function G~ (xp,xa,t). This is

, the response to a source for downgoing waves at

X4, observed by a receiver for upgoing waves at
xp, with x4 and xp both at the same boundary
S4 in the subsurface. Here we generalise equation
28 for the situation where x4 and xg do no lie on
the same horizontal boundary and we discuss similar
expressions for GTF(xp,x4,t), G (xp,%4a,t) and
Gt (xp,xa,t).

For x4 and xp at different depth levels, equation
26 for receiver redatuming is generalized to

t(xp,xa,t) +0(xs 5 —23,.4) 1 (Xa,%x5,t)  (32)

/ de/ fl XR7Xth_t)G (vaant)dt/a
So

see the Appendix for details. Here the Green’s func-
tion under the integral, G~ (xpg, x4, 1), is the result
of source redatuming, according to equation 19. In
the compact operator notation, equation 32 becomes
-+ t
GB,A+GB,Af1 f1+ GRAa (33)
where G}_%:X is obtained from equation 21 and 6p, 4
is the compact notation for the Heaviside function
in equation 32. In a similar way we obtain (see Ap-
pendix)

GE i —0safi = —fT'GRL, (34)
B’A*eB,AflJr = fi RA> (35)
Gpa +0safi = —fi'GRa’, (36)

where G’ " is obtained from equation 22. Equations
33 — 36 show how the four components of the de-
composed Green’s function between x4 and xp can
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FIG. 6 Visualization of equation 38 (virtual seismology).
The retrieved homogeneous Green’s function Gn(XB, X4, t)
consists of G;j +G;3:X (green rays), —Gg:; —Gpa (yel-
low rays) and their time-reversals.

be separately obtained. We can suppress the terms
0B.a fljE on the left-hand sides by combining the four
components as follows

+,4 -+ +,— ——
Gpa +Gpy— Gy — Gy = (37)
ta—t g —t(amt —=
1+ ( R,A G&A) - fl ( R,A* - GR,A*)'
Adding to both sides its time-reversal and substituting
equations 21 and 22 yields

Gpa+Gha = YR+ [1))
+ {3(YRfa + £} (38)

(van der Neut et al., 2017; Wapenaar et al., 2017),
with Green’s function Gp 4 defined as

Gpa = GEh+Gph—GEa—Gpa (39)

)

and focusing function fy as
fo= f = f" (40)

In the section “Transmission-loss compensated pri-
mary retrieval” we discuss the physical meaning of
fo in more detail; here we simply define it as a spe-
cific combination of f;" and f; , formulated by equa-
tion 40. The left-hand side of equation 38 is the so-
called homogeneous Green’s function Gy, (xp,%x4,t) =
G(xp,xa,t) + G(xp, x4, —t) between a source at x4
and a receiver at xp, see Figure 6 (actually it is the
power-flux normalized homogeneous Green’s function;
the pressure-normalized version is obtained by apply-
ing composition operators £1(x4) and £(xp) at the
source- and receiver sides (Wapenaar et al., 2014)).
Equation 38 is the basis for ‘virtual seismology’. This
term refers to the methodology for retrieving virtual
seismic responses between sources and receivers in the
subsurface from reflection data at the surface, prop-
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erly accounting for internal multiples. This method-
ology can be used, for example, to monitor the re-
sponse to actual induced seismic sources with virtual
receivers in the subsurface or to forecast the response
to possible future induced seismic sources. This is
explained in more detail and illustrated with numer-
ical and field data examples by Brackenhoff et al.
(2019a,b).

Plane-wave redatuming

Taner (1976) and Schultz and Claerbout (1978)
designed a method to synthesize the reflection re-
sponse to a plane wave at the surface. Rietveld et
al. (1992) modified this approach to synthesize plane-
wave sources in the subsurface. An advantage is that
an image of a target zone can be obtained by migrating
only a limited number of plane-wave responses (with
different illumination angles) instead of a relatively
large number of point-source responses. The approach
of Rietveld et al. (1992) employs the primary trans-
mission response of the overburden to synthesize the
plane-wave sources, hence internal multiples are not
taken into account. Meles et al. (2018) propose to use
the focusing functions obtained with the Marchenko
method to synthesize virtual plane-wave sources in the
subsurface. With this method, plane-wave responses
are obtained that are free of artefacts related to the
internal multiples of the overburden. Here we briefly
discuss this method.

We start by defining the 3D plane-wave focusing
function fli (x,pa,t) in the truncated medium (which
is reflection free below S4) as the integral of focusing
functions j"li (x,x4,t) over all possible focal points x 4
at S, according to

fli(xvavt) = fli(anAatfp'XH,A)dXAa(41)

Sa

with p = (p1,p2) and pa being a short notation for
(p,;z3,4). Here p; and pe are the horizontal ray-
parameters. For a laterally constant velocity ¢ at
S4, the rayparameters are related to the dip angle
a and the azimuth angle S via p; = ¢ 'sinacosf
and ps = ¢ sinasinB; for 2D situations, vector p
reduces to p = p;, with p; = ¢ !sina. The follow-
ing derivation does not rely on a laterally constant
velocity assumption.

When p = 0, equation 41 integrates the focusing
functions of Figure 1 without a time delay, hence,
fi7(x,0,23 4,t) focuses as a horizontal plane wave at
S4 and ¢ = 0 and continues as a horizontal downgoing
plane wave into the half-space below S 4. For arbitrary
P, fi (x,pa,t) focuses as a dipping plane wave at S,
according to

S Xy, pa,t) =0(t—p - Xy ), (42)
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for x/, at S4 (which follows from substituting equa-
tion 2 into 41). Note that, whereas the original fo-
cusing functions focus in space and time (equation
2), the plane-wave focusing function focuses in time
only (equation 42). The upgoing focusing function
fr (x R,PA,1) is the response of the truncated medium
to fi (xs,pa,t), observed at xpr at Sp. Both the
downgoing and upgoing plane-wave functions are vi-
sualized in Figure 7a.

We define the plane-wave Green’s functions in the
actual medium in a similar way, hence

G~ F(xp,pat) = (43)

G_’i(XR,XA,t -p- XH,A)dXA.
Sa

Here G (xg,pa,t) is interpreted as the response to
a source for dipping downgoing plane waves at S 4, ob-
served by receivers for upgoing waves at xp at Sg, see
Figure 7b. Similarly, G7~ (xg,pa,t) is interpreted
as the response to a source for dipping upgoing plane
waves at S, see Figure 7c.

Applying similar integrations to the left- and right-
hand sides of equations 4 and 5, we obtain

G_’+(XRapAat) +f1_(XRapAat) = (44)
/ dXs/ R(XR,Xs,t/)ff_(Xs,pA,t — t,)dtl
So 0

and

_’ (XR7pA7

foss ]

where p’; stands for (—p,z3 4). Equation 44 can be
interpreted in a similar way as equation 4. The right-
hand side quantifies the response of the actual medium
to the downgoing focusing function f1 (xs,p4a,t). In
Figure 7a it is seen that this gives the upgoing focusing
function fi (xg,pa,t) at Sp and a focused plane wave
at S4, which acts as a virtual source for downgoing
plane waves. Figure 7b shows that the response to this
virtual source is the Green’s function G~ 1 (xg, pa, t)
on the left-hand side of equation 44. Similarly, the
right-hand side of equation 45 quantifies the response
of the time-reversed actual medium to the upgoing
focusing function f; (xgs,pa,t). The functions on the
left-hand sides of equations 44 and 45, convolved with
a wavelet, are shown in grey-level display in Figures
7d and 7e, respectively.

