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Single- and Double-Sided Marchenko Imaging
Conditions in Acoustic Media

Joost van der Neut , Joeri Brackenhoff, Myrna Staring , Lele Zhang , Sjoerd de Ridder , Evert Slob ,
and Kees Wapenaar

Abstract—In acoustic reflector imaging, we deploy sources and
receivers outside a volume to collect a multisource, multioffset
reflection response in order to retrieve the internal reflectivity
of that volume. It has been shown that Green’s functions inside
the volume can be retrieved by single-sided wavefield focusing of
the acquired reflection data, using so-called focusing functions,
which can be computed by solving a multidimensional Marchenko
equation. Besides the reflection data, this methodology requires a
background model of the propagation velocity. We present several
imaging conditions to retrieve the internal reflectivity of an acous-
tic medium with correct amplitudes and without artifacts, using
the Green’s functions and focusing functions that are derived from
the Marchenko equation. We distinguish three types of imaging:
1) imaging by deconvolution, 2) imaging by double focusing, and
3) imaging by cross correlation. In all cases, reflectors can be ap-
proached either from above or from below. Imaging by deconvolu-
tion or double focusing requires single-sided illumination (meaning
that sources and receivers are deployed at a single boundary above
the volume only), whereas imaging by cross correlation requires
double-sided illumination (meaning that sources and receivers are
placed at two boundaries enclosing the volume). In order to achieve
double-sided illumination, the required reflection response at the
lower boundary can either be physically recorded or it can be re-
trieved from the reflection response at the upper boundary. When
imaging by deconvolution or double focusing, the internal reflec-
tivity is retrieved solely from primary reflections. When imaging
by cross correlation, multiple reflections are focused at the image
points, such that they contribute physically to the retrieved re-
flectivity values. This special feature can be beneficial for imaging
weakly illuminated sections of strongly heterogeneous media.

Index Terms—Image representation, acoustic signal processing.

I. INTRODUCTION

IN ACOUSTIC reflector imaging, we aim to characterize
the internal reflectivity of a specific volume by collecting
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the echos from various source and receiver locations outside the
volume. The methodology can be applied at various scales, rang-
ing from monitoring the subsurface with low-frequency seismic
waves [1] to probing the human body with high-frequency ul-
trasound [2]. An imaging algorithm is required to retrieve the
internal reflectivity of the target volume from the recordings.
Most imaging algorithms are based on backpropagation of the
acquired data, using Green’s functions in a background model
[3]–[5]. Since multiple reflections and transmission effects are
not accounted for by this procedure, artifacts can emerge in the
image and amplitudes are typically inaccurate. Another limiting
factor is that backpropagation methods require a closed bound-
ary of observations [6], [7]. In practice, they are often applied
with observations at one side of the volume only, leading to
artifacts and inaccurate amplitudes, even if the exact model is
used for backpropagation. To overcome these limitations, the
internal reflectivity can also be retrieved by inversion [8]. Un-
fortunately, the underlying inverse problem is typically ill-posed
and obtaining a solution is expensive from a computational point
of view.

Recently, it has been shown that wavefields inside a volume
can be retrieved from observations at a single boundary above
the volume by single-sided wavefield focusing [9]. The so-called
focusing functions that are required to realize this process can
be computed by solving a multidimensional Marchenko equa-
tion, which is an extension of its one-dimensional equivalent
[10]–[13]. In so-called Marchenko imaging [14], [15], the re-
trieved wavefields are utilized to obtain an image of the inter-
nal reflectivity. Unlike various other methods that are based on
closed-boundary representations, Marchenko imaging requires
observations at a single boundary only. Since multiple reflec-
tions are accounted for by the methodology, image clutter (which
is a common problem in seismic data [16] and ultrasound data
[17]) is avoided. Reflection clutter appears to be especially sig-
nificant in photoacoustic imaging [18]–[20]. Hence, we prospect
the Marchenko equation to offer fruitful applications for this
specific imaging modality [21].

Three steps can be distinguished in Marchenko imaging. In
step (1), focusing functions are retrieved from the acquired re-
flection data. These focusing functions may be interpreted as
inverse transmission operators that can propagate the acquired
data back into the medium. Actual backpropagation is estab-
lished in step (2) by convolving the retrieved focusing functions
with the reflection data. We refer to this step as single-sided
wavefield focusing. We obtain the (up- and downgoing) wave-
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fields as they have propagated inside the medium after this
operation (given that the acquisition surface is horizontal and
located above the volume of interest). In step (3), we obtain
an image of the internal reflectivity from the retrieved wave-
fields. This can be done by solving an inverse problem [22],
[23] (this approach is commonly referred to as multidimensional
deconvolution). Unfortunately, this process is intensive from a
computational point of view. Hence, a range of alternative imag-
ing conditions has been proposed, including crosscorrelation of
the up- and downgoing wavefields [24], convolution of the up-
going wavefield with the downgoing focusing function (or its
direct part) [25]–[28] and crosscorrelation of the upgoing focus-
ing function with the downgoing wavefield (or its direct part)
[14], [29].

In this paper, we evaluate three types of Marchenko imag-
ing conditions, from which most existing imaging strategies
can be derived: (1) imaging by deconvolution, (2) imaging
by double focusing and (3) imaging by crosscorrelation. In all
cases, reflectors can be approached either from above or from
below. Unlike in part of the existing literature (where accu-
rate amplitudes are typically ignored in all but deconvolution-
based imaging strategies), we strive to retrieve exact reflectivity
amplitudes. This is achieved by normalizing the solution of
the Marchenko equation. For this purpose, we introduce the
concepts of focal normalization and physical normalization in
Section II. In Section III, we discuss imaging by deconvolution.
For this type of imaging, normalization appears to be irrele-
vant since deconvolution includes an implicit normalization.
Unlike in previous publications, we propose to image the re-
flected field and the incident field independently and compute
their ratio. This procedure saves dramatically on the computa-
tion time. In Section IV, we discuss imaging by double focusing.
To guarantee accurate amplitudes with this type of imaging, it
is essential that physical normalization is applied. In Section V,
we continue with imaging by crosscorrelation. We demonstrate
that the artifacts that have been reported by [24], [30] and
[31] can be avoided if additional data is provided at the bot-
tom of the volume. In order to achieve the desired cancellation
of artifacts and the retrieval of accurate amplitudes with this
method, we emphasize that physical normalization should be
applied.

II. GENERAL THEORY

We start the paper by reviewing some existing theory. In Sec-
tion II-A, we present two reciprocity theorems, while we intro-
duce the concepts of Green’s functions and focusing functions
in Section II-B. In Section II-C, we discuss how the focus-
ing functions can be retrieved by solving the multidimensional
Marchenko equation and we show how these focusing func-
tions can be used to compute Green’s functions by single-sided
wavefield focusing. In Section II-D, we propose two options to
normalize the retrieved Green’s functions and focusing func-
tions. These normalizations are essential in order to retrieve
accurate amplitudes when imaging by double focusing and to
allow imaging by crosscorrelation with double-sided illumina-
tion. In Section II-E, we summarize the proposed procedure and
we discuss how the retrieved wavefields can be used for imaging.

Fig. 1. Configuration that is used in this paper.

