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2) We find it convenient to choose the constants A and B
in the equation 7=Alns+B so that Tis equal to 1, 2, ... n at
the new sample points. There is no loss of generality in
this choice; what is important is the value of ¢ that corre-
sponds to each new sample point. To determine A and B
we assign sample # to a chosen time #, and sample n-1 to
the time ¢, -dt, where dt is the maximum sampling inter-
val for the Nyquist frequency. This determines A. We as-
sign sample 1 to the time t,; B and » are then determined.

3) The angle theta was used in Appendix A as a para-
meter in defining the DMO ellipse. It has no physical sig-
nificance and must be eliminated to get the equation of
the ellipse. Unfortunately we also used it in the paper for
the angle of incidence. There is no connection and we
apologize for the confusion.

4) Mohan et al. raise a question as to the phase of the
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DMO operator. The expression for G [equation (CG-2) in
the discussion] can be approximated when
2g2
A’F?
is small. The result is

AF |

There is no singularity when . or K approaches zero.
The only singularity is when F approaches zero, as stated
in Appendix B.

We thank Dr. Mohan and his colleagues for their com-
ments and hope they will publish their results in the area
of chaos/fractals etc.

Gerald H. F. Gardner

On: “Green’s function implementation of common-offset wave equation mi%ration,” (A. Ehinger, P.
18

Lailly and K. J. Marfurt,

The paper by Ehinger and co-authors deals with migration
in complex media in which severe multi-pathing may occur.
I wholeheartedly agree with their remark that the use of com-
plete Green’s functions is preferred over approximate
Green’s functions containing first arrivals only.

In their Appendix the authors derive that the inverse ex-
trapolation operator for downward-propagating waves is
given by the complex conjugate of the forward extrapolation
operator for upward-propagating waves, according to

D

W0 - 2)=W(z—0),
and vice versa
Wl (z—= 0)=W(0- 2).

My first remark is a minor one and concerns the normal-
ization. The authors claim that their results are due to an ad-
equate formulation of the one-way wave equation, which
implies a flux conservation property (I will call this flux-nor-
malization). However, we obtained the same expressions
without this normalization [see for instance Wapenaar and
Berkhout (1989, equations 7.74b and 7.74a), or our paper on
inverse wave field extrapolation in GEOPHYSICS in 1989]. Ap-
parently equations (1) and (2) above apply to operators with
or without flux-normalization. The authors needed this nor-
malization because they derived their inverse operators via
adjoint operators, which is alright, but not essential. Never-
theless, flux-normalization has an added value, because it im-
plies reciprocity of the one-way operators, as I will discuss
below.

My main “concern” is that the authors based their deriva-
tion on a paraxial approximation of the one-way wave equa-
tions. Their remark that equations (1) and (2) are exact for
W’s obeying these paraxial equations is correct but of limited
value, since the considered W’s are not exact.

In the references mentioned above we showed that, for
exact W’s, equations (1) and (2) involve the following ap-
proximations:

1) evanescent waves are neglected,

2) transmission losses and other second and higher order
scattering terms are neglected.

)
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The neglect of evanescent waves is quite fundamental: any
attempt to treat evanescent waves correctly in inverse extrap-
olation leads by definition to unstable results, even in homo-
geneous media (Berkhout and van Wulfften Palthe, 1979).
The neglect of second and higher order scattering terms may
become significant in complex media. In the paper by
Ehinger et al. these approximations are “hidden” in their ini-
tial assumption (i.e., the paraxial approximation of the one-
way wave equation).

In the next section I review a number of theorems for the
one-way wave equation that avoid the paraxial approxima-
tions, and I indicate how these theorems lead to improved in-
verse operators for complex media.

Reciprocity theorems for one-way wave fields and
their application in inverse wave field extrapolation

Consider a wave vector P and a source vector S, defined as

P= [;ﬁ ) andS =[§ ) ®

where 2+ and 2 represent downgoing and upgoing waves,
respectively, and where S+ and S~ represent source functions
for these downgding and upgoing waves. In the following it
is assumed that the one-way wave fields 2* and 2 are flux-
normalized [note that for exact one-way wave fields this
normalization involves pseudo-differential operators
rather than scalar factors; see de Hoop (1992) or
Wapenaar and Grimbergen (1996)]. The one-way wave
equation for these vectors reads (in the frequency domain)

JP “4)

e ]~3P S
where B is a full 2 x 2 matrix, containing functions of the
modified square-root operator [for details, see Fishman et al.
(1987) and the references given above]. Note that the anti-di-
agonal of ﬁ accounts for the coupling between the downgo-
ing and upgoing waves.