) + fl—i_(xRapA7t) = (45)

xRa X3, _tl)fl_ (XS7 Pa, t— tl)dtla

To retrieve the plane-wave focusing functions from
the reﬂectlon response R, we could first retrieve the
functions f1 (x xA, t) for all x4 at Sy and subse-
quently obtain f(x, pa, t) by evaluating equation 41.
However, it is computationally much more efficient
to retrieve these functions directly in the plane-wave



domain, by suppressing the plane-wave Green’s func-
tions from equations 44 and 45 and solving the remain-
ing system of equations for the plane-wave focusing
functions. To determine the window functions for sup-
pressing the Green’s functions, we need to know the
first possible arrival of G % (xg, pa, t) and the last ar-
rival of the time reversed function G— = (xg, Py, —1).
The first possible arrival of G~ % (xg,pa,t) (which
would occur when there would be a reflector just be-
low S4) is obtained by substituting equation 6 into
equation 43, hence

(G (xg, P, ) betirst> O (46)
/ Td(XR7 XA7t —Pp- XH,A)dXA = Td(va PA, t)
Sa

Here Ty (xR, Pa,t) is the direct arrival of the transmis-
sion response to a dipping plane wave, emitted upward
from S 4 with rayparameter p, observed by a receiver
at xp (this is also the direct arrival of G~ (xg, pa, t),
see Figure 7c). We denote the arrival time of this
direct transmission response as tNd(XR,p 4). Hence,
G~ (xg,pa,t) can be suppressed from equation 44
by a time window that removes everything beyond
t = t, = tq(Xp,pa) — € (the dashed line in Figure
7d, indicated by t, = tq — €). The last arrival of
the time-reversed Green’s function G~ (xg, Py, —t)
is obtained by substituting equation 7 into equation
43, hence

{67’7 (XR, p;h _t)}last = _Td(XRa pan _t)' (47)

The arrival time of this event is —t4(xg, p’y). Hence,

G*”(XR,p;‘,—t) can be suppressed from equation
45 by a time window that removes everything before
t =t, = —ta(xr,p’y) + € (the dashed line in Figure
7e, indicated by t, = —t} + €). We define two time
windows as

Ou(xp,past) = O(t —ta) = O(t + 15 —€), (48)
Op(xp,Pa,t) = O(ty —t) =0(ta —e—1t). (49)

These windows suppress the Green’s functions and
pass the focusing functions f,;" and f;, except the
direct plane-wave arrival f1+ 1(xRr,Pa,t), which coin-
cides with the last arrival of C:'_’_(xR,p;,7 —t), see
Figure 7e.

Application of the windows (:)%b(xR, pa,t) to both
sides of equations 44 and 45 gives, in the compact
operator notation,

f = OuR T + fia (51)
These are the Marchenko equations for the plane-wave
focusing functions. They can be solved, analogous to
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FIG. 8 (a) Visualization of equation 53 (plane-wave source
redatuming). The red ray indicates the plane-wave focusing
function (shown in more detail in Figure 7a) and the green
rays represent the plane-wave Green’s function (shown in
more detail in Figure 7b). (b) Visualization of equation
55. The focusing function fit (xr,Xp,t) is shown in more
detail in Figure 1a. The purple rays represent the reda-
tumed plane-wave reflection response at Sa in the actual
medium.

equation 16, by

K
fif =) {6.R*OR} ;. (52)
k=0

The next step is the retrieval of the plane-wave
Green’s functions. We define complementary time
windows as ¥, 5(XRr,Pa,t) =1 =04 (XR,Pa,t). Ap-
plication of these windows to both sides of equations
44 and 45 gives, in the compact operator notation,

Gro. = URfT, (53)
G};;;,: = U, R fi — fio (54)

where the subscripts on the left-hand sides refer to the
position of the actual receiver and the rayparameter
of the virtual plane-wave source.

The interpretation of equations 53 and 54 is that



they accomplish source redatuming from xg at the
acquisition surface Sy to a virtual plane wave source
at the datum plane S4 in the subsurface. Figure 8a
visualizes equation 53.

Analogous to equations 27 and 28, the receivers can
now be redatumed from xp at the surface Sy to a
virtual receiver at xg at S, according to

7 +t A=t
Riar = fl GR,pA

= " WRST, (55)

where Rtar stands for the target reflection response
Riar(xB,PA,t) = G (xpB,pa,t), see Figure 8b. Tt
is the response to a virtual downgoing plane-wave
source at S4 with rayparameter p, observed by a vir-
tual receiver for upgoing waves at xp. Note that the
Marchenko method needs to be applied for each vir-
tual receiver of interest. Hence, the computational
advantage of plane-wave source-redatuming, which is
typically limited to a small number of rayparameters,
quickly diminishes when many virtual receiver posi-
tions are chosen. However, if we combine redatuming
with imaging, we can replace the focusing function f;™
by its direct arrival ffr fi and skip the window function

U}, similar as in imaging by double focusing (equation
31), hence

fim = (fft;Rffr)t:p-xH,Ba (56)

where 7y, stands for the angle-dependent local reflec-
tion coefficient 7, (x5, pa) for all xp in the region of
interest. Note that the imaging condition t = p-xu,p
(instead of ¢ = 0) accounts for the fact that the vir-
tual plane-wave source at depth x3 4 is dipping when
p # 0. Using equation 56 as the basis for redatuming
and imaging, the Marchenko method is only needed
to retrieve the plane-wave focusing function f;" for
a limited number of rayparameters at each imaging
depth. This implies a significant efficiency gain in
comparison with redatuming and imaging based on
equation 31, particularly for 3D applications. Meles
et al. (2018) discuss applications of plane-wave reda-
tuming and imaging to 2D numerically modeled data.
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Box 1:
Marchenko redatuming and imaging

Equations for focusing functions
(Figures 1 and 2)

fi = GRS}
fif = ORI + iy
Retrieval of focusing functions

K
fi =) {8.RORY £

k=0

Retrieval of Green’s functions =
Source redatuming (Figures 2 and 3)

G,;;j = U,Rf;
Gra" = WR'fT — fiq

Receiver redatuming by MDD
(Figure 4)

Riar = —(Grp) 'Grh

Source and receiver redatuming by double fo-
cusing (Figure 5)

Rear = fi" UL RfY
Redatuming and imaging
Tim = (fi‘:st{l»)xB:xAytZO
Virtual seismology (Figure 6)

Gpa+Gya = f5(YRf2+ f)
+ {fAWRAH+ D}

Retrieval of plane-wave focusing functions
~ K ~ ~ ~
f =) {0R ORIy
k=0
i = GRS

Retrieval of plane-wave Green’s functions =
Plane-wave source redatuming (Figure 7)

Gt = WRff
Gro = VR fi — fi

Plane-wave redatuming by double focusing
(Figure 8)

Rtar = fl-i_t\i/bef_
Plane-wave redatuming and imaging

P = (BB s,z

Box 2:
Marchenko multiple elimination

Equations for extrapolated focusing functions
(Figure 10)

vT = fiTqy=O)Rvt
vt = ffTy =0'R*v™ +§
Retrieval of extrapolated focusing functions

K
vt = > {OLR*OyR}Y*S

k=0

Retrieval of extrapolated Green’s functions =
Source-side dereverberation (Figures 9 and 10)

Ups = GpiTa= T Rot
Ups' = Gra'Ta=ViRv™ =4

Receiver-side dereverberation by MDD
(Figure 12a)

RSS. = (T)) 'RaTa = -Ugr'n) 'Ur's

Source- and receiver-side dereverberation by
double extrapolated focusing (Figure 12b)

Raar = TiRwuTy = v ') Ru™T
Primary retrieval (Figure 13)

Rprm = TirTy (for all depths)

t=to

= (Ri{@gR*@gR}’“é)
k=0

Transmission-loss compensated primary re-
trieval (Figure 16)

R = {Tf} 'rTq (for all depths)

prm

- (R i{@gR*@;*“R}%)
k=0

t=to

Plane-wave primary retrieval

Ry = TirTy  (for all depths)

(R i{éZR*éZR}’“S)

k=0

t=to+p-XH,R

Plane-wave transmission-loss compensated pri-
mary retrieval (Figure 18)

R = {T3} YTy (for all depths)

prm

(R i{éZR*éZ’”R}kS)
k=0

t=to+p-XH,R




MARCHENKO MULTIPLE ELIMINATION

All redatuming methods discussed in the section
“Marchenko redatuming and imaging” have in com-
mon that internal multiples are eliminated between
the surface and the virtual sources and/or receivers
in the subsurface. The required input for these meth-
ods consists of the reflection response at the surface
(after surface-related multiple elimination and decon-
volution for the wavelet) and the direct arrivals of the
focusing functions. The latter can be derived, for ex-
ample, from a macro velocity model of the subsurface.

Meles et al. (2016) propose to extrapolate the vir-
tual receivers (or, equivalently, the virtual sources)
upward to the acquisition surface, using direct-wave
Green’s functions. The result is a reflection response
with sources and receivers at the surface, from which
a part of the internal multiples are eliminated. Since
the direct-wave Green’s functions are defined in the
same velocity model as the direct arrivals of the fo-
cusing functions, the combined process of focusing and
upward extrapolation is significantly less sensitive to
errors in the velocity model than focusing as a stand-
alone process.

Building on this idea, several Marchenko-based
methods have been developed that extrapolate the
virtual sources and receivers to the surface. However,
instead of applying the extrapolation after Marchenko
redatuming, in these methods the extrapolation oper-
ator is integrated in the Marchenko method. Since
these methods yield reflection data at the surface
with less internal multiples (van der Neut and Wape-
naar, 2016), or even without any internal multi-
ples (Zhang et al., 2019b), we refer to these meth-
ods as ‘Marchenko multiple elimination’ (opposed to
‘Marchenko redatuming’, which yields reflection data
with less internal multiples at a datum plane in the
subsurface).