A. Reciprocity Theorems

Wave propagation takes place in a lossless acoustic medium,
defined by mass density ρ (x) and wave velocity c (x),
where both of which are functions of spatial coordinates
x = (x1 , x2 , x3), with the positive x3-axis pointing downwards.
In our notation, we use bold symbols to denote multidimen-
sional quantities. A distinction is made between the horizontal
coordinates xH = (x1 , x2) and the vertical coordinate x3 ,
which is the preferred direction of wave propagation. Wave-
fields are described by the pressure p (x, ω) and particle veloc-
ity v (x, ω) = (v1 (x, ω) , v2 (x, ω) , v3 (x, ω)), which depend
on the spatial coordinates and angular frequency. We define the
temporal Fourier transform fω (ω) of an arbitrary function ft (t)
of time t as fω (ω) =

∫ +∞
−∞ ft (t) exp (−jωt) dt. We decompose

the physical quantities p (x, ω) and v3 (x, ω) into a downgoing
wavefield p+ (x, ω) and an upgoing wavefield p− (x, ω), which
are normalized with respect to the power flux [32]–[34]. The
sources of these wavefields are also decomposed. We recognize
a source function for downgoing waves s+ (x, ω) and a source
function for upgoing waves s− (x, ω).

A multi-source, multi-offset acoustic reflection response is
assumed to be recorded at a horizontal surface Sa at x3 = x3a .
The medium parameters above this surface are assumed to be
constant in the x3-direction, such that no downgoing reflections
occur in this part of the medium. Another surface Sm is defined
at x3 = x3m . The medium parameters below this surface are
also assumed to be constant in the x3-direction, such that no
upgoing reflections occur in this part of the medium. In case of
single-sided illumination (i.e. the reflection response is acquired
at Sa only), we may choose Sm below the lowest discontinuity
in the medium by setting x3m → ∞. In case of double-sided
illumination, x3m is finite and additional reflection data is ac-
quired at Sm . We define a volumeV inside the medium, which is
enclosed by an upper boundary ∂Vi at x3i and a lower boundary
∂Vj at x3j . For this configuration, which is illustrated in Fig. 1,
the following reciprocity theorem of the convolution type can
be derived [34]:

∫

V

{
p+

As−B − p−As+
B + s+

Ap−B − s−Ap+
B

)} d3x =

∫

∂Vj

{
p+

Ap−B − p−Ap+
B

}
d2x −

∫

∂Vi

{
p+

Ap−B − p−Ap+
B

}
d2x.

(1)



162 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 4, NO. 1, MARCH 2018

Similar as in full wavefield reciprocity theorems [35], subscripts
A and B refer to different states. In each state, we may choose
a particular source configuration s±, leading to an associated
wavefield p±. The medium properties of both states must be
the same inside V but can be different outside this volume. The
formulation can be extended to account for medium parameter
contrasts between both states in V by including an additional
volume integral that describes the interaction of the wavefields
with the medium contrasts. We can also derive a reciprocity
theorem of the correlation type [34]:
∫

V

{
p+∗

A s+
B − p−∗

A s−B + s+∗
A p+

B − s−∗
A p−B

}
d3x =

∫

∂Vj

{
p+∗

A p+
B − p−∗

A p−B
}

d2x −
∫

∂Vi

{
p+∗

A p+
B − p−∗

A p−B
}

d2x,

(2)

where superscript ∗ denotes the complex conjugate. In 2, the
evanescent wavefield has been neglected. When the reciprocity
theorems are transformed to the time domain by an inverse
Fourier transform, the multiplications in 1 and 2 correspond
to convolutions and crosscorrelations, respectively. In both the-
orems, we find a volume integral on the left-hand side that
describes the interaction of the wavefields with the source
functions. On the right-hand side, we find two integrals over
the enclosing boundaries that describe the interaction between
wavefields that enter and leave the volume V in both states.

B. Green’s Functions and Focusing Functions

We define the one-way Green’s function G±±′
(x,x′) as the

down- or upgoing (superscript ±) response at receiver x due
to an impulsive down- or upgoing (superscript ±′) source at
x′. Note that the Green’s function is also a function of angu-
lar frequency ω, which is not explicitly indicated for notational
convenience. The superscript ± can be evaluated in two modes.
In the so-called upper mode, we choose ± → +. In the lower
mode, that is ± → −. We will also use the superscript ∓, where
∓ → − in the upper mode and ∓ → + in the lower mode. In
a similar way, the symbols ±′ and ∓′ can be evaluated in two
modes, which we refer to as the upper ′ mode and the lower
′ mode. By using this compact notation, our expressions can
be used for a variety of purposes beyond imaging (for instance
acoustic holography [36] or extended imaging [37], [38]). The
following relation can be established for source-receiver reci-
procity [36]:

G±±′
(x,x′) = ∓±′ G∓′∓ (x′,x) . (3)

This equation can be evaluated in four modes. In the upper-upper
′ mode, we find G++ (x,x′) = −G−− (x′,x). In the lower-
lower ′ mode, that is G−− (x,x′) = −G++ (x′,x), while in the
lower-upper ′- and upper-lower ′ mode, we find G−+ (x,x′) =
G−+ (x′,x) and G+− (x,x′) = G+− (x′,x), respectively.

Apart from the Green’s function, we also define a focusing
function f±

1 (x,x′) (where superscript ± denotes downgoing
and upgoing at x in the upper and lower mode, respectively).
The focusing function depends on angular frequency ω (which
is not indicated explicitly in the argument list), location x and

TABLE I
DEFINITIONS OF TRUNCATED MEDIA 1 AND 2

Interval Medium 1 Medium 2
c1 (xH , x3 ), ρ1 (xH , x3 ) c2 (xH , x3 ), ρ2 (xH , x3 )

x3 < x3 t c (xH , x3 ), ρ (xH , x3 ) c (xH , x3 t ), ρ (xH , x3 t )
x3 = x3 t c (xH , x3 t ), ρ (xH , x3 t ) c (xH , x3 t ), ρ (xH , x3 t )
x3 > x3 t c (xH , x3 t ), ρ (xH , x3 t ) c (xH , x3 ), ρ (xH , x3 )

the so-called focal point x′. The function is defined in truncated
medium 1, whose medium properties are illustrated in Table I.
Note that this medium is identical to the physical medium above
a truncation level x3t . However, since the medium parameters
are not varying in the x3-direction below this level, no upgoing
reflections occur in this part of the medium. The truncation
level coincides with the focal point, i.e. x3t = x′

3 . The focusing
function focuses at the focal point, which is specified by the
focusing condition [15]:

f±
1 (x,x′)

∣
∣
x3 =x ′

3
= χ

1
0 δ (xH − x′

H ) , (4)

where δ (xH ) = δ (x1) δ (x2) is a 2D Dirac-delta function. In
this expression, we have defined the function χ

1
0 , where χ

1
0 = 1

in the upper mode and χ
1
0 = 0 in the lower mode.

