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Inversion versus migration: A new perspective
to an old discussion

C. P. A. Wapenaar*

ABSTRACT

Seismic imaging techniques can be subdivided into
inversion and migration. The object functions for inver-
sion and migration are, respectively, the medium con-
trast parameters and reflectivity. In this paper, the
relationship between inversion and migration is ap-
proached by analyzing the underlying representations
(the forward models). It appears that the "two-way
representation" (which underlies inversion) as well as
the "one-way representation" (which underlies migra-
tion) can both be expressed in terms of a volume integral
over the appropriate object function. In their linearized
form, these representations account for primaries only.
In this case, the one-way representation in terms of
reflectivity is the most accurate of the two, which implies
that proper migration is more accurate than linearized
inversion.

Internal multiples can be taken into account by the
nonlinear representations. As an alternative, however,
the "generalized primary representation" is introduced.
In its explicit form, this one-way representation is linear
in the reflectivity (opposed to linearized). Nonlinear
effects are implicitly accounted for by the generalized
primary propagators. The generalized primary represen-
tation is a suitable basis for true amplitude migration,
taking the angle-dependent dispersive effects of fine
layering into account.

INTRODUCTION

In the literature on acoustical imaging, in general, and on
seismic imaging, in particular, one may distinguish between a
class of techniques that aims at imaging the medium parame-
ters and another class of techniques in which imaging of the
reflectivity is the main goal. In the following, we refer to these
classes as (multidimensional) "inversion" and "migration,"

respectively (This nomenclature is generally used in the geo-
physical literature. There are, of course, also exceptions.
Curiously, in two consecutive papers in GEOPHYSICS, Bleistein
(1987) uses the term inversion for reflector imaging and Miller
et al. (1987) speak of migration for imaging a specific pertur-
bation of the propagation velocity. With all respect for these
authors, we take the liberty of referring to Bleistein's reflector
imaging as migration and to Miller's velocity imaging as
inversion.). Representative papers on inversion include Cohen
and Bleistein (1979), Clayton and Stolt (1981), Raz (1981),
Bleistein and Cohen (1982), Devaney (1982, 1984), Tarantola
(1984) and Wu and Toksoz (1987). Classical references to
migration are Claerbout (1971, 1985), Schneider (1978), Stolt
(1978), Berkhout and Van Wulfften Palthe (1979), Berkhout
(1982), and Hubral (1983). More recent references on true
AVA migration are de Bruin et al. (1990), Schleicher et al.
(1993), and Beydoun et al. (1994).

For inversion it is common use to define the medium
parameters as a superposition of background and perturbation
parameters. For a given background medium, inversion thus
aims at imaging the contrast between the medium parameters
of the actual medium and the background medium. In the
following, we will refer to the medium contrast parameters as
the "object function" for inversion (a discussion on the deter-
mination of the background medium is beyond the scope of
this paper). The object function for migration, i.e., reflectivity,
is related in a specific manner to the changes of the medium
parameters at the boundaries between the different layers.
Thus, migration aims at imaging the spatial variations of the
parameters of the actual medium.

For a simple two-layer medium, the object functions to be
imaged by inversion and migration are illustrated in Figure 1.
Note that for this specific configuration the object function for
inversion covers the lower half-space whereas the object
function for migration is confined to the depth level of the
interface. Obviously these object functions are related to each
other, hence it is reasonable to assume that inversion and
migration are also related. Indeed, in the first half of the 1980s,
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several authors have discussed this relationship. Without
claiming completeness, we mention Raz (1981), Bleistein and
Cohen (1982), Weglein (1982), Berkhout (1984), Cheng and
Coen (1984), and Stolt and Weglein (1985). As an overall
conclusion from these papers it is fair to say that "linearized
Born inversion" is to a large extent similar to "wave-equation-
based depth migration." It is the author's opinion that the
choice for either one of these methods should be guided
primarily by the type of medium to be imaged and, in close
relation to that, by the type of image that one desires. In
medical imaging and (to a lesser extent) in nondestrucive
testing of construction materials (NDT), the medium may
often be seen as a smooth background medium with a distri-
bution of localized inhomogeneities (point-scatterers) superim-
posed on it. Hence, for these applications inversion is the most
appropriate approach. In seismic reflection experiments, on
the other hand, the boundaries between the different layers are
the main cause for scattering. Hence, for seismic imaging,
migration appears to be the most logical way to go. Optionally,
in an interesting target area the imaged angle-dependent
reflectivity can be translated to medium parameters afterward.
In this respect, note that at Delft University we regard
migration as the nucleus of "seismic inversion in steps"
(Berkhout and Wapenaar, 1990, 1993).

