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True-amplitude migration taking fine layering into account

C. P. A. Wapenaar* and F. J. Herrmann*

ABSTRACT

The central process in wave-equation—based depth
migration is inverse wavefield extrapolation. The
commonly applied matched filter approach to inverse
wavefield extrapolation ignores the angle-dependent
amplitude and phase distortions that are related to fine
layering. This may result in dispersed images and erro-
neous amplitude variation with angle of incidence
(AVA) effects.

"Power reciprocity" formulates a relation between
transmitted and reflected wavefields. It provides the
basis for a modified matched filter that does account for
the aforementioned distortions. The correction term by
which the matched filter is modified can be derived
directly from the reflection data. With this modified
matched filter, prestack depth migration will yield non-
dispersed images with correct AVA behavior.

INTRODUCTION

The reflection information in seismic measurements is
blurred by the propagation effects between the surface and the
reflecting boundaries. In seismic migration, one aims to image
the reflection properties by eliminating the propagation effects
from the seismic measurements. These propagation effects are
generally quantified in terms of one-way wavefield propagators
in a macro model (Berkhout, 1982). Consequently, the elimi-
nation of the propagation effects is accomplished by applying
the inverse of these wavefield propagators to the seismic data.
Generally these inverse propagators are approximated by
taking the complex conjugate of the forward propagators
(hereafter referred to as the matched filter approach). It can
be shown that this approach yields accurate results both for
homogeneous as well as inhomogeneous macro models with
small contrasts (Berkhout, 1982; Wapenaar and Berkhout,
1989).

A migrated image reveals details on the order of half the
seismic wavelength. Obviously, details at a smaller scale cannot
be resolved. However, this does not mean that the effects of the
small scale variations of the medium parameters should be
ignored altogether.

Extensive studies on wave propagation through 1-D finely
layered' media have shown that internal multiple scattering
may seriously affect the apparent propagation properties of the
seismic wavefield (see, for example, O'Doherty and Anstey,
1971; Hubral et al., 1980; Resnick et al., 1986; Burridge and
Chang, 1989; Herrmann and Wapenaar, 1993). The main effect
is an angle-dependent dispersion. Current macro models do
not account for this effect. Consequently, this effect is also
ignored in migration. This may result in dispersed images and
erroneous amplitude variation with angle of incidence (AVA)
effects.

In a companion paper (Wapenaar, 1996), we introduce the
3-D generalized primary representation of seismic reflection
data [the notion generalized primary was introduced in Hubral
et al. (1980) who used this term for reflection data from 1-D
finely layered media]. Ideally, the 3-D generalized primary
propagators in this representation are defined in an extended
macro model that accounts for the angle-dependent dispersion
related to the fine layering.

In its explicit form, the generalized primary representation is
linear in the reflection operator. In this paper, we formulate
true amplitude migration as a genuine linear inversion of the
generalized primary representation. The main complication is
that the matched filter approach cannot be used to approxi-
mate the inverse propagators. A modified matched filter will be
proposed, based on a power reciprocity relation between flux
normalized transmitted wavefields (the generalized primary
propagator) and flux normalized reflected wavefields (the
deconvolved seismic data).

1 Fine layering means: layering at a scale smaller to much smaller
than the seismic wave length (not necessarily 1-D).
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Wapenaar and Herrmann

THE GENERALIZED PRIMARY REPRESENTATION

Consider an acoustic medium in which the position is
denoted by the Cartesian coordinate vector x = (x, y, z), with
the z-axis pointing downward. We assume that the upper
half-space z <_ z 0 is homogeneous; the lower half-space z > z 0

may be inhomogeneous. In this configuration, we consider
flux-normalized one-way wavefields, represented in the angu-
lar frequency domain by P + (x) and P - (x), where the super-
scripts "+" and "-" denote downward and upward propaga-
tion, respectively. The frequency variable w is suppressed for
notational convenience. Consider a "one-way source" for
downgoing wavefields at XS and a "one-way detector" for
upgoing wavefields at xD , both in the upper half-space; hence,
z S z o and ZD z 0 . We come back to the concept of

one-way sources and detectors later on in this section. Now the
upgoing wavefield P - (xD ) may be expressed in terms of the
source S (xs ) for downgoing waves, according to