We introduce another focusing function f±
2 (x,x′′) which

focuses a wavefield from below at an arbitrary focal point
x′′. This function is defined in truncated medium 2, which is
also specified in Table I. Truncated medium 2 is identical to
the physical medium below the truncation level x3t . However,
since the medium parameters are not varying in the x3-direction
above this level, no downgoing reflections occur in this part of
the medium. Once again, the truncation level coincides with
the focal point, i.e. x3t = x′′

3 . This focusing function obeys the
following focusing condition [15]:

f±
2 (x,x′′)

∣
∣
x3 =x ′′

3
= χ

0
1 δ (xH − x′′

H ) , (5)

where χ
0
1 = 0 in the upper mode and χ

0
1 = 1 in the lower mode.

C. The Marchenko Operator and Single-Sided Focusing

The focusing functions that are required for imaging can be
retrieved by solving a multidimensional Marchenko equation
[15]. This procedure requires knowledge of the medium’s re-
flection response from the upper acquisition surface Sa and an
estimate of an initial propagator, which we refer to as d (x,xa).
The initial propagator is formally defined as the inverse of the
direct wavefield as it propagates from a source xa ∈ Sa to each
location x in the medium [9]. The solution of the multidimen-
sional Marchenko equation can be expressed as a linear operator
M±

1 which acts on d (x,xa), according to

f±
1 (xa ,x) =

{M±
1 d

}
(x,xa) . (6)

Operator M±
1 is constructed by successive application of an op-

erator for crosscorrelation with the reflection response (where
an integral over the acquisition surface is to be evaluated) and an
operator that truncates signals in the time domain. This construc-
tion can be realized if the medium is characterized by smoothly
varying interfaces [15]. Approximate solutions can be found in
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media with sharp contrasts such as diffractors [39]. For explicit
definitions of M−

1 and M+
1 , we refer to equations 32 and 33 in

[39], respectively. The second kind of focusing function f2 can
be obtained from f1 by using the following symmetry relations
[15]: f+

2 (x,xa) = −f−∗
1 (xa ,x) and f−

2 (x,xa) = f+
1 (xa ,x).

Note that f+
1 (xa ,x) and f−

1 (xa ,x) are defined in truncated
medium 1, which is reflection-free below x, while f+

2 (x,xa)
and f−

2 (x,xa) are defined in truncated medium 2, which is
reflection-free above xa . Both focusing functions are inde-
pendent on the part of the medium above xa and on the part
below x.

Once the focusing functions are retrieved, they can
be convolved with the reflection response R+ (xa ,x′

a) =
G−+ (xa ,x′

a) at the acquisition surface Sa (with x′
a ∈ Sa ) to

realize single-sided wavefield focusing. The upgoing Green’s
function can be retrieved by the following representation [14],
[15], [39]:

G−+ (x,xa) =
∫

Sa

R+ (xa ,x′
a) f+

1 (x′
a ,x) d2x′

a

− f−
1 (xa ,x) . (7)

An equivalent representation can be derived for the downgoing
Green’s function:

G++ (x,xa) = −
∫

Sa

R+ (xa ,x′
a) f−∗

1 (x′
a ,x) d2x′

a

+ f+∗
1 (xa ,x) . (8)

In practice, the acquired reflection data that is used to compute
the Marchenko operators is bandlimited. This poses a limitation
to the resolution of the methodology. To account for the finite
bandwidth of the data, the initial propagator d (x,xa) must have
been convolved with a zero-phase wavelet S (ω), which is non-
zero only inside the interval

[−tS , tS
]
. Consequently, contrasts

with a thickness less than ctS (where c is the velocity of the
contrast) cannot be distinguished by the methodology [14].

D. Normalization

The initial propagator d (x,xa) is typically approximated by
a time-reversed wavefield, which is computed in a smooth back-
ground model [22]. Unfortunately, transmission effects are not
accounted for in this estimate, posing limitations for some of
the imaging conditions derived herein. For some methods, it can
be beneficial to scale the initial propagator by enforcing that for
any x

∫ +∞

−∞

∫

Sa

|S|2
2π

d∗ (x,xa) d (x,xa) d2xadω = A. (9)

Here, |S|2 is the power spectrum of the source wavelet and A is
a constant. To account for the finite temporal and spatial band
limitation, we define A proportional to the multidimensional au-
tocorrelation of a propagator in a homogeneous medium, which
is equivalent to the spatial-temporal resolution function for seis-
mic migration [40]. For wave propagation in 3D media, this

leads to the following definition for A:

A = lim
r→0

∫ +∞

−∞

|S|2 |ω|J1 (|ω|r/ca)
4π2car

dω =
∫ +∞

−∞

|S|2 |ω|2
8π2c2

a

dω,

(10)
where r =

√
x2

1 + x2
2 and J1 is a Bessel function of the

first kind. Further we defined the apparent velocity as ca =
c/sin (αmax), where αmax denotes the maximum propagation
angle that is covered by the acquisition array. For 2D wave
propagation, we find equivalently

A2D = lim
x1 →0

∫ +∞

−∞

|S|2 sin
(

|ω |x1
ca

)

2π2x1
dω =

∫ +∞

−∞

|S|2 |ω|
2π2ca

dω,

(11)
whereas for 1D wave propagation:

A1D =
∫ +∞

−∞

|S|2
2π

dω. (12)

If our initial propagators obey 9, we speak of focal normal-
ization. The amplitudes of the retrieved Green’s functions and
focusing functions, however, are incorrect when this kind of
normalization is applied. To retrieve accurate amplitudes, we
require a different normalization. This can be established by en-
forcing that d (x,xa) is proportional to the inverse of the direct
part of the Green’s function, which is retrieved when 6 and 8 are
evaluated. The direct part of the Green’s function can be written
as G++

d (x,xa) = {ΘdG
++} (x,xa), where Θd is an operator

that isolates the direct wavefield from the downgoing Green’s
function G++ (x,xa) (which is retrieved by 8). By enforcing
that for any x [41]

∫ +∞

−∞

∫

Sa

|S|2
2π

G++
d (x,xa) d (x,xa) d2xadω = A, (13)

we can guarantee amplitudes of d (x,xa) and the retrieved
Green’s functions / focusing functions to be relatively accu-
rate. Note that this condition is only valid if the decomposed
wavefields are normalized with respect to the powerflux, as we
assume in this paper. For so-called pressure-normalized wave-
fields, physical normalization is less trivial and requires knowl-
edge of the medium properties at the focal point (see [15],
appendix A). We can use 13 to rescale the amplitudes of an
initial propagator d (x,xa), which was originally computed in
a smooth backgrond model. In 1D, this can be done by solving
a simple (but non-linear) minimization problem [41]. Currently,
we are extending this methodology to 2D and 3D. When 13 is
obeyed, we speak of so-called physical normalization.

E. Marchenko Imaging

In this paper, we derive several representations for Marchenko
imaging. A general flowchart for this process is provided in
Fig. 2. Starting with an initial propagator that is computed in
a background model, we compute the focusing functions and
Green’s functions with 6, 7 and 8. Then, we rescale the initial
propagator by enforcing that either 9 or 13 is satisfied. After
recomputing the Green’s functions and focusing functions, the
wavefields can be imaged by either (1) deconvolution, (2) double
focusing or (3) crosscorrelation. In the following sections, we
discuss imaging conditions for each of these strategies.
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Fig. 2. Proposed flowchart for Marchenko imaging.

