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In an acoustical context, interferometry takes advantage of existing (ambient) wavefield recordings

by turning receivers into so-called “virtual sources.” The medium’s response to these virtual sour-

ces can be harnessed to image that medium. Most interferometric applications, however, suffer

from the fact that the retrieved virtual-source responses deviate from the true medium responses.

The accrued artefacts are often predominantly due to a non-isotropic illumination of the medium of

interest, and prohibit accurate interferometric imaging. Recently, it has been shown that

illumination-related artefacts can be removed by means of a so-called multidimensional deconvolu-

tion (MDD) process. However, the current MDD formulation, and hence method, relies on separa-

tion of waves traveling inward and outward through the boundary of the medium of interest. As a

consequence, it is predominantly useful when receivers are illuminated from one side only. This

puts constraints on the applicability of the current MDD formulation to omnidirectional wavefields.

In this paper, a modified formulation of the theory underlying interferometry by MDD is presented.

This modified formulation eliminates the requirement to separate inward and outward propagating

wavefields and, consequently, holds promise for the application of MDD to non-isotropic, omnidi-

rectional wavefields. VC 2017 Acoustical Society of America. https://doi.org/10.1121/1.5007833
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I. INTRODUCTION

It has been shown that the Green’s function of a medium

can be retrieved by simple crosscorrelation of existing record-

ings. In its simplest form, this can be achieved using wave-

field observations by only two receivers: the crosscorrelation

process turns one of these receivers into a so-called “virtual

source,” whose response is retrieved by the other receiver.1–4

The existing recordings may be due to passive (noise) sources

or active sources. Applied to passive wavefields, averaging

crosscorrelations over sufficiently long periods of time suffi-

ces to retrieve (an estimate of) the medium’s Green’s func-

tion.5–9 In case of controlled sources, the crosscorrelation

process involves an additional summation over the available

controlled-source positions.10,11 Over the last decade, numer-

ous applications have emerged that rely on the explicit rela-

tion between the crosscorrelation and the medium’s Green’s

function.9,12,13 Obtaining the virtual-source response by

means of simple crosscorrelations will be referred to as

“interferometry by crosscorrelation” in this paper.

Only under specific conditions can responses obtained

through interferometry by crosscorrelation be related to the

medium’s Green’s function. First, in the absence of sources

inside the medium of interest, this medium is required to be

lossless. Second, the medium needs to be illuminated with

equal power from all directions.4 Often these conditions are

not fulfilled, and, at best, an estimate of the medium’s

Green’s function is retrieved.11,14,15 The specific conditions

associated with interferometry by crosscorrelation can be

explained by the fact that the underlying theory stems from a

correlation-type Green’s function representation.4 Starting

from a convolution-type Green’s function representation,

however, the theory underlying interferometry by crosscorre-

lation can be reformulated in terms of a multidimensional

deconvolution (MDD) process. Interferometry by MDD

relaxes the conditions inherent to interferometry by crosscor-

relation.16,17 Most notably, MDD acknowledges the three-

dimensional nature of the wavefield by means of a so-called

point-spread function (PSF).18 This PSF captures irregulari-

ties in the illumination pattern. Multidimensionally decon-

volving the responses obtained through interferometry by

crosscorrelation by the PSF corrects for non-uniformities in

the illumination pattern. That is, MDD has the ability to

remove artefacts from those responses.

The less severe requirements of MDD regarding

medium properties and illumination pattern trade off with

greater requirements concerning receiver geometry: whereas

a single pair of receivers suffices to estimate the medium

Green’s function by means of simple crosscorrelation, MDD

of this estimate by the PSF requires the virtual source to be

part of a “contour” of receivers.16 This contour can be inter-

preted as an artificial boundary of the medium that one wants

to image, and which does not necessarily coincide with a

physical boundary. The PSF is constructed from the
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wavefield observations by the receivers along this boundary.

Additionally, inward and outward propagating waves need

to be separated along this boundary: only waves propagating

into the medium that one wants to image should be consid-

ered. The latter requirement is a direct consequence of the

simplification of the integrand of the convolution-type

Green’s function representation, which is inherent in the der-

ivation of the conventional MDD formulation. This simplifi-

cation follows from the assumption that the medium outside

the region of interest (the region of interest being the

medium whose Green’s function one wants to retrieve) is

homogeneous. In other words, absorbing boundary condi-

tions apply on the boundary along which the PSF is com-

puted. In this work we show that, alternatively, reflecting

boundary conditions can be assumed along (part of) this

boundary. This assumption renders the separation of inward

and outward propagating waves unnecessary. The retrieved

responses, however, contain artificial “reflections” from the

boundary closing the medium of interest.

In the following, we first briefly review the conventional

simplification of the convolution-type Green’s function rep-

resentation, i.e., the simplification in which absorbing

boundaries are assumed. We then derive the alternative

MDD formulation assuming reflecting boundary conditions.

Using a simple setup, we demonstrate the implications of the

reflecting boundary conditions. Subsequently, using a more

realistic setup and model, we showcase the advantage of

the alternative boundary conditions for the retrieval of

virtual-source responses from ambient seismic (surface-

wave) noise recorded by ocean-bottom cables. In particular,

we show how the modified MDD formulation improves the

accuracy of the responses obtained through interferometry

by crosscorrelation. Finally, we discuss the results and

draw conclusions.

II. CONVOLUTION-TYPE GREEN’S FUNCTION
REPRESENTATION

Let us consider the configuration shown in Fig. 1; a

volume V is enclosed by a surface S with outward pointing

normal vector n ¼ ðn1; n2; n3Þ. We define a reference

Green’s function �GðxR; x; tÞ, which gives the pressure at xR

due to an impulsive point source of the rate of change of

volume injection rate at x.19 Similar to �GðxR; x; tÞ, we

define a Green’s function Gðx; xS; tÞ, which gives the pres-

sure at x due to an impulsive point source of the rate of

change of volume injection rate at xS. Moreover, we pre-

scribe xS to be situated outside S, whereas we choose xR

inside S. Importantly, the reference Green’s function
�GðxR; x; tÞ is associated with a reference medium and/or

boundary conditions (hence the bar), whereas Gðx; xS; tÞ is

associated with the actual medium. Considering addition-

ally the Green’s function GðxR; xS; tÞ in the actual medium,

and assuming identical medium parameters for �GðxR; x; tÞ;
Gðx; xS; tÞ and GðxR; xS; tÞ inside S, but a different refer-

ence medium outside of S, a convolution-type representa-

tion for the Green’s function can be derived,16

G xR; xS; tð Þ ¼
þ

S

1

q xð Þ
�G xR; x; tð Þ � rG x; xS; tð Þ
�

� G x; xS; tð Þ � r �G xR; x; tð ÞÞ � n dx: (1)

The spatial derivatives are computed on S, i.e., at x, and

the in-line asterisk * denotes temporal convolution; mass

density is denoted by q. Note that ½�1=qðxÞ�rGðx; xS; tÞ � n
represents the particle acceleration at x perpendicular to S

due to a monopole source at xS (its time antiderivative hence

represents particle velocity perpendicular to S). Instead,

½�1=qðxÞ�r �GðxR; x; tÞ � n represents the pressure at xR due

to a dipole source at x.4 The medium in V can be arbitrarily

heterogeneous, and Eq. (1) holds for media with losses.

While Gðx; xS; tÞ and GðxR; xS; tÞ are related to the observed

wavefield, the reference Green’s function �GðxR; x; tÞ is not.

This allows us to choose convenient boundary conditions for
�GðxR; x; tÞ at S.

