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GPR Without a Source: Cross-Correlation
and Cross-Convolution Methods

Evert Slob and Kees Wapenaar

Abstract—Several formulations exist for retrieving the Green’s
function from cross correlation of (passive) recordings at two loca-
tions. For media without losses, these known formulations retrieve
Green’s functions from sources on a closed boundary. Until recent,
these formulations were only developed for acoustic waves in fluids
and elastodynamic waves in solids. Now, Green’s function repre-
sentations for electromagnetic (EM) waves in matter exist and can
be exploited for passive ground-penetrating radar (GPR) appli-
cations using transient or ambient noise sources, either natural or
man-made. We derive general exact EM Green’s function retrieval
formulations based on cross correlations and cross convolutions of
recorded wave fields. For practical applications, simplified forms
are derived that directly apply to field recordings due to unknown
uncorrelated noise or transient sources. Only naturally present
sources are needed, which allows for all kinds of applications of
“GPR without a source.” We illustrate the consequences of using
the simplified forms for Green’s function retrieval with 2-D nu-
merical examples. We show that in dissipative media, the Green’s
function is most accurately retrieved using the cross-convolution
method when the sources are located on a sufficiently irregular
boundary.

Index Terms—Green function, interferometry, radar,
radiometry.

I. INTRODUCTION

S INCE the early theoretical work of Clearbout [3], and
the experimental work of Weaver and Lobkis [12], [32],

many others have contributed to our understanding of Green’s
function retrieval from cross correlating two recordings in a
noise field [2], [6], [15], [17], [22], [26], [27], [29], [33]. From
1-D and pulse-echo experiments, the subject has evolved to
arbitrary 3-D media, ranging from having statistical properties
to being fully deterministic.

Recently, representations have been derived for electromag-
netic (EM) waves and fields in lossless media, using transient
or uncorrelated noise sources [18], [19]. Here, we derive rep-
resentations of EM Green’s functions for nonconductive media
and for conductive media. When the sources lie on a closed
boundary, cross-correlation-type techniques cannot be used for
recordings of wave phenomena where a substantial part of
the wave energy is converted into heat or for diffusive fields.
Under certain conditions and with sources distributed in a finite
volume it can be used for recordings of diffusive fields [23].
Here, we investigate sources located on the boundary of a finite
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domain. The formulations derived here can be used with active
sources, but also work with natural noise or transient sources,
which opens up all kinds of applications of “GPR without a
source.” For GPR applied to shallow subsurface investigations,
some energy is always converted into heat. We show that if
the energy loss factor is not high the kinematics of the Green’s
function are recovered correctly. When the loss factor increases
near the boundary sources some artifacts can occur in the form
of spurious time-symmetric events, although the kinematics of
all desired arrivals are correct. For EM waves in conductive
media, wave energy is dissipated, while for diffusive EM fields
and stationary currents, the wave energy is zero. We show
here that for these types of applications exact Green’s function
representations can be obtained, using sources on the boundary,
by convolving two recordings at two different locations using
the reciprocity theorem of the time-convolution type. We illus-
trate the effects of the simplifying assumptions with numerical
examples.

II. CAUSAL AND TIME-REVERSED CAUSAL EQUATIONS

All representations that are derived in this paper are valid in
the time domain for transient or noise signals, but we develop
our theory in the frequency domain. To this end, we define
the time-Fourier transform of a space-time-dependent vector-
quantity as

û(x, ω) =

∞∫
t=0

exp(−jωt)u(x, t)dt (1)

where j is the imaginary unit and ω denotes angular frequency.
In the space-frequency domain, Maxwell’s equations in mat-

ter are given in matrix-vector form [30] by

Dxû + [B̂ + jωA]û = ŝ (2)

where the field vector û is given by ûT(x, ω) = (Ê
T
, Ĥ

T
),

Ê and Ĥ being the electric and magnetic field vectors
and the superscript T denoting transposition, ŝT(x, ω) =
−({Ĵe}T, {Ĵm}T) is the source vector, with Ĵ

e
and Ĵ

m
the

external electric and magnetic current density vectors, while
Dx is the matrix of spatial differential operators given by

Dx =
(

O DT
0

D0 O

)
D0 =


 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0


 .