TABLE II
WAVEFIELDS FOR IMAGING BY DECONVOLUTION WHEN REFLECTORS ARE

APPROACHED FROM ABOVE

Field State A State B

p+ G++ (x, xa ) G+∓
2 (x, xq ) = ±G±−

2 (xq , x)
p− G−+ (x, xa ) G−∓

2 (x, xq ) = ∓G±+
2 (xq , x)

s+ δ (x − xa ) χ
0
1 δ (x − xq )

s− 0 χ
1
0 δ (x − xq )

III. IMAGING BY DECONVOLUTION

Once the up- and downgoing Green’s functions and focusing
functions are retrieved inside the volume of interest, we can reda-
tum the sources into that volume by so-called multidimensional
deconvolution [15], [22]. By integrating the result over fre-
quency, an image can be obtained with accurate amplitudes with-
out artifacts from multiple reflections. In Section III-A and III-B,
we show how this can be done by approaching medium contrasts
from above and from below, respectively. In Section III-C, we
illustrate these imaging strategies with 1D examples.

A. Approaching Reflectors From Above

We assume that reflection data are collected at the upper
acquisition surface Sa . To approach contrasts in the medium
from above at an arbitrary location xe in the medium, we choose
the upper boundary ∂Vi of volume V such that xe ∈ ∂Vi . The
lower boundary ofV is placed at the bottom of the medium, such
that ∂Vj = Sm . In state A, we choose a downgoing source at
xa ∈ Sa , which is located above volume V . In state B, we place
a source at xq ∈ V in truncated medium 2 (see Table I), where
the truncation is applied at x3t = x3i . The source function is
upgoing in the upper mode and downgoing in the lower mode.
The resulting wavefields are shown in Table II, where subscript 2
denotes the truncated medium and source-receiver reciprocity
relation 3 has been applied. By substituting these wavefields
into the reciprocity theorem of the convolution type 1, it can be
derived that

G±+ (xq ,xa) =
∫

∂Vi

G±+
2 (xq ,x) G++ (x,xa) d2x. (14)

Given that G±+ (xq ,xa) and G++ (x,xa) can be computed
from reflection data at Sa by solving the multidimensional
Marchenko equation, the unknown quantity G±+

2 (xq ,x) can be
retrieved from 14 by least-squares inversion. This can be done
in either the upper mode (i.e. ± → +) or in the lower mode
(i.e. ± → −). If we let xq approach an image point xe ∈ ∂Vi

in the limit from below in the lower mode, we find a spatially
band limited version of G−+

2 (xe ,xe). When we integrate this
quantity over frequency, the result can be directly related to the
reflectivity r+ (xe) at the image point [42]. By repeating this
exercise at each image point in the volume, an image of the
internal reflectivity can be constructed [22].

Unfortunately, least-squares inversion of 14 is computation-
ally very expensive. To save on the computational burden, we
suggest to convolve both sides of 14 spatially with the initial
propagator d (xp ,xa) at a location xp ∈ ∂Vi and to integrate
over xa . Moreover, we multiply both sides of the equation with
the power spectrum of the source wavelet |S|2 to take finite
temporal bandwidth into account. After changing the order of
integration, we arrive at

Γ±+ (xq ,xp) =
∫

∂Vi

G±+
2 (xq ,x) Γ++ (x,xp) d2x, (15)

where we have defined

Γ±+ (x,xp) =
∫

Sa

|S|2G±+ (x,xa) d (xp ,xa) d2xa . (16)

We may let xq approach xe in the limit from below and set
xp = xe . If we integrate Γ−+ (xe ,xe) and Γ++ (xe ,xe) inde-
pendently over frequency (which is equivalent to inverse Fourier
transformation and evaluating the result at zero time), we can
obtain the reflected amplitude a−+

Γ (xe) and incident amplitude
a++

Γ (xe), respectively. When we take the ratio of these scalar
quantities a−+

Γ (xe) /a++
Γ (xe), the result is proportional to the

internal reflectivity r+ (xe). The computational cost of this oper-
ation is dramatically less than the cost of least-squares inversion,
since solving a large-scale inverse problem has been replaced by
a simple scalar division. The accuracy of this imaging condition
in 2D and 3D media is still to be investigated.

The up- and downgoing Green’s functions that are retrieved
with 7 and 8 depend linearly on amplitude errors in the ini-
tial propagators d (x,xa). Hence, these errors cancel each other
when the ratio a−+

Γ
(xe) /a++

Γ
(xe) is computed. As a conse-

quence, deconvolution-based imaging is not very sensitive to
these errors, which is an important advantage of this method-
ology. Finally, we note that the downgoing Green’s function
G++ (x,xa) can be expressed as a superposition of a direct part
G++

d (x,xa) and a coda G++
m (x,xa). Consequently, we find

for the incident amplitude:

a+
Γ

(xe) =
∫ +∞

−∞

∫

Sa

|S|2
2π

G++
d (xe ,xa) d (xe ,xa) d2xadω

+
∫ +∞

−∞

∫

Sa

|S|2
2π

G++
m (xe ,xa) d (xe ,xa) d2xadω.

(17)
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TABLE III
WAVEFIELDS FOR IMAGING BY DECONVOLUTION WHEN REFLECTORS ARE

APPROACHED FROM BELOW

Field State A State B

p+ f+
2 (x, xa ) G+∓

1(x 3 ) (x, xq ) = ±G±−
1 (xq , x)

p− f−
2 (x, xa ) G−∓

1(x 3 ) (x, xq ) = ∓G±+
1 (xq , x)

s+ 0 χ
0
1 δ (x − xq )

s− 0 χ
1
0 δ (x − xq )

Remember that integration over frequency can be interpreted
as inverse Fourier transformation and evaluting the result at
zero time. Since the coda arrives after the direct wavefield by
definition, the second integral has no contribution at zero time
and vanishes (where we assume that the support of the wavelet is
sufficiently compact). Note that the first integral is equivalent to
left-hand side of 13 (after substitution ofx = xe ). Consequently,
a++

Γ (xe) is constant if physical normalization is enforced, such
that a−+

Γ (xe) will be proportional to the reflectivity r+ (xe).
Therefore, an image can be constructed directly by evaluating
a−+

Γ (xe) at each image point xe in this case.

