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The generalized optical theorem is an integral relation for the angle-dependent scattering amplitude

of an inhomogeneous scattering object embedded in a homogeneous background. It has been

derived separately for several scalar and vectorial wave phenomena. Here a unified optical theorem

is derived that encompasses the separate versions for scalar and vectorial waves. Moreover, this

unified theorem also holds for scattering by anisotropic elastic and piezoelectric scatterers as

well as bianisotropic (non-reciprocal) EM scatterers. VC 2012 Acoustical Society of America.
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I. INTRODUCTION

The optical theorem finds its origin in the late nineteenth

century, when Rayleigh1 and others formulated the relation

between the optical refraction index of a scattering object in a

homogeneous embedding and its forward scattering ampli-

tude. Later Heisenberg,2 Glauber and Schomaker,3 and others

derived a more general theorem for the scattering amplitude

in quantum mechanics and other scalar wave phenomena.

This theorem, which has become known as the generalized

optical theorem, is an integral relation for the scattering am-

plitude for any angle of incidence and any scattering angle.

Both the optical theorem and the generalized optical theorem

are a consequence of conservation of energy (or conservation

of probability in quantum mechanics). For more extensive

reviews, see Newton,4 Marston,5 and Carney et al.6

The generalized optical theorem is most often applied to

scalar wave phenomena, but extensions for vectorial wave phe-

nomena have been formulated as well. Snieder7 and Halliday

and Curtis8,9 derive an optical theorem for multi-mode elastic

surface waves in a layered medium bounded by a free surface.

Tan,10 de Hoop,11 and Lu et al.12 discuss the optical theorem

for scattering of elastic body waves, and Torrungrueng et al.13

and Lytle et al.14 derive a version for electromagnetic waves.

It has recently been recognized that there is a close con-

nection between the generalized optical theorem and the

Green’s function representations15–17 that underlie the meth-

odology of Green’s function retrieval from ambient noise in

open systems.18–22 It has been shown that the optical theo-

rem for scalar waves can be derived from the scalar Green’s

function representation,23–27 whereas the optical theorems

for surface waves and elastic body waves have been derived

from elastodynamic Green’s function representations for sur-

face waves8,9 and body waves,12,28 respectively. Halliday

and Curtis9 and Douma et al.26 suggested that a unified

optical theorem for scalar and vectorial wave fields could

possibly be derived from a unified Green’s function repre-

sentation.29 The aim of this paper is to show that this is

indeed the case. Starting with a unified wave equation for

scalar and vectorial fields, unified Green’s function represen-

tations are derived. Next, following a similar procedure as

Douma et al.26 for scalar wave fields, a unified optical theo-

rem for scalar and vectorial wave fields is derived. This uni-

fied theorem captures most of the situations discussed above

and in addition covers scattering by non-reciprocal materials

and piezoelectric materials.

II. RECIPROCITY THEOREMS

The starting point is the following unified wave

equation:30–32

A@tuþ Buþ Dxu ¼ s; (1)

in which u¼ u(x, t) is a L� 1-vector containing space (x)

and time (t) dependent wave field quantities, A¼A(x) and

B¼B(x) are L�L matrices containing space-dependent me-

dium parameters, @t denotes differentation with respect to

time, Dx is a L� L matrix containing spatial differential

operators @1, @2, @3, and s¼ s(x, t) is a L� 1 source vector.

In Appendix A, these vectors and matrices are specified for

acoustic waves (for which L¼ 4), quantum-mechanical

waves (L¼ 4), electromagnetic waves in reciprocal and non-

reciprocal materials (L¼ 6), elastodynamic body waves

(L¼ 9) and coupled electromagnetic and elastodynamic

waves in piezoelectric materials (L¼ 15). For all situations,

matrix Dx obeys the following symmetry relations:

Dx ¼ DT
x ; (2)

Dx ¼ �KDxK; (3)

where superscript T denotes transposition and where K is a

L� L diagonal matrix containing a specific ordering of 1’s

and �1’s along the diagonal. Note that K obeys the property

K¼K�1¼KT.
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Equation (1) also holds for diffusion phenomena, linear-

ized flow, as well as (coupled) electromagnetic and elastody-

namic waves in poroelastic media.31 These cases are not

considered here because they do not obey energy conservation

and hence there is no optical theorem for these situations.

The temporal Fourier transform of a time-dependent

function f(t) is defined as follows:

f xð Þ ¼
ð1
�1

f tð Þexp ixtð Þdt; (4)

where x is the angular frequency and i the imaginary unit

i ¼
ffiffiffiffiffiffiffi
�1
p� �

. To keep the notation simple, the same symbol is

used for time- and frequency-domain functions (here f). In

the remainder of the main text all functions are in the fre-

quency domain. In the appendixes it is always clear from the

context which domain is considered.

In the frequency domain, Eq. (1) becomes

Dxu ¼ ixAuþ s; (5)

where

A ¼ A� 1

ix
B; (6)

with A ¼ A x;xð Þ, u¼u(x, x), and s¼ s(x, x). The spatial

differential operator Dx is the same as in Eq. (1).

What follows is a brief review of the derivation of

two unified reciprocity theorems for wave fields obeying

the unified wave equation.31 Consider a domain D

enclosed by boundary @D with outward pointing normal

vector n, see Fig. 1. In this domain there are two inde-

pendent physical states AA; uA; sAf g and AB; uB; sBf g,
respectively, each state obeying wave equation (5). In Ap-

pendix B, the following matrix-vector form of Gauss’s the-

orem is derived:ð
D

aTDxbþ Dxað ÞTb
n o

d3x ¼
þ
@D

aTNxbd2x; (7)

where a and b are arbitrary vector functions and Nx is a

L� L matrix containing the components n1, n2, n3 of the

normal vector n on @D, organized in the same way as @1,

@2, @3 in matrix Dx. Substituting a¼KuA, b¼uB, and using

Eqs. (3) and (5), yields

ð
D

fuT
AKsB � sT

AKuBgd3x

¼
þ
@D

uT
AKNxuBd2x� ix

ð
D

uT
AKðAB �AðaÞA ÞuBd3x;

(8)

where

A að Þ ¼ KAT
K: (9)

Equation (8) is the unified reciprocity theorem of the convo-

lution type. A að Þ
is called the medium parameter matrix of

the adjoint medium [which is to be distinguished from the

adjoint matrix A†
appearing in Eq. (10)]. An adjoint me-

dium is loosely defined as the medium in which, after inter-

changing a given source and receiver, the same response is

obtained as in the original medium before the source and re-

ceiver were interchanged. For example, for acoustic waves

in a flowing medium, the adjoint medium is the medium

with reversed flow.33,34 For all cases discussed in Appendix

A, except for electromagnetic waves in bianisotropic materi-

als,35 it holds that A að Þ ¼ A, which means that the medium

parameters are self-adjoint for these cases. In Sec. III it is

confirmed that self-adjointness of the medium parameters is

equivalent to the medium being reciprocal. Self-adjointness

of the medium parameters is not required for the derivation

of the unified optical theorem, see Sec. V.

Next, substitute a ¼ u�A and b¼ uB into Gauss’s theorem

(7), where the asterisk (*) denotes complex conjugation.

Using Eq. (5), this givesð
D

u†
AsBþ s†

AuB

� �
d3x

¼
þ
@D

u
†
ANxuBd2x� ix

ð
D

u
†
A AB�A†

A

� �
uBd3x;

(10)

where the dagger †ð Þ denotes complex conjugation and

transposition. Equation (10) is the unified reciprocity theo-

rem of the correlation type. When state A is equal to state B,
this equation simplifies to

2<
ð

D

u†sd3x

¼
þ
@D

u†Nxud2x� ix
ð

D

u† A �A†
� �

ud3x; (11)

where < denotes the real part. The left-hand side represents

the energy injected into the system by the sources in D. The

first integral on the right-hand side is the energy leaving the

system through the boundary @D and the second integral on

the right-hand side quantifies the energy loss in D. Energy is

conserved when A† ¼ A, i.e., when matrix A is self-

adjoint (for quantum-mechanical waves, replace “energy” byFIG. 1. Configuration for the reciprocity theorems.
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“probability”). Hence, for the derivation of the unified opti-

cal theorem in section V it is required that A is self-adjoint,

since the optical theorem is related to the conservation of

energy. However, for the moment (i.e., in Secs. III and IV),

self-adjointness ofA is not assumed.

III. GREEN’S FUNCTION REPRESENTATIONS

A Green’s function is defined as the wave field that

would be obtained if the source were an impulsive point

source d(x� x0)d(t), or, in the frequency domain, a point

source d(x� x0) with unit spectrum. Because the source vec-

tor s in Eq. (5) contains L different source functions, there

exist L different Green’s wave field vectors. The lth Green’s

wave field vector (with 1 � l � L) is defined as the causal so-

lution of Eq. (5), with source vector s replaced by ild(x� x0),
where il is the L� 1 unit vector (0,…,1,…,0)T, with “1” on

the lth position. Hence, the Green’s wave vector obeys the

following equation:

Dxgl ¼ ixAgl þ ild x� x0ð Þ; (12)

where gl¼ gl(x, x0, x) is the lth L� 1 Green’s wave vector

observed at x, due to a point source of the lth type at x0. In

the following, x is suppressed in the argument list but the

coordinate vectors x and x0 are retained where appropriate.