(3)
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The material matrices are defined as A = blockdiag(ε,µ), with
ε and µ the electric permittivity and magnetic permeability
tensors and B̂ = blockdiag(σ̂e, σ̂m), with σ̂e and σ̂m the
electric and magnetic conductivity tensors. Notice that we
have defined the electric permittivity and magnetic permeabil-
ity as frequency-independent functions. This presents no loss
of generality because all possible relaxation mechanisms are
incorporated in the frequency-dependent conductivity tensors.
Further, a real-valued diagonal matrix K = K−1 is intro-
duced as K = diag(−1,−1,−1, 1, 1, 1), such that KDxK =
−Dx = −DT

x , KAK = A = AT and KB̂K = B̂
T

, where
the latter two definitions represent the nonnegative definiteness
of the material tensors. Such media are called self-adjoint or
reciprocal [5].

For the time-correlation-type reciprocity theorem, we need
the time-reversed causal Maxwell’s equations, which in the
frequency domain is equivalent to taking the complex conjugate
Maxwell’s equations

Dxû∗ + [B̂
∗ − jωA]û∗ = ŝ∗ (4)

where the asterisk denotes complex conjugation.
In the next section, we use the causal fields in the time-

convolution-type reciprocity relations and the causal and time-
reversed causal fields in the time-correlation-type reciprocity
relations. A reciprocity theorem in general interrelates two
independent states, labeled A and B, in one and the same
domain, but the fields, sources and the medium parameters in
the two states need not be the same [1], [5], [11], [16]. In our
derivations here, we assume all medium parameters to be the
same in both states (AA = AB = A and B̂A = B̂B = B̂).

III. CORRELATION-TYPE REPRESENTATIONS

We start with the global form of the reciprocity theorem
of the time-correlation type [1] for the situation applied to
the domain D with closed boundary ∂D, which has a unique
outward pointing unit normal n. The interaction quantity to
consider is given by

û†
ADxûB +

(
ûT

BDxû∗
A

)T

(5)

where the superscript † means complex conjugation and trans-
position. The heterogeneities are not restricted to occur only
inside the domain D, but may extend over all space. Substituting
(2) and (4) in this interaction quantity, integrating the result over
the domain D and applying Gauss’ divergence theorem to the
interaction quantity, yields the global reciprocity theorem of the
time-correlation type, given by [30]∫
D

[
û†

AŝB + ŝ†
AûB

]
d3x

=
∮
∂D

û†
ANxûBd2x +

∫
D

û†
A(B̂

†
+ B̂)ûBd3x (6)

where A does not occur in the equation because we have taken
it real-valued and Nx is defined similar to Dx, but with ∂i re-

placed by ni, i = 1, 2, 3 and hence KNxK = −Nx = −NT
x .

Equation (6) is the global reciprocity theorem of the time-
correlation type as only products of quantities and complex
conjugate quantities occur, which corresponds to correlations of
these quantities in the time domain. For a more detailed discus-
sion on reciprocity relations, see de Hoop [5]. Various choices
of the sources in the two states lead to exact expressions for
the Green’s function in terms of cross correlations of observed
electric wavefields at the observation points xA and xB due to
sources on the closed boundary surface ∂D.

To localize the electric field receiver locations at xA and xB ,
we specify the artificial point sources by replacing the space-
and frequency-dependent 6 × 1 vector ŝA by the 6 × 6 matrix
Iδ(x − xA), I being the identity matrix. The corresponding
6 × 1 field vector ûA is replaced by the 6 × 6 Green’s matrix
Ĝ(x,xA, ω), given by

Ĝ(x,xA, ω) =
(

Ĝ
Ee

Ĝ
Em

Ĝ
He

Ĝ
Hm

)
(x,xA, ω) (7)

where the superscripts {E,H} denote the observed field type at
x and the superscripts {e,m} denote the source type at xA. In
the submatrices, each Green’s tensor denotes one 3 × 3 Green’s
tensor. Each column of Ĝ represents a field vector at x due one
particular source type and component at xA. For state B, we
make similar choices, replacing ŝB by Iδ(x − xB) and ûB

by Ĝ(x,xB , ω). From source–receiver reciprocity, we know
that [30]

