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Velocity determination in layered systems with arbitrarily curved interfaces
by means of wave field extrapolation of CMP data

C. P. A. Wapenaar* and A. J. Berkhout*

horizontally layered system Dix (1955) approximated relation
(1) for small offsets x by a hyperbolic relation where only the
coefficients AN. O and AN,2 are nonzero. Coefficients AN,o and
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ABSTRACT

The paper starts with a brief review of conventional
velocity determination procedures for plane-layered sys­
tems. These methods assume hyperbolic moveout curves
in common midpoint (CMP) data. It is shown that in
layered systems with arbitrarily curved interfaces these
methods fail since the moveout curves are nonhyperbol­
ic. The subject of this paper is a wave-theoretical ap­
proach to velocity determination. By means of wave
field extrapolation of CMP data, nonhyperbolic move­
out curves are transformed into hyperbolic ones. The
proposed process is called velocity replacement (VR)
since an inhomogeneous overburden is replaced by a
homogeneous velocity medium. The effect of VR is illus­
trated on synthetic data. From the results it may be
concluded that velocity determination after VR yields
significantly more accurate results than velocity deter­
mination before YR. The technique of VR is also pro­
posed as a preprocessing tool prior to stack in situ­
ations of nonhyperbolic moveout curves.

INTRODUCTION

Generally, the seismic velocity is a function of all three
subsurface coordinates. However, most seismic processing
methods assume, within restricted lateral dimensions, a layered
velocity model, i.e., the velocity is constant within an arbitrarily
shaped layer (Figure 1). For many geologic situations this is a
reasonable assumption. For such a layered system Durbaum
(1954) showed that the traveltime TN(x) of a seismic pulse
reflected by the Nth subsurface reflector (i.e., interface between
layer N and layer N + 1), generated and registered with a
source-receiver separation (offset) x can be written as an infinite
MacLaurin series:

The coefficients AN•k are related to interval velocities, layer
thicknesses, and reflector shapes (i.e., dip and curvature). For a

00

T~(x) = I AN.kXk.
k=O

(1)

FIG. 1. The basic configuration in most seismic processing
methods is a layered subsurface with a constant velocity in each
layer within restricted lateral dimensions.
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64 Wapenaar and Berkhout

AN•2 are related to the seismic parameters zero-offset (ZO)
traveltime Til' (0) and normal moveout (NMO) velocity CN ,

respectively. Taner and Koehler (1969) showed that, assuming
hyperbolic moveout curves, TN (0) and CN can be derived from
offset data. The numerical method they proposed is based on
the evaluation of a two-dimensional (2-D) coherence function
(velocity spectra) whose maxima refer to ell' and 7~(0) for all N.
De Vries and Berkhout (1982) use a minimum entropy criterion
to focused CMP data in order to determine NMO velocities.
Dix solved the inverse problem: that is derivation of interval
velocities and layer thicknesses from NMO velocities CN and
ZO traveltimes TII'(O). For the first layer (N = 1) this method is
exact. For a specific offset data arrangement, common mid­
point data (CMP), small reflector dips may be included. Among
others, Cook (1967) showed that application of Dix's method in
areas of gentle dips (less than 5 degrees), yields interval veloci­
ties 2 percent to 3 percent higher than actually measured in
well-velocity surveys. Also for CMP data, Lamer and Rooney
(1972) approximated relation (1) by a hyperbolic relation for
the arbitrary dipping plane-layer case. Shah (1973) derived the
same relation by studying the radius of curvature of a wave­
front propagating through a plane-layered system. Hubral
(1976) developed a method to solve the inverse problem for the
3-D dipping plane-layer case. Krey (1976) discussed the validity
of the hyperbolic traveltime/offset relation for systems with
curved interfaces. Particularly in the latter situation, very small
offsets must be assumed. Lynn and Claerbout (1982) developed
a hyperbolic relation for systems with arbitrary lateral velocity
variations by taking into account the lateral derivatives of the
medium velocity.

Another approach to velocity determination in the dipping
plane-layer case is based on 1:, p mapping ofCMP data, among
others described by Diebold and Stoffa (1981). In this method
eMP data in the traveltime/offset domain (T, x) are mapped
into the intercept-time/ray-parameter domain (1:, p) where the
velocity determination is performed. The intercept-time/ray­
parameter relation is elliptical. Since this relation is exact for
horizontally layered systems, also wide-offset data (including
refracted and post-critically reflected data) can be handled by
this velocity determination procedure.

The success of the methods discussed so far is based on the
fact that for simple configurations the infinite series (I) may be
approximated by a hyperbolic relation defined by only two
coefficients. Also the ellipses in the (1:, p)-domain are defined by
two coefficients only. However, in arbitrarily layered systems
nonhyperbolic moveout curves occur and more than two terms
of the MacLaurin series are required to approximate the trav­
eltime/offset relation, particularly when offsets are not small.

Several velocity determination procedures have been devel­
oped, taking into account the nonhyperbolic character of the
moveout curves. May and Straley (1979) incorporated higher­
order terms in the traveltime/offset relation. Their method be­
comes impractical for approximations higher than fourth order.
Gjoystdal and Ursin (1981) and Vander Made et al. (1984)
developed reflection-time inversion methods for complex inho­
mogeneous media, based on parameter estimation. They
dropped the concept of stacking along moveout curves. In­
stead, a peak-picking algorithm is required in these methods.

The method introduced in this paper is based on pre­
processing of CM P data in such a way that the tra veltime/offset
relation in the processed CMP data may be closely approxi-

mated by a hyperbolic relation. This situation is obtained by
transforming the inhomogeneous layered system into a homo­
geneous system, which is realized by replacing the different
velocities in the successive layers by one constant velocity. This
process, velocity replacement (VR), is based on forward and
inverse wave field extrapolation of CMP data. Although the
restriction is not fundamental, we will assume 2-D subsurface
configurations.

In the literature several velocity determination procedures
based on wave theory are given. Gardner et al. (1974) and
Sattlegger (1975) showed how the migration velocity can be
determined by optimizing a nonrecursive pres tack migration
output. Yilmaz and Chambers (1980) used wave-field extrapo­
lation to perform NMO correction in order to resolve strongly
interfering events. In all these methods hyperbolic moveout
curves are assumed, nonhyperbolic moveout curves are not
transformed into hyperbolic ones. Doherty and Claerbout
(1976) used a finite-difference technique in order to downward
continue seismic records (by means of inverse wave field extrap­
olation) as a preprocessor for conventional velocity estimation
techniques. Since receivers only are downward continued,
nonhyperbolic moveout curves are only partly transformed
into hyperbolic ones. In our method conventional velocity
estimation techniques are used after independent processing of
CMP gathers: nonhyperbolic moveout curves are transformed
into hyperbolicones.