III. ABSORBING BOUNDARY CONDITIONS

The integrand in Eq. (1) can be simplified assuming

absorbing boundary conditions along S for �GðxR; x; tÞ. This

implies that its reciprocal �Gðx; xR; tÞ is outward propagating

at x on S. Furthermore, Gðx; xS; tÞ can be written as a super-

position of inward and outward propagating wavefields at x

on S. Using pseudo-differential operator theory,20 it can then

be shown that the two terms of the integrand in Eq. (1) can-

cel each other for outward propagating signal of Gðx; xS; tÞ,
whereas they coincide in case inward propagating signal of

Gðx; xS; tÞ is considered. Assuming S to be sufficiently

smooth and q constant along S, Eq. (1) therefore simplifies

to17

GðxR; xS; tÞ ¼ 2

ð
Srec

�GdðxR; x; tÞ � GðinÞðx; xS; tÞ dx: (2)

FIG. 1. Configuration for the convolution-type Green’s function representa-

tion [Eq. (1)]. The rays associated with Gðx; xS; tÞ and GðxR; xS; tÞ represent

full responses, including scattered arrivals due to inhomogeneities inside as

well as outside S. The reference Green’s function �GðxR; x; tÞ represents the

full response of the medium in V plus possible additional effects associated

with the choice of the boundary conditions at S and/or different medium

parameters outside S.

J. Acoust. Soc. Am. 142 (4), October 2017 Weemstra et al. 2243



The subscript d denotes that �Gd is a dipole Green’s func-

tion: �GdðxR; x; tÞ � ½�1=q�r �GðxR; x; tÞ � n. We have replaced

S with Srec, which comprises that part of S on which

GðinÞðx; xS; tÞ 6¼ 0 (and able to be separated from

GðoutÞðx; xS; tÞ): Sommerfeld’s radiation condition applies over

the half sphere S0 that closes S. The integral along S0 there-

fore evaluates to zero. This also complies with many practical

situations in which the integration surface is limited to an open

receiver boundary because the wavefield is simply not

recorded along a closed boundary.21 Figure 2 exemplifies the

configuration with an open receiver boundary Srec.

To comply with practice, the Green’s functions related

to the observed wavefield are convolved with a (transient)

source time function sðxS; tÞ, yielding

pðxR; xS; tÞ ¼ 2

ð
Srec

�GdðxR; x; tÞ � pðinÞðx; xS; tÞ dx; (3)

where pðxR; xS; tÞ � GðxR; xS; tÞ � sðxS; tÞ and pðinÞðx; xS; tÞ
� GðinÞðx; xS; tÞ � sðxS; tÞ. Note that, instead of a point source,

the source at xS may also be an extended source. In that case,

pðxR; xS; tÞ and pðinÞðx; xS; tÞ represent the responses at xR

and x, respectively, integrated over the extended source.

Similarly, the source at xS may also be of a different type. For

example, Eq. (3) also holds in case at xS a spatial differential

operator is applied to pðxR; xS; tÞ and pðinÞðx; xS; tÞ.
In case a multitude of sources exist (on the appropriate

side of Srec), Eq. (3) holds for each of these sources individu-

ally, effectively yielding a set of equations. Retrieval of
�GdðxR; x; tÞ by solving this set of equations for �GdðxR; x; tÞ
in a least-squares sense is referred to as MDD.16 We account

for the presence of a multitude of sources by denoting the

source position of source number k by x
ðkÞ
S . Equation (3)

implies that

pðxR; x
ðkÞ
S ; tÞ ¼ 2

ð
Srec

�GdðxR; x; tÞ � pðinÞðx; xðkÞS ; tÞ dx;

(4)

for all k. Introducing the auxiliary location variable x0 along

Srec (Fig. 2), the normal equation is obtained by crosscorre-

lating both sides of Eq. (4) with pðinÞðx0; xðkÞS ; tÞ and taking

the sum over all sources.22 The normal equation hence reads

CðxR; x
0; tÞ ¼ 2

ð
Srec

�GdðxR; x; tÞ � Cðx; x0; tÞ dx; (5)

where

CðxR; x
0; tÞ �

X
k

pðxR; x
ðkÞ
S ; tÞ � pðinÞðx0; xðkÞS ;�tÞ (6)

and

Cðx; x0; tÞ �
X

k

pðinÞðx; xðkÞS ; tÞ � pðinÞðx0; xðkÞS ;�tÞ: (7)

Equation (5) shows how the crosscorrelation function

CðxR; x
0; tÞ (CCF) is proportional to the sought-for dipole

Green’s function �GdðxR; x; tÞ, smeared in space and time by

Cðx; x0; tÞ, which is referred to as the PSF. If the sources do

not illuminate Srec uniformly, the distortion of CðxR; x
0; tÞ

with respect to �Gd is quantified by the PSF. MDD involves

deconvolving the CCF by the PSF. In practice, this requires

discretization of the integral along Srec. For a single fre-

quency, Eq. (5) can then be written in matrix notation as17

Ĉ ¼ 2 �̂GdĈ; (8)

where the rows and columns of Ĉ correspond to different xR

and x0, respectively; �̂Gd and Ĉ are organized accordingly.

The hat indicates that the matrices are defined in the fre-

quency domain. Equation (8) is solved for each discrete fre-

quency individually. Right multiplying Eq. (8) by the

stabilized inverse of Ĉ gives

�̂Gd ¼
1

2
Ĉ Ĉ þ �2I
� ��1

; (9)

where I denotes the identity matrix and � is a small number.

Details regarding the inversion can be found in earlier

work.18 Successful inversion for �GdðxR; x; tÞ has been

reported using crosswell seismic reflection data,23 reflection

data in an arctic environment,24 and ambient seismic

surface-wave data.21,25

There are settings in which the medium of interest, i.e.,

V, is surrounded by sources and/or scatterers. The signals

originating from these sources and/or scatterers may not have

coinciding source time functions. Moreover, their spatial dis-

tribution may not be uniform. The irregularity of the resulting

illumination pattern implies that the CCF does not accurately

estimate the medium’s Green’s function between x0 and

xR.14,15,26 At the same time, the (non-uniform) omnidirec-

tional illumination pattern implies that waves traverse the

boundary surrounding V in both directions, which renders

wavefield separation along S necessary for application of

the MDD scheme described above. Separation of inward

and outward propagating waves, however, is not always

straightforward and/or possible. In Sec. IV we show that,
FIG. 2. Configuration associated with absorbing boundary conditions. The

meaning of different the symbols is given in Fig. 1.
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for such cases, it may be more appropriate to assume reflect-

ing boundary conditions along S in the reference medium.

IV. REFLECTING BOUNDARY CONDITIONS

Recall that the convolution-type representation for the

Green’s function between xS and xR [i.e., Eq. (1)] relies on

Green’s functions that are not necessarily associated with the

same medium. The Gðx; xS; tÞ are associated with the actual

medium (and hence the observed wavefield), but the
�GðxR; x; tÞ are associated with a medium that possibly has

different boundary conditions at S and/or different medium

parameters outside S. (In V, however, the medium parame-

ters are the same for both Green’s functions.) An alternative

simplification of the integrand in Eq. (1) can therefore be

obtained by assuming a reflecting boundary in the reference

medium. Two types of reflecting boundary conditions can be

considered: (i) zero pressure along Srec, i.e., �Gðx; xR; tÞ ¼ 0,

or (ii) zero particle acceleration perpendicular to Srec, i.e.,

r �Gðx; xR; tÞ � n ¼ 0. By invoking source-receiver reciproc-

ity, which implies that �GðxR; x; tÞ ¼ �Gðx; xR; tÞ and

r �GðxR; x; tÞ ¼ r �Gðx; xR; tÞ, the integrand in Eq. (1) can

subsequently be simplified. In the next two sections we con-

sider the two types of reflecting boundary conditions sepa-

rately. In both cases, however, the application of MDD may

result in the retrieval of reflections from the boundary of

receivers. In Sec. IV C, we highlight the potential of the

alternative simplification for the purpose of retrieving

virtual-source surface-wave responses from recordings of

ambient seismic (surface-wave) noise.

