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Apparent AVA effects of fine layering

Kees Wapenaar∗, Aart-Jan van Wijngaarden‡, Wim van Geloven∗∗,
and Taco van der Leij§

ABSTRACT
The fine layering of the earth’s subsurface causes ap-

parent amplitude-variation-with-angle (AVA) effects in
seismic reflection data. One can distinguish between
reflection- and propagation-related apparent AVA ef-
fects: the reflection of a package of thin layers is
accompanied with angle-dependent wavelet interfe-
rence, whereas propagation through finely layered media
causes angle-dependent wavelet dispersion. Obviously,
both types of apparent AVA effects hinder AVA inver-
sion for the elastic parameters.

Due to the band limitation of the seismic data,
the reflection-related interference effects cannot be re-
moved. However, they can be equalized for all propa-
gation angles by applying an angle-dependent filter in
the imaging step in angle-dependent migration schemes.
The underlying assumption is that the source function is
known and that source directivity effects have been com-
pensated prior to migration. The propagation-related
dispersion effects can be compensated for in the down-
ward extrapolation process by means of inverse gener-
alized primary propagators.

Angle-dependent migration, including the above
mentioned modifications, yields an angle-dependent re-
flectivity section in which the apparent AVA effects of
fine layering are suppressed.

INTRODUCTION

The relation between the angle-dependent reflectivity of an
interface in a target zone and the amplitude-variation-with-
offset (AVO) effects observed in the seismic data at the surface
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is complicated by many factors (Ostrander, 1984; Swan, 1991).
Some of these factors are “reflection related” (such as thin-
bed tuning, reflector curvature), others “propagation related”
(such as geometrical spreading, transmission and/or anelastic
losses) or “acquisition related” (such as source/receiver direc-
tivity, geophone coupling).

In this paper, we address the reflection and propagation re-
lated apparent amplitude-variation-with-angle (AVA) effects
of fine layering, and we propose a method that compensates
for these effects in migration. The main steps in migration are
downward extrapolation and imaging. The reflection-related
apparent AVA effects will be suppressed with an improved
imaging procedure, whereas an improved downward extrap-
olation scheme will compensate for the propagation-related
apparent AVA effects.

REFLECTION-RELATED AVA EFFECTS OF FINE-LAYERING

The reflection-related apparent AVA effects of fine layering
are best illustrated by considering the primary plane-wave re-
sponse of an acoustic, horizontally layered, constant velocity
(c= 2000 m/s), variable density medium (see Figure 1). Since
for this situation the reflectivity of each individual interface
is angle independent, any apparent AVA will show up imme-
diately. Figure 2 shows an image in the raypath parameter–
depth (p, z) domain. This image has been obtained by 1-D
angle-dependent migration (downward extrapolation and
imaging per raypath parameter p; see, for example, Clayton
and McMechan, 1981) but the same result could have been
obtained by a simple time-to-depth conversion, according to
z= cτ/(2 cosφ), where τ is the intercept time and φ the prop-
agation angle (with cosφ =

√
1− c2 p2). Figure 3 shows the

picked amplitudes at z= 157 m. Note that both Figures 2 and
3 clearly exhibit AVA behavior, despite the fact that the lo-
cal reflection function is angle independent. Needless to say, a
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FIG.1. Density log of a finely layered constant velocity medium
(c = 2000 m/ s) and the corresponding primary plane-wave re-
flection response (modeled with the reflectivity method, using
a zero-phase wavelet with central frequency fc = 50 Hz).

FIG. 2. Reflectivity section obtained with standard 1-D angle-
dependent migration. Note the apparent AVA behavior.

FIG. 3. Amplitude cross-sections. Solid: picked amplitudes ex-
actly at z = 157 m; dotted: picked maximum amplitudes in
a small depth interval around z = 157 m. Note the apparent
AVA behavior (the relatively low amplitudes are due to the
fact that the reflectivity section in Figure 2 is band limited).

local inversion of the AVA curve (see, for example, de Haas
and Berkhout, 1990; van Wijngaarden, 1998) would lead to
erroneous medium parameters.