In the present paper, we want to approach the discussion on
the relationship between inversion and migration from another
perspective. Rather than discussing the inversion and migra-
tion algorithms themselves, we will discuss the underlying
representations of the seismic data (the forward models). First,
we will briefly review the well known representation that
follows from the two-way wave equation for the total wavefield
and that expresses the scattered wavefield in terms of a volume
integral over the medium contrast parameters. This represen-
tation is the basis for inversion. Next, along the same lines, we
will derive a representation from a coupled system of one-way
wave equations for downgoing and upgoing waves (In the
following the coupled system of one-way wave equations for
downgoing and upgoing waves will be simply referred to as the

—* K(z)	 —f AK(z)	 —p R(z)

one-way wave equation.) It will appear that this one-way
representation expresses the scattered wavefield in terms of a
volume integral over a contrast operator. From there onward
several approaches can be followed, depending on the choice
of the reference operator. The most straightforward choice of
the reference operator leads to a contrast operator that will be
recognized as a reflection operator. It follows naturally that
this reflection operator is proportional to the vertical changes
of the actual medium parameters (similar as the reflection
function in Figure 1c is proportional to the changes of the
compression modulus in Figure la). In its linearized form, this
one-way representation is the basis for wave-equation—based
depth migration, as described in Berkhout (1982). A more
complicated choice of the reference operator leads to the
so-called 3-D generalized primary representation. In this repre-
sentation, internal multiple scattering is organized quite dif-
ferent in comparison to the usual Neumann or Bremmer series
expansions: it is implicitly included in the propagators. In its
explicit form, however, the generalized primary representation
appears to be linear in the reflection operator (opposed to
linearized). This representation is proposed as the basis for a
true-amplitude (true AVA) migration scheme that takes the
angle-dependent dispersion effects of fine layering into ac-
count. This scheme is discussed in detail in a companion paper
(Wapenaar and Herrmann, 1996).

TWO-WAY REPRESENTATIONS

Nonlinear two-way representation

Consider an inhomogeneous acoustic medium, character-
ized by the compression modulus K(x) and the mass density
p(x), where x is the Cartesian coordinate vector (x, y, z). The
z-axis is pointing downward. The acoustic pressure in this
medium caused by a point source S(x) = S o (x)8(x — XS) is
denoted in the angular frequency domain by P(x). The fre-
quency variable w is suppressed for notational convenience.
Consider a background medium, characterized by K(x) and
p(x). The Green's function in this background medium is
denoted by G(x, x'). Moreover, let the medium contrast
parameters be denoted by OK(x) = K(x) — K(x) and
Op(x) = p(x) — p(x). The two-way wave equations for P(x)
and G(x, x') thus read, respectively,

V. ( 1	 W 2
—VP) + K P = — Sr01,	 (1)
P_

where

w2AK

	(tp
Sot = S o 8(x — xs) — KK P — V -p OP) (2)

and

7 1	)	 w 2

In this form, P(x) and G(x, x') satisfy the same wave equation,
with different source terms. The two-way representation for
the acoustic pressure is thus found by applying the superposi-
tion principle, according to

FIG. 1. Illustration of the object functions for inversion and
migration for the simple situation of a two-layer medium. (a)
Two-layer medium (K is the compression modulus). (b) Object
function for inversion. (c) Object function for migration.

P(x) = J G(x, x')Sror(x') d 3x',	 (4)
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with S ro, given in equation (2) (Morse and Ingard, 1968).
Equation (4) is an integral equation of the second kind for
P(x). An iterative solution is given by the following Neumann
series expansion

{P(x)} (" ) = G(x, xs)So(xs)

+ 
f9t,

G(x, x') [ J KK K
j

(x'){P(x )}^n 1)

— V' (P
	 (x')V'{P(x')}in-1)) d3x',	

(5)

for n > 0, and {P(x)} (°) = G(x, xs )S o (xs ).

Linearized two-way representation

For n = 1, equation (5) reduces to the Born approximation.
Applying integration by parts, the term —GV' • ({pp/pp}V'P (°) )
may be replaced by {Op/pp}V'G • v'P (°) . Applying a high-
frequency approximation to this term yields

{P(x)} (i) = G(x, x s )S o (x s )

in such a way that A is diagonal. Assuming that the medium
parameters are "sufficiently smooth" this decomposition can
be carried out in an exact manner. For an extensive list of
references on the theoretical and numerical aspects, see
Fishman et al. (1987). Recent references in the seismic context
are de Hoop (1992) and Wapenaar and Grimbergen (1996).

Let P and S denote a one-way wave vector and a one-way
source vector, according to P = (P + , P - ) T and S = (S + , S - ) T ,
where P + and P - represent (flux normalized) downgoing and
upgoing waves, respectively, and where S + and S - represent
source functions for downgoing and upgoing waves, respec-
tively. Let these one-way wave and source vectors be related to
the two-way wave vectors, according to

Q = LP and D = LS.	 (10)

Substitution of equations (9) and (10) into the two-way wave
equation (8) yields the one-way wave equation

OP	
(11)

az

where the one-way operator matrix B is defined as

+ J G(x, x')A(x')G(x', xs)So(xs) d 3x', (6 )	

with

	
B = —jcwA + O,	 (12)

where the contrast function .(x') is given by

—co t LK(x')	 p(x')

^ (x) K(x')	 K(x') 
+ p(x') cos y(x')] .	 ( 7 )

Equation (6) is the two-way representation for primary reflec-
tion data. In equation (7), -y(x') is the angle between the rays
of G(x', XS) and G(x, x') at x'. Interpreting the integral in
equation (6) from right to left, one encounters subsequently:
propagation from the source at XS to x', scattering at x' and
propagation from x' to the observation point x. This two-way
representation is the forward model that underlies linearized
Born inversion. We come back to this later on.