KĜ
T
(xB ,xA, ω)K = Ĝ(xA,xB , ω). (8)

Depending on the choices for the receiver locations, xA

and xB , being inside or outside D, different Green’s function
representations are obtained. Using Nx together with (8) in (6)
and transposing both sides of the result yields

Ĝ(xB ,xA, ω)χD(xA) + Ĝ
†
(xA,xB , ω)χD(xB)

= −
∮
∂D

Ĝ(xB ,x, ω)NxĜ
†
(xA,x, ω)d2x

+
∫
D

Ĝ(xB ,x, ω)(B̂
†
+ B̂)Ĝ

†
(xA,x, ω)d3x (9)

where χD(xA) = {0, 1/2, 1} for xA ∈ D
′, xA ∈ ∂D, xA ∈ D}

denotes the characteristic set of the domain D and D
′ denotes

the complement of D and ∂D. Equation (9) is a general
frequency-domain representation of the EM Green’s matrix
between xA and xB in terms of cross correlations in the time
domain of observed electric and magnetic fields at xA and xB

due to electric and magnetic sources at x on the boundary ∂D

and inside the domain D. To arrive at this representation for
the Green’s functions, no assumptions have been made on the
heterogeneity and relaxation mechanisms inside and outside
the domain D. Cross correlations in the time domain are in
the frequency-domain multiplications of a function with the
complex conjugate of another function, which implies that the
phases of the two functions are subtracted from each other.
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The Green’s function in the left-hand side of (9) can be retrieved
since it is a causal function and it does not overlap with the
time-reversed causal Green’s function, except possibly at t = 0.

Assuming the medium losses inside D are negligible, the
second integral in the right-hand side of (9) can be neglected
and the resulting equation is suitable to compute the Green’s
functions from a point source in xB to a point receiver in xA by
correlating precomputed or measured Green’s functions from
source points, at x, on the closed surface to the points xA

and xB . In view of the symmetry relation of (8) not the whole
Green’s matrix needs to be computed or measured. An example
how this can lead to efficient modeling schemes can be found in
[24] and [25], who used the acoustic and elastodynamic equiv-
alents of (9) for computing acoustic and elastodynamic Green’s
functions of arbitrarily heterogeneous media. In Section VI, we
show how (9) can be used in a measurement situation.

Since correlation-type representations, employing sources on
∂D only, rely on the absence of wave energy dissipation inside
D, we also use representations based on the convolution-type
reciprocity relation.

IV. CONVOLUTION-TYPE EM GREEN’S

FUNCTION REPRESENTATIONS

To allow for dissipative media inside and outside D, and
hence nonzero electric and magnetic conduction currents, we
now consider the reciprocity theorem of the time-convolution
type. We use the interaction quantity

ûT
AKDxûB −

(
ûT

BKDxûA

)T

. (10)

Substituting (2) for the two states in this interaction quantity,
integrating the result over the domain D and applying Gauss’
divergence theorem to the interaction quantity, we find the
global form of the reciprocity theorem of time-convolution type
as [30]∫

D

[
ûT

AKŝB − ŝT
AKûB

]
d3x =

∮
∂D

ûT
AKNxûBd2x (11)

where the minus sign in the left-hand side arises because use has
been made of DT

x K = −KDx. Notice that in the convolution-
type representations, the relaxation and loss mechanisms do not
occur in the expression for reciprocal media and hence, we do
not have to assume that the medium is lossless. This is a strong
advantage of the convolution-type representations over those of
the correlation type.

Making the same replacements as in the previous section, for
sources and fields (11) is replaced by

Ĝ(xB ,xA, ω) [χD(xA) − χD(xB)]

=
∮
∂D

Ĝ(xB ,x, ω)NxKĜ(xA,x, ω)Kd2x. (12)

In case both source locations are outside D ∪ ∂D or inside D,
the boundary integral vanishes [1]. Equation (12) is an exact

frequency-domain representation for the EM Green’s function
between xA and xB in terms of cross convolutions in the time
domain of impulsive field responses observed at the observation
points xA and xB due to tangential electric and magnetic point
sources, at x, on the boundary ∂D and integrating over all
source locations on the closed boundary surface ∂D. Cross
convolutions in the time domain are in the frequency-domain
multiplications of two different functions, which implies that
their phases are added.