Compensating for reflection-related apparent AVA

The apparent AVA behavior observed in Figures 2 and 3
is a result of angle-dependent interference, which is easily
explained with the aid of Figure 4. This figure shows two plane
waves illuminating the medium under two different angles.
The frequency ω is the same for both angles. As a result, the
vertical wavelength λz in the right frame is different from the
wavelength λ in the left frame. In other words, for different
illumination angles, the medium is observed at different scales.
This can be cured by choosing different frequencies ω at
different angles, such that the vertical wavelength λz remains
constant (Figure 5). For a constant velocity medium, λz and ω
are related according to

λz = 2πc

ω cosφ
= 2πc

ω
√

1− c2 p2
. (1)

Hence, in order to make λz independent of the propagation an-
gleφ, the frequencyω should be chosen such thatω cosφ is con-
stant. For broad-band data, a similar effect is obtained by apply-
ing a p-dependent filter with a frequency passband defined by

ω`(p) < ω < ωu(p), (2)

FIG. 4. For different angles and the same ω, λz 6= λ.

FIG. 5. For different angles and different ω, λz = λ.
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such that ω`(p) cosφ(p)=ω1 and ωu(p) cosφ(p)=ω2. Here,
ω1 and ω2 are constants that can be chosen freely, with the
constraint that ω`(p) and ωu(p) do not exceed the band limits
of the seismic data for the considered p-values. Note that this
pass-band filter can be applied to the data in the (p, ω)-domain
before migration, or it can be integrated in the imaging step
in angle-dependent migration, according to

〈R̃(p, z)〉 = C(p)
π
<
∫ ωu(p)

ω`(p)

(
P̃(p, z, ω)

S(ω)

)
dω. (3)

Here P̃(p, z, ω) denotes the downward extrapolated data at
depth z in the raypath parameter–frequency domain, S(ω)
the source function, and C(p) a weighting factor. Moreover,
< denotes that the real part is taken and 〈R̃(p, z)〉 denotes
the imaged reflectivity. The latter approach has the advantage
that it can be easily generalized to more realistic situations, as
we will see later.

In Appendix A, it is shown that by defining the weighting
factor as C(p)= 2 cosφ(p)/c, the imaging result 〈R̃(p, z)〉 can
be written as

〈R̃(p, z)〉 = b(z) ∗ R̃(p, z) (4)

[equation (A-6)]. Here ∗ denotes convolution along the z-axis,
R̃(p, z) the true reflectivity, and b(z) denotes a spatial wavelet
that is independent of the raypath parameter p. Hence, by ap-
plying the imaging step according to equation (3), the imaged
result has a constant spatial bandwidth, which means that the
interference effects are equalized. Optionally, a replacement
source function Sr (ωC(p)) can be inserted under the integral
in equation (3) in order to suppress the artifacts of the division
by S(ω). In that case, the spatial wavelet b(z) in equation (4)
is given by the inverse Fourier transform of Sr (kz) [see equa-
tion (A-11)].

Note that the proposed imaging procedure (equation 3)
is based on the assumption that the source function S(ω) is
known and contains no directivity effects. In practice, this sit-
uation is achieved by applying adaptive surface-related multi-
ple elimination and directional deconvolution prior to migra-
tion (Verschuur et al., 1992; Prein and Verschuur, 1997). Also
note that no a priori assumptions are made on the parame-
terization of R̃(p, z) [for comparison, Swan (1997) attacks the
offset-dependent tuning problem, using a linearized Zoeppritz
approximation of R̃(p, z)].