B. Approaching Reflectors From Below

By using the focusing functions rather than Green’s func-
tions, we can approach reflectors from below (given that data
are collected from above). Because of the finite temporal reso-
lution of the reflection data, the reflectivity at an arbitrary image
point xe is not included in the focusing function at xe [39].
Therefore, we have to evaluate the Marchenko equation at x+ε

e

at a distance c (x+ε
e ) tε below the actual image point, satisfying

x+ε
e = (xH e, x3e + c (x+ε

e ) tε) . In this formulation, tε is a time
step that depends on the frequency band of the available data and
c (x+ε

e ) is the velocity at x+ε
e , which can be obtained from the

background model. A convenient choice is tε = tS , where tS

depends on the wavelet that is used to solve the Marchenko equa-
tion and has been defined earlier in this paper. By this choice,
we account for the finite temporal resolution of the Marchenko
equation [14]. To derive a representation for this scenario, we
let the upper boundary of volume V coincide with the acquisi-
tion surface, i.e. ∂Vi = Sa . We choose the lower boundary ∂Vj

such that x+ε
e ∈ ∂Vj . In state A, we define focusing function f2

with a focal point at xa ∈ Sa . In state B, we choose a source at
xq ∈ V , radiating upwards in the upper mode and downwards
in the lower mode. The constructed wavefields are given in Ta-
ble III (in this table, subscript 1 (x3) means that the medium is
truncated at x3t = x3 rather than at the source location). When
we substitute these quantities into the reciprocity theorem of the
convolution type 1, we find

f±
2 (xq ,xa) = −

∫

∂Vj

G±−
1 (xq ,x) f−

2 (x,xa) d2x. (18)

If we evaluate this expression with xq approaching x+ε
e in

the limit from above in the upper mode, G+−
1 (x+ε

e ,x+ε
e )

can be retrieved for every image point xe in the medium
by least-squares inversion. We can extrapolate this wavefield

to the image point xe with a two-way (at the source
and receiver side) extrapolation operator E (tε , c (x+ε

e )), us-
ing the local velocity at x+ε

e . This yields G+−
1 (xe ,xe) ≈{E (tε , c (x+ε

e )) G+−
1

}
(x+ε

e ,x+ε
e ). In 1D, we can replace the

action of the extrapolator with a simple time shift, ac-
cording to G+−

1 (xe ,xe) ≈ exp (2jωtε) G+−
1 (x+ε

e ,x+ε
e ). In

2D and 3D, we may prefer to use a multidimensional ex-
trapolator [40]. If we integrate the extrapolated wavefield{E (tε , c (x+ε

e )) G+−
1

}
(x+ε

e ,x+ε
e ) over frequency, the result

will be proportional to the reflectivity from below r− (xa).
Once again, the retrieval of G+−

1 (x+ε
e ,x+ε

e ) by least-squares
inversion is expensive from a computational point of view. As an
alternative, we may multiply both sides of 18 with d∗ (xp ,xa)
with xp ∈ ∂Vj and integrate xa over the acquisition surface
Sa . We also multiply both sides of the equation with the power
spectrum of the source wavelet |S|2 to take finite temporal band-
width into account. After changing the order of integration, we
arrive at

Γ±− (xq ,xp) = −
∫

∂Vj

G±−
1 (xq ,x) Γ−− (x,xp) d2x, (19)

with

Γ±− (x,xp) =
∫

Sa

|S|2f±
2 (x,xa) d∗ (xp ,xa) d2xa . (20)

We may evaluate these results with xq approaching x+ε
e in

the limit from above and setting xp = x+ε
e in the upper mode.

The incident amplitude a−
Γ (xe) can be computed by integrat-

ing Γ−− (x+ε
e ,x+ε

e ) over frequency. For the reflected amplitude
a+−

Γ (xe), we can integrate {E (tε , c (x+ε
e )) Γ+−} (x+ε

e ,x+ε
e )

(where E is the two-way inverse wavefield extrapolator that
we discussed before) over frequency. The reflectivity from
below r− (xe) can be estimated by computing the ratio
a+−

Γ (xe) /a−−
Γ (xe). Finally, we note that the upgoing focus-

ing function f−
2 (x,xa) can be expressed as a superposition of

a direct part d (x,xa) and a coda m (x,xa). Consequently, the
incident amplitude can be written as

a−−
Γ (xe) =

∫ +∞

−∞

∫

Sa

|S|2
2π

d
(
x+ε

e ,xa

)
d∗

(
x+ε

e ,xa

)
d2xadω

+
∫ +∞

−∞

∫

Sa

|S|2
2π

m
(
x+ε

e ,xa

)
d∗

(
x+ε

e ,xa

)
d2xadω.

(21)

Because the coda arrives after the direct wavefield by definition,
the second integral has no contribution at zero time and vanishes.
The remaining integral is equivalent to the left-hand side of 9
(after substitution of x = x+ε

e ). Hence, the incident amplitude
a−−

Γ (xe) is constant when focal normalization is enforced, such
that a+−

Γ (xe) is directly proportional to the local reflectivity
from below r−(xe). Since focal normalization is relatively easy
to apply, this is considered to be an attractive way to image the
medium, especially in 1D [14].

C. Examples

We illustrate imaging by deconvolution with a 1D syn-
thetic example, where x3 denotes the spatial dimension. In
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Fig. 3. Synthetic model and data. Model of (a) propagation velocity c (x3 )
and (b) density ρ (x3 ). (c) Reflection response from above R+ (t) at x3a . (d)
Reflection response from below R− (t) at x3m . In (e) we show the reflection
response from below as retrieved from the reflection response from above, using
the procedure that is outlined in the main text.

Fig. 3(a) and (b), we show a velocity and a density model, re-
spectively. These models contain 3001 samples with spacing
dx3 = 1 m. We let Sa and Sm coincide with the bound-
aries x3a = 0 m and x3m = 3000 m, respectively. Three con-
trasts can be distinguished at 750 m, 1500 m and 2375 m, with
reflectivity values r+(750) = 0.42, r+ (1500) = −0.50 and
r+ (2375) = 0.43, respectively. These values have been com-
puted with the relation r+ (x3) = Z (x3 +dx3 )−Z (x3 −dx3 )

Z (x3 +dx3 )+Z (x3 −dx3 ) [43],
where Z (x3) = c (x3) ρ (x3) is the acoustic impedance. Re-
flectivity values from below have also been computed, with
help of the relation r− (x3) = −r+ (x3) [43]. Our objective
is to reconstruct these reflectivity values with accurate ampli-
tudes and without artifacts. In Fig. 3(c) and (d), the reflection
responses at x3a and x3m are shown, which are used to com-
pute the Marchenko operators. These reflection responses have
been convolved with the wavelet S (ω) = 2ω 2√

πω 3
p

exp (−ω 2

ω 2
p
),

with ωp = 2πfp , where fp = 30 Hz is the peak frequency. In the
geophysical community, this is also known as a 30 Hz Ricker
wavelet [44]. We have used 2048 time samples with dt = 3.4 ms
sampling. Further, we define tε = tS = 51 ms. As discussed be-
fore, the reflection response at x3m can also be computed by
evaluating the Marchenko equation with the data at x3a and
solving 18 in the upper mode at x3j = x3m . In Fig. 3(e), we
validate that this procedure leads indeed to the required reflec-
tion response at x3m .