P(xD) = fn Wy (XD X)R + (X)Wg (X, xs)SO (Xs) d 3x,

 (la)

with

Wg (XD, X) = Wg (X, XD) (lb)

(Wapenaar, 1996). Here f denotes the lower half-space
z > z 0 ; Wy (x, xS ) describes generalized downward propa-
gation from xS to x, R + (x) describes reflection at x, and
Wg (xD , x) generalized upward propagation from x to X D ,
respectively (see Figure 1).

If we omit the subscripts g, then equation (1) would be
nothing but an integral formulation of Berkhout's discrete
representation of primary reflection data (Berkhout, 1982). In
its present form, equation (1) is a representation of generalized
primary reflection data. The generalized primary propagators
Wg and Wg are one-way Green's functions defined in a
configuration that is identical to the actual medium above
depth level z and that is scatter-free below z (see Figure 1).
Hence, W and Wy account for internal multiple reflections
occurring in the region between z o and z, whereas reflections
from the region below z are excluded. All internal multiple
reflections occurring in the lower half-space fl are included in
P - (XD ) as a result of the integration along the depth coordi-
nate z.

Equation (1) applies to 3-D inhomogeneous media, includ-
ing fine layering. For practical applications, W and Wy may
either be parameterized or defined in an extended macro
model (with anisotropic anelastic losses) that mimicks the
effects of the fine layering. In both cases the fine layering is
upscaled to macro parameters that describe the statistics of the
fine layering. For laterally invariant media, these two ap-
proaches are discussed, in Herrmann and Wapenaar (1993)
and Wapenaar et al. (1994). For 3-D inhomogeneous media,
these approaches are currently under investigation.

In seismic practice, one-way sources and detectors do not
exist. Moreover, instead of a homogeneous upper half-space
z ^ z 0 , the assumption of a free surface at z 0 would be more
realistic. In two recent publications (Wapenaar and Berkhout,
1989; Verschuur et al., 1992), we discussed a surface-related
preprocessing technique for decomposing seismic data at a
free surface into downgoing and upgoing waves and for
eliminating the surface-related multiple reflections. The situa-
tion after these preprocessing steps (one-way sources and
detectors; free surface removed) matches the conditions for
validating equation (1). In the remainder of this paper, we will
assume that surface-related preprocessing has been applied so
that equation (1) accurately describes the data.

PRINCIPLE OF TRUE-AMPLITUDE MIGRATION

In its explicit form, the generalized primary representation is
linear in the reflection operator R + (x). True-amplitude mi-
gration is based essentially on inverting this representation for
the reflection operator. The circumflex denotes that R + (x) is
a pseudodifferential operator that depends on the horizontal
differentiation operators a/ax and 8/ay. In the following, we
write x = (xH , z), where XH contains the horizontal coordi-
nates, according to XH = (x, y). If we replace R + (XH, z) by
its kernel R + (XH , z; xH), equation (1) may be rewritten as

P (x D ) = f
z

'0 dz J d 2 xHW9 (XD; XH, z)
^	 ^n

X J d 2 XHR + (XH,z;XH)Wg(XH,z; xs)So(Xs)• ( 2 )

To formulate the migration problem more conveniently, we
adopt Berkhout's discrete notation. For equation (2) this yields

P - (zD) = XO(ZD, zs)So (zs),	 (3a)

with the one-way response matrix X 0 (ZD , z s ) defined by

FIG. 1. The generalized primary representation.