Summarizing, for inhomogeneous systems the trav­
eltime/offset relation is generally complicated and advanced
techniques are required to recover all coefficients in this rela­
tion. To simplify the procedure two approaches may be fol­
lowed.

(1) For simple configurations the infinite MacLaurin
series, which describes the traveltime/offset relation
for CMP data, may be approximated by two terms
(hyperbolic assumption). The two coefficients are
easily found from coherence calculations. Appli­
cations: horizontally layered systems, dipping plane
layered systems, layered systems with curved inter­
faces assuming very small offsets and/or small veloci­
ty variations.

(2) For more complicated configurations the system can
be made homogeneous by a wave-theory based ve­
locity replacement technique. After application the
traveltime/offset relation can be described again by
two terms only. Application: Layered systems with
arbitrarily curved interfaces, without assuming
serious restrictions on offset and/or velocity vari­
ations.

Next we discuss briefly some well-known moveout curve
approximation methods (I) which can be regarded as an intro­
duction to our moveout curve transformation method (2), de­
scribed in the second part of the paper.

CO:\VENTIO;\lAL VELOCITY DETERMINATION
PROCEDlJRES

In this section we summarize some important conventional
velocity determination procedures which are based on the hy­
perbolic assumption. We first study the two-term approxi­
mation of relation (I) for the CM P configuration in the dipping
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Velocity Analysis In Layered Systems 65

plane-layer case. Since our research concerns 2-D configura­
tions only, we restrict ourselves to 2-D situations.

Consider the configuration shown in Figure 2. According to
Lamer and Rooney (1972) and Shah (1973) the traveltime TN (X)
for reflection N, given by relation (1), may be approximated for
small offsets x by a hyperbolic relation

T~(.x) ~ A1I'.o + A"I.2 X 2

2 x2

= T 11' (0) + C~' (2a)

where

CN = NMO velocity for reflection N,
T,..{O) = total two-way zero-offset (ZO) traveltime between

the surface and reflector N,
Cn = interval velocity in layer 11,

~Tn = two-way interval ZO traveltime in layer /1,

ljIo = emergence angle of ZO raypath at surface,
1jI~ = ljIo,

IjIk = refraction angle of ZO raypath at the kth interface,

and

with

N

TN (0) = L ~T" ,
n=l

1 N n-I (cos2 1j1' )
C~ = 2 L f1 --2-

k c; ~T",
T",(O) cos ljIo n= I k=O cos IjIk

(2b)

(2c)

FIG. 2. Dipping plane layered system. For the CMP configura­
tion the traveltime TN (x) for reflection N and offset x is ap­
proximately given by relation (2).

and
IjIk = incidence angle of ZO raypath at the kth interface.

For N = 1 relation (2) is exact. For horizontally layered sys­
tems relation (2) reduces to the well-known Dix relation (Dix,
1955), (ljIk = IjIk = 0 for all k). In this case the NMO velocity C1I'
equals the rms velocity (effective velocity) between the surface
and reflector N

(3)

The seismic parameters eN and TN (0) for all N can be derived
from CMP data. We will not discuss this item but refer the
interested reader to Taner and Koehler (1969).

Hubral (1976) developed a method, based on relation (2), to
derive interval parameters (interval velocity, layer thickness,
and reflector dip) from surface measurements. Since three inter­
val parameters must be determined for each layer [apart from
eN and T",(O)] additional information is required. From TN(O)
values of adjacent CMP gathers the time dip dTN(O)jdx' can be
derived. The time dip is the first derivative of the ZO traveltime
with respect to the lateral midpoint position x' and is repre­
sented by a dip in the x', t-diagram of the ZO time series. For
plane layers and constant interval velocities dTN(O)jdx' is con­
stant; for horizontal layers dTN(O)jdx' equals zero. From the
time dip for reflection N and the interval velocity in the first
layer, the emergence angle ljIo at the surface of ZO raypath N
can be calculated with Tuchel's formula (Tuchel, 1943)

(1) Derive CN and TN (0) for reflection N from CMP data
by means of coherence calculations.

(2) Derive dTN(O)jdx' for reflection N from TN(O) values
of adjacent CMP gathers.

(3) Trace the ZO raypath down to reflector N - 1, start­
ing with emergence angle ljIo [relation (4)] at the
surface, applying Snell's law at each interface, thus
obtaining A'Ij > ~TN_I,IjI'1 "'IjI~-I,ljIl '''IjIN 2'

(4) Derive ~TN' IjI N _ r- C,'" from relations (2b), (2c), and
Snell's law at interface N - 1 (sin 1jI~ _ dCN _ I = sin

IjIN- I/cN)·
(5) Having determined these three parameters, the Nth

part of the ZO path is defined and the Nth reflector is
positioned perpendicular to the end of the ZO path
(normal incidence point).

For horizontally layered systems [d1~ (O)jdx' = 0 for all N] this
method yields the same results as Dix's inversion formula

(5)

Assuming layers 1 through N - 1 are reconstructed, the
interval parameters for layer N can be obtained as follows.

dI~(O)jdx' = 2 sin ljIolc l • (4)
From the conventional methods mentioned in the Introduc­
tion, we selected Hubral's method because it is of interest for
our wave-theoretical approach to velocity determination, as
shown in the following sections.
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66 Wapenaar and Berkhout
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Before describing the theory, an example of conventional
methods, applied to synthetic data, is given. Consider the dip­
ping plane-layered system, shown in Figure 3a. From CMP
data, as shown in Figure 3b, NMO velocities eN and 20
traveltimes TN (0)can be derived for all N. Assuming the system
is horizontally layered, interval velocities and layer thicknesses
can be calculated, applying Dix's relation (5). Since the assump­
tion is rather crude for the configuration, this method yields
inaccurate results. More accurate results may be expected from
Hubral's method. To determine reflector dips as well, time dips
must be derived from 20 traveltimes from adjacent CMP
gathers. In Table 1 the results of Dix's and Hubral's method are
compared with the model values. It may be concluded that for
the dipping plane-layer case Hubral's method yields signifi­
cantly more accurate results than Dix's method.

EXAMPLE OF CONVENTIONAL VELOCITY
DETERMINATION PROCEDURES

FIG. 3. Layered system with plane dipping interfaces: (a) sub­
surface with CMP rays, (b) CMP time series.

I

I

f

I

I

I+.
i

INTRODUCTION TO THE WAVE-THEORETICAL
APPROACH TO VELOCITY DETERMINATION

Now consider the layered system with arbitrarily curved
interfaces shown in Figure 4. We assume we have already
reconstructed layers 1 through N - 1 (interval velocities and
interface positions and curvatures are determined) and we want
to determine the interval parameters oflayer N. Interval veloci­
ty determination using Hubral's method as described in a pre­
vious section yields erroneous results since the interfaces are
curved. Distortions in the hyperbolic traveltime/offset relation
are due to two causes.