Marchenko multiple elimination operates in the
same domain as other internal multiple elimination
methods in the literature (Weglein et al., 1997, 2003;
Berkhout and Verschuur, 1997; Jakubowicz, 1998; ten
Kroode, 2002; van Borselen, 2002; Verschuur and
Berkhout, 2005; Ikelle, 2006). A comparison with
these methods is beyond the scope of this paper. A
specific characteristic of Marchenko multiple elimina-
tion is that it predicts and subtracts all orders of inter-
nal multiples with correct amplitudes. In the following
we discuss Marchenko multiple elimination methods
step-by-step.

Representations extrapolated to the surface

We use the direct arrival of the transmission re-
sponse of the truncated medium, Ty(x4,Xxs,t), as an
operator to extrapolate wavefield quantities from S 4
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FIG. 9 Visualization of equation 59 (extrapolation of the
source from x4 at Sa to x5 at the surface So).

in the subsurface to the acquisition surface Sg. Ac-
cording to equation 17, the direct arrivals of the trans-
mission response and of the focusing function are each
other’s (band-limited) inverse. Here we reformulate
equation 17 in terms of an integral along S4, as fol-
lows

O(xm,R — X 5)0(t) = (57)

t
/ dx 4 / Fi (s %4, ) Ta(x.0, X5, — )t
Sa —0o0

with xp and x5 at Sp. We use the operation
Js, dxa ffoo{}Td(xA,x’S,t — t")dt’ to define the ex-
trapolated focusing functions and Green’s functions
as

vE (xR, X, t;13.4) = (58)

t
/ dxa / FE (ks XA, ) Ta (%0, %, £ — ¢}t
Sa —00

and
Ui’i(XR,Xig,:l:t;Z‘gvA) = (59)

t
/ dxA/ G % (xR, x4, £)Ta(x4, X, t — t')dt/,
Sa —o00

respectively (van der Neut and Wapenaar, 2016).
Equation 59 for U~ " (xpg, XY, t; x5 4) describes the ex-
trapolation of the source of G " (xpg,x4,t) from x4
at Sa to Xy at the surface Sg. The resulting response
U~ (xpg, X, t;x3.4) can be interpreted as the reflec-
tion response between xs and xg at the surface Sy, in
which the wave field between the source at x5 and S 4
(at depth x3 4) consists of the direct downgoing wave
only. This is visualized in Figure 9.

Applying the same extrapolation operation to the
left- and right-hand sides of equations 4 and 5, we
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FIG. 10 (a) The left-hand side of equation 60 (fived X's,
variable xr). (b) The left-hand side of equation 61.

obtain

Ut (xg, X, t; 73 A)+v (xR, Xg, t;23.4) = (60)

/ dxs / Rixpxs, )0 (x5, X5, 1 — s 25.4)dt"
So

and

U™ (xR, X5, —t;23,4) + 07 (Xp, X, t; 23 4) =

fooms [

The functions on the left-hand sides of equations 60
and 61, convolved with a wavelet, are shown in grey-
level display in Figures 10a and 10b, respectively.

XR, XS, _t/)v_(x37 X{g, t

Retrieval of extrapolated focusing functions

To determine the window functions for suppressing
the extrapolated Green’s functions from equations 60
and 61, we need to know the first possible arrival of
U~*(xg, X, ;23 4) and the last arrival of the time-
reversed function U™~ (xg, XY, —t;23,4). The first
possible arrival of U™ " (xpg, X/, t;23,4) (which would
occur when there would be a reflector just below S4)
is obtained by substituting equation 6 into equation
59, hence

{UF (xR, X, t; 3 4) }first> X (62)

t
/ dXA/ Td(xR,XA,t/)Td(XA,X,S,t—t,)dt,.
Sa 0

Note that Ty is convolved with itself and integrated
along S 4. The main contribution comes from the sta-
tionary point on S 4, which corresponds to the specu-
lar reflection point, see Figure 11a. Hence, this in-
tegral yields the direct arrival of the reflection re-
sponse of the hypothetical reflector just below Sj4.

(61)

—t'yxg,.4)dt,
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FIG. 11 (a) Visualization of equation 62. Convolution of
the transmission responses yields a reflection response (the
ray via the stationary point). (b) Visualization of equa-
tion 63. Correlation of the transmission responses yields
a band-limited focus around X.

The arrival time of this event is the two-way traveltime
taz(XR,Xys; x3,4). Hence, U™ (xp, XY, t; x3,4) can be
suppressed from equation 60 by a time window that re-
moves everything beyond ¢ = t, = tq2 (xR, Xg; T3,4)—
(the dashed line in Figure 10a). The last arrival
of U™~ (xpg, XY, —t; 23 4) is obtained by substituting
equation 7 into equation 59, hence

{U_’_(XRaXIS? —t; x3,A)}1ast = (63)

0
—/ dXA/ Td(XR,XA,—t/)Td(XA,X‘Ig,t—t/)dt,.
Sa —o0

Opposed to equation 62, here Ty is correlated with it-
self and integrated along S 4, see Figure 11b. Hence,
this integral yields a band-limited focus around xp =
x5 and t = 0. We denote the traveltime curve of this
focus at positive time as to(xg,xY). This is zero for
zero-offset (i.e., to(xy,x) = 0) and increases linearly
with increasing offset between x and xp. Hence,
U~ (xR, X, —t;x3,.4) can be suppressed from equa-
tion 61 by a time window that removes everything
before t = t, = to(xgr,xs) + € (the dashed line in



Figure 10b). We define two time windows as

(t —to — ), (64)
(taz — € — £).(65)

O (xp, X, t;wz.4) = O(t —t,) =0
Of (xp, X, t;w3.4) = Oty —t) =0

These windows suppress the extrapolated Green’s
functions and pass the extrapolated focusing
functions v* and v~ (hence the superscript v
in 9271)), except the extrapolated direct arrival
vi(xR,Xg,t;x&A), which coincides with the last
arrival of U™~ (xg,Xg, —t;x3.4), see Figure 10b.
This extrapolated direct arrival is, analogous to
equation 58, defined as

vl (xR, X, t;73,4) = (66)

t
/ dxA/ firaxr,xa, ) Ta(xa, X, t —t')dt',

SA — 0o ’

or, using equation 57,

vl (XR, X, t;3,4) = 6(Xn,R — Xj1,6)0(t), (67)

where the delta functions should be interpreted again
in a band-limited sense.

Application of the windows O ,(xr, X}, t; 73 4) to
both sides of equations 60 and 61 gives, in the compact
operator notation,

vT = OpRvT,
vt = OR*vT + ],

(68)
(69)

with var = 4, see equation 67. These are the
Marchenko equations for the extrapolated focusing
functions. They can be solved, analogous to equation
16, by

K
vt = {OLR*Oy R}*s.

k=0

(70)

An important difference with equation 16 is that equa-
tion 70 does not contain the direct arrival of the focus-
ing function, f1+ 4- Instead it contains the delta func-
tion which, according to equation 67, depends only on
the lateral source position xy ¢ but not on a model of
the medium. This is a significant advantage of the
Marchenko scheme of equation 70 over that of equa-
tion 16. Note that the window function ©} contains
the two-way traveltime t4o(Xxpg,X4;®3,.4) and hence
implicitly depends on the medium. However, accord-
ing to our experience, errors in the window functions
have much less effect on the retrieved focusing func-
tions than errors in the estimated direct arrival ffr d
in equation 16. '

Similar assumptions as discussed below equation 9
apply for the retrieval of the extrapolated focusing
functions. Elison et al. (2020) discuss how to account
for thin layering, assuming the medium between S
and S, is horizontally layered.
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The essential expressions for the retrieval of the
extrapolated focusing functions, i.e., the Marchenko
equations and the Marchenko scheme in the compact
operator form, are summarized in Box 2. This box
also shows the main expressions for the other methods
discussed in the current section “Marchenko multiple
elimination”.

Retrieval of extrapolated Green's functions (source-side
dereverberation)

The next step is the retrieval of the extrapolated
Green’s functions. We define the complementary time
windows as

\Ilz’b(XR,x'S,t; z3.4)=1— @Z’b(xR,X’S,t;x&A). (71)

Application of these windows to both sides of equa-
tions 60 and 61 gives, in the compact operator nota-
tion,

—t _
Upd = WyRoT,

) — Ll Th +
URS/ = \IIZR v 7'Ud7

where the subscripts on the left-hand sides refer to the
position of the actual receiver and the extrapolated
virtual source, both at Sy.

We interpret equation 72 as follows. The extrapo-
lated focusing function vT is applied to the reflection
response R at the surface Sg. The result is Ugg,,
which is the reflection response at the surface Sy, in
which the wave field between the source at x5 and Sy
consists of the direct downgoing wave only (Figure 9).
Since the multiples in the downgoing wave field are re-
moved, we refer to the process described by equation
72 as dereverberation at the source side. Hence, where
applicable, we call the extrapolated focusing function
vt a dereverberation operator.