We applied 1-D angle-dependent migration to the data of
Figure 1, using the imaging integral defined by equation (3)
(see Figures 6 and 7). Note that the apparent AVA effects have
been removed completely at the cost of some loss of resolu-
tion at the small propagation angles. For p= 0, the bandwidth
is reduced approximately by a factor cosφmax =

√
1− c2 p2

max.
Hence, for a maximum propagation angle of 30◦, we have
cosφmax =

√
3/4 ≈ 0.87, which means that the resolution

loss for vertical propagation is 13%. Van Wijngaarden and
Wapenaar (1995) discuss how to reduce this resolution loss.

Extension to acoustic variable-velocity media

In the previous subsection, we considered a constant velocity
medium. When the velocity is varying as a function of z, we

obtain similar results if we modify equation (3) to

〈R̃(p, z)〉 = C(p, z)
π
<
∫ ωu(p,z)

ω`(p,z)

(
P̃(p, z, ω)

S(ω)

)
dω, (5)

with

C(p, z) = 2 cos φ̄(p, z)/c̄(z), (6)

ω`(p, z) = ω1/ cos φ̄(p, z), (7)

ωu(p, z) = ω2/ cos φ̄(p, z), (8)

and

cos φ̄(p, z) =
√

1− c̄2(z)p2. (9)

Here c̄(z) is the depth-dependent background velocity [i.e.,
a smoothed version of the actual velocity function c(z) (see,
e.g., Figure 19 in a later section)]. This imaging procedure is
not restricted to horizontally layered media; it can also be ap-
plied, for example, in a dipping target zone below a laterally
varying overburden. We illustrate this with a numerical exam-
ple (van Geloven and Wapenaar, 1996) for the configuration

FIG. 6. Reflectivity section obtained with 1-D angle-dependent
migration including the modified imaging step [equation (3)].
Note that the apparent AVA has been removed.

FIG. 7. Amplitude cross-section at z= 157 m in Figure 6 (solid),
compared with the result of Figure 3 (dashed).
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shown in Figure 8; the velocity log of the finely layered target
zone is shown in Figure 9. We modeled 400 shot records with
a hybrid modeling scheme (wavenumber domain modeling in
the target, including internal multiples, followed by an inverse
Fourier transform and ray tracing through the overburden).
Four of these shot records are shown in Figure 10. We reda-
tumed these data in the space-frequency domain to a dipping

FIG. 8. Two-dimensional variable velocity model: a dipping
finely layered target zone below a 2-D inhomogeneous over-
burden.

FIG. 9. Velocity log for the target zone. The “depth” is mea-
sured along the axis marked with z′ in Figure 8, with z′ = 0 at
the top of the target.

FIG. 10. Four shot records obtained by hybrid modeling (cen-
tral frequency fc = 40 Hz).

reference level at the top of the target zone. Next, we applied
a Radon transform to the redatumed shot record at lateral po-
sition xs= 3000 m, and proceeded with 1-D angle-dependent
migration along a single line normal to the target (marked z′

in Figure 8. The results are shown in Figure 11. Figure 11a rep-
resents the true angle-dependent target reflectivity, convolved
with an angle-independent spatial wavelet; this section serves
as a reference. Figure 11b is the result of standard imaging (i.e.,
with fixed ω` and ωu), and Figure 11c is the result of modified
imaging according to equation (5). Figure 11d contains ampli-
tude cross-sections of these results, picked in a small interval
around z′ = 155 m. Note that the result of modified imaging
according to equation (5) (dashed line) matches the reference
curve (solid line) significantly more accurately than the stan-
dard imaging result (dotted line).

PROPAGATION-RELATED AVA EFFECTS
OF FINE-LAYERING

In the previous section, we saw that the reflection-related ap-
parent AVA effects of fine layering (i.e., angle-dependent inter-
ference) can be compensated by employing angle-dependent
integration limits in the imaging integral [equation (3) or (5)].

