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Green’s Function Extraction for Interfaces With
Impedance Boundary Conditions

Evert Slob and Kees Wapenaar

Abstract—Theory and experiments to obtain the response be-
tween two receivers from cross correlations of wave fields recorded
at these receivers are well established. The principle relies on mutu-
ally spatial and temporal uncorrelated contributions from sources
on a boundary enclosing the two receivers, which upon cross cor-
relation interfere only constructively for signals traveling between
the two receivers. It has, therefore, become generally known as in-
terferometry. The theory includes situations with flow, mechanical,
and electromagnetic field fluctuations, and their mutual coupling.
Here, we present an electromagnetic theory for Green’s function
retrieval from cross correlations that incorporates general bian-
isotropic media in which interfaces are present where bianisotropic
impedance boundary conditions apply. The derived Green’s func-
tion representation shows that in lossless media and for interfaces
with lossless impedance boundary conditions the Green’s function
between two receivers is obtained by cross correlating the record-
ings of these receivers from sources on a boundary enclosing them.
We show numerical examples in 2-D where proper solutions are
numerically tractable and practical approximations illustrate that
numerically less intensive algorithms lead to acceptable results and
accurate extraction of reflections from impedance boundary sur-
faces. Because the method is data driven, it is suitable for experi-
mental Green’s function extraction from measured data.

Index Terms—Bianisotropic media, impedance boundary condi-
tions, interferometry.

I. INTRODUCTION

I NTERFEROMETRIC Green’s function extraction involves
cross correlation and integration of recorded fields. Here it

is used to obtain the Green’s function between two receivers
from cross correlation of their recordings. The method of
extracting the Green’s function from cross correlating obser-
vations simultaneously made at two different locations can be
envisaged as coherent interferometric radiometry. Presently
known electromagnetic formulations rely on continuity condi-
tions of the transverse electric and magnetic field components
across finite jump discontinuities in medium parameter values
[1]–[5].

The interaction of electromagnetic wave fields with interfaces
across which the wave field components satisfy jump-average
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conditions have been studied for a long time. In the earth sci-
ences this was discussed for fields in the diffusive approxima-
tion, for a strongly conductive interface [6]. In the case of a
conductive interface charges cannot be built up and the current
that is generated at the interface gives rise to a jump in the tan-
gential magnetic field components, linearly proportional to the
tangential electric field components. The ratio of the electric
field and the magnetic field jump is the specific boundary resis-
tivity. Interface conditions of this type are known as impedance
boundary conditions. Impedance boundary conditions are used
for modern scattering computations of large and curved objects,
and corrugated surfaces [7]–[13], of half planes [14], in biomed-
ical engineering [15] and for bianisotropic impedance bound-
aries with jump conditions [16], [17].

In this work general linear electromagnetic media are in-
corporated, which are represented by a full constitutive matrix
[18]. An early example is the dual polarized ring laser [19] that
can be used in downhole formation testing in oil exploration.
For bianisotropic media with continuity boundary conditions,
for the transverse components of the electric and magnetic
fields, the interferometric relations are derived in [20]. Bian-
isotropic media are of growing importance in the fabrication
of metamaterials [21] that can be used for creating impedance
boundary conditions [22], [23]. In this paper, the Green’s
function retrieval is formulated for interfaces with general
linear impedance boundary conditions. General symmetry
properties of the interface material parameter matrix is given
for reciprocal and nonreciprocal lossless impedance boundary
conditions that lead to Green’s function extraction from contri-
butions of sources located on a boundary. We show numerical
examples in 2-D to illustrate the possibilities and restrictions.

II. RECIPROCITY

The theory is developed in six-vector notation [24] and three
unitary six-matrices, , are introduced as

(1)

while the matrix is obtained as and the unit matrix
is used for the 3 3 and 6 6 unit matrices, but no confu-

sion occurs. Note that ,
and , which relations are used many times. The
macroscopic space-time electromagnetic field is determined by
the electric field , the magnetic field , the elec-
tric and magnetic flux densities , and the ex-
ternal source volume densities of electric and magnetic currents,

, respectively. The time-Fourier transform
of a space-time dependent quantity is defined as
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, where j is the imaginary unit and de-
notes angular frequency. The frequency domain constitutive re-
lations are given by and
where electric permittivity and magnetic permeability tensors
are given by and , while denote the magneto-electric
tensors. The effects of moving media and all possible time-
relaxation mechanisms are incorporated in the frequency de-
pendent complex valued material tensors. Maxwell’s equations
read , where the field vector is given by

and the superscript denotes transposi-

tion, ) is the source vector, while
is the matrix of spatial differential operators given by

(2)

The material matrix is defined as

(3)

We have the following symmetry property for the derivative ma-
trix, .