(1) Reflection by curved surface SN' Because we make
use of the CMP configuration this effect will be small,
as the reflecting area, denoted by d in Figure 4, is
small. In the following we will neglect this effect.

(2) Refraction through curved interfaces SI ... SN-I'
Particularly when offsets are not small this effect may
influence the moveout curve significantly.

Time
(s l

t
1.0

2.0

30

40

b
o 1000 2000 3000

-Offset(m)

In the Introduction we mentioned that our method is based
on application of conventional velocity determination tech­
niques (Hubral's method) after preprocessing CMP gathers. We
apply the VR process which is described in detail in the next
section. Here we discuss the basic principle of our method. It is
obvious that, when velocities C1 ... CN-I are replaced by veloc­
ity CN' the refraction effects of interfaces SI ... SN _I are elimi­
nated even for wide offsets, since the inhomogeneous overbur-

den is transformed into a homogeneous one. Hence, by means
of VR, nonhyperbolic moveout curves are transformed into
hyperbolic moveout curves. Since the replacement velocity CN is
unknown, an iterative method must be used. The initial esti­
mate cN can be obtained by applying Hubral's method to the
original data, which are inaccurate because the interfaces are
curved. Replacing C1 ••• CN- 1 by cN yields a two-layer system
with velocities cN and CN, respectively, as shown in Figure 5.

Table l. Comparison of tbe results of Dix's and Hubral's metbod witb the model values in tbe dipping plane-layer case. Since in Dix's metbod,
horizontal layers are assumed, no dips are tabulated. (e = interval velocity, Ilie/e I = relative error in c, liz: = layer thickness at common midpoint,

CL = reflector dip),

Model Dix Hubral

c (rn/s) ~z(m) u (deg) C (m/s) ~c/c ~z(m) C (m/s) Sc]« ~z (m) u (deg)

1 2500 750 4.8 2508 0% 750 2499 0% 750 4.8
2 3000 1 500 -14.0 3 119 +4% 1499 3004 0% 1 502 -14.1
3 2000 1 500 4.8 2 126 +6% 1 580 2018 +1% 1 514 4.9
4 3000 750 9.5 3 331 +11'Yo 742 3048 +2% 762 9.7
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Velocity Analysis In Layered Systems 67
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FIG. 4. Layered system with arbitrarily curved interfaces. For
the CMP configuration the ZO ray and one wide offset ray for
reflection N are shown.

FIG. 5. Two-layer system which is obtained after replacing
velocities C1 ... CN _ 1 of the system shown in Figure 4 by an
estimate cN of velocity CN.

Application of Hubral's method to the two-layer system after
VR in order to determine CN will again yield erroneous results
because interface SN-l is curved.

However, three reasons why we may expect more accurate
results from Hubral's method after VR than before VR follow.

(1) The inhomogeneous overburden (layers 1 through
N - 1) is replaced by a constant velocity medium,
hence the refraction effects of curved interfaces Sl ...
SN - 2 are eliminated,

(2) Although cN is not equal to CN, generally the velocity
discontinuity at interface SN-l decreases when CN- 1

is replaced by cN (compare Figure 4 with Figure 5),
and

(3) Particularly when the thickness of layer N is small,
the refraction effects of interface SN-l will be small
since the refracting area, denoted by p in Figure 5, is
small.

interval velocity, reflector depth, and reflector dip. Now we are
dealing with layered systems with curved interfaces; hence ap­
plication of Hubral's method to one CMP gather after VR
yields the local interval velocity, the local reflector depth, and
the local reflector dip for one normal incidence point. Appli­
cation of the complete process (VR and Hubral) for several
CMP gathers yields the parameters for several normal­
incidence points. Optionally, the interval velocities may be
laterally averaged. Finally, reflector SN is reconstructed by in­
terpolating cubic splines between the normal incidence points.
Summarizing, based on the assumption that layers 1 through
N - 1 are reconstructed, we showed how layer N can be com­
pletely reconstructed.

VELOCITY REPLACEMENT

We conclude that application of Hubral's method after VR
yields a new estimate cN of the interval velocity of layer N. This
value represents a more accurate estimate of the replacement
velocity. The process can be repeated, which means CN is deter­
mined iteratively. Theoretically, convergence is difficult to
prove. However, many experiments with synthetic data, mod­
eled under a wide range of subsurface conditions, have always
shown convergence. Generally, application of two or three
iteration steps per layer yields sufficient accuracy, although
significant improvement of accuracy occurs already after one
iteration step.

As seen in the dipping plane-layer case discussion, the follow­
ing parameters can be determined from surface measurements:

In our velocity determination procedure velocities in suc­
cessive layers are replaced by one constant velocity. The re­
placement is achieved by wave field extrapolation of CMP
data. In this section we describe this VR procedure. Consider
the configuration shown in Figure 6. Assuming layers 1
through N - I are reconstructed, VR for these layers is applied
by (1) eliminating the propagation effects of layers 1 through
N - 1 (Figure 6a), and (2) simulating propagation effects for
layers 1 through N - 1 with one constant velocity cN (Figure
6b). The elimination of the propagation effects of layers 1
through N - I consists of N - 1 inverse extrapolation steps of
CMP data, the result of each step being a CMP gather record­
ed at a deeper interface. The final result after N - 1 inverse

D
ow

nl
oa

de
d 

11
/2

9/
23

 to
 1

45
.9

0.
34

.1
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/1
.1

44
18

38



68 Wapenaar and Berkhout

the velocity replacement procedure with a forward
extrapolation step (simulation of homogeneous prop­
agation effects).

CMP TRACE INTERPOLATION

The surface S: is positioned at the end of this raypath parallel
to the original surface So (see Figure 6b). By choosing this
extrapolation configuration, the ZO traveltime TN (0) does not
change when the total VR procedure is applied. This means
that the transformation of the CMP data (elimination of distor­
tions in the moveout curve by means of elimination of the
inhomogeneities in the system) is mainly restricted to the wide­
offset data. When layer N is an inversion layer (cN < CN-I), then
the position of the upper surface S~ after VR may be below the
original surface So' In this case the hyperbolic moveout curve
can only be retrieved within a smaller offset range due to
boundary effects. On the other hand, when S~ is above So, the
moveout curve will be available after VR for the complete offset
range. Surface S~ will always be above So when no inversion
layers occur.