Equation (12) represents L matrix-vector equations for the L
Green’s wave vectors gl. The L Green’s vectors are com-

bined into a Green’s matrix and the L source vectors into a

source matrix, according to

g1;…; gl;…; gLð Þ x; x0ð Þ ¼ G x; x0ð Þ; (13)

i1;…; il;…; iLð Þd x� x0ð Þ ¼ Id x� x0ð Þ; (14)

where G(x, x0) is the L�L Green’s wave field matrix and I

is the L�L identity matrix. With this notation, Eq. (12) for

l¼ 1,…,L can be combined into

DxG ¼ ixAGþ Id x� x0ð Þ: (15)

The convolution-type reciprocity theorem (8) is now

used to derive the reciprocity properties of the Green’s ma-

trix. To this end, replace AA; uA; sAf g by A xð Þ;G x; x0ð Þ;f
Id x� x0ð Þg and AB; uB; sBf g by fA að Þ

xð Þ;G að Þ x; x00ð Þ;
Id x� x00ð Þg. Because the medium in state B is chosen as the

adjoint of the medium in state A, the second integral on the

right-hand side of Eq. (8) vanishes. Replacing D by R3 and

assuming that outside some sphere with finite radius the me-

dium is homogeneous, isotropic and self-adjoint, the first in-

tegral on the right-hand side vanishes as well (Sommerfeld’s

radiation conditions36–38). This leavesð
R3
fGTðx; x0ÞKdðx� x00Þ

�dðx� x0ÞKGðaÞðx; x00Þgd3x ¼ O (16)

or

G að Þ x0; x00ð Þ ¼ KGT x00; x0ð ÞK: (17)

Note that G að Þ x0; x00ð Þ is defined in a medium which is the

adjoint of the medium in which G x00; x0ð Þ is defined. For a

self-adjoint medium equation (17) simplifies to

G x0; x00ð Þ ¼ KGT x00; x0ð ÞK: (18)

This equation quantifies source-receiver reciprocity. Hence,

self-adjointness of the medium is equivalent to the medium

being reciprocal.

Next, two unified Green’s function representations are

derived. For state A, choose �A xð Þ; �G x; x0ð Þ; Id x� x0ð Þ
� �

,

where the bars denote a reference state, and take for state B
the actual state, i.e., A xð Þ;G x; x00ð Þ; Id x� x00ð Þf g. Substitu-

tion of these states in the convolution-type and correlation-

type reciprocity theorems (8) and (10), respectively, yields

[using Eq. (17) for the reference Green’s function]

vDðx0ÞGðx0;x00Þ � vDðx00Þ�GðaÞðx0;x00Þ

¼�
þ
@D

�GðaÞðx0;xÞNxGðx;x00Þd2x

þ ix
ð

D

�GðaÞðx0;xÞfA� �AðaÞgðxÞGðx;x00Þd3x (19)

and

vD x0ð ÞG x0; x00ð Þ þ vD x00ð Þ�G† x00; x0ð Þ

¼
þ
@D

�G† x; x0ð ÞNxG x; x00ð Þd2x

� ix
ð

D

�G† x; x0ð Þ A � �A†
n o

xð ÞG x; x00ð Þd3x; (20)

respectively, where vD x0ð Þ is the characteristic function for

domain D, defined as

vD x0ð Þ ¼
1 for x0 2D;
1

2
for x0 2 @D;

0 for x0 2 R3n D [ @Df g:

8><
>: (21)

The convolution-type Green’s function representation (19) is

a basis, for example, for iterative forward modeling of scat-

tered wave fields, using boundary and/or volume integral

methods. The correlation-type representation (20) is a basis

for the methodology of Green’s function retrieval by cross-

correlation of ambient noise in its most general form.29 A

further discussion of these applications is beyond the scope

of this paper. Both representations are used in the following

sections in the derivation of the unified optical theorem.

IV. INTEGRAL RELATION FOR THE GREEN’S
FUNCTION OF THE SCATTERED WAVE FIELD

The generalized optical theorem is an integral relation

for the angle-dependent scattering amplitude of a scattering

object. Here an integral relation for the Green’s function of

the scattered wave field is derived, which will be used as the

basis for the derivation of the generalized optical theorem in

the next section.

The total Green’s function G(x, x0) in the actual medium

A xð Þ is the sum of the reference Green’s function �G x; x0ð Þ
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in the reference medium �A xð Þ and the Green’s function

Gs(x, x0) of the scattered wave field, hence

G x; x0ð Þ ¼ �G x; x0ð Þ þGs x; x0ð Þ: (22)

In Sec. V the reference medium will be taken homogeneous,

isotropic, reciprocal, and lossless, but for the moment the

choice of the reference medium is arbitrary. The correlation-

type representation (20) will now be used to find an expres-

sion for the following integral:

þ
@D

Gs x; x0ð Þf g†
NxGs x; x00ð Þd2x; (23)

with x0 and x00 both in D. A compact notation to represent

integrals of this form is

L G1;G2ð Þ ¼
þ
@D

G† x; x0ð ÞNxG x; x00ð Þd2x: (24)

Here the subscripts 1 and 2 at the left-hand side correspond

to the source positions x0 and x00, respectively, of the two

Green’s functions. Substitution of Eq. (22) into Eq. (24)

yields

L G1;G2ð Þ ¼ L �G1; �G2

� �
þL �G1;G

s
2

� �
þL Gs

1;
�G2

� �
þL Gs

1;G
s
2

� �
: (25)

Using Eq. (22) again, the second and third term in the right-

hand side of Eq. (25) can be expressed as

L �G1;G
s
2

� �
¼ L �G1;G2

� �
� L �G1; �G2

� �
; (26)

L Gs
1;

�G2

� �
¼ L G1; �G2

� �
� L �G1; �G2

� �
: (27)

Substituting this into Eq. (25) and bringing the last term to

the left-hand side gives

L Gs
1;G

s
2

� �
¼ L G1;G2ð Þ þL �G1; �G2

� �
�L �G1;G2

� �
�L G1; �G2

� �
: (28)

Note that the left-hand side is the sought integral of Eq. (23),

which has now been expressed in terms of integrals contain-

ing the total and the reference Green’s functions. The right-

hand side is evaluated term by term. Taking the reference

medium equal to the actual medium in Eq. (20), and using

the fact that x0 and x00 are both situated in D, yields for the

first term on the right-hand side of Eq. (28)

L G1;G2ð Þ ¼G x0;x00ð ÞþG† x00;x0ð Þ

þ ix
ð

D

G† x;x0ð Þ A�A†
� �

xð ÞG x;x00ð Þd3x:

(29)

The same relation holds for the second term, with the

total Green’s functions in the actual medium replaced by

the reference Green’s functions in the reference medium,

i.e.,

L �G1; �G2

� �
¼ �G x0;x00ð Þþ �G† x00;x0ð Þ

þ ix
ð

D

�G† x;x0ð Þ �A� �A†
n o

xð Þ�G x;x00ð Þd3x:

(30)

The third term on the right-hand side of Eq. (28) follows

directly from Eq. (20), hence

L �G1;G2

� �
¼G x0;x00ð Þþ �G

†
x00;x0ð Þ

þ ix
ð

D

�G
†

x;x0ð Þ A� �A†
n o

xð ÞG x;x00ð Þd3x:

(31)

Finally, interchanging the roles of the total and reference

Green’s functions, yields for the fourth term

L G1; �G2

� �
¼ �G x0;x00ð ÞþG† x00;x0ð Þ

þ ix
ð

D

G† x;x0ð Þ �A�A†
� �

xð Þ�G x;x00ð Þd3x:

(32)

Substituting Eqs. (29)–(32) into the right-hand side of Eq.

(28) and replacing the left-hand side by expression (23) givesþ
@D

Gs x; x0ð Þf g†
NxGs x; x00ð Þd2x

¼ þix
ð

D

G† x; x0ð Þ A �A†
� �

xð ÞG x; x00ð Þd3x

þ ix
ð

D

�G† x; x0ð Þ �A � �A†
n o

xð Þ�G x; x00ð Þd3x

� ix
ð

D

�G† x; x0ð Þ A � �A†
n o

xð ÞG x; x00ð Þd3x

� ix
ð

D

G† x; x0ð Þ �A �A†
� �

xð Þ�G x; x00ð Þd3x: (33)

V. THE UNIFIED OPTICAL THEOREM

From here onward, consider a small scattering domain

Ds around the origin, embedded in a reference domain R3,

see Fig. 2. The scattering domain may be arbitrary inhomo-

geneous, anisotropic, and non-reciprocal, but it is assumed

to be lossless, hence A xð Þ ¼ A†
xð Þ. The reference state is

taken homogeneous, isotropic, reciprocal, and lossless,

hence �A ¼ �A að Þ ¼ �A†
. Outside the scattering domain Ds,

centered at the origin, it holds that A xð Þ ¼ �A. For @D,

choose a large spherical boundary, centered at the origin.39

Define a unit vector x̂ in the direction of x, according to

x̂ ¼ x= xj j. Hence, the normal n on @D equals x̂, for x on

@D. Using all this in Eq. (33) yields

þ
@D

Gs x; x0ð Þf g†
M x̂ð ÞGs x; x00ð Þd2x

¼ �ix
ð

Ds

�G† x; x0ð Þ A xð Þ � �A
� �

G x; x00ð Þd3x

þ ix
ð

Ds

G† x; x0ð Þ A xð Þ � �A
� �

�G x; x00ð Þd3x; (34)
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with M x̂ð Þ defined as Nx, but with all ni replaced by x̂i.

