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Inverse extrapolation of primary seismic waves

C. P. A. Wapenaar*, G. L. Peelst, V. Budejickyt, and A. J. Berkhout*

THE KIRCHHOH INTEGRALS WITH FORWARD
AND BACKWARD PROPAGATING GREEN'S FUNCTIONS

We consider an inhomogeneous lossless fluid, which is
described by the space-dependent compression modulus
K(r) and the mass density p(r), where r is a shorthand
notation for the Cartesian coordinates (x, y, z). In this fluid
we consider a (sub-)volume V enclosed by a surface S with
an outward pointing normal vector n. The space and fre­
quency-dependent acoustic pressure Pir, w) satisfies in V the
following equation:

gation effects, see Figures 1a and 1b). One-way seismic
inversion techniques, such as migration (Berkhout and Van
Wulfften Pa1the, 1979; Berkhout, 1985), inverse scattering
(Bleistein, 1984), or redatuming (Berryhill, 1984), are essen­
tially based on inverse extrapolation of downgoing and
upgoing waves (elimination of propagation effects, see Fig­
ures Ic and ld).

Berkhout and Wapenaar (1989, hereafter referred to as
paper I) derived one-way versions of the Kirchhoff integral
for forward extrapolation of primary waves through inho­
mogeneous acoustic media. In this paper we derive one-way
versions of the Kirchhoff integral for inverse extrapolation of
primary waves through inhomogeneous acoustic media. The
expressions that we obtain (commonly known as generalized
Kirchhoff summation) have been used previously by various
authors (Schneider, 1978; Clayton and Stolt, 1981; Castle,
1982; Carter and Frazer, 1984; Wiggins, 1984; Berryhill,
1984). The main point of our paper is that we critically
analyze the approximations that are involved. One important
conclusion is that the inverse extrapolation results are nec­
essarily spatially band-limited. A second conclusion is that
second-order amplitude errors are made. Hence, for large
contrasts, where the errors would be large, a refinement is
required.

ABSTRACT

Forward wave-field extrapolation operators stmu­

late propagation effects from one depth level to an­
other. Inverse wave-field extrapolation operators elim­
inate those propagation effects. Since forward wave­
field extrapolation can be described in terms of spatial
convolution, inverse wave-field extrapolation can be
described in terms of spatial deconvolution. A simple
approximation to a stable, spatially band-limited de­
convolution operator is obtained by taking the com­
plex conjugate of the convolution operator. A one-way
version of the Kirchhoff integral that contains the
conjugate complex Green's function is derived. Unlike
the situation with respect to the forward problem, the
modification of the closed surface integral into an open
boundary integral involves an approximation that IS

identical to the approximation in the conjugate com­
plex deconvolution approach. This approximation ne­
glects the evanescent field and causes a second-order
amplitude error.

For a plane acquisition surface, the one-way Kirch­
hoff integral is transformed into a one-way Rayleigh
integral. For media with small to moderate contrasts,
the one-way Rayleigh integral with the conjugate com­
plex Green's function describes true amplitude inverse I
extrapolation .of pri~ary waves. ~his is ill~strated with I'

an example, In which the Green s function has been
modeled with the Gaussian beam method. ~

INTRODUCTION

In one-way seismic modeling and inversion, it is common
practice to consider the incident (downgoing) wave field and
the scattered (upgoing) wave field separately. One-way
seismic modeling is essentially based on forward extrapola­
tion of downgoing and upgoing waves (simulation of propa-

pV . GVP) + k2p = 0, (I a)
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854 Wapenaar et al,

(4)

~~.
p

~.
p

n

(b)

(a)

f V . Q dV = f Q . n dS
v s

With these two Green's wave fields, two versions of the
Kirchhoff integral can be derived. When we apply the
theorem of Gauss,

VG VP
QI = - P - G -, (5a)

p p

where P and G satisfy equations (la) and (2) in V, we obtain
the first version of the Kirchhoff integral:

P(rA, co) = - f p:r) [ VG(r, rA, w)P(r, co)

s

- G(r, rA, w)VP(r, W)] . n dS (5b)

(see Figure 2a).

to the vector function

(3b)

(3a)

(3c)

(b)

for t < O.