Macroscopic impedance and admittance boundary conditions
define linear relations between the electric and magnetic field
components tangential to an interface [17]. General jump-av-
erage conditions are adopted in the frequency domain [25]

(4)

with

(5)

with defined as but with the components of the spatial
derivative, , replaced by the components of the unit vector
normal to the interface, , , 2, 3. This formulation
allows for approximations of thin high contrast layers [6], but
they are exact for interfaces with perfect conductors, either
electric, magnetic or electromagnetic [23] and generalized
soft-and-hard (SHS) layers [22] or other conceivable interfaces
with impedance boundary conditions (IBC) [26]. The jump
and average across the interface are represented by , ,
respectively; hence

(6)

(7)

where is chosen at the interface. The interface permittivity and
permeability are and , while
the magneto-electric interface parameter tensors are given by

and . First, the fields at both
sides of the interface are separated to avoid sign problems with
the matrices containing unit vectors normal to the interface. Let
the two sides of the interface be denoted 1 and 2 and we use
to represent the unit vector, normal to the interface, see Fig. 1,

Fig. 1. Configuration for the reciprocity theorem internal interfaces with
impedance boundary conditions.

such that and then (4) can be written as
, with .

A reciprocity theorem relates two states, labeled and ,
that can be nonidentical everywhere. Reciprocity of the time-
convolution type is applied to a bounded spatial domain , and
outer boundary with outward pointing unit normal vector

, and internal interfaces , where the
boundary conditions of (4) apply, see Fig. 1. With the above
definitions, the theorem reads [25]

(8)

where is defined similar to , but with replaced by
, and , and

has been used. Note that for the integral over the nonperfect
interfaces the fields and , and the matrix are all lo-
cated on the “1-side”. Equation (8) is the general representation
for two independent electromagnetic states in bianisotropic
media. The sources and source locations as well as the media
in the two states can be completely different. The first integral
in the right-hand side of (8) represents the boundary integral
over the outer boundary, where continuity conditions apply.
The third integral in the right-hand side of (8) represents
the boundary integral over all internal interfaces, where the
impedance boundary conditions of (4) apply. This integral

vanishes when and interfaces satisfying these
conditions are each other’s adjoint. The adjoint of an interface

impedance is denoted as and it is related to the interface

impedance through . This implies that

the adjoint of the interface parameter matrix is given by

, and

(9)
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When these conditions hold for one and the same interface,
it is called a self-adjoint, or reciprocal, interface and we have

and .
The volume integral in the right-hand side of (8) vanishes

when , which implies that , ,

and . This situation is discussed in
[20] and here only the necessary results are used. The adjoint

medium is denoted and its relation to the material matrix
is given by . If these conditions hold in one
and the same medium, the medium is called self-adjoint or re-

ciprocal and we have .

A. Source-Receiver Reciprocity

The Green’s function expression of source-receiver reci-
procity is obtained by taking state B as the adjoint of state A,
and hence the second and third integrals in the right-hand side
of (8) vanish. The material matrices are given by

and , while the interface impedance matrices are

and . The 6 1 source vectors
are replaced by the 6 6 unit strength point source matrices

, where is the identity matrix. The field vector
is correspondingly replaced by the 6 6 Green’s

matrix , while the field vector is replaced by

the adjoint Green’s matrix . In the Green’s
matrix each column represents the Green’s functions for all the
electric and magnetic field components for a single source type
and direction, while each row represents a single field type and
component for all source types and directions. If we take
and inside and assume that outside some sphere with
finite radius the medium is isotropic and homogeneous, then
the boundary integral also vanishes, leaving the source-receiver
reciprocity relation as

(10)

which expresses the equality of a measurement in a certain
medium to an other measurement in an adjoint medium, with
interchanged source and receiver type, vector component and
location. The matrix accounts for possible sign changes
upon interchanging source and receiver.