FIG. 11. Angle-dependent bandlimited reflectivity sections for
the target zone. (a) Reference section. (b) Result of redatuming
and migration, using standard imaging. (c) The same as (b), but
imaging according to equation (5). (d) Maximum amplitudes,
picked in a small depth interval around z′ = 155 m [solid: (a),
dotted: (b), dashed: (c)].
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In our analysis, we considered primary reflection data; hence,
the propagation-related apparent AVA effects were not con-
sidered. In this section, we investigate the latter effects with a
numerical example.

We consider a horizontally layered, variable velocity, con-
stant density medium. The velocity log c(z) is shown in Fig-
ure 12. This figure also shows a reference section that has been
obtained by convolving the true angle-dependent reflectivity
section R̃(p, z) with an angle-independent spatial wavelet b(z),
as in equation (4). Note that this reference section is muted
at p= sin φ̄max/c̄(z), with φ̄max = 40◦, which is the maximum
angle that will be considered in the migration experiments.
The plane-wave reflection response of the velocity log in Fig-

FIG. 12. Velocity log and angle-dependent band-limited reflec-
tivity section. This section serves as a reference for the migra-
tion experiments.

FIG. 13. Plane-wave reflection response, including all inter-
nal multiples (modeled with the reflectivity method, using a
zero-phase wavelet with fc = 40 Hz).

ure 12, including all internal multiple reflections, is shown in the
(p, τ )-domain in Figure 13. We applied 1-D angle-dependent
primary migration, using the imaging step described by equa-
tion (5). For p= 0, the bandwidth is reduced approximately
by a factor cos φ̄max ≈ 0.77, which means that the resolution
loss for vertical propagation is approximately 23%. The result
is shown in Figure 14, and the difference with the reference
section is shown in Figure 15. Note that this difference section
contains significant angle-dependent errors, despite the fact
that we corrected for the reflection-related apparent AVA ef-
fects [equation (5)]. These errors are due to the fact that the pri-
mary downward extrapolation operators do not account for the
angle-dependent dispersion effects related to the fine layering.

FIG. 14. Result of primary migration using the modified imag-
ing step [equation (5)].

FIG. 15. Difference with the reference section. The amplitudes
are plotted with the same gain as in Figures 12 and 14.
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Compensating for propagation-related apparent AVA

The plane-wave reflection response of a horizontally layered
medium, including all internal multiples, is fully captured by
the generalized primary representation (Hubral et al., 1980;
Resnick et al., 1986; Wapenaar, 1996):

P̃(p, z0, ω) =∫ ∞
z0

W̃−g (p, z0, z, ω)R̃(p, z)W̃+g (p, z, z0, ω)S(ω) dz.

(10)

Here, W̃+g (p, z, z0, ω) and W̃−g (p, z0, z, ω) are the generalized
primary propagators which describe the plane-wave transmis-
sion responses of the finely layered medium between depth
levels z0 and z, including all internal multiple reflections in this
region (Anstey and O’Doherty, 1971; Ursin, 1987; Herrmann
and Wapenaar, 1992; Stanke and Burridge, 1993; Shapiro et al.,
1994). Using flux-normalization, we have W̃−g (p, z0, z, ω) =
W̃+g (p, z, z0, ω). Wapenaar and Herrmann (1993) showed how
to invert these propagators in a stable manner; a slightly dif-
ferent procedure was used by Widmaier et al., (1996).

True amplitude migration, based on the generalized primary
representation (10), involves downward extrapolation, accord-
ing to

P̃(p, z, ω) = F̃
−
g (p, z, z0, ω)P̃(p, z0, ω)F̃

+
g (p, z0, z, ω),

(11)

(F̃±g is the inverse of W̃±g ), followed by imaging, according to
equation (5). We refer to these two steps as “generalized pri-
mary migration.” We applied these two steps to the data of
Figure 13. The result is shown in Figure 16, and the difference
with the reference section is shown in Figure 17. Note that
this difference section shows significantly less residuals than
the difference section of the primary migration result (Fig-
ure 15). The remaining residuals are mainly due to the fact
that a smoothed velocity function c̄(z) (see Figure 19 in the next
section) has been used in the imaging step [equations (5)–(9)].