(8)

g(r, rA, t) = 0

where the wavenumber k(r, oi) is defined as

with

or

w w
k(r w)= =- (lb)

, yK(r)/p(r) c(rr

and it is assumed that the acoustic wave field is caused by
sources outside V. c(r) represents the space-dependent
propagation velocity, and w represents the radial frequency.
We define a Green's wave field G(r, rA' co), which satisfies in
V the following equation:

pV . GVG) + e«= - pS(r - rA), (2)

where rA = (xA, YA' ZA) denotes the Cartesian coordinates of
an internal point A in V.

Note that when G(r, rA' w) is a solution of equation (2),
then the complex conjugated function G*(r, rA' oi) is also a
solution of equation (2). Throughout this paper, G(r, rA' co) is
the frequency-domain representation of the causal or for­
ward propagating Green's wave field g(r, rA' t) according to

Consequently, G*(r, rA' w) is the frequency-domain repre­
sentation of the anticausal or backward propagating
Green's wave field g(r, rA' -t).

(c)

FIG. 1. Four cases of one-way wave-field extrapolation. (a)
Forward extrapolation of downgoing waves. (b) Forward
extrapolation of upgoing waves. (c) Inverse extrapolation of
downgoing waves. (d) Inverse extrapolation of upgoing
waves.

FIG. 2. Assuming sources outside S, the acoustic wave field
at any point A inside S can be calculated when the wave field
and its normal derivative are known on S. For this purpose,
we may use either Kirchhoff integral (5b) with the forward
propagating Green's wave field (a) or Kirchhoff integral (6b)
with the backward propagating Green's wave field (b).
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Inverse Extrapolation of Primary Seismic Waves 855

(6a)

On the other hand, when we apply the theorem of Gauss to
the vector function

VG* VP
QJ=--P-G*-- p p ,

where P and G* satisfy equations (l a) and (2) in V. we obtain
the second version of the Kirchhoff integral:

P(rA, w) = - f pif) [ VG*(r, fA, W)P(f, w)

S

- G*(r,rA' w)VP(r, W)] . n dS (6b)

(see Figure 2b).
Both versions of the Kirchhoff integral are exact. In paper

I, we used the version with the forward-propagating Green's
functions (5b) to derive forward wave-field extrapolation
operators. In this paper, we use the version with the back­
ward-propagating Green's functions (6b) to derive inverse
wave-field extrapolation operators.

MODIFYING THE KIRCHHOFF INTEGRAL
FOR SEISMIC DATA

wave field from So to A. This approach is certainly not exact.
However. it is a very practical solution and therefore we also
use it in this paper, but first we critically analyze the
approximations that necessarily occur because the radiation
conditions are not satisfied. In our analysis, we consider the
modified representation of seismic data as shown in Figure
3c. Here it is assumed that the scattered wave field is
radiated by (unknown) secondary sources in the subsurface.

Closed surface S consists of acquisition surface So, a plane
horizontal reference surface Slat z = Z1 (between A and the
secondary sources of interest), and a cylindrical surface S2
with a vertical axis through A and radius R. Note that
volume V. enclosed by S, is assumed to be source-free.

Also note that because V does not cover the entire lower
half-space (as in Figure 3b), knowledge of the medium (for
the computation of the Green's functions) is required only in
the region between acquisition surface So and the secondary
source. Consider Kirchhoff integral (6b) with the backward­
propagating Green's functions. The contribution of this
integral over S~ vanishes when R goes to infinity (the
cylindrical surface is proportional to R, the integrand is
proportional to IIR~). Consequently, for the geometry of
Figure 3c, the Kirchhoff integral (6b) may be replaced by

source

(c)

'i--~ --!TJ{~;;'"~-}'
~ S,(z=z,)

secondary n
source

n

n

n

scatlarlng
object

(a)

(b)

source

FIG. 3. (a) Simpfified representation of the seismic situation.
(b) Geometry for the Kirchhoff integral (5b) with the for­
ward-propagating Green's functions. The scattered wave
field in A can be computed only when the scattering objects
are known. (c) Geometry for the Kirchhoff integral (6b) with
the backward-propagating Green's functions. Under certain
conditions (discussed in the text) the contribution of this
integral over S I can be neglected.