We compute Green’s functions and focusing functions at all
image points under focal normalization (meaning that 9 is satis-
fied) from the reflection response at x3a . In Fig. 4(a), we show
the reflected amplitude a−+

Γ (x3e). We can recognize the three
interfaces of the model. However, the amplitudes of the deeper
reflections are underestimated, as can be seen by the horizontal
bars that indicate the reflectivity values that we have computed

Fig. 4. Imaging by deconvolution from above. (a) Reflected amplitude
a−+

Γ (x3e ), (b) incident amplitude a++
Γ (x3e ) and (c) their ratio (i.e. the reflec-

tivity from above r+ (x3e )) under focal normalization. (d) Reflected amplitude
a−+

Γ (x3e ) and (e) incident amplitude a++
Γ (x3e ) under physical normaliza-

tion. The horizontal bars indicate the reflectivity values (computed directly from
the model parameters) for reference.

from the model parameters. This mismatch can be explained
by the fact that transmission effects have not (yet) been ac-
counted for. These transmission effects are described by the
incident amplitude a++

Γ (x3e), which is shown in Fig. 4(b). By
taking the ratio of the reflected and the incident amplitude, we
find the reflectivity from above r+ (x3e), see Fig. 4(c). Note
that the reflectivity values are indeed better resolved after this
procedure. When the Green’s functions and focusing functions
are computed under physical normalization (meaning that 13 is
satisfied), the reflectivity can be obtained directly from the re-
flected amplitude a−+

Γ (x3e), as illustrated in Fig. 4(d). Since the
incident amplitude a++

Γ (x3e) = 1 in this case [see Fig. 4(e)], it
follows that the reflected amplitude a−+

Γ (x3e) is directly pro-
portional to the reflectivity from above.

The reflectors may also be approached from below. To illus-
trate this concept, we have computed the reflected amplitude
a+−

Γ (x3e) and the incident amplitude a−−
Γ (x3e) in Fig. 5(a) and

(b), under focal normalization. Since a−−
Γ (x3e) = 1 in this case,

it follows that the reflected amplitude a+−
Γ (x3e) is directly pro-

portional to the reflectivity from below. In Fig. 5(c), we show
the reflected amplitude a+−

Γ (x3e) under physical normalization.
Note that the reflectivity values have been overestimated in this
case. To correct for this effect, we have to divide by the incident
amplitude, which is shown in Fig. 5(d). In Fig. 5(e), we illustrate
that this leads indeed to the reflectivity from below.

IV. IMAGING BY DOUBLE FOCUSING

As we have discussed in Section II-C, the Green’s functions
that we utilize for imaging are retrieved by applying focus-
ing functions to the reflection response, which can be inter-
preted as single wavefield focusing (at the receiver side). Double



VAN DER NEUT et al.: SINGLE- AND DOUBLE-SIDED MARCHENKO IMAGING CONDITIONS IN ACOUSTIC MEDIA 167

Fig. 5. Imaging by deconvolution from below. (a) Reflected amplitude
a+−

Γ (x3e ) and (b) incident amplitude a−−
Γ (x3e ) under focal normalization. (c)

Reflected amplitude a+−
Γ (x3e ), (d) incident amplitude a−−

Γ (x3e ) and (e) their
ratio (i.e. the reflectivity from below r− (x3e )) under physical normalization.
The horizontal bars indicate the reflectivity values (computed directly from the
model parameters) for reference.

wavefield focusing (at the source and the receiver side) can be re-
alized by convolving the retrieved Green’s functions with focus-
ing functions again and summing over the acquisition surface.
In Section IV-A and IV-B, we derive representations for double
focusing (where reflectors are approached from above and from
below, respectively). The imaging conditions are demonstrated
with 1D synthetic examples in Section IV-C. In all cases, it
is required that the Green’s functions and focusing functions
are correctly scaled, in order to extract quantitative information
about the reflectivity. This requires physical normalization such
that 13 is satisfied.

A. Approaching Reflectors From Above

We start with approaching the reflectors from above. To
derive a representation for this scenario, we move the upper
boundary of volume V to the acquisition surface, i.e. ∂Vi = Sa ,
and we choose the lower boundary such that xp ∈ ∂Vj , where
xp is defined as a focal point. In state A, we introduce focusing
function f1 (x,xp), which propagates in truncated medium 1,
where truncation is applied at x3t = x3p . In state B, we place a
source in the physical medium at xq , which can either be inside
or outside V , depending on the position of xp . This source
radiates upwards in the upper mode and downwards in the
lower mode. The constructed wavefields are given in Table IV,
where source-receiver reciprocity relation 3 has been applied.
By substituting these quantities in the reciprocity theorem of
the convolution type 1, it can be derived that

G±+ (xq ,xp) + θ (x3p − x3q ) f±
1 (xq ,xp)

=
∫

Sa

G±+ (xq ,x) f+
1 (x,xp) d2x. (22)

TABLE IV
WAVEFIELDS FOR IMAGING BY DOUBLE FOCUSING

Field State A State B

p+ f+
1 (x, xp ) G+∓ (x, xq ) = ±G±− (xq , x)

p− f−
1 (x, xp ) G−∓ (x, xq ) = ∓G±+ (xq , x)

s+ 0 χ
0
1 δ (x − xq )

s− 0 χ
1
0 δ (x − xq )

Here, θ (x3p − x3q ) is a Heaviside function, where
θ (x3p − x3q ) = 0 for x3p < x3q (in case x3q /∈ V),
θ (x3p − x3q ) = 1

2 for x3p = x3q (in case x3q ∈ ∂Vj )
and θ (x3p − x3q ) = 1 for x3p > x3q (in case x3q ∈ V). When
we choose xp = xq = xe , we can retrieve G−+ (xe ,xe) by
evaluating the right-hand side of 22 in the lower mode (note
that f−

1 (xe ,xe) = 0). The reflectivity from above r+ (xe) can
be extracted by integrating this quantity over frequency. Since
deconvolution is not required, imaging by double focusing is
expected to be relatively robust with respect to noise. Moreover,
the solutions of the Marchenko equation G−+ and f+

1 that
occur in the integrand can be expressed as a series which can be
summed adaptively [26], [28]. This strategy seems especially
fruitful in scenarios with poor signal-to-noise ratios.

B. Approaching Reflectors From Below

Reflectors may also be approached from below. To facilitate
this strategy, we substitute the quantities in Table IV into the
reciprocity theorem of the correlation type 2, yielding

G±− (xq ,xp) + θ (x3p − x3q ) f∓∗
1 (xq ,xp)

=
∫

Sa

G±+ (xq ,x) f−∗
1 (x,xp) d2x. (23)

If we evaluate this result in the upper mode just be-
low the image point at xp = xq = x+ε

e , we can retrieve
G+− (x+ε

e ,x+ε
e ) (note that f−

1 (x+ε
e ,x+ε

e ) = 0). The reflec-
tivity from below r− (xe) can be extracted by integrating
{E (tε , c (x+ε

e )) G+−} (x+ε
e ,x+ε

e ) over frequency, where the ex-
trapolation operator E takes care of the two-way propagation
path from x+ε

e to xe .

C. Examples

We illustrate imaging by double focusing with a 1D synthetic
experiment. We use the model and reflection data that were
presented earlier in Fig. 3 and retrieve Green’s functions and fo-
cusing functions under physical normalization. In Fig. 6(a) and
(b), we show the reflectivity values r+ and r− (where the reflec-
tors are approached from above and from below, respectively).
To obtain these results, we have evaluated the right-hand sides
of 22 and 23. Note the close match with the reference reflectivity
values, which are indicated in the figures.

V. IMAGING BY CROSSCORRELATION

We may also retrieve the internal reflectivity by crosscorrelat-
ing Green’s functions and summing over the acquisition surface
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Fig. 6. Imaging by double focusing. Reflectivity from (a) above r+ (x3e ) and
(b) below r− (x3e ). (c) Contributions of primary reflections to the image in (a)
(to obtain this result, the right-hand side of 22 is evaluated with the first event in
f+

1 (x, xp ) only). (d) Contributions of multiple reflections to the image in (a)
(to obtain this result, the right-hand side of 22 is evaluated with the complete
f+

1 (x, xp ) except its first event). (e) Contributions of primary reflections to the
image in (b) (to obtain this result, the right-hand side of 23 is evaluated with the
first event in G++ (xq , x) only). The horizontal bars indicate the reflectivity
values (computed directly from the model parameters) for reference.