The simulation of the propagation effects for layers 1
through N - 1 with one constant velocity cN consists of one
forward extrapolation step of CMP data, the result being a
CMP gather recorded at the surface over a two-layer system
with velocity cN in the upper and CN in the lower layer. The
latter can be calculated rather accurately applying Hubral's
method, as shown in the previous section. Since this forward
extrapolation step is a simulation of propagation effects,we are
free to choose the position and the shape of the surface. To
obtain a hyperbolic moveout curve, we choose a plane surface.
The position of the surface is determined by the ZO raypath.
Since in the ideal situation cN equals CN, no ray deflection may
occur at interface N - 1 which determines the angle of the
raypath. The length of the ZO raypath between the surface and
interface N - 1 we choose in such a way that the ZO traveltime
reduction caused by the N - 1 inverse extrapolation steps will
be compensated, so this length amounts to

1 N-l

"2 cN L i1T".
.=1

(b)

~---- ....
"

Cl

I
I
I
I

J.­
I

I
I
I
I

(a)

----<:)=-=-=-<»-==-=-=-=--50

FIG. 6. Velocity replacement procedure: (a) elimination ofinho­
mogeneous propagation effects, (b) simulation of homogeneous
propagation effects.

extrapolation steps is a CMP gather recorded at interface
N - 1. The extrapolation algorithm for CMP data is described
in the appendices.

Important parameters for each extrapolation step are the
position and shape of two interfaces (begin and end situation
for the specific extrapolation step) and the interval velocity
between these interfaces. On the interfaces the sources and
receivers are positioned equidistantly, centered on the mid­
points. These midpoint locations can be calculated by tracing
the ZO raypath down to reflector N - 1, starting with emer­
gence angle",0 at the surface [which can be calculated from the
time dip with the aid of relation (4)], applying Snell's law at
each interface. The intersections of the ZO raypath with the
interfaces indicate the midpoint positions. By choosing this
extrapolation configuration the midpoint moves downward
along the ZO raypath as a result of the inverse extrapolation.
The ZO traveltime is reduced by i1T" in the nth extrapolation
step, where i1T" represents the two-way interval traveltime of
the ZO raypath in layer n. The total ZO traveltime reduction,
as a result of N - 1 inverse extrapolation steps, amounts to

N-l

L i1T".
n=l

Having performed N - 1 inverse extrapolation steps, the un­
derlying system is layer N with velocity CN (see Figure 6a).
Although we have reached the desirable situation of a CMP
gather recorded over a homogeneous system (layer N), there
are two reasons to complete the velocity replacement pro­
cedure by simulating propagation effects for layers 1 through
N - 1 with a forward extrapolation step, using replacement
velocity cN .

Before we show some examples, we briefly discuss a practical
problem which is inherent to wave field extrapolation tech­
niques. Because seismic data are discretized both in time and in
space, two antialiasing criteria need be met (Berkhout, 1982)

1
i1t<--- u::

and

i1s < Amin

- 2 sin Uma•

(1) The recording surface (interface N - 1) is curved, so
the moveout curve is not hyperbolic.

(2) As a result of the extrapolation procedure boundary
effects occur in the extrapolated CMP data, i.e., the
hyperbolic moveout curve is distorted for large off­
sets, even when interface N - 1 is plane. It is shown
in Appendix C that these boundary effects can be
suppressed for the greater part by the completion of

where

L1t = temporal sampling interval,
fma. = highest frequency,

i1s = spatial sampling interval (here, half-offset sampling
interval),

Amin = smallest wavelength,
and

Uma• = highest (raypath) dip angle.
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INTERPOlATIO

, NMO

a

Velocity Analysis in Layered Systems

Notice that Amin should be related to half the propagation
velocity (Appendix B), so Amin = t.cmin /fmax' where Cmin is the
lowest propagation velocity. In practical seismic acquisition
techniques the first antialiasing condition is always fulfilled.
However, in many situations spatial aliasing is inevitable due to
spatial undersampling. As is well-known from signal theory,
aliasing should be avoided by filtering before discretization.
Only in special cases can antialiasing filtering be applied to
discretized data. A crude but effective and widely applied pro­
cedure is muting large offsets at small traveltimes in CMP data.
However, also relevant information ma y be suppressed by this
procedure. Here we present an elegant approach to CMP trace
interpolation, making use of prior information on the CMP
gather.

NMO corrections applied to CMP data ideally transform all
offset traces into zero-offset traces. In ideally NMO corrected
CMP data, the dip angles have thus reduced to zero, which
means that the second antialiasing condition is fulfilled for any
discretization interval /1s. Now trace interpolation can be ap­
plied, yielding a new sampling interval /1s' < /15. After an in-
verse ideal NMO correction, the interpolated CMP data are
obtained, which are free of a liasing when /1s' satisfies the second
antialiasing condition. This procedure is only valid for CMP
data, since the apices of all events lie on the same ZO trace,
which is essential for NMO corrections. Also when the NMO
corrections are not ideal, a significant reduction of the maxi-
mum dip angle will occur.

An example is presented in Figure 7. The CMP data of
Figure 7a are undersampled by a factor of three. Applying one
average NMO correction to the whole CMP data set (which
simpl y involves time shifting of all traces) yields the result
shown in Figure 7b. Notice that the steep dips have been
reduced significantly. Application of an ideal interpolation in
the wavenumber frequency domain yields the result shown in
Figure 7c. (In practice, interpolation in the space-frequency
domain is preferred, since it is faster and very good results can
be obtained.) Finally, applying an inverse average NMO cor­
rection (again time shifting only) yields the interpolated CMP
data, as shown in Figure 7d, with /1s' = /1s/4.

We discussed CMP trace interpolation because it is essential
for our VR procedure. An additional advantage is that better
resolved velocity spectra may be expected in conventional ve-
locity analysis on aliasing free CMP gathers.

EXAMPLES OF VELOCITY DETERMINAnON
AFTER VELOCITY REPLACEMENT

FIG. 7. CMP-trace interpolation: (a) undersampled CMP data,
(b) correctly sampled CMP data after an average NMO correc­
tion, (c) oversampled NMO-corrected CMP data after trace
interpolation, (d) correctly sampled CMP data after an inverse
average NMO correction.

In this section we discuss some results of the velocity deter­
mination procedure described in the previous sections, that is
velocity determination after VR. In these examples we make
use of synthetic data modeled with 2-D ray-tracing software.
The data were modeled such that both the temporal and spatial
antialiasing conditions were fulfilled. In the first example we
show the results of the VR procedure applied to a layered
system with arbitrarily curved interfaces. In the second exam­
ple, a special application of the VR procedure is discussed,
namely, elimination of near-surface anomalies.

b c

(I) Layered system with arbitrarily curved interfaces

In this example we consider a layered system with arbitrarily
curved interfaces as shown in Figure Sa, Before discussing the

results obtained with velocity replacement, we show that con ­
ventional methods fail for this configuration. We modeled five
CMP gathers from which NMO velocit ies and ZO traveltimes
can be derived by means of coherence calculations. 20 time
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FIG. 8. Layered system with arbitrarily curved interfaces.

dips can be obtained from ZO data (in practice stacked CMP
gathers), shown in Figures 8b and 8c. Since the interfaces are
curved, the time dips vary laterally. For each of the five mid­
point positions Hubral's method can be applied, assuming the
interfaces are locally plane, thus obtaining local interval veloci­
ties, local reflector depths, and local reflector dips. Lateral
averaging of the interval velocities yields the results shown in
Table 2. Because curvature was ignored, up to 25 percent errors
occurred. Interpolating cubic splines between the normal inci­
dence points yields the subsurface configuration shown in
Figure 8d. Notice that the third reflector, which is plane in the
model (Figure 8a), is curved in the reconstruction as a result of
the erroneous interval velocities.

