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3-D migration of cross-spread data:
Resolution and amplitude aspects

C. P. A. Wapenaar∗

ABSTRACT

Ideally, full prestack migration involves a 4-D inte-
gration along the source and receiver coordinates. Obvi-
ously, for cross-spread data (typical for land acquisition)
this 4-D integration cannot be effectuated. An analy-
sis is presented of the resolution and amplitude behav-
ior of full prestack migration, applied to cross-spread
data. Moreover, a proposal is made to modify opera-
tors that partly compensate for the diminishing effects of
the cross-spread aquisition geometry on amplitudes and
resolution.

INTRODUCTION

Three-dimensional migration schemes are based on the as-
sumption that the seismic data have been measured on a 2-D
regular grid. In particular, ideal full prestack migration involves
a numerical evaluation of a 4-D integral along the source co-
ordinates (xS, yS) and along the receiver coordinates (xR, yR).
In practice, this 4-D integration can never be accomplished
because of the acquisition limitations, such as in cross-spread
configurations that are usually encountered in land acquisition
(von Seggern, 1994; Vermeer, 1994).

The most straightforward way of dealing with incomplete
data is by treating the “missing” data as empty traces. As a
result, the spatial resolution decreases and the amplitudes are
imaged erroneously. In principle, these problems can be partly
overcome by inversion techniques based on iterative data fit-
ting (Sevink and Herman, 1995). However, five iterations are
required typically, where the cost of each iteration is compara-
ble with twice the cost of prestack migration. Probably a more
efficient approach is the computation and use of the “Beylkin
determinant” (Bleistein, 1987) for the specific acquisition con-
figuration. However, results of this approach for cross-spread
data have never been published.

The aim of this paper is to analyze the effects of a typ-
ical cross-spread acquisition configuration on full prestack
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migration and to propose modified operators that compensate
partly for these effects. For simplicity, a homogeneous macro
model (with propagation velocity c) will be assumed.

FORWARD MODEL OF 3-D DATA

Assuming a unit point source at (xS, yS, zS = 0) and a unit
point diffractor at (xD, yD, zD > 0), the response measured by a
unit point receiver at (xR, yR, zR = 0) is in the frequency domain
given by the product of two propagation operators, according
to

P(xR, yR, 0 | xS, yS, 0) = W(xR − xD, yR − yD, zD)

×W(xD − xS, yD − yS, zD), (1)

(the angular frequency ω is omitted for notational convenience;
throughout this paper I consider positive ω only). Various choi-
ces are possible for the operator W(x, y, z), depending on the
type of source, diffractor, etc. For convenience I choose dipole
point-source responses, according to

W(x, y, z) = 1
2π

1 + jkr

r

z

r

e− jkr

r
, (2)

for z > 0, with r =
√

x2 + y2 + z2 and k = ω/c. The motivation
for this choice is that the double spatial Fourier transform of
W is given by the well known phase-shift operator, according
to ∫ ∞

−∞

∫ ∞

−∞
W(x, y, z)ej (kxx+kyy) dx dy

= ˜̃W(kx, ky, z) = e− jkzz, (3)

for z> 0, with kz =
√

k2 − k2
x − k2

y. As a consequence the in-
verse operator F , required for downward extrapolation,
is well approximated by the matched filter, according to
F(x, y, z) = W∗(−x, −y, z) = W∗(x, y, z), where ∗ denotes
complex conjugation.
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3-D DOWNWARD EXTRAPOLATION

Complete data

In this subsection it is assumed that the data, described
in the previous section, are available on a complete 4-D
(xS, yS, xR, yR)-grid. Full prestack 3-D downward extrapola-
tion to an arbitrary depth level z > 0 consists of two 2-D
spatial deconvolution processes along the source and receiver
coordinates, according to

P0(x, y, z) =
∫ ∫ ∫ ∫

F(x − xR, y − yR, z)

× P(xR, yR, 0 | xS, yS, 0)

× F(xS− x, yS− y, z) dxR dyR dxS dyS,

(4)
(Berkhout, 1985). Here P0(x, y, z) is a short notation for P(x,
y, z | x, y, z). Imaging usually consists of an integration of P0(x,
y, z) over all frequencies. This is not discussed further in this
paper.