FROM TWO -WAY TO ONE -WAY

At the basis of the one-way representations lies the one-way
wave equation, which will be reviewed briefly here. First,
consider the two-way wave equation in matrix form

aQ 	(8)az

with the two-way wave vector defined as Q = (P, VZ ) T  where
VZ is the vertical component of the particle velocity. The
expressions for the two-way operator matrix A and the two-way
source vector D can be found in many references [see for
instance, Kosloff and Baysal (1983) or Wapenaar and
Berkhout, (1989, Chapter III)]. The circumflex on A denotes
its dependency on the horizontal differentiation operators 0/ax
and a/ay. Analogous to the decomposition approach in hori-
zontally layered media [see Ursin, (1983) for an overview],
pseudodifferential operator matrices A, L, and L -1 can be
introduced that satisfy the relation

A = —jWLAL -1 ,	 (9)

at
(13)

From the structure of equations (11) through (13), it follows
that the diagonal operator matrix —jwA explicitly accounts for
propagation and O for scattering caused by the vertical varia-
tions of the medium parameters (both operator matrices also
account implicitly for scattering caused by the horizontal
variations). In particular, by writing

0 = ( R+ R _), (14)

R I and T ± are recognized as the reflection and transmission
operators for downgoing and upgoing waves [the + and —
signs in equation (14) are chosen for later convenience].

The explicit distinction between propagation and scattering
is an important advantage of the one-way wave equation (11)
over the two-way wave equation (8). This property is exploited
in this paper in the derivation of the one-way primary repre-
sentation and the one-way generalized primary representation.

ONE-WAY REPRESENTATIONS

Nonlinear one-way representation

Let P(x) denote the one-way wavefield caused by a one-way
point source S(x) = S ° (x)S(x — xS). Consider a reference
operator B(x) that governs a one-way Green's matrix G(x, x').
Moreover, let the contrast operator be denoted by 0(x) _
B(x) — B(x). The one-way wave equations for P(x) and G(x, x')
thus read, respectively,

OP
— BP = Stot, (15)

az
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where	 p ,

Sror = S 0 8(x - XS) + OP	 (16)	 G(x', x s ) _ 
W(x' XS) o\

 for Z' >Z,	 (25)

and

aG
az - BG = I8(x - x'). 	 (17)

The Green's matrix G(x, x') has the following structure

G + '+ (x, x') G +' - (x x ')
	G(x, x ' ) _ (G-,+(X x ,) G - ' - (x, x')) ,	( 18 )

where the superscripts refer to the propagation direction at x
and x', respectively. P(x) and G(x, x') satisfy the same wave
equation, with different source terms. The one-way represen-
tation for the one-way wave vector P(x) is thus found by
applying the superposition principle, according to

P(x) = J G(x, x')S,oi (x') d 3x',	 (19)

with S,0 given in equation (16). Equation (19) is an integral
equation of the second kind for P(x). An iterative solution is
given by the following Neumann series expansion

{P(x)}") = G(x, xs)So(xs)

+ fa G(X, X')A(x'){P(x')}(n-1) d3X',(20)
3

for n > 0, and {P(x)} (o) = G(x, xs )So (xs ) .

Linearized one-way representation

Choosing n = 1 in equation (20) yields

{P(x)} (' ) = G(x, x s )S o (x s )

+ f G(x, x')A(x')G(x', xs)So(xs) d 3x', (21)

with 0 = B - B. In analogy with equation (12), the reference
operator B is defined as B = - jw A + O. This operator allows
an independent choice of A (propagation) and O (scat-
tering). For the moment we choose

A = A (propagation in the actual medium) (22)

and

0 = 0 (no scattering; O is the null matrix). (23)

As a consequence, the reference operator, B = -ja^A,
accounts for primary propagation in the actual medium. Sub-
stituting this diagonal reference operator into equation (17)
and choosing the appropriate boundary conditions (i.e., out-
going waves for z - -- and for z - x), it follows that the
Green's primary matrix, which we denote by Gp (x, x'), has a
diagonal form as well. In particular,

0	 0
	G(x, x') = 

0 -Wp (x, x'))'  or z' >z,	 (24)

with W	
def

P (x, x') = -Gp ' (x, x') and

with W (x', XS) def G ' + (x', xs ) (the + and - signs are
chosen for later convenience). Wp (x', xs ) and Wp (x, x') will
be referred to as the propagators for the primary downgoing
and upgoing waves in the actual medium. It can be shown that
Wp (x, x') = Wp (x', x) (Wapenaar, 1996).
Another consequence of the choices introduced in equa-

tions (22) and (23) is that the contrast operator, 0 = B - B,
appears to be identical to the scattering operator O of the
actual medium. Hence,