Express the far field of the Green’s function of the scattered

wave field as

Gs x; x0ð Þ ¼ if�G x; 0ð ÞF x̂;�x̂0ð Þ�G 0; x0ð Þ (35)

and a similar expression for Gs x; x00ð Þ, with x on @D, and x0,
x00 in D, all far from the scattering domain Ds, see Fig. 2.

Here F x̂;�x̂0ð Þ is a L�L matrix containing angle-dependent

scattering amplitudes. Similar to x̂, vectors x̂0 and x̂00 are unit

vectors in the direction of x0 and x00, respectively. Finally, if
is a conveniently chosen normalization factor that compen-

sates for factors in the reference Green’s function, see Ap-

pendix C for details. Next, the optical theorem for the

scattering matrix F x̂;�x̂0ð Þ is derived.

Step 1: substitution of Eq. (35) and a similar expression

for Gs x; x00ð Þ into the left-hand side (LHS) of Eq. (34) gives

LHS of Eq: (34)¼ f2 �G† 0;x0ð Þ
þ
@D

F† x̂;�x̂0ð Þ�G† x;0ð Þ

�M x̂ð Þ�G x;0ð ÞF x̂;�x̂00ð Þd2x �G 0;x00ð Þ:
(36)

In Appendix C it is shown that

�G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ ¼ 2

f
H x̂ð Þ

xj j2
; (37)

where H x̂ð Þ is a function of the unit vector x̂ and the parame-

ters of the embedding medium. Hence

LHS of Eq: (34) ¼ 2f�G†ð0; x0Þ
þ

F†ðx̂;�x̂0ÞHðx̂Þ

�Fðx̂;�x̂00ÞdXx̂
�Gð0; x00Þ; (38)

with dXx̂ ¼ d2x= xj j2.

Step 2: Eq. (19) is used to derive an explicit expression

for the scattering matrix F. Because �A að Þ ¼ �A in the refer-

ence state, it holds that �G að Þ ¼ �G. Hence, taking into account

that x0 and x00 are situated in D, the left-hand side of Eq.

(19) is equal to the Green’s function Gs x0; x00ð Þ for the scat-

tered wave field. Because outside @D the parameters of the

reference state as well as of the actual state are homogene-

ous, isotropic, reciprocal and lossless, the boundary integral

on the right-hand side of Eq. (19) vanishes on account of

Sommerfeld’s radiation conditions. This leaves

Gs x0; x00ð Þ ¼ ix
ð

Ds

�G x0; xð Þ A xð Þ � �A
� �

G x; x00ð Þd3x:

(39)

For all x in the integration domain Ds it holds that xj j � x0j j
and xj j � x00j j, see Fig. 3. Approximate �G x; x0ð Þ by

�G x; x0ð Þ ¼ �P x; x̂0ð Þ�G 0; x0ð Þ; xj j � x0j j; (40)

where �P x; x̂0ð Þ is a matrix containing plane-wave functions,

see Appendix C for details. Similarly,

�G x0; xð Þ ¼ �G x0; 0ð Þ�P x̂0; xð Þ; xj j � x0j j: (41)

Applying symmetry relation (18) for the reference Green’s

function, yields

�P x̂0; xð Þ ¼ K�PT x; x̂0ð ÞK: (42)

Approximate G x; x00ð Þ by

G x; x00ð Þ ¼ P x; x̂00ð Þ�G 0; x00ð Þ; xj j � x00j j; (43)

FIG. 2. Configuration for the optical theorem.

FIG. 3. As in Fig. 2, but zoomed-in on the scattering domain Ds.
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where P x; x̂00ð Þ contains plane-wave functions �P x; x̂00ð Þ for

the direct-wave contribution plus non-linear scattering

effects for the scattered-wave contribution. For the following

analysis, P x; x̂00ð Þ does not need to be specified further. Sub-

stituting Eqs. (41) and (43) into Eq. (39) and comparing the

result with Eq. (35) gives

F x̂0;�x̂00ð Þ ¼ x
f

ð
Ds

�P x̂0; xð Þ A xð Þ � �A
� �

P x; x̂00ð Þd3x:

(44)

Step 3: substituting Eqs. (40) and (43) into the right-hand

side (RHS) of Eq. (34) gives

RHS of (34)

¼ �G†ð0;x0Þ
�
�ix

ð
Ds

�P†ðx;x̂0ÞfAðxÞ� �AgPðx;x̂00Þd3x

þix
ð

Ds

P†ðx;x̂0ÞfAðxÞ� �Ag�Pðx;x̂00Þd3x

�
�Gð0;x00Þ:

(45)

The integrals in this equation resemble that in Eq. (44),

except for the daggers. In Appendix C it is shown that

�P x; x̂0ð Þ ¼ K�P� x;�x̂0ð ÞK: (46)

Combining this with Eq. (42) gives

�P† x; x̂0ð Þ ¼ �P �x̂0; xð Þ: (47)

Using symmetry relation (47) as well asA xð Þ ¼ A†
xð Þ and �A

¼ �A†
in Eq. (45) and comparing the result with Eq. (44) gives

RHS of (34) ¼ �if�G†ð0; x0Þ
h
Fð�x̂0;�x̂00Þ

�F†ð�x̂00;�x̂0Þ
i

�Gð0; x00Þ: (48)

Combining this with Eq. (38) yields

þ
F† x̂;�x̂0ð ÞH x̂ð ÞF x̂;�x̂00ð ÞdXx̂

¼ 1

2i
F �x̂0;�x̂00ð Þ � F† �x̂00;�x̂0ð Þ
� �

(49)

or, renaming �x̂0 and �x̂00 as x̂0 and x̂00, respectively,

þ
F† x̂; x̂0ð ÞH x̂ð ÞF x̂; x̂00ð ÞdXx̂ ¼

1

2i
F x̂0; x̂00ð Þ �F† x̂00; x̂0ð Þ
� �

:

(50)

This is the unified optical theorem and the main result of this

paper. In the next section this theorem is analyzed for the

different types of wave fields discussed in the appendixes.

On a case-by-case basis it is shown that the L�L matrix

F x̂; x̂0ð Þ can be replaced by a smaller sized scattering matrix

f x̂; x̂0ð Þ. In particular, for scalar waves the 4� 4 matrix

F x̂; x̂0ð Þ will be replaced by a scalar scattering function

f x̂; x̂0ð Þ, for which case Eq. (50) reduces to the well-known

generalized optical theorem for scalar waves.

VI. OPTICAL THEOREMS FOR SCALAR AND
VECTORIAL WAVE FIELDS

In the previous section the Green’s function of the scat-

tered wave field was defined as

Gs x; x0ð Þ ¼ if�G x; 0ð ÞF x̂;�x̂0ð Þ�G 0; x0ð Þ: (51)

According to Appendix C, for acoustic, quantum-

mechanical, and electromagnetic waves, the reference

Green’s functions in Eq. (51) can be written as

�G x; 0ð Þ ¼ h x̂ð Þ�G0 xð ÞhT x̂ð Þ; (52)

�G 0; x0ð Þ ¼ h �x̂0ð Þ�G0 �x0ð ÞhT �x̂0ð Þ; (53)

where h x̂ð Þ is a function of the unit vector x̂ and the parame-

ters of the embedding medium. For acoustic and quantum-

mechanical waves �G0 xð Þ is actually a scalar function, i.e.,
�G0 xð Þ, whereas for electromagnetic waves �G0 xð Þ is a 3� 3

matrix. Substituting Eqs. (52) and (53) into Eq. (51) yields

Gs x; x0ð Þ ¼ h x̂ð ÞGs
0 x; x0ð ÞhT �x̂0ð Þ; (54)

where

Gs
0 x; x0ð Þ ¼ if�G0 xð Þf x̂;�x̂0ð Þ�G0 �x0ð Þ; (55)

with

f x̂;�x̂0ð Þ ¼ hT x̂ð ÞF x̂;�x̂0ð Þh �x̂0ð Þ: (56)

Note that Eq. (55) has the same form as Eq. (51), except that

in Eq. (55) all functions are scalars (for acoustic and

quantum-mechanical waves) or 3� 3 matrices (for electro-

magnetic waves). Apply hT x̂0ð Þ and h x̂00ð Þ to both sides of the

unified optical theorem [Eq. (50)], as follows:

þ
hT x̂0ð ÞF† x̂; x̂0ð ÞH x̂ð ÞF x̂; x̂00ð Þh x̂00ð ÞdXx̂

¼ 1

2i
hT x̂0ð Þ F x̂0; x̂00ð Þ � F† x̂00; x̂0ð Þ

� �
h x̂00ð Þ: (57)

According to Appendix C, for acoustic and quantum-

mechanical waves, matrix H x̂ð Þ is given by

H x̂ð Þ ¼ k

4p
h x̂ð ÞhT x̂ð Þ: (58)

Substituting this into Eq. (57), using Eq. (56), taking into

account that h x̂ð Þ is real-valued and that f is a scalar func-

tion, yields

k

4p

þ
f � x̂; x̂0ð Þf x̂; x̂00ð ÞdXx̂ ¼

1

2i
f x̂0; x̂00ð Þ � f � x̂00; x̂0ð Þð Þ:

(59)

This is the well-known generalized optical theorem for sca-

lar waves.2–6 Usually it is assumed that the scattering do-

main Ds is characterized by a single parameter (e.g., a

refraction-index contrast or a scattering potential). The deri-

vation that led to Eq. (59) accounts for two contrast
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parameters. This can be seen as follows. The scattering func-

tion f is expressed in terms of the 4� 4 matrix F via

Eq. (56), which is related to the contrast matrix A xð Þ � �A
in domain Ds via Eq. (44). For the acoustic situation this

contrast matrix contains, via Eq. (A7) (with bp¼ bv¼ 0), the

compressibility and mass density contrasts. Douma et al.26

also derived Eq. (59) for a scattering domain with two pa-

rameter contrasts, using the same method that is here

extended using a unified notation.

