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Acoustic imaging methods often ignore multiple scattering. This leads to false images in cases

where multiple scattering is strong. Marchenko imaging has recently been introduced as a data-

driven way to deal with internal multiple scattering. Given the increasing interest in non-reciprocal

materials, both for acoustic and electromagnetic applications, a modification to the Marchenko

method is proposed for imaging such materials. A unified wave equation is formulated for non-

reciprocal materials, exploiting the similarity between acoustic and electromagnetic wave phenom-

ena. This unified wave equation forms the basis for deriving reciprocity theorems that interrelate

wave fields in a non-reciprocal medium and its complementary version. Next, these theorems are

reformulated for downgoing and upgoing wave fields. From these decomposed reciprocity theo-

rems, representations of the Green’s function inside the non-reciprocal medium are derived in terms

of the reflection response at the surface and focusing functions inside the medium and its comple-

mentary version. These representations form the basis for deriving a modified version of the

Marchenko method to retrieve the wave field inside a non-reciprocal medium and to form an image,

free from artefacts related to multiple scattering. The proposed method is illustrated at the hand of

the numerically modeled reflection response of a horizontally layered medium.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5114912
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I. INTRODUCTION

Acoustic imaging methods are traditionally based on the

single-scattering assumption.1–15 Multiply scattered waves

are not properly handled by these methods and may lead to

false images overlaying the desired primary image. Several

approaches have been developed that account for multiple

scattering. For the sake of the discussion it is important to

distinguish between different classes of multiply scattered

waves. Waves that have scattered at least once at the surface

of the medium are called surface-related multiples. This type

of multiple scattering is particularly severe in exploration

geophysics. However, because the scattering boundary is

known, this class of multiples is relatively easily dealt with.

Successful methods have been developed to suppress

surface-related multiples prior to imaging.16–21 Waves that

scatter several times inside the medium before being

recorded at the surface are called internal multiples. Internal

multiple scattering may occur at heterogeneities at many

scales. We may distinguish between deterministic scattering

at well-separated scatterers, giving rise to long period multi-

ples, and diffuse scattering in stochastic media. Of course,

this distinction is not always sharp. In this paper we only

consider the first type of internal multiple scattering, which

typically occurs in layered media (which, in general, may

have curved interfaces and varying parameters in the layers).

Several imaging approaches that account for deterministic

internal multiples are currently under development, such as

the inverse scattering series approach,22–24 full wave field

migration,25,26 and Marchenko imaging. The latter approach

builds on a 1 D autofocusing procedure,27–29 which has been

generalised for 2 D and 3 D inhomogeneous media.30–41 This

methodology retrieves the wave fields inside a medium,

including all internal multiples, in a data-driven way. Such

wave fields could be used, for example, to monitor changes

of the material over time. Moreover, in a next step these

wave fields can be used to form an image of the material, in

which artefacts due to the internal multiples are suppressed.

Promising results have been obtained with geophysical42–46

and ultrasonic data.46,47

To date, the application of the Marchenko method has

been restricted to reciprocal media. With the increasing

interest in non-reciprocal materials, both in electromag-

netics48–50 and in acoustics and elastodynamics,51–57 it is

opportune to modify the Marchenko method for non-

reciprocal media. We start with a brief review of the wave

equation for non-reciprocal media. By restricting this to sca-

lar waves in a 2 D plane, it is possible to capture different

wave phenomena by a unified wave equation. Next, we for-

mulate reciprocity theorems for waves in a non-reciprocal

medium and its complementary version (the complementary

medium will be defined later). From these reciprocity theo-

rems we derive Green’s function representations, which

form the basis for the Marchenko method in non-reciprocal

media. We illustrate the new method with a numerical exam-

ple, showing that it has the potential to accurately retrieve

the wave fields inside a non-reciprocal medium and to image

this medium, without false images related to multiply scat-

tered waves.a)Electronic mail: C.P.A.Wapenaar@TUDelft.NL
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II. UNIFIED WAVE EQUATION FOR NON-RECIPROCAL
MEDIA