Before we discuss dereverberation at the receiver
side, we spend some more words on equation 72. Sub-
stitution of equation 70 for v™ yields

Ups = Up[R— (~ROLR*O}R) (74)
—(~ROYR*O}RO.R*O}R)---].

The first term between the square brackets is the re-
flection response. The subsequent terms predict in-
ternal multiples, which are subtracted from the re-
flection response. Note that the internal multiples are
predicted via correlations and convolutions of the re-
flection response with itself. Jakubowicz (1998) intro-
duced the prediction of first-order internal multiples
as (in our notation) —RR*R, where specific events
have to be selected in the different versions of R in
this expression. Hence, equation 74 or, more gener-
ally, equation 72 with v* defined in equation 70, can
be seen as a generalization of the method proposed
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FIG. 12 (a) Visualization of equation 79. The purple rays
represent the target reflection response at Sa in the trun-
cated medium (shown in more detail in Figure 4b). (b)
Visualization of equation 85. The purple rays represent
the target reflection response at Sa in the actual medium
(shown in more detail in Figure 4a).

by Jakubowicz (1998), for predicting and subtracting
all orders of internal multiple reflections on the source
side between Sg and S4. The window functions @”
and W}, defined in equations 64, 65 and 71, take care
of the proper selection of the events that take part in
the multiple prediction. In the following we discuss
different methods to predict and subtract also the in-
ternal multiples on the receiver side.

Receiver-side dereverberation by MDD

Analogous to equation 23, which underlies redatum-
ing by MDD, we formulate the following relation be-
tween the extrapolated Green’s functions

T (xg, X5, 1) (75)

/de/ U™ (xg,xXp, 1)
So

X thﬁr(XRv XS7t - tl; x3,A)dt/~
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Whereas equation 23 is derived from wave theory, with
Riar(xp,%4,t) being the target reflection response of
the truncated medium (Figure 4b), equation 75 is in-
troduced purely on basis of analogy with equation 23.
Hence, the physical meaning of RS (X, XY, t;73,4)
still needs to be derived and the sub- and superscripts
will be explained later. We start by rewriting equation
75 in the compact operator notation, as follows

Up'd = —Ur'mRis (76)

Upon substitution of equation 59 we obtain

GraTa = —GRpTiR, (77)

hence
R = —(T3) N(Grp) 'GraTa. (78)

On the right-hand side, we recognize —(G'5)~ G_’+
as the redatuming-by-MDD algorithm of equation 25
which gives Ryar, hence

Rag: = (T3)~
Note that (T})~! is the inverse of the time-reversed
direct arrival of the transmission response of the
medium between Sg and S4 (where the inverse is un-
derstood in the sense of integral equation 57, hence
(T5)~' = f77). Note that (7}})~! has the same trav-
eltimes as T’d, but different amplitudes. Whereas Ty
includes transmission losses of the interfaces between
So and Sy, (T7)~! compensates for such transmission
losses. For the interpretation of equation 79 we refer
to Figure 12a, which shows that RYS (x5, X', t; 23 4)
can be seen as the reflection response between Xy
and x, at the surface Sy, in which the wave fields
between Sg and S4 consist of direct downgoing and
upgoing waves only, and the response Ry, at Sy in-
cludes primaries and multiples of the target below S 4
(Figure 4b). Hence, RYS, is the reflection response at
Sp, double-dereverberated at the source and the re-
ceiver side (denoted by the subscript ‘ddr’), and com-
pensated for transmission losses in the medium be-
tween Sp and Sy (denoted by superscript ‘trc’). The
transmission-loss compensation would be exact when
Ty and (T5)~! would see the same interfaces, which is
the case in horizontally layered media (Elison et al.,
2020); in laterally varying media the transmission- loss
compensation is approximate.

1 Rtaer . (79)

Next we derive the algorithm for retrieving RS,

from the reflection response R. From equation 76 we
obtain

Réﬁr_ ( RR’) IURS” (80)

with UE,’;, and Uy '/ retrieved from equations 72 and
73. Equation 80 accomplishes receiver-side derever-
beration by MDD. The algorithm is similar to receiver
redatuming by MDD (equation 25), but it is signifi-



cantly less sensitive to a model of the medium, see the
discussion below equation 70. This is also explained
by the fact that the sources and receivers of the in-
put data R(xpg,xg,t) stay at the surface Sy in the
output data R4S, (X, X, t; 3 4), instead of being re-
datumed to S5 as in Rea(Xp,X4,t). A numerical ex-
ample is shown by van der Neut and Wapenaar (2016).
Dukalski and de Vos (2020) solve equation 76 for RS,
with an easier-than-MDD inversion. In the next sec-
tion we derive an alternative double dereverberation
method, which also avoids the MDD process.

Source- and receiver-side dereverberation by double
extrapolated focusing

Analogous to equation 26, which formulates receiver
redatuming, we apply the dereverberation operator
v (Xp, X, t;23,4) to the receiver side of the extrap-
olated Green’s function U " (xg, X, t; 23 4), accord-
ing to

Raar (X, X, t;23,4) = (81)

/Sode/

(Dukalski and de Vos, 2020; Reinicke and Dukalski,
2020; Staring et al., 2021). To derive the physical
meaning of Ryar (X', X, t; 23 4) on the left-hand side,
we analyse the right-hand side step-by-step. In the
compact operator notation, equation 81 becomes

/ /
XR7XR7t -t ;x3,A)

x U T (xg, Xy, t';23,.4)dt

Rqar = v"'URS. (82)

Upon substitution of equations 58 and 59 into equa-
tion 82, we obtain

Raar = T4fi'GRiT, (83)
or, upon substitution of equation 21,
Raar = Tafi™" (WuRf" )T, (84)

On the right-hand side, we recognize f;" W, Rf;" as the
redatuming by double focusing algorithm of equation
28, which gives Ry,;, hence

Rddr - TéRtaer . (85)

This equation describes the extrapolation of the
source and receiver of Ry, (xp,%X4,t) from Sy to the
surface Sy, yielding Rgar(X’, X, t; 23 4), see Figure
12b. Rgar(x’z, X5, t; 3, 4) is interpreted as the reflec-
tion response between Xy and x/, at the surface Sp,
in which the wave fields between Sy and S 4 consist of
the direct downgoing and upgoing waves only, and the
response Ry, at S4 includes primaries and multiples
of the target below S4 (and multiples between reflec-
tors below and above Sy, Figure 4a). Hence, Rgq, is
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the reflection response at Sy, double-dereverberated
at the source and the receiver side.

Next we derive the algorithm for retrieving Rgqr
from the reflection response R. Substitution of equa-
tion 72 into equation 82 gives

Rddr = U+t\I/gR’U+. (86)

Equation 86 accomplishes double dereverberation by
double extrapolated focusing. The algorithm is sim-
ilar to redatuming by double focusing (equation 28),
but it is significantly less sensitive to a model of the
medium, because the sources and receivers stay at the
surface.

Substituting equation 70 into equation 86, we ob-
tain

Raar = VyR— (—¥yRQY) (87)
— (—QUPTYR) — (—QUTTVROY) - -

with Q¥ = O R*©; R. This is a similar expansion as
equation 30 for redatuming by double focusing, but it
lacks the direct arrival of the focusing function, f1 O
which requires a macro subsurface model. In theory
equation 87 converges. It allows an adaptive imple-
mentation of double dereverberation, to compensate
for imperfections in the reflection response. Since the
sources and receivers stay at the surface, the output
Rgar can be directly compared with the input data R,
which is advantageous for quality control. Pereira et
al. (2019) apply a modified version of this method to
suppress first-order internal multiples from a 3D deep
water OBN dataset. Reinicke and Dukalski (2020)
and Staring et al. (2021) apply the method to shal-
low water numerical and field datasets, demonstrat-
ing the significance of including higher order terms to
suppress internal multiples caused by a complex over-
burden.

Primary retrieval

The dereverberation methods discussed in the pre-
vious sections have in common that they remove in-
ternal multiples between the acquisition boundary Sy
and a single, predefined boundary S, in the subsur-
face. Here we discuss a method for eliminating all
internal multiples.