4(x') = G(x') - R ^(X') T ((x')) (26)

Finally, consider a configuration in which the upper half-space
z - z o is homogeneous and choose XS and x in this upper
half-space. In particular, consider the primary upgoing re-
sponse {P - (x)} (1) related to the source function S (xs ) for
downgoing waves and choose S (xs ) = 0. Upon substitution
of equations (24), (25), and (26) into equation (21), one thus
obtains for the lower element in {P(x)} (1)

{P - (x)} ( 1 )

= f W (x, x')R + (x)Wp (x', xs)So(xs) d 3x',(27)

where SZ denotes the lower half-space z' > z 0 .  Equation (27)
is the one-way representation for primary reflection data.
From right to left, one subsequently encounters: downward
propagation from the source at xs to x', reflection at x', and
upward propagation from x' to the observation point x. This
one-way representation was introduced (in a discrete formu-
lation) in Berkhout (1982) for acoustic one-way wavefields in
fluids and modified in Wapenaar and Berkhout (1989) for
elastodynamic one-way wavefields in solids. It is the forward
model that underlies wave-equation-based depth migration.

COMPARISON OF THE LINEARIZED IMAGING APPROACHES

In this section we compare linearized Born inversion and
wave-equation-based depth migration.

Linearized Born inversion.—Given the measured wavefield
P(x) -- {P(x)} (1) , the source S o (xs ) and the Green's
functions G(x', xs ) and G(x, x') in the background medium,
linearized Born inversion aims at imaging the contrast function
A(x') by inverting equation (6).

Wave equation based depth migration.—Given the upgoing
wavefield P (x) - {P (x) } ( 1 ), the downgoing source
S (xs ) and the primary propagators Wp (x', xs ) and Wp (x, x')
in the actual medium, wave-equation-based depth migration
aims at imaging the reflection operator R + (x') by inverting
equation (27). Note that in practice most migration schemes
only image a reflection coefficient R + (x'). Imaging the reflec-
tion operator R + (x') is equivalent with imaging an angle-
dependent reflection coefficient R + (x', a) (Berkhout and
Wapenaar, 1993).

The similarity between both approaches is obvious; here we
want to discuss some differences.
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Scattering.—The contrast function in the two-way represen-
tation describes the difference between the medium parame-
ters of the actual medium and the background medium; the
reflection operator in the one-way representation is propor-
tional to the vertical variations of the actual medium parame-
ters. This distinction was already mentioned in the introduc-
tion and was illustrated for a two-layer medium in Figure 1.
For this same medium it can be shown that the linearized
one-way representation (27) is exact (bear in mind that no
multiple scattering occurs), whereas the linearized two-way
representation (6) involves an approximation. As a conse-
quence, wave-equation–based depth migration may handle the
amplitudes more accurately than linearized Born inversion.

Propagation.—The Green's functions in the two-way repre-
sentation are defined in the background medium, whereas the
propagators in the one-way representation are defined in the
actual medium. In the practice of wave-equation–based depth
migration, these propagators are defined in a macro model,
which accounts for the traveltimes as accurately as possible.
Note the subtle difference with the background medium, used
for inversion: a background medium is by definition different
from the actual medium, hence, the traveltimes of the Green's
functions will generally have a bias. In practice, however, this
difference between the background medium and the macro
model is of minor importance in comparison to the errors
involved both in background and macro model estimation.

Hence, the main advantage of wave-equation-based depth
migration is that it handles the amplitudes more accurately
than linearized Born inversion. Of course, this is only true
when the propagators W and Wp and their inverse versions
are properly computed. Note that these inverse versions are
simply obtained by complex conjugation of the forward prop-
agators. This applies to homogeneous as well as to moderately
inhomogeneous macro models (Berkhout, 1982; Wapenaar
and Berkhout, 1989).

THE GENERALIZED PRIMARY REPRESENTATION

The nonlinear two-way representation (5) as well as its
one-way counterpart (20) both account for multiple scattering.
In particular, upon substitution of 0 = O and G = Gp in the
one-way Neumann series (20), one obtains a generalized
Bremmer series, according to

{P(x)} (n ) = Gp(x, xs)So(xs)

+ f
a

Gp (xx ')^(x '){P(x ')}(n-1) d3x r (28)
l

for n > 0, and {P(x)}(°) = G(x, xs )So (xs ). This is a
generalization (for laterally variant media) of the "geometrical
optics" approach for laterally invariant media (Brekhovskikh,
1960). The main property of a Bremmer series is that each
term fully accounts for one order of multiple reflections. For
further discussion, see Corones (1975) and de Hoop (1992).