Consider the following unified equations in the low-

frequency limit for 2 D wave propagation in the (x1, x3)-plane

in inhomogeneous, lossless, anisotropic, non-reciprocal media

a@tPþ ð@r þ cr@tÞQr ¼ B; (1)

ð@r þ cr@tÞPþ brs@tQs ¼ Cr: (2)

These equations hold for transverse-electric (TE),

transverse-magnetic (TM), horizontally polarised shear

(SH), and acoustic (AC) waves. They are formulated in the

space-time (x, t)-domain, with x ¼ ðx1; x3Þ. Operator @r

stands for differentiation in the xr direction. Lower-case sub-

scripts r and s take the values 1 and 3 only; Einstein’s sum-

mation convention applies for repeated subscripts. Operator

@t stands for temporal differentiation. The wave field quanti-

ties [P ¼ Pðx; tÞ and Qr ¼ Qrðx; tÞ] and source quantities

[B ¼ Bðx; tÞ and Cr ¼ Crðx; tÞ] are macroscopic quantities.

These are often denoted as hPi, etc.,48 but for notational con-

venience we will not use the brackets. The medium parame-

ters [a ¼ aðxÞ; brs ¼ brsðxÞ, and cr ¼ crðxÞ] are effective

parameters. In general, they are anisotropic at macro scale (with

brs ¼ bsr), even when they are isotropic at micro scale. Wave

field quantities, source quantities and medium parameters are

specified for the different wave phenomena in Table I. For TE

and TM waves, the macroscopic wave field quantities are E
(electric field strength) and H (magnetic field strength), the

macroscopic source functions are Je (external electric current

density) and Jm (external magnetic current density), and the

effective medium parameters are eo (permittivity), l (permeabil-

ity), and n (coupling parameter). For SH and AC waves, the

macroscopic wave field quantities are v (particle velocity), s
(stress), and p (acoustic pressure), the macroscopic source func-

tions are F (external force density), h (external deformation-rate

density), and q (volume injection-rate density), and the effective

medium parameters are qo (mass density), s (compliance), j
(compressibility), and n (coupling parameter). For further details

we refer to Appendix A.

By eliminating Qr from Eqs. (1) and (2) we obtain a sca-

lar wave equation for field quantity P, according to

ð@r þ cr@tÞ#rsð@s þ cs@tÞP� a@2
t P

¼ ð@r þ cr@tÞ#rsCs � @tB; (3)

see Appendix A for the derivation. Here #rs is the inverse of

brs. Compare Eq. (3) with the common scalar wave equation

for waves in isotropic reciprocal media

@r
1

b
@rP� a@2

t P ¼ @r
1

b
Cr � @tB: (4)

In Eq. (3), @r þ cr@t replaces @r, with cr being responsible

for the non-reciprocal behaviour. Moreover, #rs replaces

1=b, thus accounting for anisotropy of the effective non-

reciprocal medium.

To illustrate the physical meaning of the parameter cr,

we consider the 1 D version of Eq. (3) for a homogeneous,

isotropic, source-free medium, i.e.,

ð@1 þ c@tÞð@1 þ c@tÞP� ab@2
t P ¼ 0: (5)

Its solution reads

P6ðx1; tÞ ¼ S t7
x1

c
ð16ccÞ

� �
; (6)

with S(t) being an arbitrary time-dependent function and

c ¼ ðabÞ�1=2
the propagation velocity of the corresponding

reciprocal medium. Note that Pþðx1; tÞ propagates in the

positive x1-direction with slowness ð1þ ccÞ=c, whereas

P�ðx1; tÞ propagates in the negative x1-direction with slow-

ness ð1� ccÞ=c. Hence, c determines the asymmetry of the

slownesses in opposite directions. Throughout this paper we

assume that jcrj is smaller than the lowest inverse propaga-

tion velocity of the corresponding reciprocal anisotropic

medium.