We now discuss the VR procedure for this configuration.
Since the system is homogeneous between the surface and the
first interface, no VR is required to determine the interval
parameters of the first layer. In the example described above,
the first layer was indeed reconstructed correctly. In order to
determine the interval parameters of layer 2 iteratively, the
velocity C1 in the first layer is replaced for one or more CMP
gathers by an updated estimate (~2 of the velocity in the second
layer. As initial value we use c2 = 3 335 mis, which was found
by application of Hubral's method before YR. Since the veloci­
ty discontinuity at interface I after VR (c2 = 3 335 m/s, C2 =

3 500 rn/s] decreases compared to the discontinuity before VR
(c1 = 2 000 m/s, C2 = 3 500 m/s), interval parameters of layer 2

Table 2. Comparison of the interval velocities obtained with Hubral's method before and after VR with the model values.

Model Hubral before VR Hubral after VR

c 1 = 2 000 m/s
c2 = 3500 m/s
C3 = 5 000 mls

C 1 = 2 000 m/s, t!cdc( = 0%
C2 = 3 335 rn/s, t!c21c 2 = - 5%
C3 = 3726 rn/s, t!c3/c 3 = -25%

c 1 = 2 000 m/s, t!cdc 1 = 0%
C2 = 3 507 m/s, t!c2/c2 = 0%
c3 = 4895 m/s, t!c3/c3 = -2%
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Velocity Analysis In Layered Systems 71

are obtained more accurately applying Hubral's method after
YR. A new updated estimate of C2 is obtained (after laterally
averaging the velocity results of the different CMP gathers):
c2 = 3 491 m/s, This velocity is used as the replacement veloci­
ty in a new iteration step. Note again that the velocity inhomo­
geneity at interface I decreases (C2 = 3 491 m/s, c2 = 3 500
m/s), When the desired accuracy for layer 2 is reached, interval
parameters of layer 3 are determined in a similar way. Appli­
cation of three iteration steps per layer and laterally averaging
the velocity results of the different CMP gathers finally yield
the results shown in Table 2. Notice that the accuracy increased
significantly due to the application of YR. The error of 25
percent in C3 has reduced to an error of 2 percent. The subsur­
face reconstruction is shown in Figure 8e. Notice that the third
reflector is nearly plane, as in the original model (Figure 8a).

In this example we showed that the wave-theory based veloc­
ity determination procedure, as described here yields a com­
plete reconstruction of a layered system with arbitrarily curved
interfaces. Since for each layer VR has to be applied iteratively
for one or more CMP gathers, this procedure is time­
consuming compared to conventional methods. However, in
the following example, a practical application is discussed
where VR has to be applied for the surface layer only. The
computation time for this example is comparable with the
computation time needed for conventional methods.

(2) Elimination of near-surface anomalies

In marine as well as in land data nonhyperbolic moveout
curves occur often as a result of near-surface anomalies. These
anomalies are caused by a low-velocity surface layer (seawater,
weathered earth layer, etc.) limited by a curved interface (sea­
bottom, base of weathered layer, irregular topography). In
practice, a correction is applied by means of a constant time
shift (static correction). This approach is not optimal for offset
data since one constant correction is applied for all depths
which is obviously wrong. Application of velocity replacement
is a wave-theoretical approach to the correction of near-surface
anomalies. By replacing the irregular low-velocity layer by a
layer whose velocity corresponds to the velocity in the next
layer, the near-surface anomalies are eliminated correctly. We
show this by comparing some important properties of the CMP
data before and after YR. Consider the configuration shown in
Figure 9a. This configuration represents a seawater layer (ve­
locity C1 = I 500 m/s) overlying horizontally layered sediments.
The seabottom is represented by the first, curved interface.
Although this restriction is not necessary, the sea level is repre­
sented by a plane surface. CMP data, as shown in Figure 9b,
were modeled. To demonstrate the nonhyperbolic character of
the moveout curves, the NMO velocities were calculated for
two different offset ranges. The coherence of the NMO correct-
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FIG. 9. Horizontally layered system overlain by a water layer with a curved seabottom.
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72 Wapenaar and Berkhout

Table 3: Some parameters derived from CMP data before YR. C = NMO-Yelocity, E = coherence of NMO-corrected traces, c = intenal veleciry,
lic/c = relative error in c, T(O) = ZO traveltime,

Offset range Offset range
(0 ---> 1 020) m (0---> 2 760) m Model

T(O) (s) C (m/s) C (m/s) E c (rn/s) !'!ele e (rn/s)

.756 I 536 I 532 .595 1 532 +2% I 500
1.380 3788 2532 .082 3367 +12% 3000
1.880 5444 2664 .070 2998 +50% 2000
2.166 00 2700 .056 2926 -16% 3500

ed traces was calculated for each moveout curve. The fourth
moveout curve after NMO correction is shown in Figure 9c,
together with the stacked trace. Finally the interval velocities
were calculated according to Pix's relation (5). The results are
shown in Table 3.

Because the curvature of the sea bottom was ignored, the
following observations can be made:

(1) the NMO velocities depend strongly on the offset
range,

(2) the coherence of the NMO corrected traces is very
low,

(3) the quality of the stacked trace is poor (Figure 9c),
and

(4) errors up to 50 percent occur in the interval veloci­
ties.

Apparently the hyperbolic assumption for moveout curves 2, 3,
and 4 is too crude in the case of near-surface anomalies.

By means of wave field extrapolation of the CMP data, the
velocity in the first layer (et = I 500 m/s) is replaced by the
velocity in the second layer (e2 = 3 000 m/s). The layer thick­
ness is adapted according to !'!znew = (e2Ic t)!'!zold' so the ZO
traveltimes are not influenced by the velocity replacement. The
transformed CM P data are shown in Figure 9d. Note that the
four moveout curves have undergone different transformations,
which is a typical property of the wave-theoretical approach.
The same calculations as before VR are applied to the trans­
formed CMP data. The results are shown in Table 4, the fourth
moveout curve after NMO correction is shown in Figure ge,
together with the stacked trace.