Our starting point is equation 72 which, after sub-
stitution of equation 70, becomes

K
R = WYRY {O)R*6yR}*S. (88)
k=0
This expression shows how to obtain the extrapolated

Green’s function U ™" (xg, X, t; 23,4) from the reflec-
tion data R(xg,Xg,t). According to equation 59, this
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FIG. 13  Visualization of the primary response

Rprm(XR,X5,ta2), obtained from equations 88, 89

and 90 for all 3 4.

extrapolated Green’s function is interpreted as the re-
flection response between xy and xp at the surface
So, in which the wave field between the source at x/
and S4 (at depth 3 4) consists of the direct down-
going wave only, see Figure 9. In equation 62 and
Figure 11a we showed that the first possible arrival of
this response, denoted as {U ™" (xg, XY, t; 23 4) }first’s
is the primary reflection response of a hypothetical
reflector directly below S 4, with two-way traveltime
ta2(XR,X; T3, 4). Assuming the hypothetical reflector
has a local reflection coefficient r(x 4), we may replace
equation 62 by

{U7,+(XRaX/,S’7t;x?),A)}‘ﬁrst’ - (89)

t
/ dxA/ Ta(xp,xa,t")r(xa)Ta(xa,xg,t —t')dt".
Sa 0

When the reflectivity is angle-dependent, r(x4)
should actually be replaced by a kernel r(x/y,xa4,t),
and extra integrals along S4 and time should be in-
cluded in equation 89 (Berkhout, 1982; de Bruin et al.,
1990). For convenience we continue with the simple
form of equation 89.

We introduce Rpim(Xg,X%,t) as the primary re-
flection response of the medium at the surface Sy.
It can be obtained by evaluating equation 88 for
all x3 4 and, for each 3 4, assigning the time slice
t = ta2(XRg,X5;T3,4) t0 Rprm(XR, XY, t), according to

Rprm (XR7 X{S’v tdZ) = (90)
{U77+(XR7 XfS', t; xB,A)}tztdz(xR,xig;xg,A)

(van der Neut and Wapenaar, 2016). Since the win-
dow U} in equation 88 passes the selected time slice,
we may remove this window function from this equa-
tion when its output U™7T is used in equation 90.
When z3 4 corresponds to the depth of an interface
then, according to equation 89, Rpim(Xr,XY,taz) for
the corresponding two-way time t4o represents the pri-
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mary reflection response of that interface. When there
is no interface at x3 4, then Rpmm(Xpg, XY, taz) will be
zero at the corresponding two-way time tqs. Figure
13 visualizes Rprm(XR, XY, taz) for all 23 4.

Note that this method still requires an estimate of
the velocity model to derive tq2(xg,X; 23 4) (which
appears in the window function O} in equation 88
as well as in equation 90). Furthermore, the time
slices for varying x3 4 will in general not cover the
space-time domain (xpg,Xj,t) in a regular way. Both
issues can be overcome by replacing the depth variable
23,4 by the two-way traveltime ¢, along the vertical
coordinate between x3 ¢ and 3 4 (hence, independent
of xg and x%), and by replacing the time window
functions O} , (xR, X5, t;23,4) by

On(tit2) = 0(t —¢), (91)
OF(t;ta) = O(ta —e—1t) (92)

(Zhang et al., 2019a). Making these replacements in
equations 88 and 90, we obtain

Rprm(XR7X:9at2) = {U_7+(XR5X{S‘at;t2)}t:t2 (93)

(R f:{@gR*@}jR}kd)
k=0

t=to2

This equation shows how the primary reflection re-
sponse Rprm(Xg,X4,t2) (called R, by Zhang et al.
(2019a)) is retrieved from the reflection data at the
surface without needing any velocity information.
Note that the space-independent window function @,’j
cuts through offset-dependent events in the data. This
aspect of the method is analysed in detail by Thor-
becke et al. (2021). For a field data example we refer
to Zhang and Slob (2020b).

Transmission-loss compensated primary retrieval

In the section “Receiver-side dereverberation by
MDD”, we showed that the response Rffdcr, which is
obtained by multidimensional deconvolution, is com-
pensated for the transmission losses between Sy and
Sa (Figure 12a). Slob et al. (2014) showed for the 1D
situation that a transmission-loss compensated local
reflection coefficient can be obtained directly from the
upgoing focusing function f; , hence, without the need
for deconvolution. Using the extrapolation method, it
thus follows that a transmission-loss compensated pri-
mary reflection response at the surface of a local reflec-
tion event in the subsurface can be obtained directly
from the extrapolated upgoing focusing function v~.
This idea was used by Zhang et al. (2019b), who de-
veloped a 3D method for retrieving the transmission-
loss compensated primary response at the surface for
all reflectors in the subsurface, without the need for
MDD. Here we discuss this approach in detail.
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FIG. 14 Focusing functions f5 and fi in the truncated
medium.

Before we analyze the extrapolated upgoing fo-
cusing function v~, we discuss focusing functions
[37(x,xp,t) and f; (x,Xg,t), with xg at Sp, as coun-
terparts of fi(x,xa,t) and fi (X,%x4,t), with x4 at
S4. These focusing functions are defined in the same
truncated medium, see Figure 14. The upgoing focus-
ing function fy (xp,xg,t), with xp at Sy, is defined
such that f5 (x,xp,t) focuses at x = xp and t = 0
and continues as a diverging upgoing field into the ho-
mogeneous half-space above Sg. The formal focusing
conditions are

f;(xg%axRat) = 07
f{(xg%>vat) = 6(xi{,R_XH,R)6(t)7

(94)
(95)

for x5 at Sp. The downgoing focusing function
f37(xa,XRg,t) is the response of the truncated medium
to fy (XB,XR,t), observed at x4 at S4. This is for-
mulated as

f;(XA’Xth) = (96)

o0
/ de/ R™(xa,xp,t")fy (x5, xg,t —t)dt',
Sa 0
where R™(x4,xp,t) is the reflection response of the

truncated medium ‘from below’. The following rela-
tions hold between fli and fQjE (Wapenaar et al., 2014)

fQ_(XAyxRat)7
_f;(XA7 XR, _t)7

f1+(XR7XA7t) =
ff(XR7XA7t)

see also the Appendix.

We now analyze the extrapolated upgoing focusing
function v~ (xg, X, t; x3,4), as defined by equation 58.
Upon substitution of equation 98 we obtain

U_(Xva,/Sat;xi’),A) = (99)

t
7/ dxA/ [ (x4, xR, —t)Ta(xa, X, t —t)dt'.
Sa —o0
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FIG. 15 (a) Visualization of equation 104. The purple
rays represent the time-reversed reflection response at Sa
of the last reflector of the truncated medium above Sa. (b)
Visualization of equation 109 (the transmission-loss com-
pensated primary response of the last interface above Sa).

In the compact operator notation, this equation reads

v o= — T (100)

For f,5 we use equation 96 in which we substitute
equation 97. This gives
f = ROAT (101)

Substituting this into equation 100, using R = R",
yields
vT o= —f*R™Ty. (102)

The last event of v~ is obtained by selecting the first
events of R™ and f;", hence

Vst = ARG Ta, (103)
or, using equation 17,
Ve = —(T3) 'REXTa. (104)

Here (T})~! is the transmission-loss compensated di-



rect wave, see the discussion below equation 79. Equa-
tion 104 is visualized in Figure 15a. This figure shows
that {v™ (xR, X%, t;®3,.4) hast 1s interpreted as a re-
flection response between xs and xp at the surface
Sg, in which the wave fields between Sy and S, con-
sist of direct downgoing and transmission-loss com-
pensated upgoing waves only, and the only reflection
comes from the lower side of the last interface above
Sa. Next we express Rf ., as

Rﬁrst XB,XA,1 (105)

/ dx/ w(xp, %, t")r(x)w(x,xa,t —t')dt’,

Slast

where Sj.s represents the last interface of the trun-
cated medium, w(x,x4,t) is an extrapolation opera-
tor for the homogeneous layer between S4 and Sjagt,
and r(x) with x on Sj.s is the local reflection coef-
ficient of the last interface. The minus sign accounts
for the fact that, in the acoustic approximation, the
reflection coefficient at the lower side of an interface
is the opposite of that at the upper side of the same
interface. In the compact operator notation, equation
105 becomes
RE . = —w'rasw. (106)
Substituting this into equation 104, using the fact that
in the homogeneous layer we have w! = (w*)~!, we
obtain
Vst = (W)™ rpase (W Ty). (107)
Here w*Ty is the direct arrival of the transmission
response between Sy and S 4, back-extrapolated from
S4 to Siast, which we denote by T4 1ast. Hence,
-1
= (T(I,last) (108)

Ul;st TlastTd,lash

or

xRa XSa ta T3,A }last -

/ o [ i
ldht

This equation is visualized in Figure 15b. It shows
that {v™ (xR, X%, t;3.4) Hast 1S the transmission-loss
compensated primary reflection response of the last

interface above S 4 (see also the discussion below equa-
tion 79).

Next we discuss a Marchenko scheme to retrieve
{v™ (xR, X}, t; 23 4) }ast from the reflection response
R(xg,xs,t) at the surface. Equations 60 and 61
form again the basis for this. We need to define win-
dow functions that suppress the extrapolated Green’s
functions U™% and U™~ from these equations, but
preserve v, even when S, lies close to the reflec-
tor represented by v.. If we would choose a hypo-
thetical reflector just below S4, like we did in equa-

(109)

(xR, x, =t )r(x)Tq(x,x'g, t — t')dt’.
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tion 62, this reflector would by definition lie outside
the truncated medium and, hence, not contribute to
v (xR, X4, t;x3,.4). Instead we choose a hypothet-
ical reflector just above S4 (i.e., inside the trun-
cated medium) and define the corresponding event as
{v™ (xR, X}, t; T3 4)}ast’, With subscript ‘last’ stand-
ing for ‘last possible’. Note that in this way we are ap-
proaching the hypothetical reflector from below, sim-
ilar as we approached the actual last reflector from
below in equation 104 and Figure 15a. Analogous to
equation 109 we write

{07 (xR, X5, 1523, 4) Flast: = (110)

[ [

where 7(x4) is the reflection coefficient of the hy-
pothetical reflector. The arrival time of this event
is again the two-way traveltime tgo(xpg,Xg;x3.4).
Hence, if we apply a time window to equation
60 that removes everything beyond t = t, =
taz(XRr,Xg; 23 4) + €, then v, . is preserved (and due
to the finite bandwidth it is still preserved when S 4
lies less than half a wavelength above the hypothetical
reflector (Zhang et al., 2019b)). We define this time
window as

Y(xp, x4, —t')r(xa)Ta(xa, xg,t — t')dt’,

0" (xr, X5, t;23,4) = 0ty —t) = O(taz + € — t)(111)

Since we replaced tqo — € from our previous win-
dow function (equation 65) by tqs + €, the ques-
tion arises whether this window still suppresses
U~ (xpg,x5,t;x3,4). To address this question, con-
sider Figure 9 and keep in mind that x4 lies just
below the hypothetical reflector. Since the virtual
source at x4 radiates downward, the hypothetical re-
flector does not contribute to U™"(xpg, X/, ;23 4).
Hence, the first event in U7 arrives later than
ta2(XR,Xg;23,.4) + € (still assuming layers are not
thin compared to the wavelength), so the proposed
time window indeed suppresses U™ " (xp, XY, t; 23 4)
from equation 60. To suppress U™~ (xg, Xy, —t;3,4)
from equation 61 we need again the time window
©0 (xR, XY, t;x3 4) defined in equation 64, which re-
moves everything before t = t, = to(xg,Xy) + €. Ap-
plying the windows ©;" and ©¢ to equations 60 and
61 we obtain, analogous to equations 68 and 70,

K
=0, RY {O,R*O;"R}*5.(112)
k=0

v (XRa X,/5'7 t; g33,A)

The transmission-loss compensated primary reflection
response RUS (xpg,XJ,t) can be obtained by evalu-

prm
ating equation 112 for all 3 4 and, for each z3 4,
assigning the time slice t = tq2(Xp,X4;234) to
Rfjrrcm(xm X, t), according to

Rgr(;n(XR,Xig,tdg) = (113)

{’U_ (X37 X{S'v 3 $37A)}t:td2(xR7xf§§r3,A)'
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FIG. 16 Visualization of the transmission-loss compen-
sated primary response R;’;ﬁn(xR,xg,tdg), obtained from
equations 110, 112 and 113 for all x3 4.

Since the leftmost window ©;"" in equation 112 passes
the selected time slice, we may remove this win-
dow function from this equation when its output
v~ is used in equation 113. Figure 16 visualizes

RE)!;CIH(XR,X{g,tdg) for all z3 4.

Next, using similar arguments as in the previous
section, we replace the depth variable z3 4 by the
two-way traveltime t9 along the vertical coordinate be-
tween x3 and 3 4 (independent of xr and x§), and
the time window functions ©2 and ©;" by O (t;ts)
defined in equation 91 and

@Z’v(t; tg) = 9(t2 +e— t) (114)

(Zhang et al., 2019b). Making these replacements in
equations 112 and 113, we obtain

R;rrcm(xR,X’S,tz) = {v (xg,Xg, t;t2) biet, (115)
K
_ AV D* Q)€U k
_ (R;O:{G)GR 05" R} 5)t:t2

This equation shows how the transmission-loss com-
pensated primary reflection response R;Fm (xR, X, t2)
(called R, by Zhang et al. (2019b)) is retrieved from
the reflection data at the surface without needing any
velocity information. For numerical examples we refer
to Zhang et al. (2019b) and for an efficient implemen-

tation to Zhang and Slob (2020a).

Plane-wave primary retrieval

In this section we integrate the plane-wave ap-
proach, introduced in the section “Plane-wave reda-
tuming”, with the transmission-loss compensated pri-
mary retrieval approach, introduced in the previous
section. In this way we combine the numerical effi-
ciency gain achieved by the plane-wave approach, with
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the model-independency of the primary retrieval ap-
proach (Meles et al., 2020).

We define the extrapolated plane-wave focusing
functions and Green’s functions, analogous to equa-
tions 41 and 43, as

ﬂi(xR7p7t;x3,A) - (116)

+ ! r. /
/ v (XR7X,5'7t & 'XH,S’I&A)dXS
So

and

U~ % (xR, P, t;3.4) = (117)

-+ !
U™ % (xp,xg,1
So

! A
—p'XH’S;(E&A)dXs.

Note that the integration takes place along the ex-
trapolated source positions X} at the surface S, un-
like in equations 41 and 43, where we integrate along
the focal points x4 at S4. Hence, the rayparame-
ter vector p = (p1,p2) refers to a plane wave at the
surface rather than at the focal depth. For an inter-
pretation of U ™" (xg, p,t;23.4), substitute equation
59 into equation 117. This gives

U~ (xR, P, i 73,4) = (118)

t
/ dx / G (xp, %, ) Fa (3, p, t — )1,
Sa 0
with

Td(xA,p,t):/ Ta(xa,Xg,t — P - Xpy g)dx. (119)
So

Hence, 0_7+(XR, P, ;3 4) can be interpreted as the
reflection response to a downgoing plane wave with
rayparameter p at the surface Sy, observed by a re-
ceiver at xp, in which the downgoing wave between
the Sp and S4 consists of the direct downgoing wave
only. This is visualized in Figure 17a.

Applying equations 116 and 117 to the left- and
right-hand sides of equations 60 and 61, we obtain

t(xRr, P, t;3.4) + 0 (xR, Py t;13,4) = (120)

/ de/ XR,XS,t) +(XS7pat_t/;x3,A)dt/
So

and

U_7_(XRa -P,

0
/ dxs/ R(xg,xs,—t')0" (xg,p,t — t'; 23 4)dt".
So —0o0

—t;x3.4) + 07 (Xp, P, ti23,4) = (121)

The functions on the left-hand sides of equations 120
and 121, convolved with a wavelet, are shown in grey-
level display in Figures 17b and 17c, respectively.

We need time windows that separate the extrapo-
lated plane-wave Green’s functions from the extrapo-
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FIG. 17 (a) Visualization of the extrapolated plane-wave
Green’s function U™V (xg,p,t;x3.4) (here shown for a
negative value of p1 and p2 = 0). (b) The left-hand side
of equation 120 (fized p, variable xr). (c¢) The left-hand
side of equation 121.

lated plane-wave focusing functions in equations 120
and 121. Similar as for the primary retrieval meth-
ods for extrapolated point sources, we can follow two
approaches. If we would design a window ©; that
suppresses U_’+(XR, p.t; 3 4) from equation 120, in-
cluding its first possible arrival from a hypotheti-
cal reflector just below S,, then, following an ap-
proach similar to that in the section “Primary re-
trieval”, we would obtain a method for plane-wave
primary retrieval, without compensation for trans-
mission losses. On the other hand, if we design a
window ©;" that preserves v~ (xg, P, t; 3,4) in equa-
tion 120, including its last possible arrival from a
hypothetical reflector just above Sj, then an ap-
proach similar to that in the section “Transmission-
loss compensated primary retrieval” will lead to a
method for plane-wave transmission-loss compensated
primary retrieval. Both approaches are included in
Box 2, but here we only discuss the second approach
in more detail. Substituting equation 110 into equa-
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tion 116, we obtain

6 XR7p»t €3, A)}‘last’ - (122)

[ )

This is interpreted as the transmission-loss compen-
sated primary reflection response to a dipping plane
wave emitted from Sy with rayparameter p and ar-
riving at xp via a hypothetical reflector just above
Sa. We denote the arrival time of this event as
ta2(XR,P;@3.4). Hence, if we apply a time win-
dow to equation 120 that removes everything beyond
t =t, = taa(XRr, P; T3,4) +€ (the dashed line in Figure
17b), then {07 (xg,P,t;%3,.4) }ast> 1S preserved (note
that in this specific example the actual last reflector
above S 4 is not close to S in Figure 17a, and hence
the last event of 9~ (xg, p, t; 23,4) in Figure 17b is not
close to the dashed line).