Substitution of the forward model, defined in equation (1),
gives

P0(x, y, z) = PR(x, y, z)PS(x, y, z), (5)

where

PR(x, y, z) =
∫ ∞

−∞

∫ ∞

−∞
F(x − xR, y − yR, z)

× W(xR − xD, yR − yD, zD) dxR dyR, (6)

PS(x, y, z) = PR(x, y, z). (7)

Using some basic results of Fourier theory, PR(x, y, z) may be
expressed in terms of the double spatial Fourier transforms of
W and F , according to

PR(x, y, z) = 1
4π2

∫ ∞

−∞

∫ ∞

−∞
˜̃F(kx, ky, z)

× ˜̃W(kx, ky, zD)e− j {kx(x−xD)+ky(y−yD)} dkx dky, (8)

where ˜̃W(kx , ky, z) is given in equation (3) and where ˜̃F(kx ,
ky, z) = ˜̃W∗(kx , ky, z). Note that ˜̃F(kx , ky, zD) ˜̃W(kx , ky, zD) = 1
for propagating waves (i.e., for k2

x + k2
y ≤ k2), whereas this

product is negligible for evanescent waves (i.e., for k2
x + k2

y >

k2), see Figure 1. Hence, ignoring evanescent waves, for z= zD

equation (8) yields

PR(x, y, zD) = k

2π

J1(kξ)
ξ

(9)

(Berkhout, 1984), where ξ = √
(x − xD)2 + (y − yD)2 and where

J1 is the first-order Bessel function. Using equation (5) yields

P0(x, y, zD) = k2

4π2

J2
1 (kξ)
ξ 2

, (10)

see Figure 2. This result represents the (monochromatic) re-
sponse of the diffractor, “measured” at the depth level of the
diffractor (and therefore it is independent of zD). However, in-
stead of a spatial delta function, a circular symmetric resolution
function is observed. Apparently the resolution is finite, de-
spite the fact that the aperture is infinite. This is because of the
suppression of the evanescent wavefield by the matched filter.

[For a further discussion on this “infinite aperture paradox,”
see Wapenaar (1992)]. The width of the main lobe (measured
at the first “zero crossing”) is approximately 6λ/5, where λ is
the wavelength, defined as λ = 2π/k. Note that the side lobes
have very low amplitudes.

Next, consider an infinite horizontal perfect reflector at
depth zD . This reflector may be seen as a continuous distri-
bution of diffractors at depth level zD , hence, the downward
extrapolation result is obtained by integrating the right-hand
side of equation (10) along xD and yD , according to∫ ∞

−∞

∫ ∞

−∞

k2

4π2

J2
1 (kξ)
ξ 2

dxD dyD

= k2

4π2

∫ ∞

0

J2
1 (kξ)
ξ 2

ξ dξ

∫ 2π

0
dθ = k2

4π
, (11)

[Abramowitz and Stegun, 1970, equation (11.4.6)]. This re-
sult represents the (monochromatic) spatially band-limited
response of the reflector, “measured” at the reflector. The

FIG. 1. The matched filter perfectly inverts propagating waves
(the area within the circle), whereas it suppresses evanescent
waves. (The axes have been scaled by the wavelength λ. Hence,
the scaled radius of the area covered by the propagating wave
field equals λk = 2π).

FIG. 2. Resolution function for complete acquisition. The situ-
ation is shown for xD = yD = 0.
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amplitude is proportional to k2, which corresponds to the spa-
tial bandwidth, see Figure 1. Note that for true-amplitude imag-
ing, a correction factor of 4π/k2 should be applied prior to the
integration along the frequency axis.