Here, we follow a completely different approach that also
accounts for multiple scattering and that exploits the natural
distinction between propagation and scattering in the one-way
reference operator B = –jwA + O. This time we choose

A = A (propagation in the actual medium) (29)

and

p = H(t – z) 	 (scattering only for z < t), (30)

where H(z) is the Heaviside step function and 4 denotes an
arbitrary depth level. Thus, for the reference operator we write

g(xl4) = –jo A(x) + H(t – z)O(x).	 (31)

Hence, for a given value of 4, B(xl4) applies to a configuration
that is identical to the actual medium in the upper half-space
z < 4 and that is scatter-free (i.e., no scattering along the
z-axis) in the lower half-space z > g. Let B(xlt) govern a
Green's matrix G(x, x'I4), as in equation (17), and let
a similar operator B(xl^) govern a reference wave vector
P(xlt), as in equation (11). Note that P(xlcc) = P(x) and
P(xl –cc) = Gp (x, xs ) S° (XS). Following the same procedure as
before, one obtains instead of equation (19)

P(xl)

G(x, x'I^) {S o (x')S(x' – xs) + 0(x')P(x'I^)} d'x'49,3

Sr0 (x')

(32)

or

P(xl) – P(xI )

= J G(x, x) {B(x'I^) – B(x'It)} P(x'I^) d'x',
a'	 (33)

A(x')

where

P(xI^) = G(x, x s )S o (x s ).	 (34)

Next, choose = 4 + dt, divide both sides of equation (33)
by d?, and take the limit for dt –> 0. This yields

a(xI )
 _	 _ G(x' x'()

 a(x'I^)
 P(x'I^) d 3x', (35 )a^	 at

where, according to equation (31),

aB(x'^^) – 6( – z')Q(x').	 (36)a^

Substituting equation (36) into (35) and replacing t by z' in the
result yields

aP(xIz) 
az'	

G(x, x'Iz')O(x')P(x'Iz') d 2xy, (37)
RZ

where xH = (x', y'). Integrating both sides with respect to z'
from –00 to cc, using P(xlcc) = P(x) and P(xl–cc) = G(x,
xs )S ° (xs ), yields
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P(x) = G(x, xs)So(xs)

+ J G(x, x'Jz')O(x')P(x'iz') d 3x', (38)
riJ{ 3

where

P(x'lz') = G(x', xslz')So(xs).	 (39)

Note that the structure of equation (38) very much resem-
bles the structure of the Bremmer series expansion (28).
However, multiple scattering is organized quite differently. In
equations (38) and (39) the multiple scattering effects are fully
included in the Green's matrices G(x, x' z') and G(x', x s Jz' ).
Hence, implicitly equations (38) and (39) are nonlinear in the
scattering operator O(x'). However, in its explicit form, the
system of equations (38) and (39) is linear in O(x') (opposed to
linearized). We will come back to this later.

In the following, we apply this representation to the configu-
ration of Figure 2, in which the upper half-space z ^ z o is
homogeneous. Moreover, we choose XS and x in this upper
half-space. The general structure of the Green's matrices is the
same as in equation (18). With the appropriate boundary condi-
tions (i.e., outgoing waves for z ---^ —cc and for z - x) it follows
that

0	 0G(x, x' Iz') =	 ^ , for z' > z o ?z,
0 —Wy (x, x')

(40)
def

with Wg (x, x') _ —G	 (x, x'Iz') and

Wy (x', XS) 0
G(x', xslz') _	

0	
0^, for z' >z o ^zs,

(41)

with Wg (x', XS) =_ 
G

 +,+ (x', XS Iz') (remember that for G
the half-spaces above z o as well as below z' are scatter-free
(see Figure 2) so the antidiagonal elements are zero again).
W (x', xS) and Wg (x, x') will be referred to as the propa-
gators for the generalized primary downgoing and upgoing
waves, respectively. It can be shown that W9 (x, x') = Wg (x', x)
(Wapenaar, 1996). These propagators play the same role in

FIG. 2. Configuration for the generalized primary representa-
tion. Wy (x', xS) and Wy (x, x') are defined in the actual
medium between z o and z' and a "scatter-free" half-space
below z'. P - (x) is the response of the actual medium.

equations (40) and (41) as the primary propagators in equa-
tions (24) and (25), but they include multiple scattering in the
region between z o and z', hence the name "generalized
primary." Hubral et al. (1980) and Resnick et al. (1986) used
the same term for the equivalent situation in laterally invariant
media. Finally, consider again the special situation for which
So (xS) = 0. In a similar way as before, for the lower element
in P(x) we obtain

P(x) _ f
fl

Wg(x, x')R + (x')Wg(x', xs)So(xs) d 3x',

 (42)

see Figure 2 again. This generalized primary representation
has the same form as the primary representation (27), but it
includes all multiple scattering in the lower half-space.

The representations (38) and (42) in itself are exact. Of
course in practice approximations must be made. For instance,
the Green's matrix G (and hence the propagators Wg ) could
be approximated by a truncated Bremmer series, analogous to
equation (28) (Wapenaar, 1996, Appendix B). Alternatively,
we can look upon equation (42) as a starting point for an
efficient parameterization of the reflection response. We come
back to this in the next section.