XO(ZD, ZS) = G Wg (ZD, Zn)R + (zn)Wg (z , zS), ( 3b)
n=1

with

Wg (ZD, zn) _ {Wg (zn, ZD)},	 (3c)

where T denotes transposition. Each column in any of the
matrices represents (one frequency component of) a dis-
cretized impulse response. See Figure 2 for a visualization of
Wy and X0 for the special case of a 2-D medium. The
summation in equation (3b) accounts for the integral along z in
equation (2). The matrix product R + (zn )Wy (zn , zS ) accounts
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for the 2-D integration in equation (2) with respect to x y for
fixed z = z; the matrix product Wy (z D , z n )R + (z n )
accounts for the 2-D integration with respect to xH for fixed
z = z,^. Actually the matrix-vector product X O (zD , zs )So (zs ) also
describes a 2-D integration. In equation (2), this integral is
absent since the source is represented by a spatial delta
function. This implies that the source vector Sc (z s ) in
equation (3a) contains one nonzero element only. The vector

P- (zD ) in equation (3a) contains P - (xD ) for all XD with zD

fixed. Hence, equation (3) describes all the data (for one
frequency component) in a preprocessed seismic shot record.
In the following, we choose for convenience ZS = Z D = z 0 .
All the data (for one frequency component) in a preprocessed
seismic survey can thus be combined in one equation as follows

P(z 0 ) = X0(zo, zo)So (zo),	 (4)

FIG. 2. Schematic presentation of some matrices appearing in equation (3). The source is a band-limited delta function. FT stands
for a Fourier transform from t to w. (The medium in the middle frame contains macro layers as well as fine layering; only the macro
boundaries are shown).
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Wapenaar and Herrmann

where each column of P - (z o ) contains a data vector (i.e., a
shot record) P - (z 0 ) and where each column of S (z 0 )
contains a source vector S (z o ) with one nonzero element.
By properly ordering the source vectors, we may write

So (z o ) = IS(w),	 (5)

where I is the identity matrix and S(w) is (one frequency
component of) the source spectrum. With this formulation,
true amplitude migration involves the following steps:

1) Compensation for the source spectrum ("deconvolu-
tion"), according to

	Xo(zo, zo) = S - '(w)P (zo)•	 (6)

2) Downward extrapolation to any depth level z = Z m ,
according to

Xo(Zm, Zm) = Fg (Zm, zo)Xo(zo, zo)Fg (zo, Zm), ( 7 )

where

	

Fg (zo, Z m ) = {W9 (zm, zo)} -i	 (8a)

F g

and

	(Z m , zo) = {W, (zo, Z m )}' .	(8b)

Note that

	Fg (Zm, ZO) = {Fg (zo, Zm)}T	 (8c)

because of equation (3c). Numerical inversion of the matrices
Wy and Wy is very unstable and should be avoided at all
costs. This will be discussed again later in the paper.

3) Imaging at any depth level z = Z m , according to

Xo(Zm, Zm) — R + (Zm)	 (9)

in some sense. Here a straightforward integration with
respect to w is not sufficient for obtaining the true-ampli-
tude, angle-dependent reflectivity at depth level Zm. Imaging
for angle-dependent reflectivity is amply discussed in de Bruin
et al. (1990) and Wapenaar et al. (1995) and will not be
discussed in this paper any further.

Downward extrapolation (step 2) is the central process in
this (and any other) depth migration scheme. It involves
inversion of the generalized primary propagators Wy and
W. The dispersion effects in these propagators are accom-
panied with a frequency-dependent amplitude loss that is not
compensated for by the matched filter approach. Hence, just as
is the case with anelastic losses, the matched filter fails to
account for losses that are related to the fine layering. There is
an important difference, however, between anelastic losses and
losses related to fine layering. Whereas anelastic losses repre-
sent a conversion of seismic energy into heat, the "losses"
related to fine layering represent a conversion of forward
propagating seismic energy into backscattered seismic energy
(see Figure 2) (henceforth we will speak of scattering losses).
Moreover, whereas the (approximately) angle independent

anelastic losses could be accounted for by a time-variant
deconvolution process, the angle-dependent scattering losses
require a more advanced approach. Looking at Figure 2, it may
be clear that the scattering losses in Wy can be quantified in
terms of X o , i.e., the deconvolved reflection response. We
elaborate on "the quantification of the scattering loss," not on
"the deconvolved reflection response." We will elaborate on
this in the following two sections.