In the following I consider two acoustical states, denoted
by the subscripts A and B (Ehinger et al. do something simi-
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lar in equation (A-19)). In general, the wave fields, sources
and material parameters in two different states are interre-
lated via reciprocity theorems [de Hoop (1988), Fokkema and
van den Berg (1993)]. For the one-way wave fields consid-
ered here, the reciprocity theorems read (Wapenaar and
Grimbergen, 1996)
[ PTNP nd’x= )
ZiUZ2 4 ~ B
{4 PT N{B -B }P dir+ |, {PT NS +ST NP }d%
A~|~B ~A) B A~ B A~ B

[T denotes transposition, r = (x, y, z), X=(x, y)] and

H 2. ..
frwe, B JP mad i~ ©
P PH]{B -B }P B+, {PH]S +sHyp }d%,
A ~B ~A B A~ B A~ B

(H denotes transposition and complex conjugation), with

N_(o 1)andl_(1 0) ™
-10 0-1/

In equations (5) and (6), the integration volume 7 is “en-
closed” by two infinite parallel surfaces ¥, and X, normal to
the z-axis, see Figure 1. These surfaces need not be physical
boundaries. The outward pointing normal vector is denoted
by n = (0,0,n,), with n, = -1 at the upper surface X; and
n, =+1 at the lower surface %,.

The one-way reciprocity theorem of the convolution type
(equation 5) is exact and provides a basis for general repre-
sentations of one-way wave fields. One of the consequences
of equation (5) is that the kernels of the one-way extrapola-
tion operators obey reciprocity, according to

w*(r,,1,) =% (r,r,) ®

The one-way reciprocity theorem of the correlation type
(equation 6) has been derived under the assumption that
evanescent wave modes can be ignored. For the special situ-
ation that the media in states A and B are identical and source-
free in 7, the integrals on the right-hand side of equation (6)
vanish, leaving

[ (Pr )20~ P} By () ax =
[5.(Pr o} 2 @) - PO} A @)

(in my notation, * denotes complex conjugation). Note that
when 2; and 2; are negligible in comparison with 2} and 23,
equation (A-19) of Ehinger et al. is obtained. With this ap-
proximation, equations (1) and (2) above can be derived
straightforwardly. In complex media with significant scatter-
ing it is not justified to ignore 2; and #;. In its full form, equa-
tion (9) provides the basis for deriving improved inverse wave
field extrapolation operators. For the kernel Z*(r,,r;) of the
inverse extrapolation operator for downward propagating
waves the following Neumann series expansion is obtained

{7+(r,,r2 )}(k) = {7+(1'1,1'2)}(0) (10)
+j zle(rl,r){7+(r,r2)}(k_n) 4%,

withr, € ¥,,r, e ¥, and (11)

(0 .

{7 (n.n)} ={w (r.r,)}= {w*(r,.m)}*,
[we obtained equation (10) in a slightly different form in
Wapenaar and Berkhout (1989, Chapter 9); Herman (1992)
obtained a similar result]. Note that, according to equation
(11), the leading term of equation (10) is equivalent to
Ehinger’s result [equation (1) above]. The higher order terms
are obtained by iteratively applying equation (10), where
A(r,,r) represents the multi-dimensional cross-correlation of
the deconvolved seismic reflection measurements at X;. Ap-
parently the seismic data itself can be used to modify the in-
verse operators. Intuitively this can be well understood: the
“missing energy” at Z, [i.e., the transmission losses etc. in
72'r,,r))] is contained in the reflection measurements at X,
(assuming no anelastic losses). Using reciprocity [equation
(8)], the kernel 2r,,r,) of the inverse extrapolation operator
for upward propagating waves is given by

Zr,r)=72"r,r)). (12)