For electromagnetic waves, matrix H x̂ð Þ is given by

H x̂ð Þ ¼ lk

4p
h x̂ð Þ I� C x̂ð Þf ghT x̂ð Þ: (60)

Following the same procedure as above yields

lk

4p

þ
f† x̂; x̂0ð Þ I� C x̂ð Þf gf x̂; x̂00ð ÞdXx̂

¼ 1

2i
f x̂0; x̂00ð Þ � f† x̂00; x̂0ð Þ
� �

; (61)

with

C x̂ð Þ ¼
x̂2

1 x̂1x̂2 x̂1x̂3

x̂2x̂1 x̂2
2 x̂2x̂3

x̂3x̂1 x̂3x̂2 x̂2
3

0
B@

1
CA: (62)

Equation (61) is the generalized optical theorem for electro-

magnetic waves.13,14 In its present compact form it holds for

a scattering domain with arbitrary inhomogeneous, aniso-

tropic, and possibly non-reciprocal parameters contained in

matrixA xð Þ � �A, withA defined in Eq. (A22).

For the elastodynamic situation, �G x; 0ð Þ and �G 0; x0ð Þ in

Eq. (51) are defined as

�G x; 0ð Þ ¼ hP x̂ð Þ�GP xð ÞhT
P x̂ð Þ þ hS x̂ð Þ�GS xð ÞhT

S x̂ð Þ; (63)

�G 0; x0ð Þ ¼ hP �x̂0ð Þ�GP �x0ð ÞhT
P �x̂0ð Þ

þ hS �x̂0ð Þ�GS �x0ð ÞhT
S �x̂0ð Þ; (64)

where �GP xð Þ and �GS xð Þ are 3� 3 Green’s matrices for P-

and S-waves, respectively [Eqs. (C37) and (C38)]. Substitut-

ing Eqs. (63) and (64) into Eq. (51) gives

Gs x; x0ð Þ ¼ hP x̂ð ÞGs
P;P x; x0ð ÞhT

P �x̂0ð Þ
þ hP x̂ð ÞGs

P;S x; x0ð ÞhT
S �x̂0ð Þ

þ hS x̂ð ÞGs
S;P x; x0ð ÞhT

P �x̂0ð Þ
þ hS x̂ð ÞGs

S;S x; x0ð ÞhT
S �x̂0ð Þ; (65)

with

Gs
Q;R x; x0ð Þ ¼ if�GQ xð ÞfQ;R x̂;�x̂0ð Þ�GR �x0ð Þ (66)

and

fQ;R x̂;�x̂0ð Þ ¼ hT
Q x̂ð ÞF x̂;�x̂0ð ÞhR �x̂0ð Þ; (67)

where each of the subscripts Q and R can stand for either P
or S. Here fQ;R x̂;�x̂0ð Þ is a 3� 3 scattering matrix for an

incident R-type wave in the �x̂0 direction, scattered as a Q-

type wave in the x̂ direction.

Apply hT
Q x̂0ð Þ and hR x̂00ð Þ to both sides of the unified op-

tical theorem [Eq. (50)], as follows:

þ
hT

Q x̂0ð ÞF† x̂; x̂0ð ÞH x̂ð ÞF x̂; x̂00ð ÞhR x̂00ð ÞdXx̂

¼ 1

2i
hT

Q x̂0ð Þ F x̂0; x̂00ð Þ � F† x̂00; x̂0ð Þ
� �

hR x̂00ð Þ: (68)

According to Appendix C matrix H x̂ð Þ is given by

Hðx̂Þ ¼ x
4pq

	
1

c3
P

hPðx̂ÞCðx̂ÞhT
Pðx̂Þ

þ 1

c3
S

hSðx̂ÞfI� Cðx̂ÞghT
S ðx̂Þ



: (69)

Substituting this into Eq. (68), using Eq. (67), taking into

account that hP x̂ð Þ and hS x̂ð Þ are real-valued, yields

x

4pqc3
P

þ
f

†
P;Q x̂; x̂0ð ÞC x̂ð ÞfP;R x̂; x̂00ð ÞdXx̂

þ x

4pqc3
S

þ
f

†
S;Q x̂; x̂0ð Þ I� C x̂ð Þf gfS;R x̂; x̂00ð ÞdXx̂

¼ 1

2i
fQ;R x̂0; x̂00ð Þ � f

†
R;Q x̂00; x̂0ð Þ

� �
; (70)

with C x̂ð Þ again defined in Eq. (62). Equation (70) is the gen-

eralized optical theorem for elastodynamic P- and S-

waves.12

For a piezoelectric scattering domain Ds, the scattering

matrix F x̂;�x̂0ð Þ is subdivided as follows:

F x̂;�x̂0ð Þ ¼ FEM;EM x̂;�x̂0ð Þ FEM;ED x̂;�x̂0ð Þ
FED;EM x̂;�x̂0ð Þ FED;ED x̂;�x̂0ð Þ

	 

; (71)

where superscripts EM and ED stand for electromagnetic

and elastodynamic waves, respectively. The second super-

script refers to the type of incident wave, propagating in the

�x̂0 direction, whereas the first superscript refers to the type

of scattered wave, propagating in the x̂ direction. Substitute

this expression into the unified optical theorem [Eq. (50)],

together with Eq. (C68) for H x̂ð Þ, and rewrite the result in

terms of its submatrices. This yieldsþ
FEM;U x̂; x̂0ð Þ
� �†

HEM x̂ð ÞFEM;V x̂; x̂00ð ÞdXx̂

þ
þ

FED;U x̂; x̂0ð Þ
� �†

HED x̂ð ÞFED;V x̂; x̂00ð ÞdXx̂

¼ 1

2i
FU;V x̂0; x̂00ð Þ � FV;U x̂00; x̂0ð Þ

� �†
� �

; (72)

where each of the superscripts U and V can stand for either

EM or ED. Here HEM x̂ð Þ and HED x̂ð Þ are defined by Eqs. (60)

and (69), respectively. Introduce a vector hU
Q x̂0ð Þ. For U¼EM

this is the same as vector h x̂0ð Þ used for electromagnetic waves
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[e.g., as in Eq. (60)]; in this case subscript Q is a dummy sub-

script. For U¼ED this vector is the same as hQ x̂0ð Þ used for

elastodynamic waves [e.g., as in Eq. (69)]; in this case sub-

script Q can stand for either P or S. Apply hU
Q x̂0ð Þ

n oT
and

hV
R x̂00ð Þ to both sides of Eq. (72), in a similar way as in Eq.

(68), and substitute Eqs. (60) and (69). This gives

lkð ÞEM

4p

þ
f

EM;U
;Q x̂; x̂0ð Þ

n o†

I� C x̂ð Þf gfEM;V
;Q x̂; x̂00ð ÞdXx̂

þ x

4pqc3
P

þ
f

ED;U
P;Q x̂; x̂0ð Þ

n o†

C x̂ð ÞfED;V
P;R x̂; x̂00ð ÞdXx̂

þ x

4pqc3
S

þ
f

ED;U
S;Q x̂; x̂0ð Þ

n o†

I� C x̂ð Þf gfED;V
S;R x̂; x̂00ð ÞdXx̂

¼ 1

2i
f

U;V
Q;R x̂0; x̂00ð Þ � f

V;U
R;Q x̂00; x̂0ð Þ

n o†
	 


; (73)

with

f
U;V
Q;R x̂0; x̂00ð Þ ¼ hU

Q x̂0ð Þ
n oT

FU;V x̂0; x̂00ð ÞhV
R x̂00ð Þ: (74)

Equation (73) is the generalized optical theorem for electromag-

netic and elastodynamic P- and S-waves, scattered by a piezo-

electric contrast in a homogeneous, isotropic embedding.

VII. CONCLUSIONS

Recently, Douma et al.26 derived the generalized optical

theorem from reciprocity theorems for acoustic waves in per-

turbed media. They suggested that their approach could possi-

bly be used to derive a unified optical theorem from a unified

Green’s function representation.29 Here it has been shown that

this can indeed be done. Equation (50) formulates the unified

optical theorem in a compact way. It has been shown in Sec.

VI that Eq. (50) encompasses most versions of the optical the-

orem that have been presented in the literature. Moreover, this

unified optical theorem also holds for scattering by anisotropic

elastic and piezoelectric scatterers and by bianisotropic (i.e.,

non-reciprocal) electromagnetic scatterers.