[24], [30], [31]. If this is done with single-sided illumination
only, the retrieved amplitudes are inaccurate and not propor-
tional to the actual internal reflectivity values. This strategy also
results in crosstalk, which is caused by the crosscorrelation of
different orders of reflections. Some remedies have been pro-
posed to suppress the crosstalk [30]. Here, we show how an
artifact-free result with accurate amplitudes can be obtained by
using double-sided illumination rather than single-sided illumi-
nation. In Section V-A, we give a motivation for this imaging
strategy. Then we derive a representation and a corresponding
imaging condition in Section V-B. We illustrate the method-
ology with a synthetic 1D example in Section V-C and we
offer some discussion on the utilization of multiple reflections
in Section V-D.

A. Motivation

Given that a complete multi-source, multi-offset reflection re-
sponse is acquired at a single acquisition boundary, the internal
reflectivity can be accurately reconstructed, either by deconvolu-
tion or by double focusing. Based on causality arguments, it can
be reasoned that the Green’s functions contain no information
before the direct wave, while focusing functions contain no in-
formation before the initial propagator [10]. As a consequence,
the reflectivity values that are found by double focusing are de-
rived from primary reflections only. To illustrate this statement,
we recompute the image in Fig. 6(a) by evaluating the right-
hand side of 22, where we use the first event of the downgoing
focusing function f+

1 (x,xp) only. This imaging condition has
been demonstrated before for primary-based imaging [25], [26].
As illustrated in Fig. 6(c), the result of this procedure is similar

TABLE V
WAVEFIELDS FOR IMAGING BY CROSSCORRELATION

Field State A State B

p+ G+∓ (x, xp ) = G+∓′
(x, xq ) =

±G±− (xp , x) ±′G±′− (xq , x)
p− G−∓ (x, xp ) = G−∓′

(x, xq ) =
∓G±+ (xp , x) ∓′G±′+ (xq , x)

s+ χ
0
1 δ (x − xp ) χ

0 ′
1 δ (x − xq )

s− χ
1
0 δ (x − xp ) χ

1 ′
0 δ (x − xq )

to the result in Fig. 6(a). In Fig. 6(d), we confirm that the re-
maining events of f+

1 (x,xp) do not contribute to the image.
The same statement can be made when we approach the re-
flectors from below. In Fig. 6(e), we show that the reflectivity
can be constructed with 23 even if we use the first event in
G++ (xq ,x) only. By similar reasoning, we can prove that also
deconvolution-based images are constructed from primary re-
flections only [45].

In realistic scenarios, the acquired data is typically incom-
plete and contains additional noise. As a consequence, the im-
ages that are constructed by deconvolution or double focusing
can be inaccurate [46]. It has been shown that internal multiple
reflections contain additional information of the medium that
can compensate for these inaccuracies [47]. One way to utilize
these reflections is to use an imaging condition that is based on
crosscorrelation rather than deconvolution or double focusing.
This is the key idea behind so-called interferometric imaging
[48], [49]. By crosscorrelating Green’s functions, we can focus
multiple reflections at the image points, such that they contribute
physically to the image. Hence, in order to utilize the informa-
tion that is contained in multiple reflections, we should replace
the imaging condition by deconvolution or double focusing with
an imaging condition that is based on crosscorrelation. In or-
der to retrieve accurate reflectivity values without crosstalk, we
should use double-sided illumination rather than single-sided
illumination, as discussed before. Remember that double-sided
illumination can be realized either by placing additional sources
and receivers at Sm or by retrieving virtual data at this surface.

B. Interferometric Imaging

To derive an imaging condition that is based on cross-
correlation, we let the boundaries of volume V coincide with the
acquisition surfaces, i.e. ∂Vi = Sa and ∂Vj = Sm . In state A,
we place a source at xp , which radiates upwards in the upper
mode and downwards in the lower mode. In state B, we place
a source at xq , which radiates upwards in the upper ′ mode and
downwards in the lower ′ mode. The constructed wavefields are
shown in Table V. Next, we substitute these quantities into the
reciprocity theorem of the correlation type 2, yielding

± G±′± (xq ,xp) ±′ G±±′∗ (xp ,xq )

=
∫

Sa

G±′+ (xq ,x) G±+∗ (xp ,x) d2x

+
∫

Sm

G±′− (xq ,x) G±−∗ (xp ,x) d2x. (24)
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This result has been derived before in the context of seismic
interferometry and has been used for Green’s function retrieval
between two receiver locations at xp and xq [50]. Hence, we
refer to this type of imaging as interferometric imaging. The
first integral on the right-hand side (evaluated in the upper-
lower ′ mode) has also been used for Marchenko imaging [24],
[30], [31]. As we discussed earlier, this procedure leads to
inaccurate amplitudes and artifacts. By using illumination at
both acquisition boundaries Sa and Sm , an accurate image can
be constructed without such artifacts. To approach the reflec-
tors from above, we set xp = xq = x−ε

e in the upper-lower ′

mode, such that G−+ (x−ε
e ,x−ε

e ) − G+−∗ (x−ε
e ,x−ε

e ) can be re-
trieved. If we extrapolate this quantity to the image point with
E (tε , c (x−ε

e )) and integrate over frequency, the reflectivity from
above r+ (xe) can be extracted. We may also approach the re-
flectors from below by setting xp = xq = x+ε

e in the lower-
upper ′ mode and following a similar procedure to extract the
reflectivity from below r− (xe). Note that we can not retrieve
the reflectivity properly by setting xp = xq = xe , due to (1) the
finite-frequency limitations of the Marchenko equation and (2)
the fact that the two Green’s functions in the left-hand side of 24
are interfering.

C. Examples

In this section, we demonstrate imaging by crosscorrelation
with 1D synthetic examples, using the model and the reflection
responses that were shown earlier in Fig. 3. We use the reflection
data at both acquisition surfaces Sa and Sm to compute the
relevant Green’s functions and focusing functions by solving
the Marchenko equation (under physical normalization). Then,
we use 24 in the upper-lower ′ mode in order to retrieve the
reflectivity from above r+ . In Fig. 7(a), we show the contribution
of the upper acquisition surface Sa . Note that the reflectivity
values of the deeper interfaces are underestimated in this case
and that additional artifacts populate the image. In Fig. 7(b), we
show the contribution of the lower acquisition surfaceSm . When
this contribution is added to the image from Sa , we achieve two
objectives: (1) the underestimated amplitudes are corrected and
(2) artifacts are removed. In Fig. 7(c), we demonstrate that this
is indeed the case.