III. POWER BALANCE

The here derived interferometric relation originates in the cor-
relation-type reciprocity theorem, which reads [27]–[29]

(11)

where has been used and the superscript de-
notes matrix transposition and complex conjugation. If in (11)

the interface is lossless, which can occur either
when the interfaces in both states are lossless or when the in-
terface in one state dissipates energy from the field and in the
other state it delivers the same amount of energy to the field in

which case . Then it is found that ,

and , . The parameter ma-
trix of the adjoint interface is related to that of the interface as

(12)

(13)

where the superscript denotes complex conjugation.

When , the interface is lossless, but not neces-
sarily reciprocal. The medium is lossless when . When
states and are the same, and both the interface and the
medium are lossless the last two integrals of (11) vanish.

A. Correlation Type Green’s Matrix Representation

Equation (11) is used to derive a representation of the Green’s
matrix in terms of cross correlations. Point source matrices and
Green’s matrices replace the source and field vectors. The points

and are chosen in and both states have the same in-
terface and medium parameters and

. With these choices the correlation type Green’s ma-
trix representation is given by

(14)

where the contrast functions are both Hermitian and given by

(15)

(16)

It is noted that now both states exist in one and the same
medium. Furthermore, these states can occur simultaneously,
but that is not mandatory. No assumptions have been made
about the internal interfaces and material matrices, and .
Obviously, at each interface where , the interface
is lossless and the third integral in the right-hand side of (14)
vanishes. Only the anti-Hermitian part of remains in the rep-
resentation, which is the part accounting for energy dissipation.
Equation (14) is a general representation of the electromagnetic
Green’s matrix for arbitrary bianisotropic media, including
arbitrary IBC interfaces. Equation (14) represents the Green’s



354 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 1, JANUARY 2012

functions between and obtained from integral contribu-
tions of received Green’s functions at the boundary , at the
internal interfaces and in the volume , in a heterogeneous
bianisotropic medium with piecewise continuous interfaces.

IV. GREEN’S FUNCTION RETRIEVAL

Equation (11) is used to derive an interferometric represen-
tation of the Green’s matrix in terms of cross correlations. The
points and are chosen in , but the adjoint states are
taken for both and , hence again both states occur in one

and the same medium but now with and

. Point source matrices are used and, as a
consequence of the medium and interface impedance parame-
ters, adjoint Green’s matrices replace the source and field vec-
tors. Equation (10) is used together with the symmetry relations

for , and , and for and . Transposing both sides
of the resulting equation yields

(17)

where the contrast function is the same as in (16), while
the impedance boundary contrast matrix is now given by

(18)

No assumptions have been made about the internal interfaces
and material matrices, and , other than that their ad-
joint exist. Equation (17) is a general representation of the
electromagnetic Green’s matrix, between and located
in the same medium, obtained from integral contributions
from sources at the boundary, , at the internal generalized
impedance interfaces, , and inside the volume, , in an
arbitrary heterogeneous bianisotropic medium, with IBC inter-
faces. It is valid for reciprocal and nonreciprocal IBC interfaces
and media. When the media and IBC interfaces dissipate no
energy, the full Green’s matrix can be obtained from sources
on the boundary only. Hence, even for an arbitrary heteroge-
neous bianisotropic medium with IBC interfaces, absence of
energy dissipation is a sufficient condition for obtaining the
Green’s function from the cross correlation of two recordings
from sources on a closed boundary only. In the time domain
the Green’s matrix is causal; hence, for

, and the time reversed Green’s function is time reversed
causal; hence, for . For this reason

or can be easily retrieved from
the left-hand side of (17), ,
by taking the causal or time-reversed causal part, respectively.
In general, the application of (17) requires independent mea-
surements of sources at all points in the domain and at the

boundary of . In applications of remote sensing without a
source, the most interesting situation is the lossless variant with

, where the interfaces can be dispersive, but dissi-

pate no energy, and with similar medium properties .