A. Zero pressure along Srec

Let us assume that the pressure vanishes along Srec, i.e.,
�Gðx; xR; tÞ ¼ 0 along Srec; note that this means that also the

particle acceleration tangent to Srec vanishes.27 By invoking

source-receiver reciprocity ( �GðxR; x; tÞ ¼ �Gðx; xR; tÞ) and

assuming again the density to be constant along Srec, Eq. (1)

can then be simplified to

GðxR; xS; tÞ ¼
ð

Srec

�GdðxR; x; tÞ � Gðx; xS; tÞ dx: (10)

This equation is similar to Eq. (2), but has two notable differ-

ences. First, instead of the inward propagating wavefield on

Srec, the full wavefield is considered. Second, the right-hand

side of Eq. (10) lacks a factor two. Physically, the absence of

this factor can be explained by the reflecting nature of Srec:

the arrivals in �GdðxR; x; tÞ that are not associated with reflec-

tions from Srec have simply twice the amplitude of the same

arrivals in �GdðxR; x; tÞ in Eq. (2). Again, Srec only needs to be

comprised of those parts of S through which wavefields are

propagating into V. It suffices to evaluate the integral over x

along these parts, because Sommerfeld’s radiation condition

applies along the remaining parts. Whether Srec is in practice

a closed or an open receiver boundary therefore depends on

the illumination pattern. Figure 3 shows an example of a con-

figuration for which reflecting boundaries in the reference

medium are a convenient choice.

Just as in Sec. III, we consider a source with a source

time function sðxS; tÞ. Using this, Eq. (10) can be written as

pðxR; xS; tÞ ¼
ð

Srec

�GdðxR; x; tÞ � pðx; xS; tÞ dx; (11)

where pðx; xS; tÞ � Gðx; xS; tÞ � sðxS; tÞ. Assuming many

sources exist outside of Srec (possibly with different source

time functions, source types, and source extents), the normal

equation is obtained in a similar way as in Sec. III. That is,

we crosscorrelate both sides with the pðx0; xðkÞS ; tÞ (pressure

of full wavefield at x0 due to source number k at source posi-

tion x
ðkÞ
S ),

CðxR; x
0; tÞ ¼

ð
Srec

�GdðxR; x; tÞ � Cðx; x0; tÞ dx; (12)

where

CðxR; x
0; tÞ �

X
k

pðxR; x
ðkÞ
S ; tÞ � pðx0; xðkÞS ;�tÞ (13)

and

Cðx; x0; tÞ �
X

k

pðx; xðkÞS ; tÞ � pðx0; xðkÞS ;�tÞ: (14)

The expression in Eq. (12) is seemingly similar to the

expression in Eq. (5). Both expressions show a CCF that is

proportional to a dipole Green’s function smeared in space

and time by a PSF. Also, in both cases Srec only needs to be

comprised of those parts of S through which waves are prop-

agating into V. Nevertheless, notable differences exist

between the two relations. First, this involves the nature of

FIG. 3. Configuration associated with reflecting boundary conditions where

the pressure is prescribed to be zero along Srec in the reference medium. The

retrieved Green’s function �Gd includes “reflections” from the receiver

boundary (note that not all reflections are drawn here). The meaning of the

different symbols is given in Fig. 1.
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the dipole Green’s function. The dipole Green’s function in

Eq. (5) gives the pressure at xR due to a virtual source some-

where on Srec for a medium that coincides with the actual

medium inside V, but that is homogeneous on and outside of

Srec. The dipole Green’s function in Eq. (12), however, is

associated with a medium that coincides with the actual

medium inside V, but where Srec acts as a free surface.
�GdðxR; x; tÞ in Eq. (12) therefore contains arrivals due to the

“virtual reflector(s)” along Srec. Second, the CCF and the

PSF are computed from different wavefields. In case absorb-

ing boundary conditions are assumed, only waves that propa-

gate into V should be used to compute the CCF and PSF

[according to Eqs. (6) and (7), respectively]. To the contrary,

Eq. (12) also allows outward propagating wavefields to be

included in the computation [manifested by Eqs. (13) and

(14)]. As a consequence, solving Eq. (12) for �GdðxR; x; tÞ
does not rely on wavefield separation.

In practice, the multiple (non-uniformly distributed)

sources may act simultaneously. We comply with this more

general case by considering the total responses instead of the

individual source responses. In this case, Eq. (11) becomes

pðxR; tÞ ¼
ð

Srec

�GdðxR; x; tÞ � pðx; tÞ dx; (15)

where the pressure at xR and x is given by

pðxR; tÞ �
X

k

GðxR; x
ðkÞ
S ; tÞ � sðxðkÞS ; tÞ (16)

and

pðx; tÞ �
X

k

Gðx; xðkÞS ; tÞ � sðxðkÞS ; tÞ; (17)

respectively.

Using Eqs. (16) and (17), the CCF and PSF can be

defined as17

CðxR; x
0; tÞ � h pðxR; tÞ � pðx0;�tÞ i (18)

and

Cðx; x0; tÞ � h pðx; tÞ � pðx0;�tÞ i; (19)

respectively, where h�i denotes the ensemble average.

Clearly, Eq. (12) still holds for these definitions of the CCF

and PSF. Note that for the special case of mutually fully

uncorrelated (noise) sources, Eqs. (18) and (19) reduce

to Eqs. (13) and (14), respectively. This is because in this

case hsðxðjÞS ; tÞ � sðxðkÞS ;�tÞi ¼ SðxðkÞS ; tÞdjk, where djk is the

Kronecker delta and SðxðkÞS ; tÞ � sðxðkÞS ; tÞ � sðxðkÞS ;�tÞ. In

application to ambient seismic/acoustic noise, ensemble

averaging is in practice often replaced by time averaging.9,28

Furthermore, temporal normalization and/or spectral whiten-

ing may need to be applied to mitigate the adverse effects

arising from the lack of stationarity of the recorded noise

field.29,30

Inversion of Eq. (12) is similar to the inversion of Eq.

(5): �GdðxR; x; tÞ is retrieved through Eq. (9), but without the

factor 1=2 at the right-hand side and with the CCF and PSF

computed according either to Eqs. (13) and (14), or to Eqs.

(18) and (19), respectively. In the latter case, the degree of

correlatedness of the (noise) sources determines the stability

of the inversion for �GdðxR; x; tÞ.31 Sources that are mutually

not fully uncorrelated, may lead to difficulties in the

inversion.

It should be understood that although the expression in

Eq. (11) is completely general, the application of MDD to

retrieve �GdðxR; x; tÞ relies on waves propagating into V to

generate the reflections. That is to say, in case a virtual

reflector is not illuminated from outside V, inversion of Ĉ
will not be feasible. We demonstrate this in the Appendix by

synthesizing the PSF for a simple one-dimensional configu-

ration. Finally, we note that for receiver configurations for

which reflecting boundaries are a convenient choice, the

assumption of a constant density along Srec may well not be

very realistic. In that case, the retrieved dipole Green’s func-

tion is simply scaled differently for different virtual-source

positions, i.e., �GdðxR; x; tÞ � ½�1=qðxÞ�r �GðxR; x; tÞ � n.