FIG. 16. Result of generalized primary migration according to
equations (11) and (5).

Figure 18 contains amplitude cross-sections of Figures 12, 14,
and 16 picked in a small interval around z= 890 m. Note that
the angle-dependent reflectivity curve obtained with the gener-
alized primary migration (the dashed line in Figure 18) matches
the reference curve (the solid line) very well.

EXTENSION TO ELASTIC MEDIA

For elastic media, we modify the downward extrapolation
step (equation 11) to

P̃α,β(p, z, ω) ≈
F̃
−
g,α(p, z, z0, ω)P̃α,β(p, z0, ω)F̃

+
g,β(p, z0, z, ω), (12)

where P̃α,β(p, z0, ω) represents the decomposed multicompo-
nent reflection data at the acquisition surface z0 after surface
related multiple elimination (this equation is an approximation
because only one data type is included in its righthand side).
The subscripts α and β refer to the wave type; each of these
subscripts may stand for P- or S-waves. Moreover, F̃

±
g,α is the

inverse of W̃±g,α , where W̃±g,α is the α-wave generalized primary
propagator for the finely-layered elastic medium (Burridge
and Chang, 1989; de Hoop, 1991; de Hoop et al., 1991; Kohler
et al., 1996a,b; Shapiro et al., 1996). Using flux normalization,
we have W̃−g,α = W̃+g,α and, consequently, F̃

−
g,α = F̃

+
g,α . Wapenaar

(1996) discusses how to obtain these inverse propagators in a
stable manner.

FIG. 17. Difference with the reference section. The amplitudes
are plotted with the same gain as in Figures 12 and 16.

FIG. 18. Picked maximum amplitudes in a small depth interval
around z = 890 m in Figures 12 (solid), 14 (dotted), and 16
(dashed).
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The imaging step (equation 5) is modified to

〈R̃α,β(p, z)〉 = Cα,β(p, z)
π

<
∫ ωu(p,z)

ω`(p,z)

(
P̃α,β(p, z, ω)

Sβ(ω)

)
dω,

(13)

with

Cα,β(p, z) = cos φ̄α(p, z)
c̄α(z)

+ cos φ̄β(p, z)

c̄β(z)
, (14)

ω`(p, z) = 2k1/Cα,β(p, z), (15)

ωu(p, z) = 2k2/Cα,β(p, z), (16)

and

cos φ̄α(p, z) =
√

1− c̄2
α(z)p2. (17)

Here, c̄α(z) is the α-wave propagation velocity of the back-
ground model; the wavenumbers k1 and k2 can be chosen freely,
with the constraint thatω`(p, z) andωu(p, z) do not exceed the
temporal band limits of the β-wave source function Sβ(ω). Op-
tionally, a replacement source function Sr (ωCα,β(p, z)) can be
inserted under the integral in equation (13) in order to sup-
press the artifacts of the division by Sβ(ω). In Appendix A, it is
shown that for the simplified situation of “primaries only” and
a homogeneous macro velocity model, equations (12) through
(17) imply that the imaged reflectivity section 〈R̃α,β(p, z)〉 can
be written as the true reflectivity section R̃α,β(p, z), convolved
with an angle-independent spatial wavelet b(z), according to

〈R̃α,β(p, z)〉 = b(z) ∗ R̃α,β(p, z) (18)

(equation A-6). We will show with a numerical example that
this relation holds approximately true for the generalized pri-
mary migration result in a variable velocity elastic medium

FIG. 19. P- and S-wave velocity logs [cP(z) and cS(z)] used for
forward modeling, and smoothed logs [c̄P(z) and c̄S(z)] that
serve as background models in the imaging step.