III. RECIPROCITY THEOREMS FOR A
NON-RECIPROCAL MEDIUM AND ITS
COMPLEMENTARY VERSION

We derive reciprocity theorems in the space-frequency

ðx;xÞ-domain for wave fields in a non-reciprocal medium

and its complementary version. To this end, we define the

temporal Fourier transform of a space- and time-dependent

function Pðx; tÞ as

Pðx;xÞ ¼
ð1
�1

Pðx; tÞ expðixtÞdt; (7)

where x is the angular frequency and i the imaginary unit.

For notational convenience we use the same symbol for

quantities in the time domain and in the frequency domain.

We use Eq. (7) to transform Eqs. (1) and (2) to the space-

frequency domain. The temporal differential operators @t are

thus replaced by �ix, hence

�ixaPþ ð@r � ixcrÞQr ¼ B; (8)

ð@r � ixcrÞP� ixbrsQs ¼ Cr; (9)

TABLE I. Quantities in unified Eqs. (1) and (2).

P Q1 Q3 a b11 b31 b33 c1 c3 B C1 C3

TE E2 H3 �H1 eo
22 l33 �l31 l11 n23 �n21 �Je

2 �Jm
3 Jm

1

TM H2 �E3 E1 l22 eo
33 �eo

31 eo
11 �n32 n12 �Jm

2 Je
3 �Je

1

SH v2 �s21 �s23 qo
22 4s1221 4s1223 4s3223 2n221 2n223 F2 2h21 2h23

AC p v1 v3 j qo
11 qo

31 qo
33 n1 n3 q F1 F3
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with P ¼ Pðx;xÞ; Qr ¼ Qrðx;xÞ; B ¼ Bðx;xÞ, and Cr

¼ Crðx;xÞ. A reciprocity theorem formulates a mathemati-

cal relation between two independent states.58–60 We indi-

cate the wave fields, sources and medium parameters in the

two states by subscripts A and B. Consider the quantity

@rðPAQr;B � Qr;APBÞ: (10)

Applying the product rule for differentiation, using Eqs. (8)

and (9) for states A and B, using bsr ¼ brs,
56,61,62 integrating

the result over domain D enclosed by boundary @D with

outward pointing normal vector n ¼ ðn1; n3Þ and applying

the theorem of Gauss, we obtainþ
@D

ðPAQr;B � Qr;APBÞnrdx

¼ ix
ð

D

ððaB � aAÞPAPB � ðbrs;B � brs;AÞQr;AQs;BÞdx

þix
ð

D

ðcr;B þ cr;AÞðPAQr;B � Qr;APBÞdx

þ
ð

D

ðCr;AQr;B � Qr;ACr;B þ PABB � BAPBÞdx:

(11)

This is the general reciprocity theorem of the convolution

type. When the medium parameters a, brs, and cr are identi-

cal in both states, then the first integral on the right-hand

side vanishes, but the second integral, containing cr, does not

vanish. When we choose cr;A ¼ �cr;B ¼ �cr, then the sec-

ond integral also vanishes. For this situation we call state B,

with parameters a, brs, and cr, the actual state, and state A,

with parameters a, brs, and �cr , the complementary state61,63

(also known as the Lorentz-adjoint state64). We indicate the

complementary state by a superscript ðcÞ. Henceþ
@D

ðPðcÞA Qr;B � Q
ðcÞ
r;APBÞnrdx

¼
ð

D

ðCðcÞr;AQr;B � Q
ðcÞ
r;ACr;B þ P

ðcÞ
A BB � B

ðcÞ
A PBÞdx:

(12)

This reciprocity theorem will play a role in the derivation of

Green’s function representations for the Marchenko method for

non-reciprocal media (Sec. IV). Here, we use it to derive a rela-

tion between Green’s functions in states A and B. For the com-

plementary state A we choose a unit monopole point source at

xS in D, hence B
ðcÞ
A ðx;xÞ ¼ dðx� xSÞ, where dðxÞ is the

Dirac delta function. The response to this point source is the

Green’s function in state A, hence P
ðcÞ
A ðx;xÞ ¼ GðcÞðx; xS;xÞ.

Similarly, for state B we choose a unit monopole point source

at xR in D, hence BBðx;xÞ ¼ dðx� xRÞ and PBðx;xÞ
¼ Gðx; xR;xