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ABSTRACT

The propagator matrix propagates a full wavefield from
one depth level to another, accounting for all propagation
angles and evanescent waves. The Marchenko focusing func-
tion forms the nucleus of data-driven Marchenko redatuming
and imaging schemes, accounting for internal multiples.
These seemingly different concepts appear to be closely re-
lated to each other. With this insight, the strong aspects of the
propagator matrix (such as the handling of evanescent waves)
can be transferred to the focusing function. Vice versa, the
propagator matrix inherits from the focusing function that
it can be retrieved from the reflection response, which reduces
its sensitivity to the subsurface model.

INTRODUCTION

The propagator matrix (Gilbert and Backus, 1966; Kennett, 1972;
Woodhouse, 1974) propagates a wavefield from one depth level to
another. It acts on the full wavefield; hence, it implicitly accounts
for down- and upgoing, propagating, and evanescent waves. Unlike
one-way propagation operators used in seismic migration, the
propagator matrix does not depend on the square-root operator. This
facilitates its numerical implementation, particularly for waves with
large propagation angles. Kosloff and Baysal (1983) use the propa-
gator matrix concept in seismic migration and call this “migration
with the full acoustic wave equation.” They use filters to eliminate
evanescent and downward propagating waves; hence, they only ex-
ploit the advantageous numerical aspects. Wapenaar and Berkhout
(1986) exploit the fact that the propagator matrix (which they call
the “two-way wavefield extrapolation operator”) simultaneously
handles down- and upgoing waves and propose a migration scheme

that accounts for internal multiples. In this method, the propagator
matrix is defined on the basis of a detailed subsurface model.
Because this method appears to be very sensitive to the used model,
it has not been developed beyond horizontally layered medium
applications.
TheMarchenko method has been introduced as a data-driven way

to deal with internal multiples in seismic redatuming and imaging
(Broggini et al., 2014; Wapenaar et al., 2014). It uses focusing func-
tions that are retrieved from the reflection response at the surface
and a macrovelocity model that only needs to explain the direct
arrival of the focusing functions. The Marchenko method is, in prin-
ciple, suited to handle internal multiples in large-scale 3D imaging
problems (Pereira et al., 2019; Staring and Wapenaar, 2020; Ravasi
and Vasconcelos, 2021).
Becker et al. (2016), Wapenaar et al. (2017), and Elison (2020)

indicate that full-wavefield propagation methods (Kosloff and
Baysal, 1983; Wapenaar, 1993) can be used to model the Marche-
nko focusing function when a detailed subsurface model is avail-
able. Here, we present a more general discussion on the relation
between the propagator matrix and the focusing function and briefly
indicate new research directions.
Underlying assumptions of the Marchenko method are that the

wavefield inside the medium can be decomposed into down- and
upgoing waves and that the evanescent waves can be ignored. Only
recently have several approaches been proposed that aim to circum-
vent these assumptions (Diekmann and Vasconcelos, 2021; Kiraz
et al., 2021; Wapenaar et al., 2021). In the current paper, we show
that the Marchenko focusing function can be explicitly expressed in
terms of the propagator matrix and vice versa. On the one hand, this
allows to extend the validity of the focusing function to full (non-
decomposed) wavefields, including evanescent waves. On the other
hand, it opens the way to use the propagator matrix in imaging prob-
lems without the usual sensitivity to the subsurface model because
the multiples in the propagator matrix are now retrieved from the
reflection response.
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In this paper, we limit ourselves to establishing the relation
between the propagator matrix and the Marchenko focusing func-
tion. A detailed discussion of its potential applications is beyond the
scope of this paper.

THE PROPAGATOR MATRIX

Our starting point is the following matrix-vector wave equation in
the space-frequency ðx;ωÞ domain

∂3q ¼ Aqþ d; (1)

with wavefield vector qðx;ωÞ, operator matrixAðx;ωÞ, and source
vector dðx;ωÞ defined as (Corones, 1975; Kosloff and Baysal,
1983; Fishman and McCoy, 1984; Wapenaar and Berkhout, 1986)

q¼
�
p

v3

�
; A¼

�
0 iωρ

iωκ− 1
iω∂α

1
ρ∂α 0

�
; d¼

�
f̂3
q

�
; (2)

where pðx;ωÞ and v3ðx;ωÞ are the pressure and vertical particle
velocity of the acoustic wavefield, respectively, κðxÞ and ρðxÞ
are the compressibility and mass density of the lossless inhomo-
geneous medium, respectively, and qðx;ωÞ and f̂3ðx;ωÞ are the vol-
ume injection rate and external vertical force densities, respectively
(the hat is used to distinguish the external force from a focusing
function). Furthermore, i is the imaginary unit and the summation
convention holds for repeated subscripts, with Greek subscripts tak-
ing the values one and two only. The propagator matrixWðx; xR;ωÞ
is defined as the solution of the source-free wave equation:

∂3W ¼ AW; (3)

with boundary condition:

Wðx; xR;ωÞjx3¼x3;R ¼ IδðxH − xH;RÞ; (4)

with horizontal coordinate vectors xH ¼ ðx1; x2Þ and
xH;R ¼ ðx1;R; x2;RÞ, and I denoting a 2 × 2 identity matrix. Let
∂DR denote a horizontal boundary at x3 ¼ x3;R. The propagator ma-
trix propagates the field qðx;ωÞ from ∂DR to any depth level x3 as
follows (Gilbert and Backus, 1966; Kennett, 1972; Woodhouse,
1974):

qðx;ωÞ ¼
Z
∂DR

Wðx; xR;ωÞqðxR;ωÞdxR; (5)

assuming the source vector d is zero between ∂DR and depth level
x3. We partition W as follows:

Wðx; xR;ωÞ ¼
�
Wp;p Wp;v

Wv;p Wv;v

�
ðx; xR;ωÞ; (6)

with the first and second superscripts referring to the field quantities
at x and xR, respectively. From equations 3 and 4 and the structure
of A in equation 2, it follows that Wp;p and Wv;v are real valued,
whereas Wp;v and Wv;p are imaginary valued. The propagator ma-
trix can be built up recursively, according to

Wðx; xR;ωÞ ¼
Z
∂DA

Wðx; xA;ωÞWðxA; xR;ωÞdxA; (7)

in which ∂DA is a horizontal boundary at x3;A. The arrangement of
x3;R, x3;A, and x3 is arbitrary.
As an illustration, we consider the propagator matrix for a later-

ally invariant medium. For this situation, it is convenient to consider
the propagator matrix in the horizontal slowness domain,
i.e., ~Wðs1; x3; x3;R;ωÞ, with s1 denoting the horizontal slowness.
In a homogeneous layer, the elements of ~W are given by

~Wp;pðs1; x3; x3;R;ωÞ ¼ cosðωs3Δx3Þ; (8)

~Wp;vðs1; x3; x3;R;ωÞ ¼
iρ
s3

sinðωs3Δx3Þ; (9)

~Wv;p ¼ ðs23∕ρ2Þ ~Wp;v and ~Wv;v ¼ ~Wp;p, with Δx3 ¼
x3 − x3;R, and vertical slowness s3 defined as s3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕c2 − s21

p
,

with propagation velocity c ¼ 1∕ ffiffiffiffiffi
κρ

p
. These expressions hold

for propagating and evanescent waves. For propagating waves
(s21 ≤ 1∕c2), their temporal inverse Fourier transforms read:

Wp;pðs1; x3; x3;R; τÞ ¼
1

2
fδðτ − s3Δx3Þ þ δðτ þ s3Δx3Þ;

(10)

Wp;vðs1; x3; x3;R; τÞ ¼
ρ

2s3
fδðτ − s3Δx3Þ − δðτ þ s3Δx3Þ;

(11)

etc., in which τ is the intercept time. Note that Wp;p and Wv;v are
symmetric, whereasWp;v andWv;p are antisymmetric. For the hori-
zontally layered medium of Figure 1a, Figure 1b shows the sym-
metric element Wp;pðs1; x3; x3;R; τÞ as a function of x3 and τ,
convolved with a Ricker wavelet with a central frequency of
50 Hz, for a single horizontal slowness s1 ¼ 1∕3000 s/m. The
trace at x3 ¼ x3;R ¼ 0 m shows the boundary condition
Wp;pðs1; x3;R; x3;R; τÞ ¼ δðτÞ. The traces between x3;R and x3;1
show the two delta functions in the right side of equation 10 (con-
volved with the Ricker wavelet). The traces in the deeper layers are
the result of the recursive application of equation 7 in the slowness
intercept-time domain. In a similar way, Figure 1c shows the anti-
symmetric element Wp;vðs1; x3; x3;R; τÞ. The trace at x3 ¼ x3;R ¼ 0

m shows the boundary condition Wp;vðs1; x3;R; x3;R; τÞ ¼ 0.

THE MARCHENKO FOCUSING FUNCTION

From here onward, we let ∂DR at depth x3;R denote a transparent
acquisition boundary. The medium above this boundary is homo-
geneous; below this boundary, the medium is inhomogeneous and
source free. Before we return to the 3D situation, we discuss the
Marchenko focusing function Fðs1; x3; x3;R; τÞ for a horizontally
layered medium in the slowness intercept-time domain. This focus-
ing function is a solution of the wave equation, with focusing
condition Fðs1; x3;R; x3;R; τÞ ¼ δðτÞ. Hence, F focuses at the ac-
quisition boundary, similar to the focusing function f2 of Wapenaar

A8 Wapenaar and de Ridder
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et al. (2014). Furthermore, we demand that F is purely upgoing at
and above ∂DR. This focusing function is illustrated in Figure 1d for
the horizontally layered medium of Figure 1a. At the bottom, we see
four upgoing waves (indicated by the blue arrows), which are tuned
such that, at x3 ¼ x3;R ¼ 0, a single upgoing wave focuses at τ ¼ 0.
Note that F in Figure 1d resembles several events of the propagator
element Wp;p in Figure 1b. As a matter of fact, F can be expressed
as a combination of the symmetric and antisymmetric functions
Wp;p and Wp;v of Figure 1b and 1c, according to

Fðs1; x3; x3;R; τÞ ¼ Wp;pðs1; x3; x3;R; τÞ
−
s3;0
ρ0

Wp;vðs1; x3; x3;R; τÞ; (12)

in which ρ0 and s3;0 are the mass density and vertical slowness,
respectively, of the homogeneous upper half-space. Conversely,
using the fact that Wp;p is symmetric and Wp;v is antisymmetric,
we can construct these elements from the focusing function F,
according to

Wp;pðs1; x3; x3;R; τÞ ¼
1

2
fFðs1; x3; x3;R; τÞ

þ Fðs1; x3; x3;R;−τÞg; (13)

Wp;vðs1; x3; x3;R; τÞ ¼ −
ρ0
2s3;0

fFðs1; x3; x3;R; τÞ

− Fðs1; x3; x3;R;−τÞg: (14)

We now return to the 3D situation and derive relations similar to
equations 12–14. In the homogeneous upper half-space (including
the boundary ∂DR), we define pressure-normalized down- and up-
going waves pþ and p−, respectively. In the space-frequency do-
main, we relate these fields to p and v3 via q ¼ Lp, with q defined
in equation 2 and

L ¼
�

1 1
1

ωρ0
H1 − 1

ωρ0
H1

�
; p ¼

�
pþ

p−

�
: (15)

c) d)

a) b)

Figure 1. (a) Horizontally layered medium, (b) symmetric propagator element Wp;pðs1; x3; x3;R; τÞ (fixed s1 and x3;R), convolved with a
wavelet, (c) antisymmetric propagator element Wp;vðs1; x3; x3;R; τÞ, and (d) focusing function Fðs1; x3; x3;R; τÞ.