(van Geloven and Wapenaar, 1997). Figure 19 shows P- and
S-wave velocity logs [cP(z) and cS(z)] and their smoothed ver-
sions [c̄P(z) and c̄S(z)] to be used in equations (13) through
(17); the density is chosen to be constant.

Figure 20 shows the reference sections, which have been ob-
tained by convolving the true reflectivity sections R̃α,β(p, z)
with an angle-independent spatial wavelet. The exact elastic
plane-wave reflection responses (including internal multiples
and conversions) of the logs cP(z) and cS(z) in Figure 19 are
shown in the (p, τ )-domain in Figure 21. The results of elastic
generalized primary migration according to equations (12) and
(13) are shown in Figure 22. Figure 23 shows the differences
with the reference sections in Figure 20. Note that the residues
are again very small (their magnitude is of the same order as
in Figure 17).

FIG. 20. Band-limited reflectivity sections, which serve as ref-
erences for the migration experiment.

FIG. 21. Plane-wave reflection responses (including internal
multiples and conversions) of the logs cP(z) and cS(z) in Fig-
ure 19 (modeled with the reflectivity method).
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FIG. 22. Results of elastic generalized primary migration ac-
cording to equations (12) and (13).

CONCLUSIONS

The apparent AVA effects due to fine layering can be subdi-
vided into reflection- and propagation-related effects.

Reflection-related apparent AVA effects

The reflection of a package of thin layers is accompanied with
wavelet interference. Since, for a given frequency, the vertical
wavelength varies with the angle of incidence, the interference
effects are also angle dependent. Due to the band limitation of
seismic data, the interference effects cannot be removed. How-
ever, we have proposed a filter that equalizes these effects. This
filter can be integrated in the imaging step in migration. In this
way, migration yields a band-limited reflectivity section without
reflection-related apparent AVA. The underlying assumption
is that the source function is known and that source directivity
effects have been compensated prior to migration.

Propagation-related apparent AVA effects

The propagation through a package of thin layers is accom-
panied with wavelet dispersion. This dispersion is caused by
internal multiple scattering and depends also on the propaga-
tion angle. It is quantified by the generalized primary propa-
gator. The inverse of this propagator can be used in the down-
ward extrapolation step in migration. Combined with the filter
mentioned above, migration yields in this way a band-limited
reflectivity section in which the apparent AVA effects of fine
layering are suppressed.

We have demonstrated the effect of these two modifications
with numerical examples. In all cases we observed a significant
improvement of the imaged AVA sections. From these sections,

FIG. 23. Differences with the reference sections. The ampli-
tudes are plotted with the same gain as in Figures 20 and 22.

the band-limited medium parameters can be resolved by local
AVA inversion (van Wijngaarden, 1998).
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APPENDIX A

ANALYSIS OF THE ANGLE-DEPENDENT IMAGING INTEGRALS

We analyze the p-dependent imaging integral [equation
(13)] for the elastic situation. For this analysis, we consider
the primary reflection response of a horizontally layered elas-
tic medium, and we indicate how the results simplify for the
acoustic situation. Throughout this appendix we assume a ho-
mogeneous macro model. The generalizations for more re-
alistic situations are discussed in the sections “Extension to
acoustic variable-velocity media” and “Extension to elastic
media.”

Assuming a homogeneous macro model, the elastic primary
reflection response of a continuous finely layered medium in
the half-space z> z0 reads in the raypath parameter–frequency
(p, ω) domain

P̃α,β(p, z0, ω) =∫ ∞
z0

W̃−α (p, z0, z, ω)R̃α,β(p, z)W̃+β (p, z, z0, ω)Sβ(ω) dz.