All representations that we derive here based on the
convolution-type reciprocity theorem are in principle valid for
wavefields, diffusion fields, potential fields and flow fields,
all fields considered linear. An example of a unified cross-
correlation-type interferometric representation can be found in
[31], and (12) can be seen as the unified cross-convolution-type
interferometric representation.

We call (9) and (12) interferometric representations of EM
Green’s functions. The process of cross correlation and integra-
tion is named interferometry, borrowed from radio astronomy,
where it refers to correlation methods applied to radio signals
from distant objects and it is similar to the method described in
[4]. Applications will be investigated in the next section.

V. MODIFICATIONS FOR EM INTERFEROMETRY

In their present form, (9) and (12) contain matrices Nx and
NxK in the cross-correlation and cross-convolution expres-
sions in the surface integral. For a direct application in terms
of correlations and convolutions of observed wave fields due
to uncontrolled sources the matrices Nx and NxK should
be diagonalized, in which process a source decomposition is
necessary into sources for inward and outward traveling waves
and fields. This requires the presence of electric and magnetic
current-type sources, which implies they should be available at
all positions on the boundary. We first diagonalize the represen-
tations by rewriting them in terms of electric field observations
only and such that only electric current sources are required
on the boundary. In a second step, we make simplifying as-
sumptions for the inward and outward traveling waves. These
are necessary for practical transient and uncorrelated noise
sources.

A. Correlation-Type Interferometry

Now, we reduce the field vector to the electric field and
reduce the full Green’s matrix to the electric field Green’s tensor
for an electric source. Then, we find [21]

Ĝ
Ee

(xB ,xA, ω)χD(xA) +
{

Ĝ
Ee

(xB ,xA, ω)
}∗

χD(xB)

= − 1
jωµ

∮
∂D

Ĝ
Ee

(xB ,x, ω)
{

(n · ∇)Ĝ
Ee

(xA,x, ω)
}†

d2x

+
1

jωµ

∮
∂D

{
(n ·∇)Ĝ

Ee
(xB ,x, ω)

}{
Ĝ

Ee
(xA,x, ω)

}†
d2x.

(13)
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To arrive at this simplified expression, with a scalar operator
acting on the Green’s tensors, it has been assumed that the
medium in the neighborhood of the surface is homogeneous
and isotropic. The derivative acts on the source coordinate
and can be regarded as part of the source. This implies that
electric dipoles and quadrupoles are necessary to construct new
Green’s functions. The presence of dipoles and quadrupoles
on the boundary is not likely and hence (13) is not practical.
By also assuming that outside the domain D, the medium is
homogeneous and isotropic and in addition that the boundary
surface is convex, seen from inside D, then outward traveling
waves never enter the domain. We assume far-field conditions
apply to reduce the differential operator to an algebraic factor
[5] and find

(n · ∇)Ĝ
Ee

(xA,B ,x, ω) ≈ −jω

c
Ĝ

Ee
(xA,B ,x, ω) (14)

where inward traveling waves are taken because they contribute
to the desired result, while in case both xA and xB are
located inside D, only inward traveling waves are recorded. The
amplitude factor is correct for waves leaving the boundary in
the opposite direction of the unit normal. Substituting the result
of (14) into (13) yields

Ĝ
Ee

(xB ,xA, ω)χD(xA)+
{
Ĝ

Ee
(xB ,xA, ω)

}∗
χD(xB)

=− 2
cµ

∮
∂D

Ĝ
Ee

(xB ,x, ω)
{
Ĝ

Ee
(xA,x, ω)

}†
d2x +“ghost”

(15)

where “ghost” refers to spurious events due to cross products
of inward and outward propagating waves that arise in the situ-
ation when either xA or xB is outside D, from the assumption
made in (14) that only inward traveling waves leave the bound-
ary. When ∂D is irregular (which is the case when the sources
are randomly distributed) these cross products do not integrate
coherently and hence the spurious events are suppressed [7].
Since the medium at and outside ∂D is homogeneous and
isotropic, the spurious events are absent when both xA and xB

are located inside D.
1) Transient Sources: Expressions for transient can be ob-

tained for correlation-type interferometry. We define the matrix
of measured electric fields generated by transient electric cur-
rent sources as