Propagator matrix and focusing function A9

D
ow

nl
oa

de
d 

01
/0

3/
22

 to
 1

45
.9

4.
67

.7
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
21

-0
51

1.
1



Here,H1 is the square root of the Helmholtz operator ω2∕c20 þ ∂α∂α
in the homogeneous upper half-space (Corones, 1975; Fishman and
McCoy, 1984; Wapenaar and Berkhout, 1986). Substitution of
q ¼ Lp into equation 5 gives, for x in the inhomogeneous and
source-free half-space below ∂DR,

qðx;ωÞ ¼
Z
∂DR

Yðx; xR;ωÞpðxR;ωÞdxR; (16)

for x3 ≥ x3;R, with Yðx; xR;ωÞ ¼ Wðx; xR;ωÞLðxR;ωÞ. From
equation 16, using equations 6 and 15, we obtain for the first
element of vector q

pðx;ωÞ ¼
Z
∂DR

F�ðx; xR;ωÞpþðxR;ωÞdxR

þ
Z
∂DR

Fðx; xR;ωÞp−ðxR;ωÞdxR; (17)

for x3 ≥ x3;R (superscript � denotes complex conjugation), with
focusing function Fðx; xR;ωÞ defined as

Fðx; xR;ωÞ ¼ Wp;pðx; xR;ωÞ

−
1

ωρ0
H1ðxR;ωÞWp;vðx; xR;ωÞ: (18)

Here, we used the fact that Wp;p and Wp;v are real and imaginary
valued, respectively. Moreover, we used that H1ðxR;ωÞ is a sym-
metric operator and assumed it is real valued, which implies that we
ignored evanescent waves at ∂DR. Equation 17 was derived previ-
ously via another route (Wapenaar et al., 2021); the explicit expres-
sion for F in equation 18 is new. Note the analogy with the
definition of the focusing function in the slowness intercept-time
domain in equation 12. From equations 4, 6, and 18, we find
Fðx; xR;ωÞjx3¼x3;R ¼ δðxH − xH;RÞ, which confirms that F is indeed
a focusing function. The focusing function is visualized in
Figure 2a. Conversely, using the fact that Wp;p and Wp;v are real
and imaginary valued, respectively, we find

Wp;pðx; xR;ωÞ ¼ RfFðx; xR;ωÞg; (19)

Wp;vðx; xR;ωÞ ¼ −iωρ0H−1
1 ðxR;ωÞIfFðx; xR;ωÞg; (20)

in whichR and I stand for the real and imaginary part, respectively.
From equations 3 and 6, withA defined in equation 2, we obtain for
the other two elements of the propagator matrix

Wv;pðx; xR;ωÞ ¼
1

iωρðxÞ ∂3W
p;pðx; xR;ωÞ; (21)

Wv;vðx; xR;ωÞ ¼
1

iωρðxÞ ∂3W
p;vðx; xR;ωÞ: (22)

GREEN’S MATRIX REPRESENTATIONS

We define the Green’s matrix Gðx; xS;ωÞ as the solution of wave
equation 1 with a unit source at xS; hence,

∂3G ¼ AGþ Iδðx − xSÞ: (23)

Moreover, we demand that G obeys Sommerfeld’s radiation
condition at infinity. We partition G as follows:

Gðx; xS;ωÞ ¼
�
Gp;f Gp;q

Gv;f Gv;q

�
ðx; xS;ωÞ; (24)

with the first and second superscript referring to the field quantity
at x and the source quantity at xS, respectively. We choose xS at a
vanishing distance above ∂DR. For this situation, we write for the
down- and upgoing components of Gp;f at ∂DR (i.e., just below the
source)

2Gp;fþðx; xS;ωÞjx3¼x3;R ¼ δðxH − xH;SÞ; (25)