SUMMARY

For weakly inhomogeneous media the kernels of the in-
verse extrapolation operators read

{Z' (@) }=(27(rr) b, (13)

{Zr)}={2 (rr )}, (14)
where * denotes complex conjugation [these expressions are
equivalent to equations (1) and (2) above]. These results are
valid with or without flux-normalization, no paraxial ap-
proximation is involved and to some extent multi-pathing is
included. However, evanescent waves are neglected and
transmission losses and other second and higher order scat-
tering terms are neglected as well. For flux-normalized oper-
ators equations (13) and (14) may be generalized to

{Z' k) ) ={7 (1) e=(20"(rpr ) } ¥, (15)

(Z (o) }={2t (v r ) }r={2(r, k) } . (16)

Equations (13) through (16) break down in complex media
with significant scattering. Improved inverse operator kernels
can be obtained via a Neumann expansion; the correction
terms can be derived directly from the seismic reflection mea-
surements [equations (10) through (12)]. These improved in-
verse operator kernels account for multi-pathing,
transmission losses and other second and higher order scat-
tering terms. The only approximation is that evanescent wave
modes are neglected, hence, they are stable and no paraxial
approximation is involved.
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Figure 1. The configuration for the reciprocity theorems.

Kees Wapenaar

Reply by the authors to the discussion by K. Wapenaar

In our paper, the equalities

__ 1
Wl z—=0)=W(0-2) @

W0 z)=W(z—0)

are of central importance for the mathematical correctness of
our proposed common offset wave-equation migration algo-
rithm. In his comment, Kees Wapenaar outlines two “con-
cerns” regarding these equalities:

1) a minor one, concerning the importance of the flux nor-
malization for obtaining (1);

2) a major one, concerning the physical relevance of our
W operators.

Regarding the first “concern,” we do not claim that flux
normalization is essential to obtain equalities of type (1). We
just mean that our very specific choice of W (based on a spe-
cific paraxial wave equation) implies flux normalization and
reciprocity, which results in (1) to be true.

Regarding Kees Wapenaar’s major “concern,” we agree
that our inverse extrapolation operators are the inverse opera-
tors of non-exact forward extrapolation (propagation) opera-
tors. However, there seems to be some misunderstanding
between Kees Wapenaar and us about the kind of “approxi-
mation” we use. In fact, our paraxial operators W certainly
hide some approximations; however, contrarily to what Kees
Wapenaar says, they give rise—in heterogeneous media—to
transmission losses and, to some extent, to multiple scattering.

At this stage it seems thus important to clarify what we
mean by “approximation.” We therefore recall the origin of our
paraxial extrapolators: they are based on specific paraxial wave
equations proposed by Bamberger et al., 1984 (see also
Bamberger et al., 1988). These authors derived a “partial dif-
ferential equation that extends to heterogeneous media the par-
abolic approximation of the wave equation in such a way that

1) the Cauchy problem is mathematically well posed (i.e.
it admits a unique solution that depends continuously on the
initial conditions and on the velocity model)

2) its solution matches at best in the paraxial direction and
for slowly varying media the propagation and transmission
properties of the solution of the full wave equation”
(Bamberger et al., 1984, page 34.)

'note that reflection implies multiple scattering

*The proof of the numerical stability (Collino, 1987) uses a discrete energy inequality
which relies on the above mentioned considerations about the continuous dependance
of the solution both on the initial conditions and on the velocity distribution.

Clearly, transmission losses are, to some extent, taken into
account. The physical properties of the solution of this equa-
tion regarding propagation have been the subject of extensive
studies. Besides the many geophysical papers published on
the subject we would like to mention in particular

1) the many papers published in the field of underwater
acoustics (Tappert, 1977, gives an overview) about propaga-
tion in weakly heterogeneous media,

2 ) Bamberger et al., 1984, who gives, for general hetero-
geneous media, the general properties regarding the propa-
gation of energy and who studies in detail reflection and
transmission properties at an interface!,

3 ) Duquet, 1996, who establishes conditions on the seis-
mic source to be used for the paraxial wavefield to approxi-
mate the true wavefield.

