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Short Note

Reciprocity properties of one-way propagators

Kees Wapenaar∗

INTRODUCTION

Acoustic reciprocity is a fundamental property of the wave
equation for the total acoustic wavefield (Rayleigh, 1878). In
its most elementary form the reciprocity principle states that
an acoustic response remains the same when the source and re-
ceiver are interchanged. In terms of Green’s functions this reci-
procity principle reads G(r2, r1) = G(r1, r2), with r = (x, y, z).
For more general expressions and their seismic applications,
see Fokkema and van den Berg (1993).

Evidently, a reciprocity principle for one-way propaga-
tors would imply that the propagators for downgoing waves
are identical to those for upgoing waves [i.e., W+(r2, r1) =
W−(r1, r2)]. However, since one-way propagators are solutions
of the one-way wave equations, it is not at all obvious that they
obey reciprocity. As a matter of fact, for the usual one-way
propagators the reciprocity principle breaks down even in a
simple laterally invariant two-layer configuration. This is be-
cause the transmission coefficients at an interface for down-
going and upgoing waves are not identical (they are given by
T+ = 1 + R and T− = 1 − R, respectively, where R is the reflec-
tion coefficient of the interface).

Whether the reciprocity principle for one-way propagators
is fulfilled or not depends on how the total wavefield is decom-
posed into one-way wavefields. For horizontally layered media
there is a vast amount of literature that makes use of the so-
called flux-normalized decomposition (see, e.g., Frasier, 1970;
Ursin, 1983; Burridge and Chang, 1989). Using flux normal-
ization, the transmission coefficients at an interface for down-
going and upgoing waves are identical (they are both given
by

√
1 − R2) and, as a consequence, flux-normalized one-way

propagators in laterally invariant media obey reciprocity.
The flux-normalized decomposition approach can be gener-

alized for applications in arbitrarily inhomogeneous media (de
Hoop, 1992, 1996). This generalization is based on a modified
version of Claerbout’s square-root operator (Wapenaar and
Berkhout, 1989, App. B). In a recent paper we derived general
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reciprocity theorems for flux-normalized one-way wave-
fields and propagators in arbitrarily inhomogeneous media
(Wapenaar and Grimbergen, 1996).

In this paper I review the different one-way propagators,
show their mutual relation as well as their relation with the
reciprocal Green’s function, and discuss when and why the
reciprocity principle is fulfilled or not. Understanding the reci-
procity properties of (forward and inverse) one-way propa-
gators is relevant for the design of true amplitude migration
schemes.

PRESSURE-NORMALIZED DECOMPOSITION

Usually downgoing and upgoing waves P+ and P− are nor-
malized such that their sum is equal (or proportional) to the
acoustic pressure P of the total wavefield. Therefore, the usual
decomposition will be referred to as pressure-normalized de-
composition. In the seismic literature it was introduced by
Claerbout (1971). Here I consider a slightly modified form of
his relations.

In the space-frequency domain the relation between the
acoustic pressure P and the vertical component of the par-
ticle velocity Vz on the one hand and the pressure-normalized
downgoing and upgoing waves P+ and P− on the other hand
reads (

P

Vz

)
=

 1 1

1
ω%

Ĥ 1
−1
ω%

Ĥ 1

 (
P+

P−

)
, (1)

where ω is the angular frequency and % the mass density. Ĥ 1

is the square-root operator, which is related to the pseudo-
Helmholtz operator Ĥ 2 according to Ĥ 1 Ĥ 1 = Ĥ 2, with

Ĥ 2 =
(

ω

c

)2

+ %
∂

∂x

(
1
%

∂

∂x
·
)

+ %
∂

∂y

(
1
%

∂
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·
)

, (2)
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where c is the propagation velocity. Inverting equation (1)
yields the following decomposition relation:(

P+

P−

)
= 1

2

1
(
Ĥ

−1
1 ω% ·)

1 −(
Ĥ

−1
1 ω% ·)

 (
P

Vz

)
. (3)

For laterally invariant media equations (1) and (3) may be
reformulated in the wavenumber-frequency domain according
to (