Cross-spread data

In this subsection 3-D downward extrapolation is analyzed
for the incomplete data acquisition configuration shown in
Figure 3. This configuration, which contains sources only along
the x-axis and receivers only along the y-axis, may be seen
as the “basic cross-spread configuration” for land acquisition.
Making the substitution

P(xR, yR, 0 | xS, yS, 0)

→ δ(xR)P(xR, yR, 0 | xS, yS, 0)δ(yS) (12)

in equation (4) for 3-D downward extrapolation yields

P0(x, y, z) =
∫ ∞

−∞

∫ ∞

−∞
F(x, y − yR, z)P(0, yR, 0 | xS, 0, 0)

× F(xS− x, −y, z) dyR dxS. (13)

Again, taking P(0, yR, 0 | xS, 0, 0) the response of a diffractor
at (xD, yD, zD), according the equation (1), yields

P0(x, y, z) = PR(x, y, z)PS(x, y, z), (14)

where

PR(x, y, z) =
∫ ∞

−∞
F(x, y − yR, z)

× W(−xD, yR − yD, zD) dyR (15)

and

PS(x, y, z) =
∫ ∞

−∞
W(xD − xS, yD, zD)

× F(xS − x, −y, z) dxS. (16)

Note that this time PR and PS are different. In a similar way
as before, PR(x, y, z) may be expressed in terms of the single
spatial Fourier transforms of W and F , according to

PR(x, y, z) = 1
2π

∫ ∞

−∞
F̃(x, ky, z)

× W̃(−xD, ky, zD)e− jky(y−yD) dky, (17)

FIG. 3. Basic configuration for cross-spread acquisition. The
situation is shown for xD = yD = 0.

where

W̃(x, ky, z) =
∫ ∞

−∞
W(x, y, z)ejkyy dy, (18)

with W(x, y, z) given by equation (2), and

F̃(x, ky, z) = W̃∗(x, ky, z). (19)

We evaluate the integral in equation (18) using the method
of stationary phase (Bleistein, 1984). Upon substitution of the
high-frequency approximation of W(x, y, z), equation (18) can
be written as

W̃(x, ky, z) ≈
∫ ∞

−∞
f (y)ejkφ(y) dy, (20)

where

φ(y) = −
√

y2 + ζ 2 + kyy/k, (21)

f (y) = jkz

2π(y2 + ζ 2)
, (22)

with ζ = √
x2 + z2. Solving φ′(y0) = 0 yields the following ex-

pression for the stationary point

y0 = kyζ/κz, (23)

with κz =
√

k2 − k2
y. For kζ À 1 the stationary phase approxima-

tion of equation (18) thus becomes

W̃(x, ky, z) ≈
√

2π

|kφ′′(y0)| f (y0)ej (kφ(y0)−π/4)

=
√

j κz

2π

z

ζ 3/2
e− j κzζ . (24)

Substituting this result in equation (17) and evaluating the in-
tegral for propagating waves only, yields

PR(x, y, z) ≈ zzD

2π(ζ ζD)3/2

×
∫ k

−k

κz

2π
e− j κz(ζD−ζ )e− jky(y−yD) dky, (25)

with ζD =
√

x2
D + z2

D . Assuming |x2 − x2
D| ¿ z2

D , for z= zD one
obtains

PR(x, y, zD) ≈ z2
D

4π2ζ 3
D

∫ k

−k
κze

− jky(y−yD) dky. (26)

Using the coordinate transformation ky = k cos θ yields

PR(x, y, zD) ≈ k2z2
D

4π2ζ 3
D

∫ π

0
sin2 θe− jk(y−yD) cos θ dθ. (27)

Substituting sin2
θ = 1

2 − 1
2 cos 2θ and using Abramowitz and

Stegun (1970, equations 9.1.21 and 9.1.27) we obtain (see
Figure 4)

PR(x, y, zD) ≈ kz2
D

2π(x2
D + z2

D)3/2

J1(k(y − yD))
2(y − yD)

. (28)

For fixed (xD, yD, zD), this function may be seen as the resolu-
tion function of the receiver array.
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In a similar way, equation (16) yields for |y2 − y2
D| ¿ z2

D (see
Figure 5)

PS(x, y, zD) ≈ kz2
D

2π
(
y2

D + z2
D

)3/2

J1(k(x − xD))
2(x − xD)

. (29)

Fox fixed (xD, yD, zD), this function may be seen as the resolu-
tion function of the source array.