ACCOUNTING FOR FINE LAYERING

In inversion as well as in migration, it is common to ignore
the rapid spatial variations of the medium parameters at a
scale smaller to much smaller than the seismic wavelength (fine
layering). This is understandable, since the resolving power of
any imaging technique is limited to details in the order of half
the wavelength. It is not the intention of this paper to
circumvent this resolution limit and image the small scale
variations. However, it has been recognized by many research-
ers that these small scale variations may seriously affect the
propagation properties of the seismic wavefield. In particular,
in the last three decades much research has been done on wave
propagation through 1-D finely layered media. These studies
have shown that the small scale variations manifest themselves
as an apparent anisotropic dispersion of the seismic wavefield.
Hence, ignoring these variations in inversion or migration
implies that AVA effects are not handled properly. In this
section, we analyze, qualitatively, to what extent the different
representations discussed above account for fine layering, and
we indicate the implications for inversion and migration.
(Throughout this paper we use the term "fine layering" as an
equivalent for "small scale variations," because in seismics it
refers to the most significant small scale variations. Hence,
note that in this paper fine layering is not restricted to 1-D
media.)

Linearized two-way representation

Consider the linearized two-way representation (6) (i.e., the
Born approximation), applied to a scattering volume V with
limited dimensions and choose the source at xs and the
detector at x both outside this volume. The following is a
qualitative analysis, so for convenience we choose a homoge-
neous background medium with propagation velocity c =

. Moreover, we assume Op = 0, so that A(x') does not
depend on the angle -y. Let 0(k) denote the 3-D spatial Fourier
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transform of 0(x'). When the source and detector are in the
far-field of the scattering volume, so that the Green's functions
may be replaced by their Fraunhofer approximations for all x'
in V, then the integral in equation (6) appears to be propor-
tional to 0(kD — ks ) (Wolf, 1969; Devaney, 1982, 1984). Here
ks and kD are wave vectors pointing, respectively, from the
source to the center of the scattering volume and from this
center to the detector. In Figure 3 the total shaded area (dark
and light) represents the Fourier transformed contrast func-
tion 0(k). The dark shaded sphere denotes the area that is
occupied by 0(kD — ks ) for all possible values of ko and ks
in case of a complete acquisition around the scattering volume
(i.e., reflection and transmission measurements). The radius of
this sphere is given by 2w.ax/c, where wmax is the maximum
frequency of the source. In practical situations (reflection
measurements only; limited aperture), only a part of this
sphere is occupied by 0(kD — ks ). The point here, however,
is that the entire area outside the sphere is not occupied by
0(kD — ks ) and thus does not contribute to {P(x)} ( ' ) . In
other words, the linearized two-way representation does not
account for the small scale variations of 0(x'), represented by
the light shaded area in Figure 3. The consequences for Born
inversion are two-fold:

1) Born inversion cannot resolve the small scale variations
of A(x'), represented by the light shaded area in Figure 3
(this is almost trivial, but it is stated here for complete-
ness).

2) Born inversion erroneously resolves the intermediate and
large-scale variations of 0(x'), represented by the dark
shaded sphere in Figure 3. In particular, the image will be
dispersed, since the linearized two-way representation
does not account for the dispersive propagation effects
related to the small scale variations of 0(x').

The latter aspect is illustrated in Figure 4 for a 1-D
experiment, i.e., a vertically propagating plane-wave in a
laterally invariant medium. Figure 4a represents the propaga-
tion velocity c as a function of depth z. It is a periodically
varying function (fine layering), superposed on a step function.

The background velocity c is chosen such that the two-way
primary traveltime tprjm between z o = 0 m and the step at
z I = 1000 m is the same in the background medium as in the
actual medium (hence, c = (s(z)) — ', where (s(z)) is the
slowness, averaged over the indicated depth interval).
Figure 4b shows the Fourier transform 0' (kr ) of the derivative
of the contrast function (the derivative has been taken for
display purposes). It may be seen as a 1-D cross-section (along
the positive kZ -axis) of Figure 3. The spike corresponds to the

FIG. 4. 1-D illustration of the linearized two-way representa-
FiG. 3. Spatially Fourier transformed contrast function. The	 tion (Born approximation). (a) Propagation velocity c(z): step
light shaded area, representative for the fine layering, does not	 function + fine layering. (b) Spatial Fourier transform of the
contribute to the scattered wavefield, as described by the 	 derivative of the contrast function. (c) Reflection response
linearized two-way representation. 	 according to the linearized two-way representation.
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periodic variations in Figure 4a, and the constant (i.e., k,-
independent) level corresponds to the derivative of the step in
Figure 4a. The spectrum of the source, scaled by 2/c, is also
shown in Figure 4b. It may be seen as a 1-D cross-section
(along the positive k Z -axis) of the dark shaded sphere in
Figure 3. Note that W m has been chosen such that the spike
in 0' (kr ) just falls outside the area, occupied by the wavefield.
Hence, following the reasoning above, the Born approximation
does not account for the periodical variations in Figure 4a.
This is confirmed in Figure 4c, which shows the exact reflection
response and the result of the 1-D version of the Born
approximation (6). Note that the Born approximation only
contains the nondispersed response of the step at the primary
traveltime tp,i ,n . It does not account for the time delay and
dispersion caused by the fine layering. In principle, the time
delay could be accounted for by choosing a slightly smaller
value for the background velocity e . However, the fact that the
Born approximation does not account for the dispersion
implies that in Born inversion this dispersion will blur the
image of the step function.