2Gp;f−ðxR; xS;ωÞ ¼ RðxR; xS;ωÞ; (26)

with xH;S ¼ ðx1;S; x2;SÞ, and RðxR; xS;ωÞ denoting the reflection re-
sponse of the inhomogeneous medium below ∂DR (see Figure 2b).
Substitution of Gp;f and Gp;f� for p and p� in equation 17 gives

2Gp;fðx; xS;ωÞ ¼
Z
∂DR

Fðx; xR;ωÞRðxR; xS;ωÞdxR

þ F�ðx; xS;ωÞ; (27)

for x3 ≥ x3;R. This representation (when trans-
formed to the time domain) has a comparable
form as equation 13 in Wapenaar et al. (2014).
Hence, it forms the basis for a Marchenko
scheme to derive the focusing function F from
the reflection response R and an estimate of
the direct arrival of F. However, unlike in the
aforementioned reference, we did not assume
that, inside the medium, F can be decomposed
into down- and upgoing constituents and that
the evanescent field can be ignored. Here,
we only made such assumptions in the homo-
geneous upper half-space (including ∂DR).
Hence, the representation of equation 27

a) b)

Figure 2. Visualization of (a) the focusing function Fðx; xR;ωÞ and (b) the Green’s
function Gp;fðx; xS;ωÞ and the reflection response RðxR; xS;ωÞ.
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accounts for example for refracted waves in high-velocity layers,
and it remains valid in caustics. How to exploit the more general
validity of this representation for the retrieval of the focusing func-
tion in complex cases is subject of current research. In particular, it
needs to be investigated how to deal with the temporal overlap of
the Green’s function and the focusing function for refracted and
evanescent waves.
The propagator matrix W can be constructed from the focusing

function F via equations 6 and 19–22. Assuming F is obtained with
the traditional Marchenko method, W inherits its relative insensi-
tivity to inaccuracies in the subsurface model: its direct arrivals
come from a macromodel and its scattering coda from the reflection
response R at the surface. Subsequently, W can be used in equa-
tion 5 for “migration based on the two-way wave equation”
(Wapenaar and Berkhout, 1986). Replacing q by G in equation 5,
we obtain

Gðx; xS;ωÞ ¼
Z
∂DR

Wðx; xR;ωÞGðxR; xS;ωÞdxR; (28)

for x3 ≥ x3;R > x3;S. Hence, W can also be used for retrieving
the complete Green’s matrix between the surface and any
subsurface location. Finally, we show that it can be used
for retrieval of the homogeneous Green’s matrix between two
subsurface locations. We define this matrix as Ghðx; xA;ωÞ ¼
Gðx; xA;ωÞ − JG�ðx; xA;ωÞJ, with J ¼ diagð1;−1Þ. Using
JA�J ¼ A, it follows thatGh obeys equation 23 without the source
term, analogous to the scalar homogeneous Green’s function
(Oristaglio, 1989). Replacing q by Gh in equation 5, we obtain

Ghðx; xA;ωÞ ¼
Z
∂DR

Wðx; xR;ωÞGhðxR; xA;ωÞdxR; (29)

in which the arrangement of x3;R, x3;A, and x3 is arbitrary (because
Gh obeys a source-free wave equation). This generalizes the scalar
single-sided homogeneous Green’s function representation (Wape-
naar et al., 2017).

CONCLUSION

We have shown that the focusing function used in Marchenko
imaging is intimately related to the propagator matrix. By deriving
the focusing function directly from the propagator matrix, we cir-
cumvented up-down decomposition and did not ignore evanescent
waves inside the medium. This may ultimately lead to more general
Marchenko schemes, with the ability to accurately image steep
flanks and to account for evanescent and refracted waves. Con-
versely, by constructing the propagator matrix from the focusing
function obtained with the traditional data-driven Marchenko
method, the propagator matrix may be used in migration and
Green’s matrix retrieval schemes, circumventing the sensitivity of
the model-driven propagator matrix to the subsurface model.
Finally, the matrix-vector formalism used in this paper facilitates a
generalization of the discussed relations to other wave phenomena.
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