Êobs(xA,B ,x, ω) = Ĝ
Ee

(xA,B ,x, ω)Ŝ(x, ω) (16)

where Ŝ(x, ω) = diag[s1(x, ω), s2(x, ω), s3(x, ω)] denotes
the source spectrum matrix at position x, which can be different
for each direction and for each source position. The power
spectrum matrix of the sources is defined as

Ŝ
P

(x, ω) = diag
(
|s1(x, ω)|2 , |s2(x, ω)|2 , |s3(x, ω)|2

)
.

(17)

Using these definitions in (15), we find

Ĝ
Ee

(xB ,xA, ω)χD(xA) +
{

Ĝ
Ee

(xB ,xA, ω)
}∗

χD(xB)

≈ − 2
cµ

∫
x∈∂D

Êobs(xB ,x, ω)(Ŝ
P
)−1

{
Êobs(xA,x, ω)

}
†d2x

(18)

where the approximate sign has replaced the equality sign
because we have omitted the explicit mention of the “ghost”
term. The fact that the inverse of the power spectrum matrix is
required indicates that it should be known to use this method
for transient sources.
2) Uncorrelated Noise Sources: For mutually uncorrelated

noise sources, we require that the sources obey the following re-
lation 〈n̂(x, ω)n̂†(x′, ω)〉 = 2Y Ŝ(ω)Iδ(x − x′), Y = 1/(cµ)
being the plane wave admittance. The electric field vector at an
observation point is then defined as

Ê
obs

(xA,B , ω) =
∫

x∈∂D

Ĝ
Ee

(xA,B ,x, ω)n̂(x, ω)d2x. (19)

If we use these definitions in (15), we obtain

Ĝ
Ee

(xB ,xA, ω)Ŝ(ω)χD(xA)

+
{

Ĝ
Ee

(xB ,xA, ω)
}∗

Ŝ(ω)χD(xB)

≈ −
〈

Ê
obs

(xB , ω)
{

Ê
obs

(xA, ω)
}†

〉
. (20)

From (20), it is clear that no integration over the source coor-
dinates along the boundary surface is necessary. The presence
of the power spectrum Ŝ indicates that the retrieved Green’s
function is weighted with the square of the amplitude spectrum
of the noise source and a band limited amplitude will result in a
smaller effective bandwidth in the final result. The time-domain
equivalent is given by

∞∫
t′=−∞

GEe(xB ,xA, t′)S(t − t′)dt′χD(xA)

+

∞∫
t′=−∞

GEe(xB ,xA,−t′)S(t − t′)dt′χD(xB)

≈ −
〈 ∞∫

t′=−∞

Eobs(xB , t + t′)
{
Eobs(xA, t′)

}T
dt′

〉

(21)

and expresses that the cross correlation of electric field mea-
surements at two locations yields the electric field Green’s
function and its time-reversed counterpart between those two
locations convolved with the autocorrelation of the noise
sources.
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B. Convolution-Type Interferometry

Applying the same analysis, as used for the derivation of (13)
and (15), (12) leads to

Ĝ
Ee

(xB ,xA, ω) [χD(xA) − χD(xB)]

=
1

jωµ

∮
∂D

Ĝ
Ee

(xB ,x, ω)

×
{

n·∇Ĝ
Ee

(xA,x, ω)
}T

d2x

− 1
jωµ

∮
∂D

{
n·∇Ĝ

Ee
(xB ,x, ω)

} {
Ĝ

Ee
(xA,x, ω)

}
Td2x

(22)

and in the far-field approximation, we have

Ĝ
Ee

(xB ,xA, ω) [χD(xA) − χD(xB)] + “ghost”

= − 2
cµ

∮
∂D

Ĝ
Ee

(xB ,x, ω)
{

Ĝ
Ee

(xA,x, ω)
}T

d2x. (23)

For convolution-type interferometry only transient sources
can be used. Using the same definition of the transient source
matrix and the observed electric field matrix, we obtain

Ĝ
Ee

(xB ,xA, ω) [χD(xA) − χD(xB)]

≈ − 2
cµ

∫
x∈∂D

Êobs(xB ,x, ω)(Ŝ
2
)−1

{
Êobs(xA,x, ω)

}T

d2x

(24)

where it is noted that Ŝ
2

is the square of complex source spec-

tra, given by Ŝ
2
(x, ω) = diag(s2

1(x, ω), s2
2(x, ω), s2

3(x, ω)),
and hence the cross-convolution method is not suitable for
uncorrelated noise sources. In the next section, it is shown that
the approximate sign of (24) represents the “ghost” term of (23),
which occur as spurious events that are suppressed when the
boundary is irregular.