Among the applications of the generalized optical theo-

rem mentioned in the literature are (1) testing numerical

modeling schemes for scattering amplitudes,5 (2) recon-

structing the structure of a scatterer from power extinction

experiments,40 and (3) retrieving the scattered part of the

Green’s function from ambient noise and explaining the spu-

rious events that occur when the noise is not equiparti-

tioned.23 The unified optical theorem formulated in Eq. (50)

provides a starting point for applying these and other meth-

ods to the different types of scatterers handled in this paper.
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APPENDIX A: MATRIX-VECTOR WAVE EQUATIONS

1. Acoustic wave equation

The basic equations for acoustic wave propagation in an

inhomogeneous, dissipative, non-flowing fluid are the linear-

ized equation of motion

q@tvi þ bvvi þ @ip ¼ fi (A1)

and the linearized stress-strain relation

j@tpþ bppþ @ivi ¼ q: (A2)

Lower-case latin subscripts (except t) take on the values 1, 2,

and 3 and Einstein’s summation convention applies to

repeated indices. Here p¼ p(x, t) and vi¼ vi(x, t) represent

the acoustic wave field in terms of acoustic pressure and par-

ticle velocity, respectively; q¼q(x) and j¼ j(x) are the me-

dium parameters mass density and compressibility,

respectively; bv¼ bv(x) and bp¼ bp(x) are the loss parame-

ters of the medium; finally, fi¼ fi(x, t) and q¼ q(x, t) repre-

sent the sources in terms of external volume force and

volume injection rate, respectively. These equations can be

combined into the general matrix-vector wave Eq. (1), with

u¼

p
v1

v2

v3

0
BB@

1
CCA; s¼

q
f1
f2
f3

0
BB@

1
CCA; A¼

j 0 0 0

0 q 0 0

0 0 q 0

0 0 0 q

0
BB@

1
CCA; (A3)

B¼

bp 0 0 0

0 bv 0 0

0 0 bv 0

0 0 0 bv

0
BB@

1
CCA; Dx ¼

0 @1 @2 @3

@1 0 0 0

@2 0 0 0

@3 0 0 0

0
BB@

1
CCA: (A4)

Note that Dx obeys symmetry relations (2) and (3), with K

defined as

K ¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

0
BB@

1
CCA: (A5)

Matrices Nx, and M x̂ð Þ, introduced in Eqs. (7) and (34),

respectively, are defined as

Nx¼

0 n1 n2 n3

n1 0 0 0

n2 0 0 0

n3 0 0 0

0
BB@

1
CCA; M x̂ð Þ¼

0 x̂1 x̂2 x̂3

x̂1 0 0 0

x̂2 0 0 0

x̂3 0 0 0

0
BB@

1
CCA: (A6)

The frequency-domain matrixA, defined in Eq. (6), is given

by

A x;xð Þ ¼

j x;xð Þ 0 0 0

0 q x;xð Þ 0 0

0 0 q x;xð Þ 0

0 0 0 q x;xð Þ

0
BB@

1
CCA; (A7)
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with

j x;xð Þ ¼ j xð Þ � bp xð Þ
ix

; (A8)

q x;xð Þ ¼ q xð Þ � bv xð Þ
ix

: (A9)

Note that A ¼ KAT
K. Combined with Eq. (9) this implies

A að Þ ¼ A, meaning that the medium is reciprocal. Energy

is conserved when A† ¼ A, i.e., when = j x;xð Þf g
¼ = q x;xð Þf g ¼ 0, where = denotes the imaginary part.

2. Quantum-mechanical wave equation

Schrödinger’s wave equation for a particle with mass m
in a potential V¼V(x) is given by41,42

i�h@tw ¼ �
�h2

2m
@i@iwþ Vw; (A10)

where w ¼ w(x, t) is the wave function and �h ¼ h=2p, with h
Planck’s constant. This equation can be captured in the gen-

eral matrix-vector wave Eq. (1), with

u ¼

w

�h=ið Þ@1w

�h=ið Þ@2w

�h=ið Þ@3w

0
BBB@

1
CCCA; A ¼

2m 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA;

B ¼

2miV=�h 0 0 0

0 �i=�h 0 0

0 0 �i=�h 0

0 0 0 �i=�h

0
BBB@

1
CCCA; (A11)

and s a nul-vector. Furthermore, Dx, K, Nx, and M x̂ð Þ are

defined in Eqs. (A4)–(A6). The frequency-domain matrixA,

defined in Eq. (6), is given by

A x;xð Þ ¼

2m 1� V xð Þ
�hx

	 

0 0 0

0
1

�hx
0 0

0 0
1

�hx
0

0 0 0
1

�hx

0
BBBBBBBBB@

1
CCCCCCCCCA
: (A12)

Note thatA ¼ KAT
K, hence A að Þ ¼ A, meaning that reci-

procity is obeyed. Furthermore, A† ¼ A, hence, probability

is conserved.

3. Electromagnetic wave equation

Maxwell’s equations for electromagnetic wave propaga-

tion read38,43

eik@tEk þ rikEk � �ijk@jHk ¼ �Je
i ; (A13)

lkm@tHm þ �klm@lEm ¼ �Jm
k ; (A14)

where Ek¼Ek(x, t) and Hk¼Hk(x, t) are the electric

and magnetic field strengths, respectively; eik¼ eik(x),

lkm ¼ lkm(x), and rik¼ rik(x) are the anisotropic permittiv-

ity, permeability, and conductivity, respectively; Je
i

¼ Je
i x; tð Þ and Jm

k ¼ Jm
k x; tð Þ are source functions in terms of

the external electric and magnetic current densities; finally,

�ijk is the alternating tensor (or Levi–Civita tensor), with

�123¼ �312 ¼ �231¼ 1, �213¼ �321¼ �132¼�1, and all other

components being zero. The permittivity, permeability and

conductivity obey the symmetry relations eik¼ eki,

lkm¼lmk, and rik¼ rki, respectivey. Equations (A13) and

(A14) can be combined into the general matrix-vector Eq.

(1), with

u ¼
E

H

	 

; s ¼

�Je

�Jm

	 

; A ¼

e O

O l

	 

;

B ¼
r O

O O

	 

; (A15)

E ¼
E1

E2

E3

0
B@

1
CA; H ¼

H1

H2

H3

0
B@

1
CA; Je ¼

Je
1

Je
2

Je
3

0
B@

1
CA;

Jm ¼
Jm

1

Jm
2

Jm
3

0
B@

1
CA; (A16)

e ¼
e11 e12 e13

e21 e22 e23

e31 e32 e33

0
B@

1
CA; l ¼

l11 l12 l13

l21 l22 l23

l31 l32 l33

0
B@

1
CA;

r ¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

0
B@

1
CA; (A17)

Dx ¼ O DT
0

D0 O

	 

; D0 ¼

0 �@3 @2

@3 0 �@1

�@2 @1 0

0
@

1
A; (A18)

with O being the 3� 3 null matrix. Note that e¼ eT, l¼ lT

and r¼rT. Dx obeys symmetry relations (2) and (3), with K

defined as

K ¼ �I O

O I

	 

; (A19)

with I being the 3� 3 identity matrix. The frequency-

domain matrixA, defined in Eq. (6), is given by

A x;xð Þ ¼ e x;xð Þ O

O l xð Þ

	 

; (A20)

with

e x;xð Þ ¼ e xð Þ � r xð Þ
ix

: (A21)

More generally, for bianisotropic materials this matrix

becomes a full matrix, according to35,43,44

A x;xð Þ ¼ e x;xð Þ n x;xð Þ
f x;xð Þ l x;xð Þ

	 

: (A22)
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Note that

A að Þ ¼ KAT
K ¼ eT x;xð Þ �fT x;xð Þ

�nT x;xð Þ lT x;xð Þ

	 

: (A23)

When f¼�nT we have A að Þ ¼ A, meaning that the me-

dium is reciprocal.45 On the other hand, when f¼ nT the me-

dium is non-reciprocal. Energy is conserved when A† ¼ A.

In all cases this requires = eð Þ ¼ = lð Þ ¼ O. In addition, for

reciprocal media it requires < fð Þ ¼ < nð Þ ¼ O, which occurs

in so-called chiral media.46 On the other hand, for nonreci-

procal media obeying f¼ nT it requires = fð Þ ¼ = nð Þ ¼ O,

which occurs for example in so-called Faraday media.47

4. Elastodynamic wave equation

The linearized equation of motion in a lossless solid

reads38,48,49

q@tvi � @jsij ¼ fi; (A24)

where vi and sij are the particle velocity and stress tensor,

respectively, associated to the elastodynamic wave field, q is

the mass density of the medium and fi the external volume

force. The stress tensor is symmetric, i.e., sij¼ sji. Hooke’s

linearized stress-strain relation reads

� sijkl@tskl þ @ivj þ @jvi

� �
=2 ¼ hij; (A25)

where hij is the external deformation rate, with hij¼ hji, and

sijkl is the compliance tensor, with sijkl¼ sjikl¼ sijlk¼ sklij.

Equations (A24) and (A25) can be combined to yield the

general matrix-vector Eq. (1). To this end, rewrite these

equations as

q@tv� D1s1 � D2s2 ¼ f (A26)

and

�s11@ts1 � 2s12@ts2 þ D1v ¼ h1; (A27)

�2s21@ts1 � 4s22@ts2 þ D2v ¼ h2; (A28)

where

v ¼
v1

v2

v3

0
@

1
A; s1 ¼

s11

s22

s33

0
@

1
A; s2 ¼

s23

s31

s12

0
@

1
A; (A29)

f ¼
f1

f2

f3

0
@

1
A; h1 ¼

h11

h22

h33

0
@

1
A; h2 ¼

2h23

2h31

2h12

0
@

1
A; (A30)

s11 ¼
s1111 s1122 s1133

s2211 s2222 s2233

s3311 s3322 s3333

0
B@

1
CA;

s12 ¼
s1123 s1131 s1112

s2223 s2231 s2212

s3323 s3331 s3312

0
B@

1
CA; (A31)

s21 ¼ sT
12; s22 ¼

s2323 s2331 s2312

s3123 s3131 s3112

s1223 s1231 s1212

0
@

1
A; (A32)

and

D1 ¼
@1 0 0

0 @2 0

0 0 @3

0
@

1
A; D2 ¼

0 @3 @2

@3 0 @1

@2 @1 0

0
@

1
A: (A33)

Equations (A26)–(A28) can be combined into the general

matrix-vector Eq. (1), with

u ¼
v

�s1

�s2

0
@

1
A; s ¼

f

h1

h2

0
@

1
A; (A34)

A¼
qI O O

O s11 2s12

O 2s21 4s22

0
@

1
A; Dx¼

O D1 D2

D1 O O

D2 O O

0
@

1
A; (A35)

and B a 9� 9 null matrix (for the situation of a medium with

losses, matrix B would account for the losses and have a

similar structure as matrix A). Dx obeys symmetry relations

(2) and (3), with K defined as

K ¼
I O O

O �I O

O O �I

0
@

1
A: (A36)

The frequency-domain matrix A, defined in Eq. (6), is for

this case identical to A, defined in Eq. (A35), because a loss-

less solid is considered.

Note that A ¼ KAT
K, hence A að Þ ¼ A, meaning that

reciprocity is obeyed. Furthermore, A† ¼ A, hence, energy

is conserved.

5. Piezoelectric wave equation

The equations for coupled electromagnetic and elasto-

dynamic waves in a lossless piezoelectric material read43,50

eik@tEk � �ijk@jHk þ dijk@tsjk ¼ �Je
i ; (A37)

lkm@tHm þ �klm@lEm ¼ �Jm
k ; (A38)

q@tvi � @jsij ¼ fi; (A39)

� sijkl@tskl þ @ivj þ @jvi

� �
=2� dijk@tEk ¼ hij; (A40)

where dijk is the coupling tensor, with dijk¼ djik¼ dikj. Note

that eik in Eq. (A37) and sijkl in Eq. (A40) are parameters

measured under constant stress and constant electric field,

respectively. Equations (A37)–(A40) can be combined into

the general matrix-vector Eq. (1), with

u ¼ uEM

uED

	 

; s ¼ sEM

sED

	 

; (A41)

A ¼ AEM AC

AC
� �T

AED

	 

; Dx ¼ DEM

x O

O DED
x

	 

; (A42)
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and B a 15� 15 null matrix. Superscripts EM and ED stand

for electromagnetic and elastodynamic, respectively. The

expressions for the wave field vectors, source vectors, me-

dium parameter matrices, and differential operators with

superscripts EM and ED are given in Appendixes A 3 and

A 4, respectively (but here only the lossless reciprocal case

is considered). The coupling matrix AC is defined as follows:

AC ¼ O �d1 �2d2

O O O

	 

; (A43)

with

d1¼
d111 d122 d133

d211 d222 d233

d311 d322 d333

0
@

1
A; d2¼

d123 d131 d112

d223 d231 d212

d323 d331 d312

0
@

1
A: (A44)

Dx obeys symmetry relations (2) and (3), with K defined as

K ¼ KEM O

O KED

	 

; (A45)

with K
EM and K

ED defined in Appendixes A 3 and A 4,

respectively. The frequency-domain matrix A, defined in

Eq. (6), is identical to A, defined in Eq. (A42), because a

lossless material is considered.

Note that A ¼ KAT
K, hence A að Þ ¼ A, meaning that

reciprocity is obeyed. Furthermore, A† ¼ A, hence, energy

is conserved.

APPENDIX B: THE THEOREM OF GAUSS
IN MATRIX-VECTOR FORM

For a scalar field a(x), the theorem of Gauss reads

ð
D

@ia xð Þd3x ¼
þ
@D

a xð Þnid
2x: (B1)

Here this theorem is modified for the differential operator

matrix Dx appearing in Eqs. (1) and (5). Let DIJ denote the

operator in row I and column J of matrix Dx. The symmetry

of Dx [Eq. (2)] implies DIJ¼DJI. Define a matrix Nx which

contains the components of the normal vector n on @D,

organized in the same way as matrix Dx. Hence, NIJ¼NJI,

where NIJ denotes the element in row I and column J of ma-

trix Nx. Replace the scalar field a(x) by aI(x)bJ(x) and sum

both sides of Eq. (B1) over I and J. This yieldsð
D

DIJ aI xð ÞbJ xð Þf gd3x ¼
þ
@D

aI xð ÞbJ xð ÞNIJd2x; (B2)

where the summation convention applies to repeated capital

Latin subscripts, which may run from 1 to 4, 6, 9, or 15, depend-

ing on the choice of operator Dx. Applying the product rule for

differentiation and using the symmetry property DIJ¼DJI

yields for the integrand in the left-hand side of Eq. (B2)

DIJ aIbJð Þ ¼ aIDIJbJ þ DJIaIð ÞbJ ¼ aTDxbþ Dxað ÞTb;

(B3)

where a and b are vector functions, containing the scalar

functions aI(x) and bJ(x), respectively, Rewriting the inte-

grand in the right-hand side of Eq. (B2) in a similar way,

gives the theorem of Gauss in matrix-vector formð
D

aTDxbþ Dxað ÞTb
n o

d3x ¼
þ
@D

aTNxbd2x: (B4)

APPENDIX C: GREEN’S MATRICES

1. Acoustic Green’s matrix

The frequency-domain Green’s matrix G(x, x0) is a L� L
matrix, obeying wave equation (15). The element in the kth row

and lth column represents the wave field quantity of the kth type

observed at x, due to a unit source of the lth type at x0. Here

“wave field quantity of the kth type” means the wave field quan-

tity represented by the kth element of wave field vector u. Simi-

larly, “source of the lth type” means the type of source

represented by the lth element of source vector s. Hence, for the

acoustic situation the Green’s matrix can be written as

G x; x0ð Þ ¼

Gp;q Gp;f
;1 Gp;f

;2 Gp;f
;3

Gv;q
1 Gv;f

1;1 Gv;f
1;2 Gv;f

1;3

Gv;q
2 Gv;f

2;1 Gv;f
2;2 Gv;f

2;3

Gv;q
3 Gv;f

3;1 Gv;f
3;2 Gv;f

3;3

0
BBBB@

1
CCCCA x; x0ð Þ: (C1)

Superscripts p and v refer to the observations of acoustic pressure

and particle velocity, respectively, at x, whereas superscripts q
and f refer to sources of volume injection rate and external vol-

ume force, respectively, at x0. The subscripts refer to the compo-

nents of the particle velocity and volume force, respectively.

A non-flowing acoustic medium is reciprocal, see Ap-

pendix A 1. Hence, symmetry relation (18), with K defined

in Eq. (A5), gives

Gp;q Gp;f
;1 Gp;f

;2 Gp;f
;3

Gv;q
1 Gv;f

1;1 Gv;f
1;2 Gv;f

1;3

Gv;q
2 Gv;f

2;1 Gv;f
2;2 Gv;f

2;3

Gv;q
3 Gv;f

3;1 Gv;f
3;2 Gv;f

3;3

0
BBBBB@

1
CCCCCA x; x0ð Þ

¼

Gp;q �Gv;q
1 �Gv;q

2 �Gv;q
3

�Gp;f
;1 Gv;f

1;1 Gv;f
2;1 Gv;f

3;1

�Gp;f
;2 Gv;f

1;2 Gv;f
2;2 Gv;f

3;2

�Gp;f
;3 Gv;f

1;3 Gv;f
2;3 Gv;f

3;3

0
BBBBB@

1
CCCCCA x0; xð Þ: (C2)

For convenience Gp,q is renamed as G0. All elements of ma-

trix G(x, x0) are now expressed in terms of G0(x, x0), for

x= x0. Transforming the equation of motion (A1) to the fre-

quency domain, gives for the first column of G(x, x0),

1
@1

ixq
@2

ixq
@3

ixq

0
BBBBBBB@

1
CCCCCCCA

G0 x; x0ð Þ; (C3)
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with q¼ q(x, x) defined in Eq. (A9). Similar expressions

hold for the other columns of G(x, x0). Based on symmetry

relation (C2), the first row of G(x, x0) can be expressed as

1 � @01
ixq0

� @02
ixq0

� @03
ixq0

	 