Consider Figure 3a, which symbolically represents seis­
mic data acquisition. Our aim is to derive the scattered wave
field at subsurface point A from the measured wave field at
acquisition surface So' For this purpose, we want to apply
the Kirchhoff integral, either with forward-propagating
Green's functions (5b) or with backward-propagating
Green's functions (6b). We construct a closed surface S
surrounding a source-free volume V. Therefore. first we
consider Figure 3b, where closed surface S consists of
acquisition surface So and a hemisphere S 1 with radius R in
the lower half-space. Of course, no measurements are avail­
able on the hemisphere S 1 •

Suppose we apply Kirchhoff integral (5b) with the forward
propagating Green's functions. Then, the contribution of this
integral over S 1 vanishes when R goes to infinity ISommer­
feld radiation condition, Bleistein (1984)J, so the Kirchhoff
integral (5b) need only be evaluated over the acquisition
surface So' Note, however, that in order to compute the
Green's function G(r, fA' w), knowledge of the medium is
required in the entire half-space below So, including the
"scattering objects" [G(r, rA' eo) satisfies equation (2), which
should hold throughout VJ. This means that with the aid of
Kirchhoff integral (5b), we can compute the scattered wave
field at A (the objective) only when the scattering objects are
known. Therefore this solution actually describes forward
modeling; it has no practical value for inverse wave-field
extrapolation.

Suppose, on the other hand, that we apply Kirchhoff
integral (6b), with the backward-propagating Green's func­
tions. Then the contribution of this integral over S I does not
vanish when R goes to infinity [the Sommerfeld radiation
condition requires that the Green's function propagates
outward through SI in the same direction as the total wave
field, Bleistein (l984)J. This important aspect is seldom
recognized in the seismic literature. In fact, many authors
use the Kirchhoff integral with the backward-propagating
Green's functions for inverse extrapolation of the scattered
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856 Wapenaar et al.

INVERSE EXTRAPOLATION

and

where

This Kirchhoff integral describes inve rse wave-field extrap­
olation from acqui sition surface So to subsurface point A. It
is interesting to note that , in order to arri ve at this result , it
was essential to make use of the backward-propagat ing
Green ' s function G* (if we had used G instead of G*, then
PO(rA , w) would have vanished instead of I::iP(rA , w), so we
would have obtained a Kirchhoff integral for forward extrap­
olation from SI to A , see also paper I) . The only approxima­
tion in equation (II) is a spatial band limitation (neglecting
evanescent waves at z.). This approximation imposes a
restriction on the maximum obtainable spatial resolution
(Berkhout, 1984). This fundamental aspect of inver se wave­
field extrapolation is not always fully appreciated.

The validity of Kirchhoff integral (II) is demon strated
with a simple example. We consider 2-D wave propagation
in the model shown in Figure 4a. The propagation velocity
equals 2000 m/s. The acou stic pressure field of a buried
dipole source, measured at the curved surface So, is shown
in Figure 4b as a function of space and time. The normal
derivative of the wave field at So is shown in Figure 4c.
Inverse wave-field extrapolation to depth level ZA is carried
out by transforming the data from the time domain to the
frequenc y domain and by applying the 2-D version of equa­
tion (II) for all points A at depth level ZA and for all
frequencies within the seismic bandwidth. The result , trans­
formed back to the time domain, is shown in Figure 5a. It
repre sents a hyperboli cally shaped dipole response. In Fig­
ure 5b the maximum of each trace is shown as a function of
lateral position (dotted line). Not e the perfect match with the
analytically computed response (solid line). The very small
deviations at the edges are due to the limited aperture
(ideally So should be of infinite extent).

(8a)P(r,w) =P - (r,w) at ;;:=Z1

PO(rA, w) = - io~ [VG *P - G*vP] . n as; (7b)

M (rA, w) = - i,~[VG*P - G*vP] . n dS I • (7c)

When M (rA , w) as defined in equation (7c) may be ne­
glected, then equation (7b) describes inverse wave-field
extrapolation (toward the seconda ry sources) from acqui si­
tion surface So to subsurface point A. In the following
section we investigate the conditions under which M(rA , w)
may be neglected.