POWER RECIPROCITY THEOREM FOR ONE-WAY
WAVEFIELDS

We will use reciprocity to quantify the scattering losses and
to derive simple explicit expressions for the inverse generalized
primary propagators. In general, a reciprocity theorem inter-
relates the quantities that characterize two admissable physical
states that could occur in one and the same domain in
space-time (de Hoop, 1988). One can distinguish between
convolution and correlation type reciprocity theorems
(Bojarski, 1983; Fokkema and van den Berg, 1993). Generally
the reciprocity theorems are formulated in terms of two-way
(i.e., total) wavefields. Here we will use a correlation-type
reciprocity theorem for one-way wavefields as the basis for
deriving the inverse wavefield propagators F (z 0 , Z m ) and
F y (z m , z 0 ).  In the Appendix, we derive for the configuration
of Figure 3

({PA (x)} * PB(x) — {PA(x)} *PB(x)) d 2 xH

_ ({Pa(x)}*Ps(x) — {PA(x)} * Pa(x)) d 2 xH, ( 1 0)
Em

where * denotes complex conjugation and where 1 0 and 1 m

denote horizontal depth levels defined by z = z o and z = Z m ,
respectively. The subscripts A and B refer to the two admis-
sable physical states, i.e., PA (x) and PB (x) represent two
acoustic one-way wavefields (for instance two seismic experi-
ments after decomposition). The underlying assumptions are
that the region between I o and 1 m is lossless and source-free
and that the medium parameters for state A and state B are
identical. Moreover, evanescent waves at 10 and Y m are
ignored. The latter approximation is essential for obtaining a
stable inverse propagator in the next section.

Since complex conjugation reverses the propagation direc-
tion, it is seen in equation (10) and in Figure 3 that only waves
propagating in opposition interact with each other [compare

{p+ }*p±
I Pa {Pa }* Ps
IV : z—zo

{PA*} PB { D *} EmE'"` : z = z„^

FIG. 3. Configuration for the power reciprocity theorem (10).
The region between 1 0 and Y m is source-free and there are no
anelastic losses. Note that only oppositely propagating waves
interact with each other.
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with Berkhout and Wapenaar (1989)]. For further interpre-
tation of equation (10), consider the special situation that
P (x) = P (x) = P ± (x). Then equation (10) simplifies to

fl o

(IP + (x)I z — IP(x)1 z) d'XH

_(IP+(x)P— I P (x)12) d 2 xH• (11)

Em

This result states that the net incoming power flux through t o

is equal to the net outgoing power flux through I m . For this
reason, equation (10) is referred to as the power reciprocity
theorem for (flux normalized) one-way wavefields.

Using the matrix-vector notation of the previous section,
equation (10) can be rewritten as

{PA(zo)} HPa(zo) — {PA(zo)} HPa(zo)

_ {PA(Zm)} r'Pa(Zm) — {PA(Zm)} HPa(zm), (12)

where H denotes transposition and complex conjugation.