G0 x; x0ð Þ; (C4)

where @0j denotes differentiation with respect to x0j and

q0 ¼q(x0, x). Combining these two relations gives

G x;x0ð Þ¼

1
@1

ixq
@2

ixq
@3

ixq

0
BBBBBBBBB@

1
CCCCCCCCCA

1 � @01
ixq0

� @02
ixq0

� @03
ixq0

	 

G0 x;x0ð Þ:

(C5)

From here onward, this Green’s matrix is analyzed for a ho-

mogeneous lossless background medium. Replace G0(x, x0)
by the background Green’s function

�G0 yð Þ ¼ 1

if
exp ik yj jð Þ

yj j ; (C6)

where

f ¼ 4p=xq; (C7)

with y¼ x� x0 and k¼x/c, with propagation velocity

c¼ (jq)�1/2. Here j and q are the compressibility and mass

density of the background medium (for notational conven-

ience, bars are omitted on the background medium parame-

ters). In the far field approximation, Eq. (C5) gives

�G x; x0ð Þ ¼ h ŷð Þ �G0 yð ÞhT ŷð Þ; (C8)

where

h ŷð Þ ¼

1

ŷ1=qc
ŷ2=qc
ŷ2=qc

0
BB@

1
CCA; (C9)

with ŷi ¼ yi= yj j ¼ xi � x0i
� �

= x� x0j j.
Equations (C6) and (C8) are used to evaluate the term

�G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ in Eq. (36). Substitution of Eq. (C8)

with x0 ¼ 0 gives

�G† x;0ð ÞM x̂ð Þ�G x;0ð Þ¼ x2q2

16p2 xj j2
h x̂ð ÞhT x̂ð ÞM x̂ð Þh x̂ð ÞhT x̂ð Þ:

(C10)

Using M x̂ð Þ as defined in Eq. (A6), yields

hT x̂ð ÞM x̂ð Þh x̂ð Þ ¼ 2=qc. Hence

�G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ ¼ 2

f
H x̂ð Þ

xj j2
; (C11)

with

H x̂ð Þ ¼ k

4p
h x̂ð ÞhT x̂ð Þ: (C12)

Next, Eqs. (C6) and (C8) are used to establish symmetry

relation (46). Consider the Green’s function �G x; x0ð Þ as

defined in Eq. (C8), with x in the scattering domain Ds and

x0 far from this scattering domain, hence, xj j � x0j j, see

Fig. 3. Express �G x; x0ð Þ as

�Gðx; x0Þ ¼ �Pðx; x̂0Þ�Gð0; x0Þ; (C13)

where, according to Eq. (C8),

�G 0; x0ð Þ ¼ h �x̂0ð Þ �G0 �x0ð ÞhT �x̂0ð Þ: (C14)

An expression for �Pðx; x̂0Þ is derived by constructing
�Gðx; x0Þ, as defined in Eq. (C8), from �Gð0; x0Þ, as defined in

Eq. (C14), in three steps.

Step 1: using 1 0 0 0ð Þh �x̂0ð Þ ¼ 1, eliminate

h �x̂0ð Þ from Eq. (C14) as follows

1 0 0 0ð Þ�G 0; x0ð Þ ¼ �G0 �x0ð ÞhT �x̂0ð Þ: (C15)

Step 2: using �G0 yð Þ � exp �ikx � x̂0ð Þ �G0 �x0ð Þ, applying

exp �ikx � x̂0ð Þ to the right-hand side of Eq. (C15) gives

exp �ikx � x̂0ð Þ �G0 �x0ð ÞhT �x̂0ð Þ � �G0 yð ÞhT �x̂0ð Þ: (C16)

Step 3: �G x; x0ð Þ is obtained by applying h �x̂0ð Þ to the right-

hand side of Eq. (C16) and using�x̂0 � ŷ and Eq. (C8). Hence

h �x̂0ð Þ �G0 yð ÞhT �x̂0ð Þ � �G x; x0ð Þ: (C17)

Combining these three steps, yields

�G x; x0ð Þ � h �x̂0ð Þexp �ikx � x̂0ð Þ 1 0 0 0ð Þ�G 0; x0ð Þ:
(C18)

Hence

�P x; x̂0ð Þ � h �x̂0ð Þexp �ikx � x̂0ð Þ 1 0 0 0ð Þ

¼

1 0 0 0

�x01=qc 0 0 0

�x02=qc 0 0 0

�x03=qc 0 0 0

0
BBB@

1
CCCAexp �ikx � x̂0ð Þ: (C19)

Note that

�P x; x̂0ð Þ ¼ K�P� x;�x̂0ð ÞK; (C20)

with K defined in Eq. (A5), which confirms Eq. (46).

2. Quantum-mechanical Green’s matrix

The quantum-mechanical Green’s matrix is similar to

the acoustic Green’s matrix. �G0 yð Þ is again given by Eq.

(C6), with
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f ¼ 4p�h (C21)

and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xm=�h

p
. The far-field approximation of the

Green’s matrix �G x; x0ð Þ is again given by Eq. (C8), with

h ŷð Þ ¼

1

�hkŷ1

�hkŷ2

�hkŷ3

0
BB@

1
CCA: (C22)

Despite these different definitions, we find that the term
�G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ in Eq. (36) can be expressed again by

Eqs. (C11) and (C12). Moreover, matrix �P x; x̂0ð Þ obeys again

symmetry relation (C20).

3. Electromagnetic Green’s matrix

The basic 3� 3 far-field electromagnetic Green’s matrix

in a homogeneous, isotropic, reciprocal, lossless background

is given by38

�G0 yð Þ ¼ l
if

exp ik yj jð Þ
yj j C ŷð Þ � If g; (C23)

where

f ¼ 4p=x; (C24)

C ŷð Þ ¼
ŷ2

1 ŷ1ŷ2 ŷ1ŷ3

ŷ2ŷ1 ŷ2
2 ŷ2ŷ3

ŷ3ŷ1 ŷ3ŷ2 ŷ2
3

0
@

1
A; (C25)

and k¼x/c, with propagation velocity c¼ (el)�1/2. Here e
and l are the permittivity and permeability of the back-

ground. Analogous to the derivation in Appendix C 1 it can

be shown that the 6� 6 Green’s matrix �G x; x0ð Þ is, in the far

field, related to the basic 3� 3 matrix �G0 yð Þ, via

�G x; x0ð Þ ¼ h ŷð Þ�G0 yð ÞhT ŷð Þ; (C26)

with

h ŷð Þ¼
I

1

lc
M0 ŷð Þ

0
@

1
A; M0 ŷð Þ¼

0 �ŷ3 ŷ2

ŷ3 0 �ŷ1

�ŷ2 ŷ1 0

0
B@

1
CA:

(C27)

Equations (C23) and (C26) are used to evaluate the term
�G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ in Eq. (36). Substitution of Eq. (C26)

with x0 ¼ 0 gives

�G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ ¼ h x̂ð Þ �G0 xð Þ
� �†

hT x̂ð ÞM x̂ð Þh x̂ð Þ
� �G0 xð ÞhT x̂ð Þ: (C28)

Analogous to the definition of Dx in Eq. (A18), it holds that

M x̂ð Þ ¼ O MT
0 x̂ð Þ

M0 x̂ð Þ O

	 

; (C29)

hence

hT x̂ð ÞM x̂ð Þh x̂ð Þ ¼ 2

lc
MT

0 x̂ð ÞM0 x̂ð Þ

¼ 2

lc
I� C x̂ð Þf g: (C30)

Substituting this into Eq. (C28), using

C ¼ CT ¼ C2 ¼ C3 ¼ � � � ; (C31)

gives

�G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ ¼ 2

f
H x̂ð Þ

xj j2
; (C32)

with

H x̂ð Þ ¼ lk

4p
h x̂ð Þ I� C x̂ð Þf ghT x̂ð Þ: (C33)

Next, the same three steps as in Appendix C 1 are

applied to establish symmetry relation (46). Assuming

xj j � x0j j (Fig. 3), express �G x; x0ð Þ as

�G x; x0ð Þ ¼ �P x; x̂0ð Þ�G 0; x0ð Þ; (C34)

where, analogous to Eq. (C19),

�P x; x̂0ð Þ ¼ h �x̂0ð Þexp �ikx � x̂0ð Þ I Oð Þ

¼
I O

1

lc
M0 �x̂0ð Þ O

0
@

1
Aexp �ikx � x̂0ð Þ: (C35)

Note that

�P x; x̂0ð Þ ¼ K�P� x;�x̂0ð ÞK; (C36)

with K defined in Eq. (A19), which confirms Eq. (46).