Nonlinear two-way representation

The scattered field described by the Born approximation
may be seen as the first term in the Neumann series (5). It
appeared to be proportional to A(kD - ks ). In a similar way
it can be shown that the second term in the Neumann series is
proportional toI 0(k

D - k)0(k - ks)
 d 3k. 43

IkI'- ( )

Apparently, the entire function A(k) contributes to {P(x)} (2).

The same can be said about higher order approximations. In
other words, the nonlinear, two-way representation does ac-
count for the small scale variations of 0(x'). However, it
cannot be expected that nonlinear, two-way inversion based on
this representation converges for these small scale variations
[since 0(k) cannot be uniquely resolved from the integral in
equation (43)]. As a matter of fact, to stabilize the nonlinear
inversion in practice, the area outside the sphere in Figure 3
should be explicitly excluded from the inversion procedure (for
instance by limiting the discretization of the medium to at most
two samples per shortest wavelength). This also implies that
nonlinear inversion does not account for the dispersion effects,
such as illustrated in Figure 4c.

Linearized one-way representation

Consider the linearized one-way representation (27) (i.e.,
the one-way primary representation), applied to the limited
scattering volume V. For the qualitative analysis, we replace
the reflection operator R + (x') by a reflection coefficient
R + (x'). For convenience, we define the propagators in a
homogeneous macro model with velocity c. Following the
same reasoning as above, {P (x) } (') is proportional to
R + ( kfl - ks ), where R + ( k) represents the 3-D spatial
Fourier transform of R + (x') (see Figure 5). Hence, the
linearized one-way representation and, consequently, wave-
equation-based depth migration, do not account for the small
scale variations of R + (x'), represented by the light shaded
area in Figure 5.

Generalized primary representation

Similar as the two-way Neumann series (5), the one-way
Bremmer series (28) does account for the effects of fine
layering. However, for the same reasons as given above, the
Bremmer series representation is not a good starting point for
deriving a migration technique that compensates for the
dispersion effects of fine layering.

As an alternative, consider the generalized primary repre-
sentation (42), applied to the limited scattering volume V. It
has been observed before that this representation accounts for
all multiple scattering in V, hence, the angle-dependent dis-
persion effects related to the fine layering are included. As a
matter of fact, they are included in the generalized primary
propagators W (x', xS ) and W (x, x'). For practical appli-
cations, these propagators may either be parameterized or they
may be defined in an extended macro model that mimicks the
effects of the fine layering (the medium parameters in such an
extended macro model are complex valued and anisotropic,
even when the actual medium parameters in the finely layered
medium are real-valued and isotropic). In both cases, the fine
layering is upscaled to macro parameters that are related to the
statistics of the fine layering. For laterally invariant media,
these two approaches are discussed, respectively, in Herrmann
and Wapenaar (1993) and Wapenaar et al. (1994). For 3-D
inhomogeneous media, these approaches are currently under
investigation.

For the following qualitative analysis, we replace R + (x')
again by R + ( x'), and we assume for convenience that the
propagators are defined in a homogeneous extended macro
model. Then, based on the similarity between the primary
representation (27) and the generalized primary representa-
tion (42), it follows that P - (x) is again proportional to
R + (kD - ks ) (the dark shaded sphere in Figure 5). The small
scale variations of R + ( x') in equation (42), represented by the
light shaded area in Figure 5, do not contribute to P - (x),
hence, they may be removed by a 3-D spatial low-pass filter.
This leads to the interesting observation that the generalized
primary representation accounts for the effects of the fine
layering, even when

FIG. 5. Spatially Fourier transformed reflection function. The
light shaded area, representative for the fine layering, does not
contribute to the scattered wavefield, as described by the
primary one-way representation.
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Wapenaar

1) Wg (x', xS ) and Wy (x, x') are parameterized or defined
in an extended macro model, and

2) R + (x') in equation (42) is replaced by its low-pass
filtered version.