(xg, XA, = )r(x4)Ta(x4,p,t —t')dt’.

The window for equation 121 will be designed such
that it suppresses U ™"~ (xR, —p, —t; x3,4). Substitut-
ing equation 63 into equation 117 gives

{ﬁi’i(xRa -P,

0
—/ dXA/ Td<XR,XA,—t/)Td(XA,p,t—t/)dt/.
Sa —o0

_t; $3,A)}last = (123)

This is interpreted as the back-extrapolation of the
plane-wave response Tq(x 4, p,t) from S4 to Sg, which
gives the original plane wave at Sy with rayparame-
ter p. The arrival time of this event is #o(xgr,p) =
p - xu,r. Hence, U™~ (xR, —p, —t;3,.4) can be sup-
pressed from equation 121 by a time window that re-
moves everything before t = ¢, = p - xg,r + € (the
dashed line in Figure 17c, indicated by o + ¢). We
define the two time windows as

(124)
(125)

éZ(XRvpvt; mB,A) = e(t — P XH,R— 6)7
0, (Xr, P, t;w3,.4) = O(faz +€—1).

These windows pass the extrapolated plane-wave fo-
cusing functions ¥ and 77, except the extrapolated
plane-wave direct arrival 97 (xg, P, t;3,4), which co-
incides with the last arrival of U~ (xR, —P, —t;3,4),
see Figure 17c. By substituting equation 67 into equa-
tion 116 we obtain

’E(—ji_(va p, tv ‘T3,A) = 5(t — P XH,R)' (126)
Application of the time windows to both sides of equa-
tions 120 and 121 gives, in the compact operator no-
tation,

v~ = Oy'RiT,
ot = OYR*T 49,

(127)
(128)

where 6 stands for ] (xg, P, t;73,4) = 0(t — P Xm,R)-
Solving these Marchenko equations for the extrapo-
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FIG. 18 Visualization of the plane-wave transmission-loss
compensated primary response Rg;(;n(XR,p,tdQ), obtained
from equations 122, 129 and 130 for all x3 4.

lated plane-wave focusing function v~ yields

K
07 (xR, p.tiw3.4) = O) 'R _{OLR*O;" R}*5.(129)
k=0

The plane-wave transmission-loss compensated pri-
mary reflection response thDrr‘in(x Rr,P,t) can be ob-
tained by evaluating equation 129 for all x3 4 and, for
each 3 4, assigning the time slice t = t42(xg, P; 23.4)
to RS (xg,p,t), according to

prm

RYS(XR, P, Ta2) = (130)

{’E_ (XR7 p7 t; $37A)}t:{(]2(xn,p;13)A) :

Since the leftmost window éZ’” in equation 129 passes
the selected time slice, we may remove this window
function from this equation when its output 9~ is used
in equation 130. Figure 18 visualizes R;Cm(xR, P, ta2)
for all 3 4.

Next, using similar arguments as in the previous
section, we replace the depth variable x3 4 again
by the two-way traveltime t, along the vertical co-
ordinate between x3o and x3 4 (hence, indepen-
dent of xr and p), and the time window function

©;" (xr, P, t;73.4) by

O, (xp, P, tit2) = O(ta+p-xur+e—t) (131)

(Meles et al., 2020). Making these replacements in
equations 129 and 130, we obtain

Ry (xR, P, f2) (132)

= {177 (XRa p, t; tQ)}t:t2+P‘xH,R

= (R i{éZR*(:)Z’”R}kS)

t=t .
0 2+P'XH,R
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This equation shows how the plane-wave
transmission-loss compensated primary reflection
response R;‘;H(XR,[),EQ), with EQ = {3+ p- XH,R;
is retrieved from the reflection data at the surface
without needing any velocity information. Using
this equation as the basis for primary retrieval, the
Marchenko method is only needed to retrieve the
extrapolated plane-wave focusing function o~ for a
limited number of rayparameters at each vertical
traveltime. = This implies a significant efficiency
gain in comparison with primary retrieval based
on equation 115, particularly for 3D applications.
Meles et al. (2020) discuss applications of plane-wave
transmission-loss compensated primary retrieval to
2D numerically modeled data.

DISCUSSION

The last decade has seen vigorous progress in the
field of Marchenko-equation-based methods for deal-
ing with internal multiples, be it through redatum-
ing and imaging, or multiple elimination at the sur-
face. The geophysical community has managed to
move from understanding the fundamentals and ex-
pand on them, through identifying (and resolving)
some limitations, to making this suite of methods
more user-friendly and more computationally efficient
and, finally, to apply them to field data. It is there-
fore prudent to not only take stock of the collective
accomplishments of our community, but also draw a
roadmap of attention-worthy research directions. Of
those that we were able to identify, we decided to split
them up into four main themes: (1) understanding the
effects of band limitation, (2) investigating whether
the focusing functions or dereverberation operators
can be reliably extracted from reflection data for com-
plex subsurface configurations, (3) understanding how
the methods fit within a wider data processing work-
flow and what quality control tools would be needed,
and, finally (4) looking beyond the acoustic assump-
tion outlined in this work.

1. We need to close the gap between the theory
and real world applications, where the signal
bandwidth often tends to be much lower than
that of the heterogeneities. This is particularly
an issue, since finite bandwidth and temporal
truncations do not go well together. For ex-
ample, Elison et al. (2020) have shown with a
numerical example that when the scattering is
sufficiently high and band-limited data are used,
the focusing functions or dereverberation oper-
ators are not recovered with full fidelity. Re-
cently, augmentation to the Marchenko theory
suggested the use of additional constraints to
further improve the quality of the retrieved so-
lutions. However, the current implementation
of this extension has to date only been shown to



work in horizontally layered media. As discussed
in Dukalski (2020), the critical minimum-phase
reconstruction step can become challenging be-
yond 1.5D applications, hence requiring further
algorithmic developments.

. For complex subsurface configurations, events
originating from deep sections may outpace the
ones from up-shallow. This makes retrieving fo-
cusing functions or dereverberation operators di-
rectly from the reflection data rather difficult. It
would be worthwhile to investigate for such sit-
uations when one can show that the operators
do or do not exist, and to what extent they can
be extracted from the reflection data using the
data-driven approaches discussed in this work.
It might further be worth understanding, should
a partially correct operator be found using the
schemes we outline here, to what extent it is ca-
pable to actually remove the multiples in these
complex situations.

. A large-scale deployment of this methodology
will be naturally contingent on one’s ability to
integrate any of the outlined schemes in the
data processing workflow (be it for seismic or
medical imaging, or otherwise). For instance,
when applied in the subsurface imaging work-
flow, any application should be preceded by
surface-related multiple attenuation (with the
exception of deep-water settings), or at least a
correct wavelet deconvolution step. Since the
Marchenko methods rely on sufficient amplitude
fidelity of the input data, strengths and weak-
nesses of the pre-processing need to be well un-
derstood and taken into account. Considering
the richness in physics and scattering relations
underpinning the Marchenko method, perhaps
physics can also be used as a viable quality con-
trol step. This will be particularly important in
cases where multiples are expressed by a mas-
sive collection of interfering events, produced by
countless reflectors in the subsurface, and where
the interpretation of the generation mechanism
of multiples and their order might be very diffi-
cult. Perhaps machine learning and/or artificial
intelligence applications could be of help. Con-
trolled studies on increasingly complex and re-
alistic numerical data would be very useful in
achieving this larger goal.

. Lastly, next to a surge of publications covering
many aspects of the acoustic theory, develop-
ments also include visco-acoustic (Slob, 2016)
and elastic theory (Wapenaar and Slob, 2014;
da Costa Filho et al., 2014; Reinicke et al.,
2020). In either of these cases, however, we do
not directly measure all data necessary for the
algorithms, but perhaps additional constraints
could help moving these developments forward.
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Moreover, in both the visco-acoustic and elas-
tic settings, the aforementioned band-limitation
issues become even more apparent, as so-called
‘fast converted multiples’, dissipation and short-
period scattering manifest themselves in a simi-
lar manner, but have completely different origins
and hence might need to be handled by different
means. Alternatively, if not possible to address
one or more of these issues, it will be worth ex-
ploring in what parameter regime the acoustic
approach performs acceptably (Reinicke et al.,
2021) and, when it fails, how one would know
in practice that it does (for example due to
appearance of some characteristic noise). Fur-
ther extensions of the theory to increasingly ‘ex-
otic’ systems might also come with the added
benefit of bringing to light certain elements,
which would otherwise be easily missed in sim-
pler methods.

Most of the issues mentioned here apply also to
other internal multiple elimination methods. We hope
that this paper will contribute to an unprejudiced dis-
cussion between the proponents of the different meth-
ods that will help to move the interesting field of in-
ternal multiple elimination forward.