We demonstrate the modified MDD scheme for the two-

dimensional configuration depicted in Fig. 4. The medium

considered here is a homogeneous, acoustic half-space

below a free surface. The medium of interest, i.e., V, is

located between two vertical receiver arrays, and is illumi-

nated by two vertical source arrays along which sources are

regularly placed. Note that this model merely serves as a

proof of concept; in Sec. IV C, we consider a more realistic

illumination pattern and medium. Together, the two receiver

arrays comprise Srec, implying that the pressure is prescribed

to be zero in the reference medium. Consequently, Eq. (11)

applies along these two lines. Furthermore, the line x3 ¼ 0 m

acts as a free surface in both the actual and the reference

medium. Since, by definition, the acoustic pressure vanishes

at the free surface, the integrand in Eq. (1) is zero along this

line [i.e., both �GðxR; x; tÞ, which coincides with �Gðx; xR; tÞ
because of source-receiver reciprocity, and Gðx; xS; tÞ are

zero along x3 ¼ 0 m].

The absence of sources at x3 > 2400 m ensures that no

waves propagate upward through the boundary x3 ¼ 2400 m

into V. However, the absence of receivers along x3 ¼ 2400

m implies that we consider a medium V that is not entirely

enclosed by Srec. Moreover, the fact that the two vertical

receiver arrays do not extend beyond x3 > 2400 m (i.e., they

have a finite aperture) implies that the integral in Eq. (10)

does not represent GðxR; xS; tÞ entirely accurately for the

configuration in Fig. 4. This stems from the fact that

GðxR; xS; tÞ is not accurately represented by the integral in

Eq. (1) in this case. Only when the receiver boundaries were

to extend down to infinity would the convolution-type repre-

sentation be exact.32 However, since application of MDD

relies on illumination by a multitude of sources, we expect

the artefacts resulting from the truncation of the receiver

boundary to be relatively minor. This is because, for a spe-

cific arrival in a specific GðxR; xS; tÞ associated with a spe-

cific source, a specific point xst exists along Srec for which

the phase of the integrand in Eq. (10) [or Eq. (2) in case of

absorbing boundary conditions and single-sided illumina-

tion] is stationary. In addition, because a multitude of
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sources exist outside of V, the arrival in �GdðxR; xst; tÞ associ-

ated with this specific arrival in GðxR; xS; tÞ may additionally

be associated with a second arrival in a second Green’s func-

tion between a second source and xR, but for which the inte-

grand has the same stationary point. In the MDD process,

both sources will contribute to the retrieval of �GdðxR; xst; tÞ.
As long as the stationary point does not coincide with the

point at which Srec is truncated, however, the phase of the

integrand will be different for the two different sources at

the truncation point. It is therefore that we expect the multi-

dimensional inversion to mitigate the effect of the truncation

of the receiver boundary. A detailed analysis, however, is

beyond the scope and purpose of this work.

Each source in our model emits a Ricker wavelet with a

central frequency of 10 Hz and unit maximum amplitude.

For impulsive point sources of the rate of change of volume

injection rate and a time dependence eixt (x denotes angular

frequency), the direct arrival in the frequency-domain

Green’s function, denoted by Ĝ
ð0Þ

, is simply given by a

zeroth order Hankel function of the second kind, i.e.,

Ĝ
ð0ÞðxA; xB;xÞ ¼ ð�iq=4ÞHð2Þ0 ðxjxA � xBj=cÞ for any xA

and xB [two-dimensional solution to Eq. (20) in Wapenaar

and Fokkema4]. Of course, the full Green’s functions

GðxR; xS; tÞ and Gðx; xS; tÞ contain an additional reflection

from the free surface. The velocity c ¼
ffiffiffiffiffiffiffiffiffi
K=q

p
is based on

the bulk modulus and density of water, i.e., K ¼ 2:2� 109

Pa and q¼ 1000 kg/m3, respectively.

Figure 5 compares the virtual-source response obtained

through interferometry by crosscorrelation to the virtual-

source response obtained through the application of the

MDD formulation derived in this section. The peaks at nega-

tive time disappear through the inversion, whereas additional

peaks appear at positive time because of the reflecting nature

of Srec [Fig. 5(a)]. Because the regularly placed sources

result in a (close to) uniform illumination pattern, the CCF

and the direct arrival of the dipole Green’s function arrive at

the same time (arrival 1). The virtual-source response

obtained through the application of interferometry by MDD

has a higher frequency content than the response obtained

through MDD. In part, this can be explained by the fact that

interferometry by crosscorrelation results in retrieval of a

virtual-source response which, in the frequency-domain, is

divided by x [see Eq. (32) in Wapenaar and Fokkema4]. In

contrast, the dipole character of the virtual-source response

retrieved through MDD implies a multiplication by x in that

domain. Furthermore, we observe that the amplitude of the

FIG. 4. (Color online) Model setup for MDD assuming a reflecting boundary in the reference medium along the two vertical receiver arrays at x1 ¼ 1200 m

and x1 ¼ 3200 m. The receiver separation is 25 m and they extend down to 2400 m depth (the scales along the x1 and x3 axes coincide). Two vertical source

arrays, located at x1 ¼ 400 m and x1 ¼ 4000 m, respectively, are placed outside of the medium of interest. The interval and maximum depth of the source

arrays coincide with the interval and maximum depth of the receiver arrays. For display purposes, only every fourth source and receiver is depicted. The

receiver acting as a virtual source is shown in red. The virtual-source response is retrieved at the location of the green receiver. The numbered trajectories indi-

cate the paths associated with the different arrivals in Fig. 5.

FIG. 5. (Color online) Comparison of interferometry by crosscorrelation

with MDD assuming reflecting boundary conditions. In (a), the responses

retrieved using interferometry by crosscorrelation (red line) and MDD

(green line) are compared; (b) shows the retrieved dipole Green’s function

over a longer time range. The numbers of the different arrivals in a corre-

spond to the paths depicted in Fig. 4. For comparison, the retrieved dipole

Green’s function is convolved with the autocorrelation of the sources.

Amplitudes are normalized.
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free-surface reflection of the MDD response (arrival 2) is

lower than the amplitude of the free-surface reflection in the

CCF. This can be explained by the inner product with the

normal to the receiver boundary implicit in �Gd.

Arrivals 3 and 4 are the direct result of the alternative

MDD formulation. These arrivals are due to reflections from

the receiver boundary at x1 ¼ 3200 m (note the opposite

polarity of arrival 3 compared to arrival 1). In addition to

these two arrivals, other arrivals exist. For example, consider

the arrival associated with the wave emitted by the virtual

source, reflected from the receiver boundary at x1 ¼ 3200 m,

the free surface, and the receiver boundary at x1 ¼ 1200 m,

respectively, and finally retrieved by the receiver at xR.

These later arrivals, however, have arrival times that approx-

imately coincide with the horizontally traveling reverbera-

tions and hence cannot be distinguished [Fig. 5(b)]. It is

clear from Fig. 5(b) that the reflecting boundary condition

causes the signal to reverberate within V. By muting the

(virtual) reverberations of the response, one could extract the

(improved) MDD response. For more complex media, how-

ever, this may not be trivial. Finally, we note that the trunca-

tion at x3 ¼ 2400 m of the source array along x1 ¼ 400 m

gives rise to spurious arrivals around t¼ 0.45 s (denoted by

T1) and t¼ 0.65 s (denoted by T2); spurious arrival T1 is

associated with the free surface reflection of the truncation

arrival. We observe that MDD mostly corrects for the trunca-

tion effect, but cannot completely undo it. We also observe

that the truncation arrivals reverberate in the reference

medium.

B. Zero particle acceleration perpendicular to Srec

Let us now assume that r �Gðx; xR; tÞ � n ¼ 0 along Srec.