We have shown in the previous sections that the imaging
conditions that are based on deconvolution or double focusing
utilize information from primary reflections only. To illustrate
that this is not the case for imaging by crosscorrelation, we
differentiate the downgoing Green’s function from the upper
acquisition surface in a direct part and a coda. The same is done
to the upgoing Green’s function from the lower acquisition sur-
face. Then, we recompute the image in Fig. 7(c) by using the
direct parts of these Green’s functions only. The result, which is
shown in Fig. 7(d), can be interpreted as the contribution of pri-
mary reflections to the retrieved reflectivity values in Fig. 7(c).
The contribution of multiple reflections follows by subtract-
ing this result from Fig. 7(c), see Fig. 7(e). We can conclude
from this figure that multiple reflections contribute physically to
the retrieved reflectivity values of the deeper reflectors, which
are under-illuminated by the primary reflections. This makes

Fig. 7. Imaging by crosscorrelation. In (a) and (b) we show the contributions to
the reflectivity from above r+ (x3e ) from the acquisition surfaces Sa and Sm ,
respectively. The sum of (a) and (b) is given in (c). Contribution of (d) primary
reflections and (e) multiple reflections to the image in (c). The horizontal bars
indicate the reflectivity values (computed directly from the model parameters)
for reference.

sense intuitively, since multiple reflections have been focused at
the focal points.

D. Discussion

Since (internal) multiple reflections can illuminate parts of
the subsurface that are not illuminated by primary reflections,
their utilization in the construction of images is an active topic
of research in the seismic imaging community [46], [47]. Un-
fortunately, the Marchenko operator can only retrieve multiple
reflections that illuminate an image point from a certain angle
if this location is illuminated by the direct wave from the same
angle [39]. Therefore, it is very unlikely that internal multi-
ples which are retrieved by the multidimensional Marchenko
equation can illuminate parts of the medium that are not illumi-
nated by primary reflections. On the other hand, we have shown
that the interferometric representation 24, which we used for
imaging by crosscorrelation, allows us to propagate (internal)
multiple reflections to the image points. We have also seen that
double-sided illumination is required to meet this objective. As
we indicated before, the reflection response at the lower acqui-
sition surface Sm can be computed from the reflection response
at Sa by inverting 18 at ∂Vj = Sm . It should be noticed that
the information to construct the reflection response ‘from be-
low’ by this procedure (including the multiple reflections) is
derived mainly from the primary reflections in the data which
are recorded from above [39]. However, the multiple reflections
that are present in the upgoing wavefield G−+ (xq ,x) in the first
integral in 24 are physically recorded and they contribute to the
retrieved reflectivity values when the proposed imaging condi-
tion is evaluated. For this reason, imaging by crosscorrelation
might be beneficial to improve signal-to-noise ratios in strongly
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heterogeneous media, where primary illumination may be weak
and multiple reflections could provide secondary illumination.

VI. PRACTICAL ISSUES

We finalize this paper with a discussion on some potential
issues when Marchenko imaging is applied in practice. In Sec-
tion VI-A, we focus on implementations in 2D and 3D, rather
than 1D which was done in our examples. In Section VI-B,
we elaborate on the sensitivity of Marchenko imaging to noise,
where we point at several measures that have been proposed for
improvement.

A. Multidimensional Implementation

In this paper, we have demonstrated the proposed imaging
conditions only in 1D synthetic media. For implementations in
2D media, we refer to the existing literature. Imaging by decon-
volution has been demonstrated in e.g. [15], [22], [23]. To reduce
the computational burden of this problem, it has recently been
proposed to deconvolve the upgoing Green’s function with the
downgoing Green’s function at a single focal point and stack
over sources [31]. We emphasize that this approach is differ-
ent from our proposal to image the upgoing and downgoing
Green’s functions independently and compute their ratio. The
latter approach has yet to be demonstrated in 2D, but we expect
results to be relatively accurate based on our previous experi-
ences on related multidimensional problems [51]. Imaging by
double focusing has been applied in 2D in [28]. However, phys-
ical normalization had not yet been implemented. For imaging
by cross-correlation, 2D implementations can be found in [24],
[30], [31]. Since illumination had been provided from one ac-
quisition boundary only, artifacts emerged in all cases and the
retrieved amplitudes were inaccurate. It is yet to be demonstrated
in 2D and 3D that appropriate normalization and additional data
from below leads to a superior image, as hypothesized in our
current paper. In order to do so in practice, 13 needs to be satis-
fied (i.e. physical normalization should be enforced). In 1D, this
could easily be achieved by inverting for an appropriate scalar
at each focal point [41]. In 2D and 3D, an angle-dependent cor-
rection is likely to improve on this. Furthermore, it is not yet
clear what would be the most efficient 2D implementation of
extrapolation operator E .

B. Adaptive Implementation

Over the last few years, significant progress has been made
in solving the multidimensional Marchenko equation for seis-
mic field data. In order to improve robustness with respect to
noise, it has been proposed to implement the methodology with
adaptive filters [26]. This strategy has been successfully applied
to field data in order to achieve imaging by double focusing
[28]. An adaptive approach might also be relevant for imaging
by crosscorrelation. Finally, we mention that robust results have
also been reported by solving the Marchenko equation with
a least-squares solver [52] or a sparse solver [53]. These ap-
proaches offer the flexibility to add regularization constraints
for denoising purposes. Since the outcome of our imaging

conditions depends strongly on the quality of the retrieved
Green’s functions and focusing functions (which is not the topic
of our current paper), we consider a further investigation on the
impact of noise beyond our scope.

VII. CONCLUSIONS

By solving the multidimensional Marchenko equation, one
can retrieve focusing functions and Green’s functions in an
acoustic medium. We have defined two ways in which these
wavefields can be normalized, which we refer to as focal nor-
malization and physical normalization. We have distinguished
three types of Marchenko imaging conditions: imaging by de-
convolution, imaging by double focusing and imaging by cross-
correlation.

For imaging by deconvolution, a substantial inverse problem
is to be solved at each image point. The computational burden
of this problem can be reduced significantly if we focus the
reflected wavefield and the incident wavefield individually and
compute their ratio. The procedure requires single-sided illumi-
nation only, where reflectors can be imaged either from above or
from below. The procedure is independent on the normalization
of the Green’s functions and focusing functions that are derived
from the Marchenko equation. It has been shown that internal
multiples do not contribute to the construction of the image,
when a deconvolution-based imaging condition is used.

Imaging by double focusing is computationally more straight-
forward than imaging by deconvolution or crosscorrelation. The
methodology can be applied with single-sided illumination and
reflectors can be approached either from above or from below.
To retrieve accurate amplitudes, physical normalization should
be enforced. Without such normalization, the method can still
be applied to obtain artifact-free images, but the amplitudes of
these images will be inaccurate. Akin to imaging by decon-
volution, the information that is contained in internal multiple
reflections is not utilized by this type of imaging condition. The
double focusing methodology is relatively flexible and allows
for adaptive implementation, which is not so straightforward
when imaging is applied by deconvolution.

Artifact-free imaging by crosscorrelation requires illumina-
tion from two enclosing acquisition surfaces and can be used to
approach reflectors from above or from below. Since multiple
reflections are focused at the image points with this strategy,
they contribute physically to the retrieved reflectivity, which
may benefit imaging in weakly illuminated areas of strongly
heterogeneous media, where primary illumination falls short.
To implement this type of imaging in practice, it is crucial that
physical normalization is enforced.
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