Homogeneous medium; curved acquisition surface

(the positive z-axis is point ing downward ). Similarly, the
Green 's wave field related to the source at A above ZI is
purely downgoing:

G(r , rA, eo) = G + (r , rA' w) at z = ZI ' (8b)

First we consider a homogen eou s medium . At z = z, the
acoustic wave field related to the secondary source below z,
is purely upgoing:

We may now rewrite equation (7c) as

j 750 - - - - - --------'l!-- ----------
z(mJ (:-l4)(9)

Following the derivation in the Appendix , setting r:
G- = 0 and jJP+faz = aG-faz = 0 at Z . yields

0 -

- 1500 - 1000,
100 - - --

(a)

' 000

5.

1500,

I
1500

x(m)

I
' 000

,
'000

I
500

•• _ . r~

500

I
o
Ie)

lb'

1 "' ) "' ...-1.. .....

- 1000 - 500

0 -

0.$ -

!
"a)

1.0 - _

FIG. 4. (a) Homogeneous medium containing a buried dipole
source. (b) Pressure field measured at surface So as a
function of space and time. (c) Normal derivative of the data
in (b).

(II)

(10)

The underl ying assumption is that P- (kx ' k.; z.:w) as defined
by equation (A-3a), c:«; k,., Zl ; XA , YA' z~; w) as defined by
equation (A-3b), or both are negligible in the evanescent
wavenumber area k; + k~ :::: k2

. This assumption is satisfied
when the (secondary) source of the acoustic wave field and
the source (at A ) of the Green's wave field are not both in the
direct vicinit y of SI _ With this result , we may rewrite
equation (7) as

P(rA' w) = PO(rA, w) = - i"p;r) [ VG*(r, rA' w)P(r, w)

- G*(r, rA, w)VP(r, W)] . n as;
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Inverse Extrapolation of Primary Seismic Waves 857

Next we used equation (II) to inverse extrapolate the data
from So to the source depth level z. ~ , thus violating the
condition that A should not be close to the source. Figure Sc
shows the result in the space-time domain. The real part of
the data at 35 Hz is shown as a function of lateral position in
Figure 5d (the imaginary part is approximately zero) . Note
that the dipole source (ideally represented by a spatial delta
function) is smeared out in space due to the inevitahle
neglecting of the evanescent wave field. Theoretically the
width of the main lobe should be equal to the wavelength A

(Berkhout, 1984). In this example Aequals 2000/35 = 57 m.
whereas the width of the main lobe in Figure 5d equals 74 m.
The small difference is explained in the greater part by the
limited aperture . Finally, we carried out inverse wave-fi eld
extrapolation based upon the Rayleigh approximation . That
is, we assumed that only the pressure field per. w) at So is
available and approximated equation (II) by replacing P(r.

w) by 2P(r , w) and by omitting VP(r. w). The result at : ,4 '

transformed back to the time domain. is shown in Figure Se.
Note that, along with the expected hyperbolically shaped
dipole response, some signifi cant artifacts are present in
these data. The maximum of each trace is shown as a
function of lateral position in Figure 5f (dotted line). Note
the significant amplitude deviations from the exact. analyti­
cally computed response (solid line). Obviously the Rayleigh
approximation is not accurate for a curved recording surface
So' We show below that the Rayleigh approximation is
accurate for a flat surface So'

Inhomogeneous medium; curved acquisition surface

We analyze the error term M(r A ' w) given by equation
(7c) for an inhomogeneous medium. At Z = 7, 1 the acoustic
wave field consists of upgoing waves (including higher order
terms) related to the secondary source below 7, 1 and down­
going waves (including higher order terms) caused by scat­
tering above : I' Hence.

P(r,w) =P +(r,w) +P - (r ,w) at Z = Z), (l2a)

(see Figure 6a).
For the Green' s wave field, we may choose below Z = Z I

(outside V) any convenient reference medium. We choose
c(x , y , z > Z. I ) = d x, y , Z I ) and p(x, y, Z > Z I) = p(x, y, Z I ).