This assumption implies that the particle acceleration per-

pendicular to Srec vanishes. By invoking the reciprocity rela-

tion r �GðxR; x; tÞ ¼ r �Gðx; xR; tÞ, where in both cases the

spatial derivative is computed on S (i.e., at x), we find that

Eq. (1) reduces to

G xR; xS; tð Þ ¼
ð

Srec

1

q xð Þ
�G xR; x; tð Þ � rG x; xS; tð Þ � n dx:

(20)

In this case, the wavefield at Srec is propagated to xR through

V by the propagator �GðxR; x; tÞ. By introducing the Green’s

functions for particle acceleration4

G að Þ xR; xS; tð Þ �
�1

q xRð Þ
rG xR; xS; tð Þ; (21)

�G
að Þ

xR; x; tð Þ �
�1

q xRð Þ
r �G xR; x; tð Þ; (22)

and

G að Þ x; xS; tð Þ �
�1

q xð Þ rG x; xS; tð Þ; (23)

we adhere to the case where particle acceleration is the mea-

sured wavefield quantity. Using these Green’s functions,

multiplication of both sides of Eq. (20) with ½1=qðxRÞ�rR

(where the subscript R denotes explicitly that the spatial

derivative is computed at xR) gives

GðaÞðxR; xS; tÞ ¼ �
ð

Srec

�G
ðaÞðxR; x; tÞ

� GðaÞðx; xS; tÞ � n
h i

dx: (24)

Consider again a multitude of sources illuminating V,

each with a different location xðkÞ and source time function

sðxðkÞS ; tÞ. By convolving both sides of Eq. (24) with sðxðkÞS ; tÞ,
we obtain for each of these sources

aðxR; x
ðkÞ
S ; tÞ ¼ �

ð
Srec

�G
ðaÞðxR; x; tÞ � aðx; xðkÞS ; tÞ � n

h i
dx;

(25)

where aðxR;x
ðkÞ
S ;tÞ�GðaÞðxR;x

ðkÞ
S ;tÞ�sðxðkÞS ;tÞ and aðx;xðkÞS ; tÞ

�GðaÞðx;xðkÞS ; tÞ�sðxðkÞS ; tÞ. Just as for Eqs. (3) and (11), the

source at x
ðkÞ
S may also be an extended source (and/or of a dif-

ferent type). In that case, aðxR;x
ðkÞ
S ; tÞ and aðx;xðkÞS ;tÞ repre-

sent the responses at xR and x, respectively, integrated over

the extended source (and/or due to the different source type).

Retrieval of �G
ðaÞðxR; x; tÞ involves the application of

MDD. Once again, this is achieved by solving the set of equa-

tions associated with the multitude of sources in a least-

squares sense. In this case, the normal equation is obtained by

crosscorrelating both sides with ½aðx0; xðkÞS ; tÞ � n� (inner prod-

uct between normal vector and particle acceleration of the full

wavefield at x0 due to source number k at source position x
ðkÞ
S ),

CðxR; x
0; tÞ ¼

ð
Srec

�G
ðaÞðxR; x; tÞ � Cðx; x0; tÞ dx; (26)

where

CðxR; x
0; tÞ �

X
k

aðxR; x
ðkÞ
S ; tÞ � aðx0; xðkÞS ;�tÞ � n

h i

(27)

and

Cðx; x0; tÞ �
X

k

aðx; xðkÞS ; tÞ � n
h i

� aðx0; xðkÞS ;�tÞ � n
h i

:

(28)

Equation (26) shows that CCF is proportional to
�G
ðaÞðxR; x; tÞ smeared in space and time by Cðx; x0; tÞ. Note

that this PSF is the same for each of the three components

x1, x2, and x3. Just as in Sec. IV A, successful application of

MDD relies on (non-isotropic) wavefields propagating into

as well as out of V through Srec.

C. Potential for the retrieval of ambient seismic noise
surface-wave responses

Settings exist in which sources and/or scatterers sur-

round the medium of interest, but illuminate it with varying
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intensity. The non-uniform illumination precludes accurate

Green’s function estimation by the CCF, whereas, at the

same time, its omnidirectional nature requires separation of

inward and outward propagating waves to allow application

of conventional (absorbing boundary) MDD. For such wave-

fields, the MDD formulation resulting from the reflecting

boundary conditions is of particular interest. A notable

example is the ambient seismic (surface-wave) wavefield,

which, over the past decade, has been exploited in numerous

studies.6,21,28,33,34 In this section, we showcase the advantage

of the alternative boundary conditions for the application of

MDD to ambient seismic noise recorded by ocean-bottom

cables. Their aperture and dense spatial sampling35,36 make

these deployments particularly well suited for the application

of MDD.

In case of seismic waves, the formulation underlying

MDD results from a simplification of the elastodynamic

convolution-type representation theorem for the Green’s func-

tion between xS and xR.21,37 Just as the acoustic convolution-

type representation theorem [i.e., Eq. (1)], the elastodynamic

representation theorem can be simplified assuming absorbing

or reflecting boundary conditions. The ambient seismic field

at the Earth’s surface, however, is often dominated by single-

mode (dispersive) surface waves.28,38 In addition, along the

surface of a laterally homogeneous and isotropic earth, the

behavior of this type of waves is very similar to scalar body

waves in a two-dimensional homogeneous lossy medium, but

with c ¼ cðxÞ.39 That is, the frequency-domain Green’s func-

tion describing the particle velocity at the surface of such an

earth is proportional to the zeroth-order Hankel function

described in Sec. IV A.40

The configuration of the receiver array, as well as the

location and relative strength of the modeled sources, is

shown in Fig. 6. The closed receiver boundary has an east–

FIG. 6. (Color online) Configuration for the simulation of single-mode surface waves. Only every fifth boundary receiver is depicted (the location of every

20th source is explicitly indicated). The responses from these boundary receivers (i.e., the virtual sources) are retrieved at the location of the green receiver

(xR). Sources are irregularly distributed around the receiver array and vary in amplitude (the diameter of a circle circumscribing a star scales linearly with that

source’s amplitude). The amplitude as a function of frequency is presented in Fig. 7 (top). A single isotropic point scatterer (black dot) is located 1500 m east

and 200 m north of xR.

FIG. 7. The frequency-dependent amplitude (top) and phase velocity (bot-

tom) used to simulate the single-mode surface-wave wavefield associated

with the configuration in Fig. 6.
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west and north–south extent of 10 and 5 km, respectively.

This resembles the aperture of contemporary ocean-bottom

deployments.33,35 The receiver boundary is illuminated by

500 randomly placed sources, whose spatial placement is

governed by a non-uniform probability distribution; for

example, more sources are (expected to be) placed west of

the receiver boundary than south. In accordance with the the-

ory of Sec. IV A, no sources are prescribed inside the

receiver boundary. Furthermore, the sources vary in ampli-

tude: the function describing a source’s amplitude as a func-

tion of frequency (Fig. 7; top) is scaled by a factor that

varies per source. The homogeneous medium has been per-

turbed by a single isotropic point scatterer.41 The strength of

this point scatterer, which is capped by the optical theorem,

has been given the maximum amplitude possible in two

dimensions, i.e., its scattering amplitude is given by �4i.26

In the frequency domain, the Green’s function describ-

ing the vertical particle-velocity associated with a single-

mode surface wave propagating along the surface of a

laterally homogeneous and isotropic earth behaves accord-

ing to25,40

ĜðxR; xS;xÞ / H
ð2Þ
0 ðkjxR � xSjÞ; (29)

where k is the wavenumber, and xS and xR are the source

and receiver location, respectively. We assume a dissipative

medium, which implies that k is complex-valued with its

real and imaginary part coinciding with x=cðxÞ and �a,

respectively, i.e., k ¼ x=cðxÞ � iaðxÞ. Here, cðxÞ and aðxÞ
denote the (frequency dependent) phase velocity and attenu-