VI. EXAMPLES

Here, we work out a 2-D example for GPR. In the usual
GPR acquisition configuration, we use two parallel broadside
antennas which reduce to a TE-mode acquisition set up in a 2-D
setting. We assume that there are several TE-mode line sources
of EM fields in the air and below the bottom interface, and that
these sources lie on a straight line (see Fig. 1). One observation
point is located just above the surface and the other is in the
air above the top boundary. Below the surface a two-layered
half-plane is considered, each layer being homogeneous. The
examples we show come from this three-layered model, upper
half-space is air and modeled as free space, the second layer
has a thickness of 1 m and the relative electric permittivity is
εr = 9, while the relative electric permittivity of the lower half-
space is εr = 16. The upper source level, x3;1 is 2-m above the
surface where the antennas are placed, while the lower source
level, x3;2, is 2 m below the bottom surface in the lower half-

Fig. 1. Configuration for the 2-D examples, with a three-layer medium and
with zero and nonzero values for the electric conductivity to investigate the
effects of conductivity in cross-correlation interferometry methods.

space. The sources are separated by 10 cm in the horizontal
direction and we have used 151 sources spanning a horizontal
offset of 7.5 m in both directions. The source time signature of
each boundary source is a second derivative of a Gaussian with
a 250-MHz center frequency.

A. Correlation Gathers

One antenna is located in air above the top boundary and the
causal Green’s function is retrieved. The contribution from the
separate sources at the top boundary and at the bottom boundary
are given in Fig. 2. These results are obtained with (13). Con-
tributions from each surface have noncausal events, labeled nc1

and nc2, that are canceled when they are summed to obtain the
final result. It can be observed in Fig. 2(a) and (c) that the direct
event, event number one, from the top surface has the wrong
sign and corrects the event from the bottom surface, whose am-
plitude is too large. The direct wave is mostly constructed from
contributions of sources at the bottom surface, while the sources
at both surfaces contribute equally to the reflection event, event
number two. When the far-field approximation of (18) is used,
the sign of the noncausal events is reversed to favor inward trav-
eling waves from the top surface and hence nonphysical events
are introduced, as is shown in Fig. 3, labeled s1, s2. It can be
seen in the figure that new “ghost” events show up, labeled s3 to
s6, which remain in the final result. These are due to incomplete
destructive interference because we have assumed that the gen-
eralized rays that leave the surface in the ±x3-direction give the
major contribution. This assumption is clearly violated by the
contribution from sources at the top boundary. All nonphysical
events are coming from sources at the top boundary and arise
at negative times, or at least before the first physical arrival,
because they come from correlations of waves that travel from
the boundary outward to xB and inward from the boundary to
xA, whose travel time is larger than the travel time to xB from
which is subtracted. The effect of the far-field approximation is
small and limited to a decrease in recovered amplitude of the
direct arrival, as shown in the figure, where the exact interfero-
metric result is plotted together with the result obtained with the
far-field approximation. Equations (18) and (20) are suitable for
interferometric applications because all artifacts occur outside
the time window of interest and can be identified.
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Fig. 2. Correlation gathers of the sources at (a) the top and (c) bottom surfaces in the time domain. (b) and (d) Sum of all traces in (a) and (c) at the amplitude
scale of the exact result.

Moreover, the “ghost” events all occur in a time-symmetric
manner relative to a common arrival time at zero horizontal
source–receiver offset. This is illustrated in Fig. 4, where a
common-midpoint gather is shown of the total result from both
surfaces obtained using (18). It can be observed that s1, s3,
s2, s4 and s5, s6 form time-symmetric pairs. Under favorable
conditions, this allows cleaning up the data by successive
mirroring and subtracting these events from the data. This is
only necessary when large horizontal offsets are used because
then the earliest “ghost” event overlaps the direct arrival.