P̃

Ṽ z

)
=

 1 1

kz

ω%
− kz

ω%

 (
P̃

+

P̃
−

)
(4)

and (
P̃

+

P̃
−

)
= 1

2


1

ω%

kz

1 −ω%

kz
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(

P̃

Ṽ z

)
, (5)

where kz =
√

ω2/c2 − |k|2, with k = (kx, ky). From the lat-
ter equations the reflection and transmission coefficients at a
horizontal interface between two homogeneous layers can be
derived easily by using the continuity of P̃ and Ṽ z at the inter-
face. The result is

R̃ = %2/kz,2 − %1/kz,1

%2/kz,2 + %1/kz,1
(6)

and

T̃
+ = 1 + R̃, T̃

− = 1 − R̃, (7)

where subscripts 1 and 2 refer to the two layers. Note that

T̃
+ = kz,1

kz,2

%2

%1
T̃

−
. (8)

PRESSURE-NORMALIZED EXTRAPOLATION

Forward extrapolation

In the space-frequency domain, forward one-way wavefield
extrapolation of a pressure-normalized downgoing wavefield
P+ from depth level z1 to depth level z2 (with z2 > z1) is formally
described by

P+(x, z2) =
∫ ∞

−∞

∫ ∞

−∞
W+(x, z2; x′, z1)P+(x′, z1) d2x′,

(9)
where x = (x, y) (Schneider, 1978; Berkhout and van Wulfften
Palthe, 1979). Similarly, for a pressure-normalized upgoing
wave we may write

P−(x′, z1) =
∫ ∞

−∞

∫ ∞

−∞
W−(x′, z1; x, z2)P−(x, z2) d2x.

(10)
Assuming an arbitrarily inhomogeneous medium in the region
z1 < z< z2 and ignoring scattering contributions from regions
z ≤ z1 and z≥ z2, the pressure-normalized one-way propaga-
tors W± may be expressed in terms of the Green’s function

according to

W+(x, z2; x′, z1) = ∂G(x, z2; x′, z1)
∂z1

2
%(x′, z1)

(11)

and

W−(x′, z1; x, z2) = −∂G(x′, z1; x, z2)
∂z2

2
%(x, z2)

. (12)

The Green’s function G represents the response of a monopole
source, observed by a monopole receiver; its reciprocity prop-
erty reads G(x, z2; x′, z1) = G(x′, z1; x, z2). According to equa-
tions (11) and (12) each of the one-way propagators represents
the response of a scaled dipole source, observed by a monopole
receiver. This asymmetry between the source and receiver char-
acteristics implies that in general these pressure-normalized
one-way propagators are not reciprocal [i.e., W+(x, z2; x′, z1) 6=
W−(x′, z1; x, z2); for the special case of a homogeneous medium
these propagators are reciprocal].

It is illustrative to relate the asymmetry in equations (11)
and (12) to the asymmetry between the transmission coeffi-
cients for downgoing and upgoing waves. For the situation
of two homogeneous layers, separated by a horizontal in-
terface, equations (11) and (12) may be reformulated in the
wavenumber-frequency domain according to

W̃
+(k, z2; z1) = G̃(k, z2; z1)

2 jkz,1

%1
(13)

and

W̃
−(k, z1; z2) = G̃(k, z1; z2)

2 jkz,2

%2
. (14)

(Bear in mind that z2 > z1.) In this domain the reciprocity prin-
ciple for the Green’s function reads G̃(k, z2; z1) = G̃(k, z1; z2)
and thus

W̃
+(k, z2; z1) = kz,1

kz,2

%2

%1
W̃

−(k, z1; z2). (15)

Note the consistency with equation (8).

Inverse extrapolation

Inverse extrapolation of pressure-normalized one-way
wavefields is formally described by

P+(x′, z1) =
∫ ∞

−∞

∫ ∞

−∞
F+(x′, z1; x, z2)P+(x, z2) d2x

(16)
and

P−(x, z2) =
∫ ∞

−∞

∫ ∞

−∞
F−(x, z2; x′, z1)P−(x′, z1) d2x′.