CONCLUSIONS

We have presented recent developments of the
Marchenko method for geophysical applications in
a systematic way. We distinguished two classes of
Marchenko methods. The first class of methods,
which we call Marchenko redatuming and imaging,
aims at creating virtual sources and receivers in the
subsurface, from reflection data at the surface. The
responses between these virtual sources and receivers
are free of internal multiples related to the overburden
and can subsequently be used for multiple-free imag-
ing. Methods in the second class also eliminate in-
ternal multiples, but the sources and receivers stay at
the surface. We refer to these methods as Marchenko
multiple elimination. Whereas Marchenko redatum-
ing and imaging methods need a macro model of the
subsurface (to define the direct arrival of the Green’s
functions), Marchenko multiple elimination methods
do not need this kind of information. We have used a
systematic presentation and unified notation to reveal
the relation between the different Marchenko methods
in both classes. Finally, we discussed open problems
of Marchenko methods (and other internal multiple
elimination methods) and indicated new research di-
rections.
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Appendix: Derivation of the representations

We define the Fourier transform of a space- and
time-dependent quantity u(x,t) as

u(x,w) = /OO u(x,t) exp(iwt)dt,

—00

(A-1)

where ¢ is the imaginary unit and w the angular
frequency. Consider an acoustic wave field in the
space-frequency domain in an inhomogeneous loss-
less medium. This wave field can be decomposed
into downgoing and upgoing components p*(x,w) and
p~ (x,w), respectively. These fields are mutually cou-
pled due to the inhomogeneities of the medium. We
assume that the decomposed fields are normalized
with respect to the acoustic power flux (de Hoop,
1992; Garmany, 1983; Kennett et al., 1978; Ursin,
1983). Acoustic sources can also be decomposed into
sources for downgoing and upgoing waves, s'(x,w)
and s~ (x,w), respectively.

We define a volume V, bounded by two infinite hor-
izontal boundaries Sy and S4, defined by z3 = z3¢
and x3 = 73 4, respectively, with x3 4 > 3. In gen-
eral the boundaries Sy and S5 do not coincide with
physical boundaries. In this volume we consider two
independent acoustic states, denoted by subscripts A
and B, respectively. The decomposed wave fields and
sources in these states are related via the following
two reciprocity theorems (Wapenaar, 1996)

/ {phisp —pash + shipp — saphdx
v
=— /S {phpg — paphdx
0

+ / {pipp — Parhdx,
Sa
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(A-2)

and
/V {phsh" —pasy” +shph" — sapp }dx
= - / {phpE* — papg*dx
So

+ | {phps" — paps*Hdx,
5 (A—3)

where the asterisk denotes complex conjugation. It
is assumed that the medium parameters in states A
and B are identical in volume V; outside this volume
the medium parameters may be different. In equation
(A-3) evanescent waves are neglected. We use these
reciprocity theorems to derive several equations used
in the paper. From here onward we assume that the
half-space above Sy is homogeneous.

We first derive equations 97 and 98, which formulate
relations between the decomposed focusing functions
fE and f3, defined in the truncated medium. This
truncated medium is identical to the actual medium
above S, and reflection free below S4. For state A
we consider the focusing functions ff[(x7 Xa,t), in-
troduced in the section “Focusing functions”, with
the focusing conditions formulated in equations 2 and
3. For state B we consider the focusing functions
fQi (x,xR,t), introduced in the section “Transmission-
loss compensated primary retrieval”, with the focus-
ing conditions formulated in equations 94 and 95.
These focusing functions, transformed to the space-
frequency domain, are listed in Table Al. Substitut-
ing the states of Table Al into equations A-2 and A-3
gives

fl—F(XR,XA,LO) :fQ_(XAva7w)ﬂ (A74)

f;(XR»XAuw) = _{f;(XAavaw)}*' (A_5)
Transforming these equations back to the space-time
domain yields equations 97 and 98.

Next, we derive equations 4 and 5, which for-
mulate relations between the decomposed focusing
functions in the truncated medium and the decom-
posed Green’s functions in the actual medium. For
state A we consider again the focusing functions
fli(x, x4,t). For state B we consider the Green’s
functions G*F(x,xg,t), introduced in the section
“Representations”, with xz at or below Sp, hence,
x3r > T30. The source at xp is a unit source
for downgoing waves, hence, sf; = d(x — xp) and
s = 0. The Green’s functions, transformed to the
space-frequency domain, are listed in Table A2. The
Heaviside function 6(z3,0 — x3,r) accounts for the fact
that for x at So we have pj(x,w) = GtF(x,xp,w) =
%(5(XH — xy,g) when xp lies at Sy and pg(x,w) =



Gt T (x,xg,w) = 0 when xp lies below Sy. Substitut-
ing state A of Table Al and state B of Table A2 into
equations A-2 and A-3, we obtain

G T (xa,%XRg,w)
+f1 (xR, x4, w){0(x3,0 — z3,r) + Xv(XR)}

= fi(x, x4, w)G T (x, xR, w)dx
So (A —6)

and

_{G+7+(XA7 XR; w)}*

+ 11 (xr, x4, w){0(x30 — 23, 8) + XV(XR)}

= I (x,x4,w){G7F(x,xp,w) }*dx,
So (A=T)

where xv(x) the characteristic function for V, i.e.,
xv(x) = 0(x3.4 — x3) — 0(x3,0 — T3). (A—28)

Note that

{0(x3,0 —w3,r) + xv(XRr)} = 0(x3,4 —3,8). (A—9)

TABLE Al. States A and B for the derivation of
equations A-4 and A-5.

State A State B
xinV pi = fli(X,XA,OJ) pjé = fQi(X,XR,w)
s =0 s5=0

x at Sp pf = fli(x,xA,w) ng, =0
pp = 0(XH — XH,R)

x at Sa pj =0(Xg — Xm,4) pﬁ = fQi(x,xR,w)
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TABLE A2. State B for the derivation of equations
A-6 and A-7.

State B

+

xinV |pg = GET(x,xR,w), 131 > T30

sp=0(x—xg), sgp=0

x at So ||p}
Pp

0(z30 — z3,r)0(XH — XH,R)
G™T(x,xR,w)

x at Sa||ph = GFH(x, xR, w)

TABLE A3. State B for the derivation of equations
A-12 and A-13.

State B

xinV pﬁ - G:i:,*(x, XRaw)a T3,R > 3,0

sg =0, 55 =0(x—xRg)

xat Sy ||pp =0
pg :G_’_(X7XR7W)

x at Sy pﬁ =GP (x,Xp,w)

Equations 4 and 5 are derived as follows from equa-
tions A-6, A-7 and A-9. Apply the reciprocity rela-
tions for the decomposed Green’s functions

G H(xa,xp,w) = G F (xp,xa,w), (A —10)

GTF(xa,xp,w) = -G (xg,x4,w) (A —11)
(Wapenaar, 1996). Next, replace x by xg and take
xs and xp both at Sy (hence, 0(x3 4 — 23r) =
1). Define the reflection response at the surface Sy
as R(xg,xs,w) = G7T(xp,xg,w). Apply inverse
Fourier transforms and limit the time integrals, taking
into account that R(xg,xg,t) is a causal function of
time.



Equation 26 is obtained as follows from equation
A-6. Replace x4 by x5, xg by x4 and x by xg.
Take x4 and xp both at S4 (hence, the upgoing fo-
cusing function is zero, see equation 3). Define the
target reflection response at S4 as Ria (X5, X4,w) =
Gt (xp,xa,w). Apply inverse Fourier transforms
and limit the time integrals, taking into account that
Gt (xRr,x4,t) is a causal function of time.

Finally, we aim to derive equations 33 — 36, for
x4 and xp at different depth levels. First, we define
another state B for Green’s functions G*~ (x,Xg,t)
with a unit source for upgoing waves at xr. These
Green’s functions, transformed to the space-frequency
domain, are listed in Table A3. Substituting state A
of Table Al and state B of Table A3 into equations
A-2 and A-3, we obtain

G_7_(XA7XR,(U)
—fif (xr, x4, w){0(x3.4 — 23 R) — O(230 — T3,R)}

= [ fif(x,x4,w)G7 7 (x,xp,w)dx
S0 (A —12)

and

{G—h_ (XA7 XR, w)}*

+f1 (xR, xa,w){0(x3.4 — 3 R) — 0(x3,0 — T3,R)}

=— T (x,x4,w){G77 (%x,xp,w) }"dx.
So (A —13)

Equations 33 — 36 are obtained from equations A-
6, A-7, A-12 and A-13 as follows. Replace x4 by xp,
xpr by x4 and x by xr. Apply inverse Fourier trans-
forms and limit the time integrals, taking into account
that the Green’s functions are causal functions of time.
Rewrite the resulting expressions in the compact op-
erator notation.
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