ation coefficient, respectively. Because we assume the

medium to be only slightly dissipative (a is small in the

sense that a� x=c), the complex wavenumber can be

approximated by ðx=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2iac=xÞ

p
. 26 The Hankel func-

tion may in that case be approximated by H
ð2Þ
0 ðxjxR � xSj=

cðxÞÞe�ajxR�xSj.39 We mimic surface-wave dispersion (an

increase of phase velocity with depth) by letting the phase-

FIG. 8. (Color online) Responses of virtual sources 1–150 retrieved at xR; only every fifth virtual-source response is shown. Responses retrieved through inter-

ferometry by crosscorrelation are depicted in red, whereas responses retrieved through MDD are depicted in green. In both cases, the retrieved responses are

plotted on top of the directly modeled responses (dashed black line). The latter responses are modeled in the actual medium, and hence do not contain virtual

reflections from the rectangular receiver boundary. For comparison, these directly modeled responses are also depicted individually in the leftmost (interferom-

etry by crosscorrelation) and rightmost (MDD) panels. Note that these differ because of the dipole character of the retrieved MDD responses (inner product

with the receiver boundary). The retrieved and directly modeled dipole Green’s functions are convolved with the autocorrelation of the sources for compari-

son. The values on the vertical axis refer to the boundary receiver numbers (Fig. 6); the corners of the boundary are indicated for reference. The dashed boxes

indicate the traces shown in Fig. 11.
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velocity cðxÞ decrease with increasing angular frequency

according to Fig. 7 (bottom); the attenuation coefficient a is

set to a constant value of 7:5� 10�5 m�1 for all frequencies.

Note that both phase velocity and frequency-dependent

amplitude (Fig. 7) of the sources are modeled using reason-

able values for Scholte waves traveling along the sea bed.42

We first consider the noise sources (random phases in the

frequency domain) to act sequentially, which implies that the

CCF and PSF are computed by summing crosscorrelations

over source locations [i.e., as in Eqs. (13) and (14), respec-

tively]. Figures 8 and 9 present the virtual-source responses of

every fifth virtual source along the rectangular receiver array.

These responses are retrieved at xR. The responses retrieved

using interferometry by crosscorrelation and MDD, as well as

the directly modeled responses, are all normalized by the

maximum amplitude of the response of the 38th virtual

source, which is the boundary receiver that is closest to xR.

Relative amplitude differences between different virtual-

source responses are therefore maintained. Importantly, the

directly modeled responses are the responses associated with

the actual medium, instead of the reference medium. That is,

these responses do not contain virtual reflections associated

with the rectangular receiver boundary.

The responses retrieved through interferometry by

crosscorrelation (i.e., the CCF) contain significantly more

FIG. 9. (Color online) Same as Fig. 8, but for virtual source numbers 150–300 (northern and western receiver boundary in Fig. 6).

FIG. 10. (Color online) Responses of virtual source number 228. The vir-

tual source response retrieved through interferometry by crosscorrelation

is depicted at the bottom by the red solid line, whereas the response

retrieved through MDD is depicted at the top by the green solid line. In

both cases, the retrieved responses are plotted on top of the directly mod-

eled responses in the actual medium (dashed black line). Note that these

differ because of the dipole character of the retrieved MDD responses

(inner product with the receiver boundary). The retrieved and directly

modeled dipole Green’s functions are convolved with the autocorrelation

of the sources for comparison. Note the energy arriving at around 18 s in

the MDD response, which is virtually reflected from the opposite receiver

boundary.
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and stronger spurious arrivals. For example, significant spu-

rious energy is present for virtual-source numbers 223–268.

In contrast, responses obtained through the application of

MDD are practically free of spurious arrivals prior to the

direct arrival. Upon comparison of the responses of a single

virtual source (Fig. 10), this becomes particularly clear.

Additionally, the amplitudes of the responses retrieved

through the application of interferometry by crosscorrelation

exhibit a considerable misfit with respect to the amplitudes

of the directly modeled responses. This amplitude misfit dis-

appears after deconvolution of the CCF by the PSF. Note

that the amplitudes of the responses retrieved though inter-

ferometry by crosscorrelation and MDD differ differently for

different virtual sources because of the dipole character of

the MDD response. Both the amplitude corrections and the

suppression of spurious energy demonstrate how the applica-

tion of MDD removes the adverse effects of azimuthal and

spatial variations in the illumination pattern.

Apart from the direct surface-wave arrival, the virtual-

source responses contain an arrival scattered from the isotro-

pic point scatterer. Additionally, however, the virtual-source

responses retrieved through the application of MDD contain

many other arrivals trailing the direct surface wave. These

arrivals are due to the receiver boundary acting as a virtual

reflector and are well observable in Figs. 8 and 9. The virtual

reflection from the opposite receiver boundary is particularly

conspicuous in Fig. 10. In principle, the actual medium

response could be recovered by muting these virtual arrivals.

In practice, many strong heterogeneities in V, i.e., in the

actual medium, and/or crooked receiver boundaries may

complicate the separation in time of the actual medium

response and the arrivals associated with the reflecting

receiver boundaries. In Fig. 11, we compare the arrivals scat-

tered from the isotropic point scatterer. We observe that both

timing and amplitude of the MDD responses are more accu-

rate. The additional arrival around t¼ 15 s can be attributed

to the reflection from the receiver boundary of the isotropi-

cally scattered virtual-source signal.

Using the configuration in Fig. 6, we conduct a second

numerical experiment where we consider simultaneously

acting, mutually uncorrelated noise sources. Consequently,

each receiver’s recording is a superposition of the noise

originating from the 500 noise sources. A total of 576 noise

windows (or realizations) have been modeled, each with a

duration of 2.5 min. In total, this adds up to one day of

ambient seismic surface-wave noise. Figure 12 gives an

example of 2.5 min of noise recorded by the receiver at xR.

In Fig. 13, the virtual-source responses retrieved through

interferometry by crosscorrelation are compared to the

virtual-source responses retrieved through the application

of MDD (assuming reflecting boundary conditions) for

FIG. 11. (Color online) Isotropically scattered arrivals in the virtual-source responses from boundary receivers 34–43. Responses retrieved through interferom-

etry by crosscorrelation are depicted in red (left); responses retrieved through MDD are depicted in green (right). In both cases the retrieved responses are plot-

ted on top of the directly modeled responses in the actual medium (dashed black line). For comparison, the retrieved and directly modeled dipole Green’s

functions are convolved with the autocorrelation of the sources.

FIG. 12. An example of 2.5 min of ambient seismic surface-wave noise at

xR. The noise is a superposition of the noise generated by the 500 noise

sources depicted in Fig. 6. The frequency-dependent amplitude of each

source is dictated by Fig. 7 (top), but scaled by a source-specific factor. It is

propagated to xR using the Green’s function in Eq. (29), including an arrival

due to the isotropic point scatterer.
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virtual-source numbers 212–216. The fact that virtual

source 214 is vertically above xR implies that the arrival

time of the direct surface waves (around 9 s) should be

nearly constant for these five virtual sources. The fact that

this does not appear to be the case for the responses

retrieved through interferometry by crosscorrelation (Fig.

13; red responses), can be attributed to the non-uniform

illumination pattern. Application of MDD corrects the

arrival time of the direct surface-wave arrivals resulting in

arrival times that are practically constant for these five vir-

tual sources (Fig. 13; green responses). Moreover, just as

for the sequential sources, we find that deconvolution by

the PSF suppresses spurious energy at early times and cre-

ates virtual reflections at later times. In this case, however,

the spurious energy is not entirely removed, which is proba-

bly due to the fact that the simultaneously acting noise

sources cause the CCF and the PSF to contain more spuri-

ous energy than was the case for the sequentially acting

noise sources.