(A-1)

The subscripts α and β refer to the wave type; each of these
subscripts may stand for P- or S-waves. From right to left, Sβ(ω)
is the source function, W̃+β (p, z, z0, ω) is the primary propaga-
tor for downgoing β-waves, R̃α,β(p, z) is the reflection function
that transforms downgoing β-waves into upgoing α-waves, and
W̃−α (p, z0, z, ω) is the primary propagator for upgoing α-waves.
Since we consider a homogeneous macro model, these propa-
gators read

W̃−α (p, z0, z, ω) = W̃+α (p, z, z0, ω) = exp{ jω(z0 − z) qα},
(A-2)

where qα is the vertical α-wave slowness, according to qα =
(cosφα)/cα , with cosφα =

√
1− c2

α p2, cα being the α-wave
propagation velocity of the macro model.

For propagating waves (i.e., for real-valued vertical slow-
nesses), angle-dependent migration involves downward ex-

trapolation to depth level z, according to

P̃α,β(p, z, ω) =
F̃
−
α (p, z, z0, ω)P̃α,β(p, z0, ω)F̃

+
β (p, z0, z, ω), (A-3)

(F̃
±
α is the inverse of W̃±α ), followed by imaging, according to

〈R̃α,β(p, z)〉 =
Cα,β(p)
π
<
∫ ωu(p)

ω`(p)
Sr (ωCα,β(p))

(
P̃α,β(p, z, ω)

Sβ(ω)

)
dω,

(A-4)

where < denotes that the real part is taken and 〈·〉 denotes
a band-limited estimate; Sr (ωCα,β(p)) is an optional replace-
ment source function. Our aim is to derive expressions for the
lower and upper integration limits ω`(p) and ωu(p) and for the
factor Cα,β(p) so that the spatial bandwidth of 〈R̃α,β(p, z)〉 is
independent of the raypath parameter p.

From equations (A-1)–(A-3), we obtain

P̃α,β(p, z, ω) =∫ ∞
z0

exp{ jω(z− z′)(qα + qβ)}R̃α,β(p, z′)Sβ(ω) dz′.

(A-5)

Substitution of this result into equation (A-4) and interchang-
ing the integrals yields

〈R̃α,β(p, z)〉 =
∫ ∞

z0

b(z− z′)R̃α,β(p, z′) dz′, (A-6)

where

b(z) = Cα,β(p)
π
<
∫ ωu(p)

ω`(p)
Sr (ωCα,β(p))

× exp{ jωz(qα + qβ)} dω. (A-7)
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The right side in equation (A-6) represents a spatial convolu-
tion along the z-axis. We will show that the spatial wavelet b(z)
is independent of p when we choose

Cα,β(p) = qα + qβ = cosφα(p)
cα

+ cosφβ(p)
cβ

, (A-8)

ω`(p) = 2k1/Cα,β(p), (A-9)

and

ωu(p) = 2k2/Cα,β(p). (A-10)

Here, the wavenumbers k1 and k2 can be chosen freely, with
the constraint that ω`(p) and ωu(p) do not exceed the tem-
poral band limits of the source function Sβ(ω). Substituting
equations (A-8)–(A-10) into equation (A-7) and replacing the
integration variable ω by kz = ωCα,β(p) yields

b(z) = 1
π
<
∫ 2k2

2k1

Sr (kz)exp( jkzz) dkz. (A-11)

Hence, b(z) is indeed independent of the raypath parameter p;
it simply denotes the inverse Fourier transform of the replace-
ment source function Sr (kz) (assuming its bandwidth does not
exceed the limits 2k1 and 2k2). When this replacement source
function is omitted, we obtain

b(z) = sin 2k2z

πz
− sin 2k1z

πz
. (A-12)

Finally, note that for the acoustic situation, equations (A-8)–
(A-10) simplify to

C(p) = 2 cosφ(p)
c

, (A-13)

ω`(p) = ω1/ cosφ(p), (A-14)

and

ωu(p) = ω2/ cosφ(p), (A-15)

where ω1 and ω2 are related to k1 and k2, according to ω1 = k1c
and ω2 = k2c.