(17)
The inverse propagator for downgoing waves may be approx-
imated by the complex conjugated forward propagator for
upgoing waves and vice versa, according to (Wapenaar and
Berkhout, 1989, chap. 7)

F+(x′, z1; x, z2) ≈ [W−(x′, z1; x, z2)]∗ (18)
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and

F−(x, z2; x′, z1) ≈ [W+(x, z2; x′, z1)]∗. (19)

In general these propagators are not reciprocal [i.e., F+(x′,
z1; x, z2) 6= F−(x, z2; x′, z1)]. The approximations in equa-
tions (18) and (19) involve the negligence of evanescent waves
[even for homogeneous media (Berkhout and van Wulfften
Palthe, 1979)] and the negligence of transmission losses and
other second- and higher order scattering terms. The latter ef-
fect can be demonstrated easily at the hand of the two-layer
configuration discussed earlier. In the wavenumber-frequency
domain one obtains for propagating waves, i.e., for |k|2 < ω2/c2,

F̃
+

W̃
+ ≈ [W̃−]∗W̃

+ = T̃
−

T̃
+ = 1 − R̃

2
. (20)

For small contrasts, the second-order error term (R̃
2
) is negligi-

ble. For complex media with significant scattering, the cumula-
tive second- and higher order errors may become significant, so
more advanced approaches are required. A further discussion
is beyond the scope of this paper.

FLUX-NORMALIZED DECOMPOSITION

In essence, the absence of reciprocity for the pressure-
normalized one-way propagators can be contributed to the
asymmetry between the composition and decomposition re-
lations (1) and (3). To obtain a more symmetric form, first the
pseudo-Helmholtz operator Ĥ 2, defined in equation (2), is re-
formulated according to

Ĥ2 = %
− 1

2
(
Ĥ 2%

1
2 ·) (21)

or, using equation (2),

Ĥ2 =
(

ω

c′

)2

+ ∂2

∂x2
+ ∂2

∂y2
, (22)

where

(
ω

c′

)2

=
(

ω

c

)2

−
3

((
∂%

∂x

)2

+
(

∂%

∂y

)2
)

4%2
+

∂2%

∂x2
+ ∂2%

∂y2

2%
(23)

(modified after Brekhovskikh, 1960). Note that Ĥ2, as defined
in equation (22), is a true Helmholtz operator; equation (23)
has the form of the Klein-Gordon dispersion relation, known
from relativistic quantum mechanics and electromagnetic wave
theory (Messiah, 1962; Anno et al., 1992). A modified square-
root operator Ĥ1 is introduced, according to Ĥ1Ĥ1 = Ĥ2. De
Hoop (1992, 1996) and Wapenaar and Grimbergen (1996)
show that with this modified square-root operator the follow-
ing symmetric composition and decomposition relations can be
obtained:(

P

Vz

)
= 1√

2
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1
2 Ĥ− 1

2
1 (ω%)

1
2 Ĥ− 1

2
1
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2
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1
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)
(24)

and(
P+
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2
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1
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1
2
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.

(25)
For laterally invariant media equations (24) and (25) may be

reformulated in the wavenumber-frequency domain according
to

(
P̃

Ṽ z

)
= 1√

2


√

ω%

kz

√
ω%

kz√
kz

ω%
−

√
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ω%
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(
P̃+

P̃−

)
(26)

and

(
P̃+

P̃−

)
= 1√

2



√
kz

ω%

√
ω%

kz√
kz

ω%
−

√
ω%

kz


(

P̃

Ṽ z

)
(27)

(see, e.g., Ursin, 1983). From equation (27) one easily obtains
for propagating waves, i.e., for |k|2 < ω2/c2,

P̃+(P̃+)∗ − P̃−(P̃−)∗ = P̃Ṽ
∗
z + P̃

∗
Ṽ z. (28)

Since the right-hand side of equation (28) is proportional to
the power flux in the z-direction, P+ and P− will be called
flux-normalized one-way wavefields. From equations (26) and
(27) the reflection and transmission coefficients at an interface
between two homogeneous layers can again be derived by using
the continuity of P̃ and Ṽ z at the interface. The result is

T̃ + = T̃ − =
√

1 − R̃
2
, (29)

with R̃ given by equation (6). Note that

T̃ + =
√

kz,2

kz,1

%1

%2
T̃

+
, T̃ − =

√
kz,1

kz,2

%2

%1
T̃

−
, (30)

with T̃
+

and T̃
−

defined in equation (7).