V. DISCUSSION AND CONCLUSIONS

The acoustic Green’s function between a source outside a

medium of interest and a receiver inside that medium can be

represented by an integral over the boundary of that medium,

where the integrand is a sum of two terms, both temporal con-

volutions [Eq. (1)]. In the first term, the spatial derivative (at

the boundary) of the Green’s function between the source and

the boundary is convolved with the Green’s function between

the boundary and the receiver. In the second term, the Green’s

function between the source and the boundary is convolved

with the spatial derivative (at the boundary) of the Green’s

function between the boundary and the receiver. Because of

the convolutions, this representation for the Green’s function

between the source and the receiver is generally referred to as

a “convolution-type representation.”17 Importantly, however,

the Green’s functions describing the wave propagation

between the boundary and the receiver can be defined in a dif-

ferent medium than the Green’s functions that describe the

waves propagating from the source to the boundary. In this

work, the latter Green’s functions are associated with the

actual medium, and hence with the Green’s function between

the physical source and the receiver, whereas the former

Green’s functions are defined between a virtual source and a

receiver in a reference medium.

In this work, we let the reference medium coincide with

the actual medium inside the medium of interest, but investi-

gate different conditions of the reference medium on and

outside of that boundary. Specifically, we consider the refer-

ence medium to be of absorbing and of reflecting nature on

that boundary. In both cases, a formulation results which

allows the retrieval of the Green’s functions between the

boundary and the receiver by means of a MDD process. In

practice, this implies that the wavefield is required to be cap-

tured along the boundary of the medium of interest. The

MDD process turns the boundary receivers into so-called vir-

tual sources, whose responses are corrected for illumination-

related artefacts and account for dissipation in the medium

of interest. This is an improvement with respect to virtual-

source responses retrieved through the application of inter-

ferometry by crosscorrelation, because these responses have

been shown to suffer from irregularities in the illumination

pattern.11,14,15

Conventionally, absorbing boundary conditions are

assumed in the reference medium.16,17 Because the resulting

MDD formulation relies on wavefields propagating exclu-

sively into the medium of interest, it requires omnidirec-

tional wavefields to be separated in inward propagating and

outward propagating wavefields along the receiver boundary.

Assuming reflecting boundary conditions renders separation

of wavefields unnecessary. However, the retrieved Green’s

functions contain virtual reflections from the receiver bound-

ary. In other words, the MDD process exploits the (non-uni-

form) illumination to turn the receiver boundary into a

virtual reflector.

Alternative boundary conditions of the medium associ-

ated with the deconvolved wavefield have previously been

used for the one-dimensional case of a building response.43

FIG. 13. (Color online) Virtual-source responses from boundary receivers 212–216. Responses retrieved through interferometry by crosscorrelation are

depicted in red (bottom); responses retrieved through MDD are depicted in green (top). The responses are retrieved from wavefields of simultaneously acting,

mutually uncorrelated noise sources. For comparison, the retrieved dipole Green’s functions (MDD responses) are convolved with the autocorrelation of the

sources.
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Similar to our analysis, these authors consider reflecting and

absorbing boundary conditions. In their case, however, the

boundary conditions follow from the definition of the decon-

volution operator, whereas they are prescribed explicitly in

this study. As such, they also do not employ the term

“reference medium.” An example application of changing

the boundary conditions is, in their context, the estimation of

intrinsic attenuation.44

The term virtual reflector has been used previously.45 The

virtual reflector referred to in this study, however, is rather dif-

ferent from the virtual reflector introduced by those authors.

First, we consider sources randomly distributed outside the

medium of interest, whose signal is recorded along a receiver

boundary encompassing that medium. In contrast, those authors

consider a receiver boundary that records the response to a

source inside the medium of interest (alternatively, using

source-receiver reciprocity, the receiver boundary can be

replaced by a source boundary, and the source inside the

medium of interest by a receiver). Second, their method yields

the response due to a virtual-source inside the medium of inter-

est, instead of on the boundary of that medium. Third, their

response lacks the direct arrival and other arrivals associated

with internal scattering in the medium of interest.

In Sec. IV C, we have shown the potential of the newly

derived MDD formulation for the retrieval of surface-wave

responses from recordings of ambient seismic noise. We

acknowledge, however, that for such applications, specific

preprocessing of the field data will be required.46,47 In gen-

eral, frequent interruption of the stream of ambient seismic

noise by earthquakes and other (anthropogenic) events com-

plicate the application of interferometric methods.30

Additionally, the assumption of a single-mode surface wave

overwhelming other surface-wave modes may in practice

not always be valid,48 requiring different surface-wave

modes to be separated prior to application of MDD.37

The responses retrieved through the application of

MDD assuming reflecting boundary conditions could be par-

ticularly well suited for the purpose of full-waveform inver-

sion (FWI). The computational costs of FWI schemes are

known to increase due to the necessity to extend the compu-

tational domain outside the domain of interest.49 This

domain extension is needed to fulfill the absorbing boundary

conditions in the theory underlying full-waveform formula-

tions.50 Clearly, FWI of the virtual-source responses contain-

ing virtual reflections will not require such an absorbing

layer at the periphery of the numerical domain.

The term coda is conventionally used to describe the

relatively late-arriving multiply scattered waves in a seis-

mogram. Due to the reflections from the receiver bound-

aries, the newly retrieved virtual-source responses will

contain artificial, but meaningful, coda. Similar to natural

coda waves, these artificial coda waves will have traversed

the medium of interest several times and in different direc-

tions, and will therefore be more sensitive to structural

changes in that medium.51 Formulations (coda-wave sensi-

tivity kernels) could therefore be developed that allow the

artificial coda to be exploited for the purpose of time-lapse

monitoring.52–54 A potential oceanographic application (of

the exploitation) of the artificial coda would be the

application of MDD to so-called autonomous vertical line

arrays.9,55

In Sec. IV, we mentioned the possibility to mute the vir-

tual reflections in order to retrieve the actual medium

response. Of course, in more complex media, it will not be

straightforward to distinguish between virtual reflections and

arrivals due to internal scattering in the actual medium. In

fact, the virtual reflections and the coda of the actual medium

response may well overlap in time. Surface-related multiple

elimination (SRME) algorithms56 may be adapted for the pur-

pose of removing the virtual reflections. Of course, the fact

the amplitudes of different arrivals in the retrieved virtual-

source responses are scaled by different factors (depending on

the angles at which the ray paths associated with the respec-

tive arrivals depart from the receiver boundary) needs to be

taken into account in this case. The application (or inclusion)

of SRME algorithms in the derived (reflecting boundary)

MDD formulation is beyond the scope of this work, however,

and will be the subject of future work.
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APPENDIX: THE PSF IN A ONE-DIMENSIONAL
WAVEFIELD

The expression in Eq. (11) in the main text is completely

general. The application of MDD to retrieve �GdðxR; x; tÞ, how-

ever, relies on waves propagating into V to generate the reflec-

tions. In other words, in case a virtual reflector is not illuminated

from outside V, inversion of Ĉ will not be feasible. We demon-

strate this in this appendix by analytically evaluating Eq. (12) for

a one-dimensional homogeneous medium. We therefore consider

the following (frequency-domain) wave equation:

1

q

@2Ĝ x; xS;xð Þ
@x2

þ x2

qc2
Ĝ x; xS;xð Þ ¼ �d x� xSð Þ;

(A1)

where, as in the main text, the Green’s function Ĝðx; xS;xÞ
gives the pressure at x due to an impulsive point source of

the rate of change of volume injection rate at xS. The

Green’s function for this wave equation reads57

Ĝ x; xS;xð Þ ¼
�iqc

2x
e�i xjx�xSj=cð Þ; (A2)

where a Fourier decomposition with time dependence eixt

has been performed.