INVERSE GENERALIZED PRIMARY PROPAGATORS

To derive inverse wavefield propagators, we choose a con-
figuration that is identical to the actual medium between 1 0
and I,,, in Figure 3, that is homogeneous above 1, and
scatter-free below 1m (compare with Figure 1). Moreover, we
choose the sources for both states in the upper half-space
above 1 0 . Hence, analogous to equation (3) we may write for
state A and state B, respectively

PA(zo) = Xo(zo, z01zm)Pa(zo)	 (13a)

and

Pa(zo) = Xo(zo, Z0 Zm)Pa(zo),	 (13b)

where X(z o , z o ^z m ) is the one-way response matrix at z o for
the chosen configuration. Analogous to equation (3b), we may
write for Xo (z o , z o Jz m ):

m

Xo(zo,zoJzm) = J W9(zo,zn)R + (zn)Wg(zn,z0). ( 14 )
n-1

Equation (13) interrelates the wave vectors in the left-hand
side of equation (12). For the wave vectors in the right-hand side
of equation (12), we write

PA(zm) = Wq (zm, zo)PA(zo)	 (15a)

and

Pe(zm) =Wg(zm, zo)Pa(zo)	 (15b)

and, since the half-space below 1m is scatter-free

PA(zm) = Pa(Zm) = O,	 (15c)

where 0 is the null vector. After substituting equations (13)
and (15) into equation (12) we obtain

{PA(zo)} ''(I — {XO(zo, ZOIZm)} HXQ(ZO, Z0JZm))PB(Zo)

_ {PA(zo)} H({Wg (zm, zo)} HWg (zm, zo))PB(zo)• (16)

Since this relation should hold for any choice of PA (z 0 ) and
PB (z 0 ), we obtain

I — {Xo(zo, Z0Izm)} HXo(z0, Z0 Zm)

= {Wg (zm, zo)} HWg (zm, zo). (17)

For the interpretation of equation (17), we consider the special
situation of a horizontally layered medium. Then all matrices
are Toeplitz matrices (i.e., constant along the diagonals) and
their eigenvalues are plane-wave responses. In particular, the
eigenvalues of Wg (z„t , z o ) and Xo (z o , z o Iz m ) are, respec-
tively, the transmission and reflection responses at z m and z o
related to unit incident plane waves at z o . Consequently, for
propagating (i.e., nonevanescent) plane waves the eigenvalues
X w of {W9 } HW9 quantify the energy of the flux normalized
transmission response atz m (i.e., of the downward propagating
generalized primary) and the eigenvalues k X of Xo Xo quan-
tify the energy of the flux normalized reflection response at z o
(i.e., the scattering loss of the generalized primary). Note that
0 <_ X w <_ 1 and 0 X X <_ 1. Moreover, because of equa-
tion (17) we have 1 — X X = X w , which formulates conser-
vation of energy.

We return to the arbitrary inhomogeneous situation. Equa-
tion (17) can be rewritten as

Fg (zo, Zm)Wg (Zm, z0) = I, 	 (18)

with

Fq (zo, zm)

_ (I — {Xo(zo, Zo1Zm)} HXo(ZO, zoIzm)) 1{Wg (zm, zo)} H.

(19)

In the following, we call Fy (z 0 , z m ) the modified matched
filter for inverse extrapolation of the downgoing generalized
primary. The modified matched filter Fy (z m , z 0 ) for the
upgoing generalized primary follows by applying reciprocity
relation (8c). Compared with the usual approximation for flux
normalized primary wavefields,

Fp (Z0, zm) _ {Wp (gym, zo)} ' ,	 (20)

equation (19) shows that the modified matched filter involves
a correction term that can be derived from the data: X' X0
represents a multidimensional cross-correlation of the reflec-
tion measurements related to the region between z o and zm

[see equation (14)], deconvolved for the source spectrum
[analogously to equation (6)]. It is the frequency-domain
equivalent of a correlation along the time axis as well as along
the horizontal x- and y-axes. Since the correction term in
equation (19) is not a scalar but a matrix it takes the angle-
dependency of the dispersion effects into account. To avoid
matrix inversion, which is computationally unattractive and
which may become unstable when X = 1, we use a Neumann
expansion for the correction term. For the kth order approx-
imation we obtain
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{Fg (Z0, zm)} (k)

k

({X0(z0, ZOIZm)} HXo(Z0, ZOIZm))'{Wg (Zm, ZO)} H,

(21)