With this choice the Green 's wave field at z J is purely
downgoing (no scattering occur s in the lower half-space
below Z J); hence.

G(r.rA .w)=G +(r,rA'w) at Z=7, 1 (12b)

(see also Figures 6b and 6d). We may now rewrite equation
(7c) as

'PI',.w)~ rr~[("~z}{p ' + rJ

(
dP + dP - ) ]

-(G +) * -.- +-- . dx dy: (13)
iil. dZ

z. = Z 1

To analyze this error term, we assume for simplicity Vc =
Vp = 0 at z = Z I ' Following the derivation in the Appendix ,
setting G- = 0 and flG- ld l = 0 at Z J yields

..... ;

,/

ri.) P(U':" .O
0-5 (K>ctt>oI1l

-500 0 500
(c)

x(m)

-500

(b)

500

- lC(m)

(14)

Again the underlying assumption is that the (secondary)
source of the acoustic wave field and the source (at A) of the
Green's wave field are not both in the direct vicinity of S J •

Let us now write the Green 's wave field G+ at 7. 1 as the sum
of a wave field G,; which propagates directly from A to Z =

Z J (Figure 6b) and a wave field G: which is scattered by the
inhomogeneities above A before it arrives at z = Z J (Figure
6d):

G + (r, rA, w) = C,;(r. r A , w) + G/ (r , r A ' w).

(15a)

FIG. 5. (a) Inverse extrapolated data at ZA [Kirchhoff integral
(11)]. (b) Maximum amplitude per trace of (a). (c) Inverse
extrapolated data at z~ [Kirchoff integral (I I)]. (d) Real part
of central frequency component from data in (c). (e) Inverse
extrapolated data at ZA (Rayleigh approximation). (I) Maxi­
mum amplitude per trace of (e).

- 500 o
(e )

500
x(m)

Consequently,

(l5b)
Here (G ;;)* propagate s directly from z = Z I and converges
to A from below (Figure 6c). On the other hand , (G .7)*
propagates from z = Z I ' is scattered by the inhomogeneities
above A, and converges to A from above (Figure 6e). With
the subdivision made in equation (l5b), we may rewrite
equation (14) as

I::..P(rA, w) = LiP,(rA , w) + M 2(rA, co), (l6a)
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858 Wapenaar et al.

where

M'('A. w)~ -'foor ~ [('~:) 'P' L,dXdY

(16b)

or

P(rA, co) = P + (rA, co) + P - (rA, w),

where

(18b)

(18c)

and

Equation (16c) describes backpropagation of the downgoing
wave field P + at z 1 via the scattering medium where the
propagation direction changes, so /:iP2 represents an upgo­
ing wave field at A:

·P,('x. w)~ - 'foof ~ [('~:}p, L,dX dy

(16c)

Equation (16b) describes direct backpropagation of the total
downgoing wave field e: at Z I to A. Hence,

with P oCrA' oi) defined by equation (7b). Hence, assuming
/:iP-(rA' co) may be neglected, we obtain

P-(rA,w)= - f l[VG*p-G*VP] ·ndSo· (19)

So

This expression is used by many authors. It describes
inverse wave-field extrapolation (toward the sources) from
acquisition surface So to subsurface point A (Figure 3c). Our
analysis has shown that in equation (19) evanescent waves
are neglected and that /:iP- (rA' co), as defined by equations
(16c) and (17b), is neglected. The magnitude of the latter
term is proportional to multiply reflected waves. This not
only means that multiply reflected waves are handled erro­
neously by equation (19) but also that the primary wave
contribution to P- (rA' eo) is not fully correct. Neglecting
/:iP-(r A , eo) is justified only when the contrasts in the
medium are moderate. In that case, equation (19) describes
true amplitude inverse extrapolation of primary waves. This
is illustrated below by an example.

When the contrasts in the medium are significant,
/:iP- (rA' to) may not be neglected and should be estimated in
an iterative way. Further discussion is beyond the scope of
this paper.