Using equation (14) one finally obtains (see Figure 6)

P0(x, y, zD) ≈ k2z4
D

4π2
(
x2

D + z2
D

)3/2(
y2

D + z2
D

)3/2

× J1(k(x − xD))J1(k(y − yD))
4(x − xD)(y − yD)

. (30)

Fox fixed (xD, yD, zD), this function may be seen as the res-
olution function of the cross-spread acquisition configuration
of Figure 3. The width of the main lobe, measured along the
diagonal, is

√
2 times the width of the main lobe in Figure 2.

Also the side lobes are more pronounced than in Figure 2.
However, taking the severe incompleteness of the data into

FIG. 4. Resolution function of the receiver array. The situation
is shown for xD = yD = 0 and zD = 10λ.

FIG. 5. Resolution function of the source array. The situation
is shown for xD = yD = 0 and zD = 10λ.

account (Figure 3), it may be concluded that the resolution is
quite acceptable. A more serious problem is given by the fact
that the peak value of P0(x, y, zD) in equation (30) depends on
the diffractor position, according to (see Figure 7)

max(P0(x, y, zD)) = k4z4
D

64π2
(
x2

D + z2
D

)3/2(
y2

D + z2
D

)3/2 .

(31)
This implies that a reflector with constant amplitude at z = zD

will be imaged with a varying amplitude. This is confirmed by
the following numerical experiment. Figure 8 shows a rectangu-
lar reflector centered below the acquisition configuration. The
depth is chosen to be zD = 10λ, with λ = 30 m. The response of
this reflector was modeled with equation (1) for a grid of 17×17
diffractors, equally distributed along the reflector, with a grid
spacing of 12 m in both directions. Downward extrapolation to
z = zD was carried out by numerically evaluating the integrals
in equation (13). The result, which is shown in Figure 9, indeed
exhibits a similar amplitude distribution as Figure 7. In the next
section, a true-amplitude operator will be proposed that com-
pensates for the erroneous amplitude distribution observed in
Figures 7 and 9.

FIG.6. Resolution function of the cross-spread acquisition con-
figuration. The situation is shown for xD = yD = 0 and zD = 10λ.

FIG. 7. Peak value of the resolution function for variable
diffractor coordinates xD, yD at zD = 10λ.
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DESIGN OF TRUE-AMPLITUDE OPERATORS

For the compensation of the amplitude factor in equa-
tion (28), several options are available. Here the most
straightforward approach is followed, i.e., the matched filter
F(x, y, z) = W∗(x, y, z) in equation (15) is replaced by

FR(x, y, z) = 2π(x2 + z2)3/2

kz2
W∗(x, y, z), (32)

with W(x, y, z) defined in equation (2). Using a similar analysis
as in the previous section one obtains instead of equation (28)

PR(x, y, zD) ≈ J1(k(y − yD))
2(y − yD)

. (33)

Similarly, by replacing the matched filter in equation (16) by

FS(x, y, z) = 2π(y2 + z2)3/2

kz2
W∗(x, y, z), (34)

FIG. 8. Configuration for the numerical experiments. The size
of the reflector is 200 × 200 m; its depth is 300 m.

FIG. 9. Amplitude cross-section at z = zD : matched filter approach (unlike in Figure 7, the horizontal axes have
not been scaled by the wavelength).

one obtains

PS(x, y, zD) ≈ J1(k(x − xD))
2(x − xD)

, (35)

and, consequently,

P0(x, y, zD) ≈ J1(k(x − xD))J1(k(y − yD))
4(x − xD)(y − yD)

. (36)

For xD = yD = 0 the resolution functions PR, PS, and P0 are the
same as those shown in Figure 4, 5, and 6, respectively (apart
from a scaling factor). The main difference with the results
in the previous section is that the peak value of P0(x, y, zD)
in equation (36) does not depend on the diffractor position.
Moreover, note that∫ ∞

−∞

∫ ∞

−∞

J1(k(x − xD))J1(k(y − yD))
4(x − xD)(y − yD)

dxD dyD = 1,

(37)
(Abramowitz and Stegun, 1970, equations 11.4.16, 6.1.8, and
6.1.9), which means that a horizontal reflector will be imaged
with the correct amplitude.