A. Lossless Interfaces

For lossless interfaces and media the matrices satisfy

and , leading to and . Note

that this occurs when , and
for the interface parameter matrices and the same conditions
apply for the material parameter matrices. These choices allow
for nonreciprocal media and impedance interfaces. Then (17)
directly reduces to

(19)

For lossless IBC interfaces in lossless media the Green’s ma-
trix between and is obtained from cross correlations of
recordings from responses to independent impulsive sources on

only. When the data, generated by one of the sources at the
boundary and recorded by two receivers, are cross correlated
with each other and summed over all the source contributions
at the boundary, the result is a pulse echo experiment with one
of the receivers acting as a source and in absence of the orig-
inal sources at the boundary, as sketched in Fig. 2. To make
(19) suited for uncorrelated noise sources, must be diag-
onalized. This involves the separation of contributions from the
sources for inward and outward traveling waves and the proce-
dure is outlined in [28]. A suitable diagonalization procedure is
available when the noise sources lie on a boundary in a lossless
isotropic medium [30]. Then, e.g., the electric subset of (19) is
in the time domain given by

(20)

where denotes the autocorrelation of the noise sources
and denotes a spatial ensemble average. This expression is
similar to the results obtained for anisotropic and bianisotropic
media [3], [20]. In (20) time convolution is indicated by , the
Green’s function corresponding to the electric field generated by
an electric current source is represented by , while de-
notes the observed electric field vector due to uncorrelated noise
sources. For random white noise sources, and the
Green’s function is retrieved.

V. ELECTRIC FIELD GREEN’S FUNCTION RETRIEVAL

We now reduce (17) to retrieve the Green’s function for the
electric field generated by an electric current source. We first
write the interface impedance matrix as

(21)



SLOB AND WAPENAAR: GREEN’S FUNCTION EXTRACTION FOR INTERFACES WITH IMPEDANCE BOUNDARY CONDITIONS 355

Fig. 2. Right graph depicts the situation for one source; when the data recorded at ��� and ��� is cross correlated for each source at the boundary and summed
over all sources as expressed in the right-hand side of equation (19), the result is an experiment in absence of sources at the boundary, but where one of the original
receivers acts as a source as depicted in the left graph as an illustration of the first Green’s function in the left-hand side of equation (19).

where the subscripts denote the Cartesian tensor components

of each sub-matrix for and . The
matrix for the impedance condition is

(22)

with the sub-matrices given by

(23)

(24)

(25)

(26)

We also introduce two new directional tensors ,
where is equal to in subscript notation, and

, being equal to in subscript notation, and
. These newly introduced tensors are

used in (11) to write it out in Cartesian tensor components for
the electric field. We keep electric current sources in both states,
but take the magnetic current sources to be zero and

. For a lossless medium with interfaces satisfying
impedance boundary conditions, we find

(27)

Because the magnetic current sources are taken zero, the mag-
netic field that is still present in the integrals can be replaced by

, where is the inverse
of the magnetic permeability tensor, given by .
In case the interfaces have impedance boundary conditions that
do not dissipate energy all boundary condition tensors vanish,

, and only the integral over the outer boundary
remains. In case the interfaces are perfect electric (PEC),
or perfect magnetic (PMC) conductors, the integrals vanish
because the tangential electric and/or magnetic fields vanish. In
those situations the perfect conducting boundary can be taken
as part of the outer boundary , because such interface be-
haves as a perfect reflector with possible polarization rotation.
When small losses occur, e.g., when the conducting boundaries
are not perfect, but still good conductors [31], a small error will
be introduced when the boundary integrals are ignored, similar
to ignoring the volume integral when the background medium
is slightly dissipative [30]. Equation (27) is the starting point to
formulate the numerical examples. Even when the impedance
conditions involve energy dissipation at the interface and
sources on the interface are required to retrieve correct Green’s
functions, no numerical singularities occur, unless a receiver is
located at the interface with an impedance condition. In such
situations it is not useful to retrieve Green’s functions for a
source and/or receiver at the impedance boundary, because
then the easiest way is direct computation. We are interested in
remote sensing without having a source close to the impedance
boundary and we will show numerical examples for two differ-
ence impedance conditions.