(17a)

(17b)

/:iP1(rA, w) = P + (r A, w).

Note that, according to equation (16c), /:iP-(rA' eo) is
proportional to the product of the scattered wave P + (Figure
6a) and the scattered backpropagating Green's wave field
(G:)* (Figure 6e). Hence, the magnitude of /:iP-(r A , w) is
proportional to multiply reflected waves. Substituting equa­
tions (16a), (17a), and (17b) into equation (7a) yields

P(rA, eo) = PO(rA' ro) + P + (rA' co) + /:iP - (rA, w) (18a)

(a)

A
------~------~:~:

G+
d

(b)

A
--- - - -~- - - ---~:::

(G~)'

(e)

(d) (e)

FIG. 6. (a) The wave field at z 1 consists of a direct upgoing wave field P - and a scattered downgoing wave field P + .
(b) G; at z 1 represents a Green's wave field which propagates directly from A to z 1 • (c) (G;)* at z 1 represents a
Green's wave field which propagates directly back from z1 to A. (d) Gs+ at z 1 represents a Green's wave field which
is scattered during propagation from A to z I' (e) (G:)* at z 1 represents a Green's wave field which is scattered
during backpropagation from z 1 to A.
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Inverse Extrapolation of Primary Seismic Waves 859

Inhomogeneous medium; plane acquisition surface

When the acquisition surface So is a plane surface at ;: =

zo, we may rewrite equation (19) as

[( )
* ]

cc a: I aG ap
P - (r , oi) =I I - - P - G* - dx dy.

A _ cc _ co p az az
:. =- .:.'0

(20)

For the total wave field at Z = zo' we write

P(r ,w)=P + (r ,w) +P - (r ,w) at z = z() . Cia)

For the Green 's wave field, we may choose above z = z{)
(out side V) any convenient reference medium. We choose
c(x , y, Z < zo) = c(x, y, zo) and p(x, y, z < zo) = p(x, y, zo).
With this choice, the Green 's wave field at Zo is purely
upgoing (no scattering occurs in the half-space above zo);
hence ,

G(r, rA, w) = G- (r, rA, co) at z=zo. (2 Ib)

We may now rewrite equation (20) as

(22)

Although it is not necessary (see also the Appendix of paper
I) , we assume for simplicity that Vc = Vp = 0 at z = Zo.

Following the derivation in the Appendix , setting G~ = 0
and aG+/az = 0 and replacing z, by Zo yields

I
e< IX[I (ac- (r , rA, W)) * ]

""2 - 00 - oc p aZ P -(r,w) ~()dXdY.

(23a)

Compare this result with equation (l3b) in paper I:

P(rA' w)

(23b)

Equation (23b) is the one-way version of the Rayleigh II
integral for forward extrapolation (the sources are abo ve 20) .

Analogously , we refer to equation (23a) as the one-way
version of the Rayleigh II integral for inverse extrapolation
(the sources are below ZA). Equation (23b) yields the exact
total wave field at A. Equation (23a), on the other hand ,
yields an approximate version of the upgoing wave field at
A. The approximations involve neglecting evanescent wave s
and neglecting tiP-erA' w), which is proportional to (but not
restricted to) multiply reflected waves.

We demonstrate the validity of equation (23a) with the aid of
a numerical 2-D example. Consider the inhomogeneous me-

dium shown in Figure 7a. A line source is buried in the
subsurface at a depth of z = 600 m. The response at z = Zoof
this source is shown in Figure 7b. This response was computed
with a finite-difference modeling scheme. It represents the
acoustic pressure p as a function of the lateral coordinate x and
time t. Because the upper half-space z < Zo is homogeneous
and the acquisition surface Zo is reflection-free, the recorded
pressure represents an upgoing wave field; hence, P =

P-(x, zo, f) . By applying a Fourier transform from time t to
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860 Wapenaar et al.

CONCLUSIONS

Rayleigh II integrals for P and S waves (Wapenaar and
Haime ; 1989).