[compare with our surface related multiple elimination
scheme, see Verschuur et al. (1992)]. The convergence speed
depends on the eigenvalues X X of Xo Xo . For low propaga-
tion angles these eigenvalues are small, implying a fast conver-
gence. For high propagation angles the convergence is slower.
For very high angles, total reflection may occur so that kX = 1
and no convergence is reached at all. In practice this series
expansion is terminated after a limited number of terms,
meaning that the low propagation angles are more accurately
handled than the high angles. An efficient implementation of
this expression is the subject of current research.

Equation (21) was originally derived for inverse wavefield
extrapolation through macro models with large contrasts
(Wapenaar and Berkhout, 1989, Chapter IX). Herman (1992)
used an expression similar to equation (17) to derive an inverse
propagator completely from the reflection response, under the
assumption that the dispersion effects are minimum phase. For
our purpose (3-D prestack migration in arbitrarily inhomoge-
neous media), we prefer not to rely on a minimum phase
assumption. Xo Xo may be derived from the reflection mea-
surements (as mentioned before) whereas Wy (Zm , z 0 ) is
defined preferably in an extended macro model. This yields a
robust and stable inverse propagator.

When anelastic losses also play a role, this propagator needs
to be modified further. Assuming that the anelastic losses do
not depend on the propagation angle, the latter modification
can be accomplished by a time-variant deconvolution process.
Further discussion of this is beyond the scope of this paper.

EXAMPLES

To illustrate the limitations of the matched filter and the
potential of the modified matched filter we consider a 1-D
model. For this situation, all matrix equations given in this
paper simplify to scalar equations in the ray parameter-
frequency (p, w) domain.

Figure 4 shows a 1-D acoustic medium consisting of 15 000
layers with a thickness of 10 cm each. The statistics of the fine
layering are described by fractal Brownian motion (Walden
and Hosken, 1985; Herrmann, 1992). The average velocity c
equals 2500 m/s and the average density p equals 2500 kg/m 3 .

The standard deviations for the velocity and density are
453 m/s and 418 kg/m 3 , respectively. We modeled the upgoing
plane waves, propagating from the bottom to the top of the
configuration. The ray parameter p ranges from 0.0 to 0.81c;
hence, the propagation angle ranges from 0° to 53°. The lower
frame in Figure 4 shows the modeling input at the bottom of
the configuration. It will serve as a reference for the inverse
extrapolation output. The upper frame in Figure 4 shows the
modeling output at the top of the configuration (note that the
angle-dependent scattering losses are significant, particularly
in the last two traces, where tunneling occurs). This result will
serve as the input for the inverse extrapolation experiments.

Figure 5 shows the setup for inverse extrapolation. The
upper frame again shows the modeling result of Figure 4; the
lower frame shows the inverse extrapolation result. For this
particular example, the inverse extrapolation was done with
the primary propagator Fp = { F p } T , with Fp defined in
equation (20). In the ray parameter-frequency domain, this is
a simple phase-shift propagator, hence, the angle-dependent
amplitude and phase distortions are not accounted for.
Figure 6 shows the results of applying thep, w-domain version
of the generalized primary propagator Fy (k) = { Fg (k) } T ,

with Fy (k) defined in equation (21). Any of these results (for
k = 0, 1, 5 or 100) replaces the lower frame in Figure 5.
Figure 6a (k = 0) was obtained with the matched filter
modeled in the actual medium. The results are zero-phase, but
the AVA behavior is worse than in Figure 5, because the
amplitude decay occurred twice (during modeling and during
inverse extrapolation).