Let us consider two sources, located at x
ð1Þ
S and x

ð2Þ
S , whose

power spectra are given by Ŝ
ð1Þ � ŝðxð1Þ;xÞŝ�ðxð1Þ;xÞ and

Ŝ
ð2Þ � ŝðxð2Þ;xÞŝ�ðxð2Þ;xÞ, respectively (in general, ẑ�

denotes complex conjugation of the variable ẑ). The multiplica-

tions ŝ ŝ� correspond to autocorrelations in the time domain.

Substitution of the Green’s functions associated with these two

sources in the frequency-domain counterparts of Eqs. (13) and

(14) gives
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Ĉ xR; x
0;xð Þ ¼

X2

k¼1

Ĝ xR; x
kð Þ

S ;x
� �

Ĝ
�

x0; x kð Þ
S ;x

� �
Ŝ

kð Þ
xð Þ

¼ q2c2

4x2
Ŝ

1ð Þ
eix jx0�x 1ð Þ

S
j�jxR�x 1ð Þ

S
jð Þ=c

�

þ Ŝ
2ð Þ

eix jx0�x 2ð Þ
S
j�jxR�x 2ð Þ

S
jð Þ=c
�

(A3)

and

Ĉ x; x0;xð Þ ¼
X2

k¼1

Ĝ x; x kð Þ
S ;x

� �
Ĝ
�

x0; x kð Þ
S ;x

� �
Ŝ

kð Þ
xð Þ

¼ q2c2

4x2
Ŝ

1ð Þ
eix jx0�x 1ð Þ

S
j�jx�x 1ð Þ

S
jð Þ=c

�

þ Ŝ
2ð Þ

eix jx0�x 2ð Þ
S
j�jx�x 2ð Þ

S
jð Þ=c
�
; (A4)

respectively.

In this appendix, we synthesize the PSF for the configura-

tion in Fig. 14. The one-dimensional medium of interest V is

located between receivers xð1Þ and xð2Þ, which, together, form

Srec. In other words, xð1Þ and xð2Þ are the locations for which the

variables x and x0 in Eqs. (A3) and (A4) are evaluated. For the

exponents in Eq. (A3), the configuration in Fig. 14 implies that

jxð1Þ � x
ð1Þ
S j � jxR � x

ð1Þ
S j ¼ xð1Þ � xR;

jxð1Þ � x
ð2Þ
S j � jxR � x

ð2Þ
S j ¼ xR � xð1Þ;

jxð2Þ � x
ð1Þ
S j � jxR � x

ð1Þ
S j ¼ xð2Þ � xR;

jxð2Þ � x
ð2Þ
S j � jxR � x

ð2Þ
S j ¼ xR � xð2Þ; (A5)

and, for the exponents in Eq. (A4), that

jxð1Þ � x
ð1Þ
S j � jxð2Þ � x

ð1Þ
S j ¼ xð1Þ � xð2Þ;

jxð1Þ � x
ð2Þ
S j � jxð2Þ � x

ð2Þ
S j ¼ xð2Þ � xð1Þ;

jxð2Þ � x
ð1Þ
S j � jxð1Þ � x

ð1Þ
S j ¼ xð2Þ � xð1Þ;

jxð2Þ � x
ð2Þ
S j � jxð1Þ � x

ð2Þ
S j ¼ xð1Þ � xð2Þ: (A6)

Note that we have only considered x 6¼ x0 for the expo-

nents in Eq. (A4), because the exponents always evaluate

to zero for x ¼ x0 (and hence the exponential terms to

one).

Just as Eq. (5) can be written in matrix notation in the

frequency domain [Eq. (8)], the frequency-domain counter-

part of Eq. (12) can be written as

Ĉ ¼ �̂GdĈ: (A7)

In one dimension, the rows and columns of Ĉ correspond to

different xR and x0, respectively; �̂Gd and Ĉ are organized

accordingly. In particular, for our configuration, the variables

x and x0 in Eqs. (A3) and (A4) are evaluated over two loca-

tions only (xð1Þ and xð2Þ) and hence Ĉ is 2� 2 matrix.

Because we furthermore consider a single receiver location xR

for the retrieval of the virtual source responses (see Fig. 14),

Ĉ and �̂Gd are both 1� 2 matrices. The matrix �̂Gd reads

�̂Gd ¼ ð �̂GdðxR; x
ð1Þ;xÞ �̂GdðxR; x

ð2Þ;xÞÞ: (A8)

Using the relations in Eqs. (A5) and (A6), Eqs. (A3)

and (A4) yield the following expressions for Ĉ and Ĉ,

respectively:

Ĉ ¼ q2c2

4x2 Ŝ
1ð Þ

eix x 1ð Þ�xRð Þ=c þ Ŝ
2ð Þ

eix xR�x 1ð Þð Þ=c Ŝ
1ð Þ

eix x 2ð Þ�xRð Þ=c þ Ŝ
2ð Þ

eix xR�x 2ð Þð Þ=c

� �
(A9)

and

Ĉ ¼ q2c2

4x2

Ŝ
1ð Þ þ Ŝ

2ð Þ
Ŝ

1ð Þ
eix x 2ð Þ�x 1ð Þð Þ=c þ Ŝ

2ð Þ
eix x 1ð Þ�x 2ð Þð Þ=c

Ŝ
1ð Þ

eix x 1ð Þ�x 2ð Þð Þ=c þ Ŝ
2ð Þ

eix x 2ð Þ�x 1ð Þð Þ=c Ŝ
1ð Þ þ Ŝ

2ð Þ

0
@

1
A: (A10)

The determinant of Ĉ, denoted by jĈj, reads

jĈj ¼ 2Ŝ
ð1Þ

Ŝ
ð2Þ

1�< eix2ðxð1Þ�xð2ÞÞ=c
� �� �

; (A11)

where the operator <½� � �� maps its complex argument into its

real part. Successful application of interferometry by MDD

relies on the ability to invert Ĉ. Equation (A11), however,

reveals that there are two cases for which the determinant

FIG. 14. One-dimensional configuration for which the PSF is examined.
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of Ĉ may evaluate to zero. First, using the fact that

<½eix2ðxð1Þ�xð2ÞÞ=c� ¼ cos ½2xðxð1Þ � xð2ÞÞ=c�, we observe that Ĉ
is singular for specific “spurious” frequencies x ¼ xn � npc=

ðxð1Þ � xð2ÞÞ, where n is a positive integer. For dissipative

media, however, C will not become singular. This can easily

be shown by repeating the analysis above using a Green’s

function that accounts for dissipation, i.e., by multiplying the

right-hand side of Eq. (A2) by an exponentially decaying term

e�ajx�xSj.
Second, and more important, we observe that Ĉ becomes

singular in case either Ŝ
ð1Þ

or Ŝ
ð2Þ

(or both) is zero. This dem-

onstrates that successful inversion of Ĉ requires illumination

from both sides for our one-dimensional setup. The power of

the illumination from one side does not need to coincide with

the power of the illumination from the other side though. In

fact, just as deconvolution by the PSF corrects virtual-source

responses for artefacts due to variations in power of the sour-

ces illuminating a two- or three-dimensional medium from

one side,16,17 deconvolution by the PSF in Eq. (A10) corrects

the virtual-source response for artefacts due to differences

between Ŝ
ð1Þ

and Ŝ
ð2Þ

in our one-dimensional model.
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