4. Elastodynamic Green’s matrix

The basic 3� 3 far-field elastodynamic Green’s matri-

ces for P-and S-waves in a homogeneous, isotropic, lossless

background medium are given by49

�GP yð Þ ¼ 1

ifqc2
P

exp ikP yj jð Þ
yj j C ŷð Þ (C37)

and

�GS yð Þ ¼ 1

ifqc2
S

exp ikS yj jð Þ
yj j I� C ŷð Þf g; (C38)

respectively, where

f ¼ 4p=x; (C39)

C ŷð Þ defined by Eq. (C25), and k{P,S}¼x/c{P,S}, with propa-

gation velocities cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2lð Þ=q

p
and cS ¼

ffiffiffiffiffiffiffiffi
l=q

p
. Here

k, l, and q are the Lamé parameters and mass density of the

background medium. Analogous to the derivation in Appen-

dix C 1 it can be shown that the 9� 9 Green’s matrix
�G x; x0ð Þ is, in the far field, related to the basic 3� 3 matrices
�GP yð Þ and �GS yð Þ, via
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�G x; x0ð Þ ¼ hP ŷð Þ�GP yð ÞhT
P ŷð Þ þ hS ŷð Þ�GS yð ÞhT

S ŷð Þ; (C40)

where

h P;Sf g ŷð Þ ¼

I
1

c P;Sf g
c11M1 ŷð Þ

1

c P;Sf g
c22M2 ŷð Þ

0
BBBBB@

1
CCCCCA; (C41)

with

c11 ¼
kþ 2l k k

k kþ 2l k

k k kþ 2l

0
B@

1
CA;

c22 ¼
l 0 0

0 l 0

0 0 l

0
B@

1
CA; (C42)

and

M1 ŷð Þ¼
ŷ1 0 0

0 ŷ2 0

0 0 ŷ3

0
@

1
A; M2 ŷð Þ¼

0 ŷ3 ŷ2

ŷ3 0 ŷ1

ŷ2 ŷ1 0

0
@

1
A: (C43)

We use Eqs. (C37), (C38), and (C40) to evaluate the term
�G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ in Eq. (36). Substitution of Eq. (C40)

with x0 ¼ 0 gives

�G†ðx;0ÞMðx̂Þ�Gðx;0Þ
¼fhPðx̂Þ�G†

PðxÞhT
Pðx̂ÞþhSðx̂Þ�G†

SðxÞhT
S ðx̂ÞgMðx̂Þ

�fhPðx̂Þ�GPðxÞhT
Pðx̂ÞþhSðx̂Þ�GSðxÞhT

S ðx̂Þg:
(C44)

Analogous to the definition of Dx in Eq. (A35) it holds that

M x̂ð Þ ¼
O M1 x̂ð Þ M2 x̂ð Þ

M1 x̂ð Þ O O

M2 x̂ð Þ O O

0
@

1
A: (C45)

Consider the terms hT
Q x̂ð ÞM x̂ð ÞhR x̂ð Þ, where each of the sub-

scripts Q and R can stand for either P or S. Using Eqs.

(C41)–(C43) gives

hT
Qðx̂ÞMðx̂ÞhRðx̂Þ¼

	
1

cQ
þ 1

cR



ðM1ðx̂Þc11M1ðx̂Þ

þM2ðx̂Þc22M2ðx̂ÞÞ

¼
	

1

cQ
þ 1

cR



ððkþlÞCðx̂ÞþlIÞ; (C46)

with C x̂ð Þ defined by Eq. (C25). Hence, using Eq. (C31), it is

found for the different terms in Eq. (C44) that

�G†
P xð ÞhT

P x̂ð ÞM x̂ð ÞhP x̂ð Þ�GP xð Þ ¼ x2C x̂ð Þ
8qc3

Pp2 xj j2
; (C47)

�G†
P xð ÞhT

P x̂ð ÞM x̂ð ÞhS x̂ð Þ�GS xð Þ ¼ O; (C48)

�G†
S xð ÞhT

S x̂ð ÞM x̂ð ÞhP x̂ð Þ�GP xð Þ ¼ O; (C49)

�G†
S xð ÞhT

S x̂ð ÞM x̂ð ÞhS x̂ð Þ�GS xð Þ ¼ x2 I� C x̂ð Þf g
8qc3

Sp
2 xj j2

: (C50)

Taking all terms together yields

�G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ ¼ 2

f
H x̂ð Þ

xj j2
; (C51)

with

Hðx̂Þ ¼ x
4pq

	
1

c3
P

hPðx̂ÞCðx̂ÞhT
Pðx̂Þ

þ 1

c3
S

hSðx̂
�
fI� Cðx̂ÞghT

S ðx̂Þ


: (C52)

Next, Eqs. (C37), (C38), and (C40) are used to establish

symmetry relation (46). Assuming xj j � x0j j (Fig. 3),

express �G x; x0ð Þ as

�G x; x0ð Þ ¼ �P x; x̂0ð Þ�G 0; x0ð Þ; (C53)

where, according to Eq. (C40),

�G 0; x0ð Þ ¼ hP �x̂0ð Þ�GP �x0ð ÞhT
P �x̂0ð Þ

þ hS �x̂0ð Þ�Gs �x0ð ÞhT
S �x̂0ð Þ: (C54)

An expression for �P x; x̂0ð Þ is derived by constructing
�G x; x0ð Þ, as defined in Eq. (C40), from �G 0; x0ð Þ, as defined in

Eq. (C54), in three steps.

Step 1: using C x̂0ð Þ ¼ C �x̂0ð Þ as well as Eq. (C31),

decompose �G 0; x0ð Þ into its P- and S-wave constituents, as

follows:

C x̂0ð Þ O O

I�C x̂0ð Þ O O

	 

�G 0;x0ð Þ¼

�GP �x0ð ÞhT
P �x̂0ð Þ

�GS �x0ð ÞhT
S �x̂0ð Þ

 !
: (C55)

Step 2: using �G P;Sf g yð Þ � exp �ik P;Sf gx � x̂0
� �

�G P;Sf g �x0ð Þ,
applying exp �ik P;Sf gx � x̂0

� �
to the right-hand side of Eq.

(C55) gives

Iexp �ikPx � x̂0ð Þ O

O Iexp �ikSx � x̂0ð Þ

	 
 �GP �x0ð ÞhT
P �x̂0ð Þ

�GS �x0ð ÞhT
S �x̂0ð Þ

 !

¼
�GP yð ÞhT

P �x̂0ð Þ
�GS yð ÞhT

S �x̂0ð Þ

 !
: (C56)

Step 3: compose �G x; x0ð Þ from its P- and S-wave constituents

by applying hP �x̂0ð Þ hS �x̂0ð Þð Þ to the right-hand side of Eq.

(C56) and using �x̂0 � ŷ and Eq. (C40). Hence

hP �x̂0ð Þ hS �x̂0ð Þð Þ
�GP yð ÞhT

P �x̂0ð Þ
�GS yð ÞhT

S �x̂0ð Þ

 !
¼ �G x; x0ð Þ: (C57)

Combining these three steps gives Eq. (C53), with
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�P x; x̂0ð Þ ¼ �P1 x; x̂0ð Þ O O
� �

; (C58)

where

�P1 x; x̂0ð Þ ¼ hP �x̂0ð ÞC x̂0ð Þexp �ikPx � x̂0ð Þ
þ hS �x̂0ð Þ I� C x̂0ð Þf gexp �ikSx � x̂0ð Þ (C59)

or

�P x; x̂0ð Þ ¼
�P11 x; x̂0ð Þ O O
�P21 x; x̂0ð Þ O O
�P31 x; x̂0ð Þ O O

0
@

1
A; (C60)

where

�P11 x; x̂0ð Þ ¼ C x̂0ð Þexp �ikPx � x̂0ð Þ
þ I� C x̂0ð Þf gexp �ikSx � x̂0ð Þ; (C61)

�P21ðx; x̂0Þ ¼ c11M1ð�x̂0Þðc�1
P Cðx̂0Þexpð�ikPx � x̂0Þ

þc�1
S fI� Cðx̂0Þgexpð�ikSx � x̂0ÞÞ; (C62)

�P31ðx; x̂0Þ ¼ c22M2ð�x̂0Þðc�1
P Cðx̂0Þexpð�ikPx � x̂0Þ

þc�1
S fI� Cðx̂0Þgexpð�ikSx � x̂0ÞÞ: (C63)

Note that

�Pðx; x̂0Þ ¼ K�P�ðx;�x̂0ÞK; (C64)

with K defined in Eq. (A36), which confirms Eq. (46).

5. Combined electromagnetic and elastodynamic
Green’s matrix

For a homogeneous, isotropic, lossless background me-

dium, in which electromagnetic and elastodynamic waves

propagate independently, the Green’s matrices can be com-

bined as follows:

�G x; x0ð Þ ¼
�GEM x; x0ð Þ O

O �GED x; x0ð Þ

	 

; (C65)

where superscripts EM and ED stand for electromagnetic

and elastodynamic, respectively. The expressions for matri-

ces with superscripts EM and ED are given in Appendixes

C 3 and C 4, respectively. For the term �G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ
appearing in Eq. (36), with

M x̂ð Þ ¼ MEM x̂ð Þ O

O MED x̂ð Þ

	 

; (C66)

it is found that

�G† x; 0ð ÞM x̂ð Þ�G x; 0ð Þ ¼ 2

f
H x̂ð Þ

xj j2
; (C67)

where f¼ 4p/x, and

H x̂ð Þ ¼ HEM x̂ð Þ O

O HED x̂ð Þ

	 

: (C68)

Next, express �Gðx; x0Þ as

�Gðx; x0Þ ¼ �Pðx; x̂0Þ�Gð0; x0Þ; (C69)

where

�Pðx; x̂0Þ ¼
�PEM x; x̂0ð Þ O

O �PED x; x̂0ð Þ

	 

: (C70)

Note that

�P x; x̂0ð Þ ¼ K�P� x;�x̂0ð ÞK; (C71)

with K defined in Eq. (A45), which confirms Eq. (46).
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