VI. EXAMPLES

The most interesting situations occur when the propagating
medium is lossless. We will investigate two different types of
IBC interfaces in two dimensions. The TE-mode Maxwell’s
equations for a 2-D bianisotropic medium is written as

(28)

Correlation reciprocity is used in a bounded 2-D domain , with
outward unit normal , in a medium that is ad-
joint to the medium for which the electric field scalar Green’s
function is retrieved.



356 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 1, JANUARY 2012

The reciprocity theorem of the time correlation type of (27)
reduces to

(29)

where it is understood that in this 2-D example. Equa-
tion (29) is the 2-D equivalent of (27) in which the second and
third equations from (28) have been used to write the magnetic
field in terms of the electric field. This is the diagonalization
procedure, mentioned below (19). Notice that we have used the
adjoint states for (29), for which reason occurs in the third
integral instead of . As a consequence of eliminating the
magnetic field from the equation, it can be seen in (29) that
for a lossless nonreciprocal medium, where has a nonva-
nishing real part, an extra integral over the boundary remains
in the time-correlation type reciprocity theorem compared to
an ordinary anisotropic and reciprocal lossless medium. For a
bianisotropic reciprocal lossless medium , and,
hence, the second integral on the right-hand side of (29) van-
ishes. In that case (29) reduces to the same form as for an ordi-
nary anisotropic reciprocal lossless medium.

We take the medium parameters in the two states and
the same and that of the medium adjoint to the actual medium;
the electric current source in state to be a line source given
by and a similar choice for

. The electric field can be written in terms of the Green’s

function as and is substituted in
(29) to obtain

(30)

where . Exploiting the fact that
all the Green’s functions in (30)

belonging to the adjoint medium are replaced with the Green’s
function in the actual medium and (30) is rewritten as

(31)

Equation (31) is the Green’s function extraction relation for
the 2-D electric field in a lossless bianisotropic medium with
interfaces satisfying general lossless or perfect conducting
impedance boundary conditions.

In the high-frequency approximation, where
,

the first integral in the right-hand side of (31) becomes equal
to the second integral with opposite sign, while the third
integral is approximately cancelled, such that only the term
with remains and we use as the wave
propagation velocity ignoring the bianisotropy effects. Under
these approximations (31) reduces to

(32)

which is the desired relation to extract the Green’s function be-
tween and from the product of the complex conjugate of
the Green’s function between a receiver in and sources on
the boundary and the Green’s function between a receiver in

and sources on the boundary . The effect of making these
approximations are investigated by comparing results from (31)
and (32).

A. Lossless and PEC Impedance Boundaries

For the numerical examples it suffices to investigate a simple
2-D configuration. We choose a homogeneous bianisotropic
background medium in which one planar boundary occurs that
satisfies an impedance boundary condition, located at .
We place two outer boundaries such that ,
with is defined by and is defined by

. The points and are located at the depth level
and and .

The medium parameters are given by , ,
and . For this

choice of bianisotropy parameters on the boundaries
and , where is given below (30) and is defined

just above (32). The actual propagating wave velocity in the
positive -direction is , in the negative

-direction it is , while in the positive
and negative -directions they are and

. The boundary parameters are given by
, , . We use

the second derivative of a Gaussian as the source pulse, with a
central frequency of 250 MHz as spectral bandwidth filter; we
place 1024 electric dipoles separated by 5 cm on and .
Because we model propagating waves, the usual discretization
conditions apply to avoid spatial and temporal aliasing. We
show results for a horizontal distance of 1 m between the two
receivers. The result from summing the correlated signals re-
ceived at and from sources at both interfaces according
to (31) is shown in Fig. 3(a), according to (31) but ignoring the
third integral on the left-hand side, and according to (32) in
Fig. 3(c). The left-hand sides of (31) and (32) can be computed
as exact results in the time-domain and these are shown in
solid black lines for a source in and a receiver in for
positive times and for a source and a receiver in for
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negative times. The right-hand sides of (31) and (32) describe
how the retrieved results should be obtained and the numerical
results are shown in red dashed lines. The finite length of the
source boundaries leads to break-off errors that can be seen in
the direct waves that travel between source and receiver in all
the plots in Fig. 3. Still the retrieved signal is quite accurate
in amplitude and perfect in time. The reflection event is very
accurately retrieved, because the sources that are stationary
for this reflection event are relatively close to the receivers.
To investigate the contribution from the third integral in the
right-hand side of (31) we plot the result of the first two inte-
grals in the right-hand side of (31) in Fig. 3(b), where the direct
wave in positive times has a much too low amplitude, the direct
wave at negative times has a much too high amplitude, while
the reflected waves, at both positive and negative times, from
the impedance boundary have approximately half the expected
amplitude. Implementing the high-frequency approximation is
expected to give larger errors in the direct waves than in the
reflected events, because in the approximation it is assumed
that the wave field that contributes to the retrieved events,
leaves the source boundary perpendicular to this boundary. For
receivers at an angle of 45 degrees with the vertical axis the
waves that are stationary for retrieving the direct field leave the
boundary at 45 degrees and we expect an error in the amplitude
of as can be seen in Fig. 3(c), where it can
also be seen that the reflection from the impedance boundary
has no visible error. The asymmetry in the amplitudes of the
retrieved direct waves at positive and negative times is because
the propagating medium is bianisotropic.