Figures 6b, 6c, and 6d were obtained with the modified
matched filter, taking, respectively, one, five, and one hundred
terms of the Neumann series into account. The last result in
particular (Figure 6d) shows a very good amplitude recovery

P —

ti

modeling
(15 000 layers)

ti

y
FIG. 4. Plane-wave transmission response of a 1-D acoustic
medium (the time axis in the upper frame is different from that
in the lower frame).
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up to very high propagation angles (compare with the lower
frame of Figure 4). Moreover, this result appears to be nearly
noise-free, despite the noisy coda in the input data. Appar-
ently, the modified matched filter also accounts for the long
period internal multiples. In practice, however, it is not
feasible to model the generalized primary propagator in the
actual medium, including the correct details of the fine layer-
ing. Therefore we consider another experiment that is closer
to the reality of seismic practice, that is, we replace the
matched filter {Wg } H in equation (21) by its parameterized
version {Wg }H. The relevant parameters are the parameters
of the fractal Brownian motion process that underlies the finely
layered medium in Figure 4. In practice, these parameters can
be derived from a well log, from vertical seismic profile (VSP)
measurements, or (using power reciprocity) directly from the
deconvolved reflection measurements. For a further discussion
on the estimation of these parameters, see Herrmann (1994).

As a result of the parameterization, for this experiment Wg
contains the dispersed primary but not the detail in the coda.
The term Xo Xo in equation (21) is again defined in the actual
medium, since in practice it can be obtained from the mea-
sured data. Figure 7 shows the results of applying the

p, w-domain version of Fy (k) = {Fy (k) } T, for k = 0, 1, 5,
and 10. Comparing these results with Figure 6, we observe that
approximately the same amplitude recovery is achieved. How-
ever, the results in Figure 7 appear to be more noisy because
the long period internal multiples are not accounted for.
Figure 7d (k = 10) is the result that would typically be

(a)

p —

ti

y
	

(b)

inverse
extrapolation

(c)

Fp phase shift only

v

i

FIG. 5. Setup for inverse extrapolation experiments (here a
simple phase-shift extrapolation was applied).

(d)

FIG. 6. Inverse extrapolation results using (a) matched filter,
(b) modified matched filter with one correction term, (c) idem,
with five correction terms, (d) idem, with one hundred correc-
tion terms. The matched filter and the correction terms are
both defined in the actual medium.

D
ow

nl
oa

de
d 

11
/2

9/
23

 to
 1

45
.9

0.
34

.1
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/1
.1

44
40

04



802
	

Wapenaar and Herrmann

obtained in practice. Note that the improvement with respect
to the matched filter result (Figure 7a) is significant again.

CONCLUSIONS

We have derived an inverse wavefield propagator that
accounts for the scattering losses of a generalized primary
propagating through a 3-D inhomogeneous medium with fine

(a)

(b)

(C)

(d)

FIG. 7. Inverse extrapolation results using (a) matched filter,
(b) modified matched filter with one correction term, (c) idem,
with five correction terms, (d) idem, with ten correction terms.
The matched filter has been parameterized; the correction
terms are again defined in the actual medium.

layering [equation (21)]. This propagator is given by the
matched filter {Wg } H , premultiplied by a correction term
that can be derived from the reflection measurements. Wg
may either be parameterized or it may be defined in an
extended macro model. With a 1-D example, we have illus-
trated that this modified matched filter properly accounts for
the angle-dependent amplitude and phase distortions related
to the scattering losses.

By integrating the proposed inverse propagator in a
prestack migration scheme [equations (6) through (9)], one
may expect to obtain a nondispersed image with correct
AVA behavior.
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APPENDIX
POWER RECIPROCITY FOR TWO -WAY AND ONE -WAY WAVEFIELDS

In this Appendix, we derive equation (10) for an arbitrarily
inhomogeneous medium in the configuration of Figure 3, with
the restriction that no lateral variations of the medium param-
eters occur at Y. o and 1 . A more general derivation without this
restriction can be found in Wapenaar and Grimbergen (1996).