0.1

0.2

0.0

1 1
9 0 1
o 0 0

(8)

1 2 3 4 5 6 7 8
00000000

1

·20

·30

-40

·10

Ampl(dB)

o

(b)

-50 .L.- - _ _ - - - _ - - - .....J

P(rA, w) = -f ~ [VGP - GVP] . n dS (24a)

s

(I) Two equivalent versions of the Kirchhoff integral have
been reviewed for inhomogeneous fluids:

frequency w, the data are decomposed into monochromatic
wave fields F'tx, Zo, w). Inverse extrapolation of these data to
depth level ZA is described by equation (23a); hence, we first
need to compute the Green 's wave fieldsat z, for many Green 's
source points A at Z=ZA' This is actually e forward modeling
problem. By solving the 2-D version of equation (2) numeri­
cally, one obtains the monochromatic monopole response
G(x , Z; XA , ZA ; w). Of course , any accurate modeling algorithm
can be used for this purpose. Here we use the Gaussian beam
method. This method involves shooting a fan of rays (Figure
7c) and solving a high-frequency approximation to wave equa­
tion (2) around each ray . The resulting beams exhibit a Gaus­
sian amplitude distribution around the rays. The response at
any point (x, z) is now found by superimposing the contribu­
tions of the individual beams at that point. Figure 7d shows the
time-domain representation of the (band-limited)Green's wave
fieldg-(x, Zo; XA , ZA; f). For more information on the Gaussian
beam method, the reader is referred to Cerveny et al. (1982).

Applying equation (23a) for all A at Z = ZA and for all
frequencies within the seismic band yields , after applying an
inverse Fourier transform, the space-time data P-(x , ZA ' t)
(see also Figure 8a).

Note that the distorting propagation effects of the over­
burden have been removed (compare with Figure 7b). Figure
8b shows the maximum amplitude of each trace as a funct ion
of lateral position x. Note the almost constant amplitude
along the line source. Figure 8c shows the central trace of
the inversely extrapolated data in Figure 8a. For compari­
son , in Figure 8d the wavelet is shown that was used for
modeling the input data (Figure 7b). Apparently the inverse
extrapolation restored the wavelet almost perfectl y. For
applications of true amplitude inverse wave-field extrapola­
tion in 2-D and 3-D prestack redatuming, the reader is
referred to Peels (1988) and Kinneging et al. (1989).

DISCUSSION
Amp!

1.5

FIG. 8. (a) Inverse extrapolated data at ZA = 600 m. (b)
Maximum amplitude per trace of (a) (logarithmic scale). (e)
Central trace of (a). (d) Wavelet used for modeling the input
data of Figure 7b.

Inverse one-way wave-field extrapolation, as described by
Rayleigh II integral (23a), is not directly applicable to seismic
data where the particle velocity rather than the upgoing pres­
sure wave field is measured . Berkhout and Wapenaar (1988)
have proposed the following processing sequence:

(1) Decomposition of the seismic response into
downgoing and upgoing waves.

(2) Elimination of surface related multiple reflec­
tions.

(3) Estimation of the macro subsurface model.
(4) Prestack migration , yielding angle-dependent re­

flectivity.
(5) Elastic inversion for velocity and density.
(6) Lithologic inversion for rock and pore parame­

ters.

After the first two steps, the data may be interpreted as if
upgoing waves (related to downgoing source waves) were
measured at a reflection-free acquisition surface. Hence, the
one-way Rayleigh II integrals (23a) and (23b) may be applied
to these data in step (4) (prestack migration). The above
processing sequence is also applicable to multicomponent
seismic data. In the latter case , the acoustic one-way Ray­
leigh II integrals should be replaced by elastic one-way
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Inverse Extrapolation of Primary Seismic Waves 861

and

P(rA, W) = - f ~ [VG*P - G*vP] . n as. (24b)

S

(4) The one-way Rayleigh integral (26) fits very well into
the seismic processing scheme as proposed by Berkhout and
Wapenaar (1988).
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(2) The Kirchhoff integral (24b) with the backward-propa­
gating Green's wave field has been adapted to seismic data,
yielding

P-(rA,w)= - I~[VG*P-G*vP] -ndSI). (25)

So

Here So represents the acquisition surface and P and VP
represent the wave field at So related to (secondary) sources
below So' Equation (25) describes inverse wave-field extrap­
olation (toward the sources) from So to subsurface point A.
Only the upgoing wave field is reconstructed. The solution is
spatially band-limited (evanescent waves are neglected);
hence, the maximum obtainable spatial resolution is limited
(see Figure 5d). Amplitude errors in P- (rA' to) are of the
same order as result from neglecting multiply reflected
waves (second order). Assuming moderate contrasts. Kirch­
hoff integral (25) describes true amplitude inverse extrapo­
lation of primary waves. When the contrasts are significant,
an iterative procedure must be applied.