FLUX-NORMALIZED EXTRAPOLATION

Forward extrapolation

The formal expressions for forward one-way wavefield ex-
trapolation of flux-normalized downgoing and upgoing wave-
fields are again given by equations (9) and (10), with P± and W±

replaced by their flux-normalized counterparts P± and W±,
respectively. For these flux-normalized wavefields and prop-
agators we derived general reciprocity theorems (Wapenaar
and Grimbergen, 1996) and representations that apply to ar-
bitrarily inhomogeneous media. One of the results, relevant
to this paper, is the following reciprocity relation for the
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flux-normalized one-way propagators:

W+(x, z2; x′, z1) =W−(x′, z1; x, z2). (31)

It is illustrative to consider again the special situation of two
homogeneous layers, separated by a horizontal interface. For
that situation we may write, analogous to equation (30),

W̃+ =
√

kz,2

kz,1

%1

%2
W̃

+
, W̃− =

√
kz,1

kz,2

%2

%1
W̃

− (32)

or, upon substitution of equations (13) and (14),

W̃+(k, z2; z1) =
√

2 jkz,2

%2
G̃(k, z2; z1)

√
2 jkz,1

%1
(33)

and

W̃−(k, z1; z2) =
√

2 jkz,1

%1
G̃(k, z1; z2)

√
2 jkz,2

%2
. (34)

These expressions exhibit more symmetry than equations (13)
and (14). In equations (13) and (14) the scalar multipliers trans-
form the monopole source of the Green’s function into a dipole
source, and they leave the monopole receiver intact. On the
other hand, the scalar multipliers in equations (33) and (34)
transform the monopole source and receiver of the Green’s
function both in the same manner, so the reciprocity of the
Green’s function is preserved in the one-way propagators. The
characteristics of the transformed source and receiver are be-
tween those of a monopole and a dipole. Finally, note that
in a homogeneous medium the flux-normalized and pressure-
normalized propagators are identical.

Inverse extrapolation

The formal expressions for inverse flux-normalized one-way
wavefield extrapolation are again given by equations (16) and
(17), with P± and F± replaced by their flux-normalized coun-
terparts P± and F±, respectively. Because of the reciprocity
relation for the forward propagators [equation (31)], the in-
verse propagators may now be expressed as

F+(x′, z1; x, z2) ≈ [W+(x, z2; x′, z1)]∗ (35)

and

F−(x, z2; x′, z1) ≈ [W−(x′, z1; x, z2)]∗. (36)

Note the subtle difference with equations (18) and (19). Clearly
these flux-normalized inverse propagators obey reciprocity,
i.e.,

F+(x′, z1; x, z2) = F−(x, z2; x′, z1). (37)

The approximations in equations (35) and (36) are the same
as those in equations (18) and (19). This is seen most easily
for the two-layer configuration where, for propagating waves
[compare with equation (20)],

F̃+W̃+ ≈ [W̃+]∗W̃+ = [T̃ +
]2 = 1 − R̃

2
. (38)

Again, to account for the transmission losses, etc., in complex
media with significant scattering, a more advanced approach
is required. A further discussion is beyond the scope of this
paper.

CONCLUSIONS AND DISCUSSION

The usual pressure-normalized one-way propagators may be
seen as the response of a dipole source, observed by a monopole
receiver. Since the source and receiver have different charac-
teristics, these one-way propagators do not obey reciprocity.
Flux-normalized one-way propagators, on the other hand, have
interchangeable source and receiver characteristics and thus
they obey reciprocity.

One-way propagators play a central role in seismic migra-
tion: they downward extrapolate the downgoing and upgoing
wavefields from the surface into the subsurface. Usually the
source function is treated as the downgoing wavefield and the
measured data as the upgoing wavefield. As long as ampli-
tudes are not important, this approach functions satisfactorily.
For true amplitude migration, however, a proper decompo-
sition into downgoing and upgoing waves prior to migration
is required. The choice of the propagators (pressure- or flux-
normalized) dictates which decomposition process should be
used. If one decides to use reciprocal one-way propagators
(for instance, for efficiency reasons), flux-normalized decom-
position is a prerequisite.
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