B. Effect of Conduction Losses in Correlation Results

The configurations described in this paper allow correlation-
type interferometry only for zero conductivity and relaxation
mechanisms, while the convolution-type interferometry is valid
in conductive media. We show in Fig. 5 one example of the
effects of nonzero conductivity values on correlation results for
xB in the air above the top surface. It is first observed that the
contributions from the bottom boundary have almost vanished.

This is because the waves must travel 2 m from this surface to
the deepest interface in the target zone and the energy that is
lost along this path cannot be recovered. A second observation
is that in the contributions from the top surface no new “ghost”
events occur relative to the ones present in the equivalent but
lossless case, compare with Fig. 3. The direct arrival in the final
result has the wrong sign, as expected from the top boundary
result that was also seen in the lossless case, but the first primary
reflection, labeled event number 2, is almost correctly retrieved.
From this result, we conclude that (18) and (20) are suitable
for interferometric imaging applications in weakly dissipative
media because all artifacts occur outside the time window of
interest and can be identified, and the kinematics of all events
are correct.

C. Convolution Gathers

The configuration shown above in correlation gathers is also
suitable for convolution-type interferometry. In this configu-
ration, the bottom boundary has exactly a zero contribution
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Fig. 3. Comparison of the exact interferometric results and results from the
far-field approximation in the separate contributions from sources at the top
surface (left), bottom surface (middle), and their total sum (right).

Fig. 4. Common mid-point result for total sum from sources at both surfaces
and using the far-field approximation.

and only the top surface needs to be considered, because the
contribution from the bottom surface vanishes. This can be
understood from the observation that when we keep the bound-
ary and the two receiver locations fixed, the total contribution
is fixed. By moving the top boundary to positions that both
receiver locations are inside D, the total result is always zero
independent of the location of the bottom boundary and hence
the bottom boundary has a vanishing contribution. This implies
that while downgoing waves leaving the domain D are not
recorded, the upgoing waves must cancel. The integrand in (22)
shown in the time domain for all the separate sources form the
convolution gather and the left-hand side of (18) in the time-
domain forms a single trace. Both are shown in Fig. 6. In the
figure, it can be seen that the contribution from the stationary
point is the earliest event in time of the convolution gather
response curve. This is because now arrival times are added
and the shortest path yields the physical event. It can also be

Fig. 5. Results from the far-field approximation of (18) in conductive media.
The left and middle graphs show the separate contributions from sources at
the top surface and bottom surface, respectively. The total sum (solid line) is
compared to the forward-modeled response (dotted line) in the right graph.

observed that the amplitudes of arrivals further away from the
stationary point drop faster than the corresponding curves in
the correlation gather. A third observation is that in between the
arrivals of the physical events, there are curved events that sum
up to zero. Since now, arrival times are added, using the far-
field approximation yields “ghost” events, whose arrival times
are inherently positive and occur in the time window of interest.
These “ghost” events have information about the location of
the sources on the boundary surface and when this surface is
irregular, the “ghost” events will be suppressed by destructive
interference as shown by Draganov et al. [7] for correlation-
type interferometry. We show here in Fig. 7 that when (24) is
used, similar events are present in the convolution results in the
time window of interest in (a), where the dotted curve has one
spurious event in the time window between 20 and 30 ns, and
that it is suppressed by taking irregularly spaced source heights
to define the top boundary, as shown in (b), where we have
defined the top boundary by 100 random values in the range
of ±50 cm relative to the mean height of 2 m. Some small
amplitudes of the “ghost” events remain in the time window
from 20 to 30 ns. Further reduction of the spurious events can be
obtained by introducing more heights. Still, the physical events
are all correctly retrieved, even in this situation with nonzero
conductivity values in the layers below the surface. We there-
fore conclude that the cross-convolution method applied on data
from transient sources in dissipative media is the most accurate
interferometric method when the boundary is sufficiently irreg-
ular, because all physical events are retrieved correctly.