In Fig. 4 similar results are shown for a PEC boundary. For
a PEC boundary the sources are only necessary on boundary

, because the boundary lies below the PEC boundary,
which is a perfect reflector and waves sent from sources on the
boundary do not reach the points and . The retrieved
result using (31) is excellent (Fig. 4(a), and the PEC reflection
retrieved from (32) is very good with a slight amplitude error
(Fig. 4(b). The direct events at negative times are now also re-
trieved from sources on and this leads to interactions of
waves that leave the boundary in positive -direction, reflect
off the PEC boundary, traveling in negative -direction and
pass through both receivers in and then . These interac-
tion are different than in the example with nonperfect reflecting
impedance boundary where the direct waves at positive times
are retrieved from sources on . For this reason the direct
events at positive times in Fig. 4(a) and (b) are slightly different
from the direct events at positive times in Fig. 3(a) and (c), re-
spectively.

VII. CONCLUSION

The matrix representation for Green’s function retrieval in
general bianisotropic media with IBC interfaces holds for non-
reciprocal and dissipative media. It applies to natural and en-
gineered media. The validity of the Green’s function retrieval
by cross correlation of two noise field recordings has been ex-
tended to include media with interfaces that are characterized by
jump-average conditions. The condition of the media and IBC
interfaces being lossless was shown to be a sufficient condition
to create new data from measured data due to noise sources on

Fig. 3. Exact results for a boundary satisfying lossless bianisotropic boundary
conditions in a bianisotropic medium are shown in solid black lines for a source
in ��� and a receiver in ��� for positive times and for a source ��� and a receiver
in ��� for negative times, which is equal to the time-domain equivalent of the
left-hand sides of equations (31) and (32); retrieved results are shown in red
dashed lines, which are obtained according to the right-hand side of a) equation
(31), b) same as a) but ignoring the third integral, and c) (32).

a remote closed boundary only. The result may find applica-
tions in a wide variety of fields, ranging from microwave to op-
tical regimes, and the most interesting application is to obtain
pulse-echo data from cross correlations of noise observations
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Fig. 4. Exact results for a boundary satisfying PEC boundary conditions in a
bianisotropic medium are shown in solid black lines for a source in ��� and a
receiver in ��� for positive times and for a source ��� and a receiver in ��� for
negative times, which is equal to the time-domain equivalent of the left-hand
sides of equations (31) and (32); retrieved results are shown in red dashed lines,
which are obtained according to the right-hand sides of equations (31) and (32).

for imaging and characterization of natural and engineered ma-
terials.

We derived electric field Green’s function extraction from
summing correlations of field recordings from sources on
a boundary. In the following 2-D numerical examples we
have shown that the high-frequency approximation provides
reasonably accurate results for reflection events from lossless
impedance interfaces as well as PEC boundaries. When the
source array has a wide enough aperture, direct waves are well
reconstructed even when the line between the two receivers
is parallel to the source planes. In configurations where the
bianisotropy parameters lead to an extra integral over the
source boundary, the high-frequency approximation leads to
kinematically correct direct waves and dynamically accurate
reconstruction of reflection events. This still applies when
the bianisotropy parameters cannot be considered small and
without needing to know the bianisotropy parameters.
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