Due to the wave-theory based elimination of the velocity
discontinuity at the seabottom, the following observations can
bemade:

(1) NMO velocities hardly depend on the offset range,
(2) coherence of the NMO-corrected traces is very good,
(3) quality of the stacked trace is high (Figure ge), and
(4) accuracy of the interval velocities increased signifi­

cantly.

Obviously the nonhyperbolic moveout curves have been trans­
formed into hyperbolic ones.

CONCLUSIONS

In this paper we discussed the success of conventional veloci­
ty determination procedures when based on approximating the
complicated traveltime/offset relation by a simple two-term
hyperbolic relation. This approximation is sufficiently accurate
in case of plane-layered systems (not necessarily horizontally
layered). Furthermore, we showed that conventional pro­
cedures fail in more complicated situations, such as layered
systems with arbitrarily curved interfaces, since the hyperbolic
approximation is too crude. We showed, with the aid of wave
field extrapolation of CMP data (VR), that the system can be
transformed into a constant velocity system for which the hy­
perbolic relation holds. Although the restriction is not funda­
mental, we assumed 2-D situations. We discussed two examples
of the VR procedure applied to synthetic data. In the first
example the VR procedure was applied to data modeled in a
system with arbitrarily curved interfaces. This example illus­
trates that application of the velocity determination procedure
using VR yields significantly more accurate results than con­
ventional methods. In the second example we discussed a spe­
cial application, namely elimination of near-surface anomalies
by means of VR in the surface layer. The result is a CMP gather
without distortions caused by near-surface anomalies. The ad­
vantages are

Table 4. Some parameters derived from CMP data after VR: C = NMO-yelocity, E = coherence of NMO-corrected traces, c = intenal velocity,
lic/c = relative error in c, T(O) = ZO-trayeltime. (The values in parentheses represent the replaced layer).

Offset range Offset range
(0 --> I 020) m (0---> 2760) m Model

T(O) (s) C (rn/s] C (m/s) E c [rn/s] !'!clc c (m/s]

(.756) (3020) (3 016) (.865) (3016) (+1%) (3000)
1.380 3024 3016 .993 3016 +1% 3000
1.880 2808 2800 .992 2091 +5% 2000
2.166 2952 2932 .986 3684 +5')10 3500

D
ow

nl
oa

de
d 

11
/2

9/
23

 to
 1

45
.9

0.
34

.1
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/1
.1

44
18

38



Velocity Analysis In Layered Systems 73

(I) Application of conventional velocity analysis meth­

ods after elimination of the near-surface anomalies by

means of VR yields significantly more accurate re­

sults than velocity determination on the original

data.
(2) The nonhyperbolic moveout curves have been trans­

formed into hyperbolic curves, which improves the

quality of the stacked data significantly.

ACKNOWLEDGMENTS

The: authors are very grateful to GeoQuest Int. Ltd., Hou­

ston, Texas, for their financial support and for their permission

to publish this paper. Also the help of los Kokke is greatly

appreciated. He developed the CMP trace interpolation soft­

ware as part of his M.Sc. project.

REFERENCES

Berkhout, A. 1.,1982, Seismic Migration: Elsevier Scientific Pub!. Co.
Cook, E. E., 1967,.Geophysical reconnaissance in the Northwestern

Caribbean: Presented at 37th Annual International SEG meeting,
Oklahoma City, October 31.

De Vries, D., and Berkhout, A. 1.,1982, Minimum entropy as a tool for
velocity analysis: Presented at 52nd Annual International SEG
meeting, Dallas, October 19. .

Diebold, J. B., and Stoffa, P. L., 1981, The traveltime equation, tau-p
mapping, and inversion of common midpoint data: Geophysics, 46,
238-254.

Dix, C. H., 1955, Seismic velocities from surface measurements: Geo­
physics, 20,68-86.

Doherty, S. M., and Claerbout, J. F., 1976, Structure independent
velocity estimation: Geophysics, 41, 85G-881.

Durbaum, H., 1954, Zur Bestimmung von Wellengeschwindigkeiten
aus reflexion seismischen Messungen: Geophys. Prosp., 3,151-167.

Gardner, G. H. F., French, W. S., and Matzuk, T., 1974, Elements of
migration and velocity analysis: Geophysics, 39, 811-825.

Gjaystdal, H., and Ursin, B., 1981, Inversion ofreflection times in three
dimensions: Geophysics, 46,972-983.

Hubral, P., 1976, Interval velocities from surface measurements in the
three-dimensional plane layer case: Geophysics, 41, 233-242.

Krey, Th .. 1976, Computation of interval velocities from common
reflection point move-out times for n layers with arbitrary dips and
curvatures in three dimensions when assuming small shot-geophone
distances: Geophys. Prosp., 24, 91 III.

Larner, K. L..and Rooney, M., 1972, Interval velocity computation for
plane dipping multilayered media: Presented at 42nd Annual Inter­
national SEG Meeting, Anaheim, California, November 30.

Lynn, W. S., and Claerbout, J. F., 1982, Velocity estimation in laterally
varying media: Geophysics, 47, 884-897.

May, B. T., and Straley, D. K., 1979, Higher order moveout spectra:
Geophysics, 44. 1193 1207.

Sattlegger,1. W., 1975, Migration velocity determination: Part I. Phil­
osophy: Geophysics, 40.1-5.

Shah, P. M., 1973. Use of wavefront curvature to relate seismic data
with subsurface parameters: Geophysics, 38, 812-825.

Taner, M. T., and Koehler, F., 1969, Velocity spectra-digital computer
derivation and applications of velocity functions: Geophysics. 34,
859-881.

Tuchel, G.. 1943, Seismische Messungen; Taschenbuch fiir Ange-
wandte Geophysik: Leipzig. .

Vander Made. P. M., Van Riel, P., and Berkhout, A. 1., 1984, Velocity
and subsurface geometry inversion by parameter estimation in com­
plex inhomogeneous media: To be presented at 54th Annual Inter­
national SEG Meeting, Atlanta, December.

Yilmaz, 0., and Chambers, R. E., 1980, Velocity analysis by wavefield
extrapolation: Presented at 50th Annual International SEG Meet­
ing, Houston, November 19.

APPENDIX A
WAVE FIELD EXTRAPOLATION, GENERAL CONSIDERATIONS

In the velocity replacement section we showed that VR for

layers 1 through N - I is achieved by the performance of N
(N - 1 inverse and 1 forward) extrapolation steps of CMP

data. In Appendix A we discuss some aspects of wave field

extrapolation irt general. In Appendix B wave field extrapola­

tion of CMP data is dealt with as a special application. In

Appendix C some properties of the VR procedure are discussed.