Following de Hoop (1988), we consider two acoustic states
{PA , VA } and {PB , VB }, where P is the acoustic pressure and
V the particle velocity, with both in the space-frequency
domain. In a source-free volume 11, these acoustic states satisfy
the following equations:

VPA,B = -JtPVA,B	 (A-1)
and

Jo)
(	 )V VA ,B =- K PAB ,	 A-2

where p is the mass density and K the compression modulus.
Note that we have assumed that the medium parameters in
state A are identical to those in state B. If we also assume that
there are no anelastic losses, then p and K are real. Now it is
easily seen from equations (A-1) and (A-2) that the following
identity holds in °U:

V-(PAV B +VAP B )=0.	 (A-3)

Applying the Gauss theorem thus yields the following power
reciprocity theorem for two-way wavefields:

(PAVB+V *APB)•nd 2 x

= JV (P A V B +V A P B ) d 3 x = 0, (A-4)

where I is the surface enclosing V and n is the outward
pointing normal vector on 1. When the medium in V is
piecewise continuous, then an equation similar to (A-4) applies
to each of the continuous regions within V. Summing over
these regions again yields equation (A-4) for the total volume
and the outer boundary, since the surface integrals cancel at
the inner boundaries.

Next, we replace the closed surface I by two horizontal
surfaces I o and 1 m at z = z o and z = z m , respectively, and
a cylindrical surface with a vertical axis through the origin and
radius r - oc• The contribution of the integral over this
cylindrical surface vanishes (the area of this surface is propor-
tional to r, the integrand is proportional to 1/r 2 for r -^ ce).
Since the normal vectors on I o and 1 m point in opposite
directions, we obtain

*	 *	 2
(P AVz,B + V z,APB) d xH

EJ o

= f (PAVz,s + V z,APB) d 2 xH, (A-5)

^m

where Vz is the vertical component of V. Our aim is to replace
the two -way wavefields in this equation by one -way wavefields.

For convenience, from here onward we assume that the

medium parameters are laterally invariant at I o and 1 m . We
introduce P and VZ as the Radon transforms 2 of P and V.
Applying Parseval's theorem yields

2

()

 fq^

(PAVzsFVz,APB)zod 2 P
 2 z

- (27r) J (z,B + VZ,AN), d 2 P> (A-6)
^Z

where p = (p., py ), withp x andp y being the ray parameters.
At z o and z m , we may use the following relation between the
two-way and one-way wavefields:

^VZJAB — \L2 Lt2)\P )
	 (A-7)
AB '

where

L i = p/ 2q,	 L 2 = q/ 2p	 (A-8)
and

q 2 = c -2 - PI 2, with c 2 = K/P,	 (A-9)

(see for instance Ursin, 1983). Hence, at zp and z„ l we have

PAIVz B +VzAPB =L I(PA +PA) *1'2(PB — PB

+L 2(PA -PA)*L 1 (PB +PB). (A-10)

For the propagating wavefield (Ipl	 c -t ), we have L' L 2 =
1/2. Hence, at z 0 and z r„ we obtain

PAVz,B + V Z , A P B = (PA)*PB - (PA)*PB, for pI ^ c .

(A-11)

Assuming that evanescent waves may be ignored (for II >
c -i at z 0 and Z,,), upon substitution of equation (A-11) into
equation (A-6) we obtain

z

( 2R )	 {(PA)*PB - ()*}zo d2P
Z

()

z

J {(PA)*PB — (PA)*nB} gym d 2 p. (A-12)
^Z

Once again applying Parseval's theorem yields the following
power reciprocity theorem for one-way wavefields:

{(PA)*PB - (PA)*PB} d 2 x H

E0

= 	 {(PA)*PB - (PA)*PB} d 2 x H. (A-13)
E m

The approximation sign (-=) denotes that the evanescent waves
at z o and z,, are neglected in this expression. In the text we
replace = by = when the negligence of evanescent waves is the
only approximation.

2 The Radon transform is a spatial Fourier transform with k x and ky
replaced by wpx and ups , respectively.
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