Nevertheless, and we fully agree with Kees Wapenaar at
that point, the extrapolation operators are not exact. They are
approximations that work under severe physical assumptions
(on the velocity model, on the seismic source and on the prop-
agation range) and which, when applied in models with se-
vere velocity contrasts, can give rise to propagation artifacts
(because multiple scattering is modeled in a non-exact way).
Despite of these shortcomings, these approximations have
turned out to give very good results even when applied to the
very complex Marmousi model (see our paper).

Another key issue is, of course, numerical stability and
this is an interesting feature of the specific paraxial extrapo-
lators we use (as shown e.g. by Etgen, 1994, such numerical
stability does not hold for some other extrapolators). This nu-
merical stability results from the great care taken, regarding
the mathematics, to derive the paraxial equations.

The paraxial wave equations thus turns out to be a quite at-
tractive tool for cheap and stable wavefield modeling in strongly
heterogeneous media. This is the reason why they are so widely
used in the geophysical industry, especially in the context of
shot record and poststack depth migration. The purpose of our
paper was to enlarge the realm of these equations by illustrating
their use for the implementation of a cost-effective and stable
common offset wave-equation migration algorithm.

Kees Wapenaar outlines that the same could be done with
other extrapolation operators that better approximate the full

(Continued on p. 1346)
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wave equation. This is good news and, if numerical sta- agation d’ondes application a la migration et a ’inversion des
bility applies, it should make common offset wave-equation données sismiques: PhD thesis, Université Paris IX.
migration even more attractive. Duquet, B., 1996, Amérlioration de 1’imagerie sismique
de structures géologiques complexes: PhD thesis, Université
REFERENCES Paris XIIL
Etgen, J. T., 1994, Stability of explicit depth extrapola-
Bamberger, A., Enquist, B., Halpern, L., and Joly, P., Con- tion through laterally-varying media: 64th Ann. Internat.
struction et analyse d’approximation paraxiale en milieu het- Mtg., Soc. Expl. Geophys., Expanded Abstracts, pages
erogene: Technical Report 114, Rapport interne, Ecole 1266-1269.
Polytechnique, Paris, France, 1984. Tappert, F. D., 1977, The parabolic approximation
1988, Paraxial approximations in heterogeneous method, in Keller and Papadakis, Eds., Wave propagation
media: SIAM Journal on Applied Mathematics, 48, 99-128. a1'21d ungderwater acoustics, Lecture Notes in Physics, Vol. 70,
224-287.

Collino, F., 1987, Analyse numérique de modeles de prop-
Andreas Ehinger, Patrick Lailly, and Kurt J. Marfurt

Errata

To: “2-D magnetic interpretation using the vertical integral,” J. B. C. Silva (March-April 1996 GEOPHYSICS, 61,
p. 387-393)

Equation (2), instead of

g =2 (15 + vy Nyt +7,7,) + 20t = ¥, )ttty = 7%y , (1)
’ (2 +92)’
should read
P Uk Ll e 2 AL G R ) CE Rt n) 2
(ug +})

and equation (5), instead of

Vi (7’;7’0 - ajao) - uij(aﬂ/o + Yjao)
2 .2
e+

b,.j=2 +C | (3)

should read
=V (7;70 - ajao) — U (aij + J/ja,,)

2 2
u; +v;

tCe (4)

To: “Automatic 3-D interpretation of potential-field data using analytic signal derivatives,’ by N. Debeglia
and J. Corpel (January-February 1997 GEOPHYSICS, 62, p. 87-96)

When we sent the last revision of our paper to GEOPHYSICS, we had not yet received the March-April 1996 issue of
GEOPHYSICS and read the paper by Hsu et al. Thereby it could not be included in the references used to assess the method and
write the paper. We note some convergences between the two approaches despite the fact that the depth computation algorithms
are quite different.

S. -K. Hsu, J. -C., Sibuet and C. -T. Shyu have first introduced the generalized form of the analytic signal in a 3-D case, and
we are pleased to cite their paper, “High-resolution detection of geologic boundaries from potential-field anomalies: An enhanced
analytic signal technique,” in March-April 1996 GEOPHYSICS, 61, p. 373-386. As well as ours, their paper points out the im-
provements in resolution resulting from the use of derivatives in analytic signal interpretation.
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