VII. CONCLUSION

We have formulated exact Green’s function representations
for EM fields and waves between two points in terms of cross
correlations and cross convolutions of recordings at those two
points. Necessary modifications are presented for applications
in GPR interferometry. This is possible in a configuration
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Fig. 6. Convolution gather of the sources at (a) the top surface in the time domain. (b) Shows the sum of all traces in (a) at its own exact amplitude scale.

where the medium outside the domain D is homogeneous.
In the configuration where one observation point is outside
the domain spanned by the sources, outward traveling waves
always interact with inward traveling waves and spurious events
occur. In cross-correlation-type interferometry, these spurious
events occur before the first physical event and can be easily
identified. The physical events are retrieved correctly in lossless
media, while in dissipative media amplitude errors occur, but
no new spurious events arise. In cross-convolution-type inter-
ferometry these “ghost” events inherently arrive in the time
window of interest. For both correlation and convolution-type
interferometry, these spurious events are suppressed effectively
when the sources lie on an irregular boundary surface. When
transient sources can be used, the cross-convolution method
is the preferred method for Green’s function retrieval in lossy
media. An example can be the extension of crosshole GPR
tomography. When three boreholes are in a line and the dis-
tance between the outer most boreholes is too large for direct
measurement between the holes, this data can be obtained
using cross convolutions of data recorded simultaneously in
both holes from sources in the center hole. For most GPR
applications, where the dissipation is not too strong and noise
sources must be used, the cross-correlation method can be used.

The advantage of interferometric methods is that naturally
present ambient noise can be used as the source, allowing for
all kinds of GPR without a source applications. Low-quality
recordings can be made, because correlation and convolution
processes enhance the signal-to-noise ratio. Contributions from
many sources are added for many time samples to reconstruct a
single time sample for a new data trace (A-scan). An example
where 1-bit recordings were successfully used for Green’s func-
tion retrieval is given in [9]. Scattering from objects enhances
the quality of the reconstructions, in fact when the medium is so
heterogeneous that the wavefield becomes diffuse, the spurious
events are more strongly suppressed, this has been shown in
[20], [28], [32], and [33]. If system noise and/or clutter noise is
coherent, this noise can lead to amplitude errors and spurious

events, for which reason, we should operate receivers and
antennas with a very low noise floor.

After the interferometry process, every receiver has played
the role of a new source, so from a recording of N different
receiving antennas, N source positions can be synthesized, and
for each source N receivers can be used with one autocorre-
lation and N − 1 cross correlations. This generates a full mul-
tistatic data set. When multicomponent data are recorded, full
polarimetric multistatic data can be created. Passive imaging
techniques used on ultrawideband data again combines data
from these new sources and receivers and further enhances
the signal-to-noise ratio. The original sources on the bound-
ary could be either noise or transient sources, which can be
unknown or controlled. When these are uncorrelated noise
sources, they can emit simultaneously but if they are transient
sources, they must emit signals in a form that allows for
them to be recorded separately. Examples of such sources are
background radiation in a wide frequency band and satellite
signals in smaller bands. In the atmosphere there are many
sources of EM energy in low-frequency ranges, as well as in the
bands used for radio waves and wireless communication. From
stationary phase analysis, we know that not all points on the
boundary are equally important. The target depth and required
survey size for the receivers determines the required horizontal
extent of sources on the boundary. A general good estimate
would be that the sources are on a boundary that exceeds
the receiver array on both sides by at least the target depth
range. Then, accurate data can be created for all possible offsets
in the interferometric result. With present day emergence of
ultrawideband EM components, it will become possible to
carry out such experiments. That would open a whole new
range of EM applications. For small band signals the first EM
experiments are reported by Lerosey et al. [10] for time reversal
and by Henty and Stancil [8] for superresolution focusing in
the frequency domain. Other examples are the decomposition
of the time reversal operator method [13], the method of
interferometric aperture synthesis radiometry [4] and focusing
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Fig. 7. Comparison of exact result with conductive layers (solid line) and the
result with the far-field approximation (dotted line) from sources at the top
boundary with (a) a constant height distribution and with (b) an irregular height
distribution.

in time-reversed random fields [14]. Since we have formulated
representations for lossy media, they can be used for diffusive
EM fields and stationary electric currents.
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