The experiment of the previous section was repeated, with
the matched filter F replaced by FR and FS, as defined in equa-
tions (32) and (34), respectively. The result, which is shown
in Figure 10 exhibits a constant amplitude along the reflector.
Moreover, unlike in Figure 9, the value of this amplitude equals
one. This confirms the true-amplitude behavior of the modified
matched filters FR and FS.

EXTENSION TO MORE REALISTIC
ACQUISITION CONFIGURATIONS

The configuration of Figure 3 represents an extreme exam-
ple of spatial undersampling. A more realistic configuration is
shown in Figure 11. The resolution function for this configura-
tion is given by a superposition of shifted resolution functions
related to the configuration of Figure 3. Since the amplitude
and shape of these resolution functions are shift-invariant [see
equation (36)], we may conclude that the resolution function
for the configuration of Figure 11 is approximately given by the
resolution function for the configuration of Figure 3, multiplied
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FIG. 10. Amplitude cross section at z = zD : modified matched filters FR and FS.

FIG. 11. Realistic 3-D land acquisition configuration: sources
are properly sampled along the x-axis and severely undersam-
pled along the y-axis; receivers are properly sampled along the
y-axis and severely undersampled along the x-axis.

by the number of source lines and by the number of receiver
lines. Therefore, for the acquisition configuration of Figure 11
one can apply the true-amplitude operators, given by equa-
tions (32) and (34), divided by the product of the number of
source- and receiver lines that contribute to the imaging region
of interest.

CONCLUSIONS

Because of the “incompleteness” of cross-spread seis-
mic data, the spatial resolution of full prestack migration
obtainable is less than what could be obtained with a complete

areal acquisition. Moreover, because the “missing data” are
treated as empty traces, the imaged amplitudes are erroneous.
It has been shown, for one specific acquisition configuration
and a homogeneous macro model, that the downward extrap-
olation operators can be modified to compensate for these
amplitude errors. The modified operators FR and FS [equa-
tions (32) and (34)] have been formulated such that they can
also be applied for inhomogeneous macro models [simply by
inserting for W∗(x, y, z) the appropriate operator]. Of course,
this will only give accurate results for moderately inhomoge-
neous models. The generalization for more complex media re-
quires geometrical spreading corrections, e.g., as derived by
Tygel et al. (1992).

REFERENCES

Abramowitz, M., and Stegun, I. A., 1970, Handbook of mathematical
functions: Dover Publications, Inc.

Berkhout, A. J., 1984, Seismic resolution. A quantitative analysis of
resolving power of acoustical echo techniques: Geophys. Press.

——— 1985, Imaging of acoustic energy by wavefield extrapolation
(3rd edition): Elsevier.

Bleistein, N., 1984, Mathematical methods for wave phenomena:
Academic Press, Inc.

——— 1987, On the imaging of reflectors in the earth: Geophysics, 52,
931–942.

Sevink, G. J., and Herman, G. C., 1995, 3-D nonlinear asymptotic seis-
mic inversion: Application to real and synthetic data: 65th Ann.
Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 639–
642.

Tygel, M., Scheicher, J., and Hubral, P., 1992, Geometrical spreading
corrections of offset reflections in a laterally inhomogeneous earth:
Geophysics, 57, 1054–1063.

Vermeer, G. J. O., 1994, 3-D symmetric sampling: 64th Ann. Internat.
Mtg., Soc. Expl. Geophys., Expanded Abstracts, 906–909.

von Seggern, D., 1994, Depth-imaging resolution of 3-D seismic record-
ing patterns: Geophysics, 59, 564–576.

Wapenaar, C. P. A., 1992, The infinite aperture paradox: J. Seis. Expl.,
1, 325–336.