To start a prestack forward extrapolation (continuation)

scheme derived by Berkhout (1982) is explained. This extrapo­
lation scheme can be elegantly represented by a matrix equa­

tion in the space-frequency domain for each single-frequency

component. Forward extrapolation of a multirecord data set

P(Sj+ d registered at plane, dipping surface Sj+ 1 [for each
source/receiver combination at Sj+ 1 a registration is present in

P(Sj' l)J is applied by the matrix multiplication

(A-la)

the result being the extrapolated multirecord data set P(Sj)

registered at plane, dipping surface Sj' The forward restriction

means that we are simulating the physical process of wave

propagation. Element Pmn of data matrix P represents the
pressure, radiated by source n and registered by receiver m on

the same surface. Column n represents the nth common source

gather, row m the mth common receiver gather. The diagonals

represent common offset gathers (main diagonal = ZO gather),

the antidiagonals CMP gathers. \'y(Sj, s..1) and \'y(Sj+ l' S;)
represent forward extrapolation matrices for the receivers and

sources. respectively. Relation (A-I a) is visualized in Figure

FIG. A-I. Schematic representation of wave field extrapolation
of prestack data.

A-I. As we assumed constant velocity sediments within the

layers, we may define the matrices \.Y with the aid of the

Rayleigh-II integral. Then their elements are given by

J
jk e: jkrM •

Wmn(Sj, s.. I) = - cos <l>mn ~!:J.s for krm. » 1,
21t v' rmn

and (A-Ib)

Jj k ,e j krM
'

Wnm(Sj+ l' S;) = - cos <l>mn ~!:J.s for krmn » 1,
21t v' rmn

where

k = 21tf/c,
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Wapenaar and Berkhout

t1z = distance between parallel surfaces S,+ 1 and Sj,
k = wavenumber,

and
k; = Fourier equivalent of horizontal coordinate.

Although extrapolation in the wavenumber-frequency domain
can only be applied in case of no lateral variations, we use
relation (A-Ic) in Appendix C to demonstrate an important
property of the velocity replacement procedure.

To perform inverse extrapolation, r(Sj+ I) must be calculated
from r(S;) by means of inversion of relation (A-Ia). Since
inversion of matrices W is not stable, we choose the matched
filter approach. Berkhout (1982) shows that band-limited inver­
sion of relation (A-Ia) can be approximated by

(A-2a)

where

FIG. A-2. Extrapolation configuration.

and

with

k = wavenumber,
f = frequency,
c = propagation velocity,

rmn = distance between position n on S, t 1 and position m on
s..

t1s = spatial sample interval,
<l>mn = angle between rmn and normal n, t 1 to surface Sj+ I'

<l>~n = angle between rmn and normal n, to surface Sj,
and

j = imaginary unit (.j] is defined in the first quadrant).

(See Figure A-2.)
In case of no lateral variations (c constant, S, is parallel to

s.. d, matrix W(Sj, Sj+ 1) equals matrix W(Si+ I' SJ In this case
Wis a Toeplitz matrix and relation (A-Ia) is an alternative
representation of spatial convolutions where the convolution
operator W is space invariant. Berkhout (1982) shows that
relation (A-Ia) then can be transformed to the wavenumber­
frequency domain where the convolutions are replaced by
multiplications. In this domain the transformed operator W is
given by

(A-2c)

(A-2b)

p= W*,

I fs[ I+jkr . e'ikrJP A = - P --2- cos <l>e - jkr + (jroPO v,,) -- dS.
41t s r r

(A-3)

Matrices Eare obtained by transposition (T) and conjugation
(*) of matrices W. In case of no lateral variations the transpo­
sitions may be omitted. Relation (A-2a) then can bereplaced by
multiplications in the wavenumber-frequency domain, where
the transformed operator F is given by

with Wdefined by relation (A-Ic).
In relations (A-I) and (A-2) we assumed that surfaces S, and

Sit 1 are plane. By making this restriction we were able to
derive an extrapolation scheme, based on the Raleigh-Il inte­
gral. However, generally, surfaces S, and Sit 1 are curved and
the extrapolation scheme must be derived from the Kirchhoff
integral. The Rayleigh-II integral for plane surfaces is a special
case of the Kirchhoff integral. Consider the Kirchhoff integral

This integral states that the pressure PAin any point A inside a
closed surface S can be calculated from a pressure dipole distri­
bution P and a particle velocity monopole distribution v" on S,
provided that no sources are present inside S. Notice that both
P and v" on S yield the same frequency-dependent phase contri­
bution exp (- jkr) to the pressure in A. Replacing P by 2P and
deleting Vn yields the" Rayleigh-II integral for curved surfaces,"
with small amplitude errors only (kr» I). Since in velocity
analysis techniques the phase is far more important than the
amplitude, application of the Rayleigh-II integral to curved
surfaces is quite acceptable.

(A-Ic)

for kx :$: k,

for kx > k,W = exp (- Jk; .- k1 t1z)

with

t1z = Zj+ 1 - z, > 0

where

and

APPENDIX 8
WAVE FIELD EXTRAPOLATION OF CMP DATA

In Appendix B we derive an algorithm for wave field extrapo­
lation of CM P data, based on relation (A-I).

Consider relation (A-Ia). The antidiagonals of data matrices
P(S;) and P(Sj+ tl represent one frequency component of the

CMP gathers on (curved) surfaces S, and Sit b respectively. In
the extrapolation algorithm for CMP data we replace the data
matrix r(Sj j I) by a CMP gather by means of zeroing all
off-antidiagonal elements, which is visualized in Figure B-1a.
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Since we are only interested in the antidiagonal of matrix P(Sj),
the whole scheme can be reordered to

where PCMP(S;) and P CMP(S;+I) are data vectors, representing
the CMP gathers on S,and Si+ l' respectively: a

(B-Ia)

(B-Ib)

and

P CMP(Sj+l) = [P -K.K ••. p o.o ... PK.-KJL1' (B-Ic)

while I(S;, S;+d represents the wave field extrapolation oper­
ator for CMP data. The reordered scheme is visualized in
Figure B-Ib. In order to derive operator r, we drop the matrix
notation for a while. We rewrite relation (A-Ia) as follows: b

K K

Pm,(S;) = L L Wmn(Sj, Sj+l)Pnt(Sj+dJVr,(S;+I' S;).
n;-Kt;~K

FIG. B-1. Schematic representation of wave field extrapolation
of CMP data: (a) Data reduction, (b) reordering.

(B-Id)

Zeroing all off-antidiagonal elements of P(S;+ 1)' i.e., r;
(Sj+1) = 0 when n #- -t, yields the following expression for the
antidiagonal elements of peS;): (B-2a)

K

Pm.-m(Sj) = L Tmn(Sj, Sj+l)Pn.-n(Sj+l)'
n= -K

(B-Ie)
where

(B-2b)

with

(B-2c)

(B-2d)

where

DISCUSSION

In case of no lateral variations the transposition can be omitted
and algorithm (B-2a) can be replaced by a multiplication in the
wavenumber-frequency domain

Of course, in situations where VR need be applied (such as
curved interfaces), expressions (B-Ih) through (B-Ij) and (B-2c)
and (B-2d) cannot generally be used.