Before we discuss the consequences for migration, we illustrate
these two aspects for the laterally invariant medium introduced
in Figure 4a. In both examples (Figures 6 and 7) the 1-D
generalized primary propagators Wg (z, 0) = W9 (0, z) have
been modeled according to Wg (z, 0) _ {Wg (z l , 0)}z /z',
where W (z 1 , 0) is the exact (numerically modeled) trans-
mission response atz 1 = 1000 m. This is identical to defining the
propagator in an extended homogeneous macro model, according
to Wg (z, 0) = exp (I[w/(w)jz) = {exp (j[wrc(w)jzt)}

z/z1
,

where c(w) is a complex, frequency-dependent macro velocity.
In the first example, the generalized primary response of the
full reflection function (Figure 6a) is modeled, using the 1-D
version of the generalized primary representation (42). The
result is shown in Figure 6b, together with the exact response.
Note that both responses fully overlap. In the second example,
the reflection function is filtered by a spatial low-pass filter
(Figure 7a). Using the same propagators as before, the re-
sponse of this filtered reflection function appears again to be
identical to the exact response, as is shown in Figure 7b. This
confirms the observation made above.

The consequences for migration are the following. Of
course, just as was the case for nonlinear, two-way inversion,
migration cannot be expected to resolve the small scale
variations of R + (x'), represented by the light shaded area in
Figure 5. On the contrary, since the effects of the fine layering
are included only in the propagators Wg (x', xS ) and Wy (x, x'),
it follows that the estimation of the fine layering should be
integrated in "extended macro model estimation." Hence,
apart from the main geological boundaries and average veloc-
ities, extended macro model estimation should aim for the
parameters that characterize the statistics of the fine layering.
Given the extended macro model, wave-equation—based depth
migration may be formulated as a truly linear inversion of the
generalized primary representation (42). The result is a true
amplitude image of the reflection operator R + (x'). This approach
is discussed further in a companion paper (Wapenaar and
Herrmann, 1996).

REMARKS

As has been noted before, equation (38), and consequently,
the generalized primary representation (42), are implicitly
nonlinear in the scattering operator 0, i.e., in R ± and j±
However, the nonlinearities have been organized such that in
their explicit form these representations are linear (not linear-

R+
	

R+

rime (s)

(b)
FIG. 6. 1-D illustration of the generalized primary representa-
tion. (a) Reflection function R (z). (b) Reflection response
according to the generalized primary representation.

1.94	 1.96	 1.98	 2	 2.02	 2.04	 2.05	 2.09
urns W)

(b)
FIG. 7. 1-D illustration of the generalized primary representa-
tion. (a) Spatially filtered reflection function R + (z). (b)
Reflection response according to the generalized primary
representation.
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ized!). The scattering operators R ± and T ±, that are implicitly
present in W , play an entirely different role from R + ( x') in
the explicit representation (42). The former operators "modi-
fy" the primary waves between the surface and x'; the latter
operator transforms the modified downgoing wave at x' into an
upgoing wave. This explains why R ± in W9 and R + (x') in
equation (42) may be represented in two entirely different ways
(i.e., statistical parameterization versus low-pass filtering),
although they are actually the same operators. It also explains
why there is no paradox for migration: imaging of the low-pass
filtered version of R + (x') in equation (42) requires knowledge
of only the statistical properties of R ± in W.

Note that the above discussed properties of the generalized
primary representation are a consequence of the distinc-
tion between propagation and scattering in the operator
matrix B = -jwA + O in the one-way wave equation. The
two-way wave equation does not make this distinction. For
instance, suppose one would try to improve the linearized
two-way representation (6) by defining G in an extended
macro model, with complex valued K and . Then by definition
the contrast parameters OK and De would also become
complex valued, which would give an undesired phase distor-
tion. The reflection operator R + (x') in equation (42), on
the other hand, is not affected by the choice of the extended
macro model.

CONCLUSIONS

Inversion aims at imaging the medium contrast parameters,
whereas migration aims at imaging the vertical changes of the
actual medium parameters (reflectivity). In this paper we have
related inversion and migration to, respectively, two-way and
one-way representations of the seismic data. The linearized
one-way representation accounts more accurately for primary
reflections than the linearized two-way representation. Hence,
proper wave equation based depth migration produces more
accurate results than linearized Born inversion. (This conclu-
sion applies to the seismic situation, where the boundaries
between the different layers are the main cause for scattering.
It is not necessarily true for medical applications or NDT.)

The fine layering of the subsurface causes angle-dependent
dispersion effects, that are generally ignored in inversion and
migration. Although the two-way Neumann series and the
one-way Bremmer series representations account for fine
layering, they are not suitable starting points for deriving
imaging techniques that compensate for the dispersion effects.
Using the natural distinction between propagation and scatter-
ing in the one-way wave equation, we have introduced the 3-D
generalized primary representation as an alternative for the
one-way Bremmer series representation. In its explicit form,
this representation is linear in the reflection operator; internal
multiple scattering is implicitly included in the generalized
primary propagators. An equivalent (mathematically consis-
tent) two-way representation cannot be given.

Imaging based on the generalized primary representation
involves:

1) Determination of an extended macro model (including
the parameters that characterize the statistics of the fine
layering)

2) True-amplitude (true AVA) migration by linear inver-
sion of the generalized primary representation (42).
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