(3) For a planar acquisition surface, the Kirchhoff integral
(25) can be transformed into a one-way Rayleigh-type inte­
gral for inverse wave-field extrapolation, yielding

J
x JX I [(aG -)" ]

P-(rA,w)=2 -x -xr ~ P- .: (26)

Assuming moderate contrasts, Rayleigh integral (26) describes
true amplitude inverse extrapolation of primary waves (Figure
8).
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APPENDIX

ONE-WAY VERSIONS 010- THE KIRCHHOFF INTEGRAL

WITH BACKWARD PROPAGATING GREEN'S WAVE FIELDS

Consider the following expression:

Jx JO£ [(aG + ec -)*
fl = _ x _ -o ~ +~ (P + + P

(
ap+ ap-)]

- (G + + G -)* -- +-.- dx dy;
az iJz

::: = 2 1

where

r : =P±(x,y,z;w)

and

(A-I)

(A-2a)

(A-2b)

Define the 2-D spatial Fourier transforms of p± and G± by

= I~£I~ x P ± (x, y, z; w)ei(kxx + kyY) dx dy (A-3a)

and
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862 Wapenaar et at

Similarly, for evanescent waves (k; + k; > ki), equations
(A-6), (A-7), and (A-8) imply

= Joo Joo G + (x y z: x y z· w)ei(k,x + k,y) dx dy, , , A, A, A, .
- 00 -Y.)

(A-3b)

According to the 2-D version of Parseval's theorem (Dud­
geon and Mersereau, 1984), we may replace equation (A-I)
by

[(
ac + ) * _ (ac -) * _ ]=2 -- p++ -- p-

az az
z = z\

(A-9a)

then P± and C± satisfy the following one-way equations:

Let us now assume that P + and P - represent downgoing
and upgoing acoustic wave fields at z = z I and that G+ and
G- represent downgoing and upgoing Green's wave fields at
z = z r- If we assume in addition that the acoustic medium
parameters c and p satisfy

(
ap + aP -)]- (c + + C -)* -- +-- dk x dk .

az az Y
Z = Zl

Vc = Vp = 0 at z = ZJ,

(A-4)

(A-5)

[(
ac + ec -)*-- +-- (p + + P -)

az az

(A-9b)

Substituting these results into equation (A-4) yields

+ (3~J P L, dkA

+2(2~r If [('~z}p-
evanescent waves

(A-6c)

(A-6a)

(A-6b)at Z = Zt;
az

Here

and, consequently,

and

k; = - tVk; + k; - ki for k; + k; > ki,
(A-7b)

where

(A-lO)

The second integral over the evanescent wavenumber area
(k; + k; > k;) is negligible when the source of P± and the
source of the Green's wave field C± (point A) are not both
in the direct vicinity of z 1. Hence,

Note that

and

n~2(2~)',J f ,[('~:rp,
kx+k,.sk\

+ (';z-rp -l~" dk , dk,. (A-II.)

(A-8a)

(A-7c)

(A-8b)

Now for propagating waves, (k; + k; :S ki), equations
(A-6), (A-7), and (A-8) imply

or by adding a negligible integral over the evanescent wave­
number area,
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Inverse Extrapolation of Primary Seismic Waves 863

or, according to the 2-D version of Parseval's theorem.

This expression shows that interaction occurs only for
acoustic wave fields and (back-propagating) Green's wave
fields which propagate in opposite directions through z = Z I'

(A-lIb)

n~2rr[(a~Z')'p,

(
dG -)* ]+ dZ P- dx dy.

z=z

(A-l2)
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