Ideally, prestack wave field extrapolation should be applied
to data matrices P by means of relation (A-Ia), which follows
directly from wave theory. Velocity analysis should then be
applied to data vectors P CMP, which can be selected from
matrices p.The method that we proposed in this paper involves
a significant reduction of computational effort since both wave­
field extrapolation and velocity analysis are applied to data
vectors PeMP' Of course errors are introduced by neglecting all
off-antidiagonal elements in matrices p. However, we showed
that for horizontally layered media (no lateral variations) the
CMP operator equals the ZO operator. Since for this situation
CMP-reflection data equal ZO diffraction data (apart from
amplitude effects), it means that the algorithm (B-Ia) is correct
in spite of the simplification. Theoretically, the accuracy of the
scheme decreases when the interface dips or curvatures in­
crease. However, errors can be reduced to a minimum when the
midpoint follows the ZO raypath in all extrapolation steps, as
demonstrated with the numerical examples.

Note that conventional stacking may be considered as a
nonrecursive migration process (diffraction stack version) along
the ZO raypath.

(B-if)

(B-Ig)

(B-Ih)

Y(S;, s.,1) = wrSi' s.,1), (e---> eI2), (B-Ij)

where j5CMP denotes the spatial Fourier transform of PCMP,

while Wwas already defined in relation (A-Ic).
To describe inverse extrapolation ofCMP data, we again use

the matched filter approach

From relation (B-Ie), matrix relation (B-Ia) follows immedi­
ately. Notice that the mth row of matrix r(Sj, S;+1)is obtained
by multiplying the individual elements of the mth row of matrix
\y(S;, Sj+l) by the corresponding elements of the reversed
column -m of matrix \y(Sj+ 1, S;), as is expressed by relation
(B-if).

In case of no lateral variations, relation (B-Ig) can be sim­
plified to

or

Notice that for this situation CMP-operator r(S;, S, +1)equals
the ZO extrapolation operator, which is often approximated by
\y(Sj, S;+1) as defined by (A-lb), with e replaced by e/2 (Berk­
hout, 1982). Now extrapolation algorithm (B-Ia) can be re­
placed by a multiplication in the wavenumber-frequency
domain

with
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76 Wapenaar and Berkhout

APPENDIX C
SOME PROPERTIES OF THE VELOCITY REPLACEMENT PROCEDURE

+ O(k~)] PCMP(So)' (C-Ic)

In the velocity replacement section we defined the replacement
step size L'1i by

By substituting this relation for L'1i in relation (C-Ic) the argu­
ment of the first exponent in (C-Ic) equals zero. In this case
relation (C-Ic) represents a phase shift depending on k; which
equals zero for k; = 0 and which increases for increasing k; .
Translated to the (x, t) domain it means that the ZO traveltime
does not change, while the offset traces undergo an increasing
time shift for increasing offset. This result was stated in the
velocity replacement section. Consider the argument of the
second exponent in relation (C-Ic). The summation term is due
to the N - I inverse extrapolation steps, the term L'1i/k is due to
the forward extrapolation step. Here the importance of the
forward extrapolation step in the VR procedure becomes clear:
it reduces the absolute value of the argument of the extrapola­
tion operator in the wavenumber-frequency domain. Trans­
lated to the space-frequency domain this means that the convo­
lution operator width in relation (C-Ia) is reduced due to the
replacement step, which is advantageous with respect to
boundary effects. In the situation that c1 = Cz = ... = CN- 1 =

c relation (C-Ic) can be replaced by

(C-Id)

(C-Ib)

where

2rtf
k, = c;/2'

- 2rtf
k = sn'

N-I
PCMP(S~) = exp (-jJP - k;L'1i) TI [exp (+jJkf - k;L'1z;)]

i= 1

In Appendix C we study some specific advantageous proper­
ties of the VR procedure. VR can be performed by means of
N - I inverse and one forward extrapolation step of CMP
data, which can be represented by the following matrix multi­
plication

PCMP(S~) = I(S~, SN-I)~(SN-l' SN-Z)'" ~(Si+l' S;)···

X ~(SI' SO)PCMP(SO) (C-Ia)

where P CMP (So) represents the original CMP data set at the
acquisition surface So and where PCMP(S~) represents the CMP
data set after velocity replacement at the new surface S~. (In the
velocity replacement section we showed that So and S~ do not
necessarily coincide.) For the moment we consider the sim­
plified situation of a horizontally layered system, which means
that relation (C-Ia) represents a number of spatial space­
invariant convolutions. So for this simplified situation VR can
be performed in the wavenumber-frequency domain by means
of the following simple scalar multiplication (see also Appen­
dices A and B)

L'1z; = Zi - Zi-I > 0,

and

L'1i = ZN-l - z~ > 0,

with

C· = interval velocity in layer i,
l = replacement velocity (in practice we use e= eN' which

is an estimate of CN)'
z, = depth coordinate of surface Si'

and
Zo = depth coordinate (pos. or neg.) of surface So .

We leave the evanescent field (Ikx I > k;) out of consideration.
Note that the c/2 substitution has been used. For Ikx I« k and
Ik, I« k;, relation (C-I b) can be approximated by the following
equation

PCMP(S~) = exp [j[tl
l(k

iL'1Z;) - kM}]

[
kZ {N-I _}

x exp - j ~ .L (L'1z;/k i) - M/k
2 ,=1

where surface S~ equals surface So' The equivalence of this
relation in the space-frequency domain is a convolution of
PCMP (So) with a band-limited spatial 8-pulse, which means in
this case that our VR algorithm (C-la) is exact within the
spatial bandwidth.

In Appendix B we showed that forward wave field extrapola­
tion of CMP data can be performed by means of matrix multi­
plication (B-la), inverse extrapolation is described by relation
(B-2a). Application of each individual extrapolation step yields
boundary effects as a result of the finite operator width. How­
ever, in Appendix C we show, by means of evaluation of matrix
equation (C-Ia), that for a horizontally layered system these
boundary effects are suppressed for the greater part, when VR
is carried out. We also showed that for a special case (c1 =
Cz = ... = CN- 1 = C) relation (C-Ia) is exact within the spatial
bandwidth.

The above properties of the VR procedure are also valid for
systems with curved interfaces. However, since we are dealing
here with lateral variations, the wavenumber-frequency domain
cannot be used anymore. Because the argumentation in the
space-frequency domain is far more complicated, the above
properties are demonstrated here with the numerical examples.
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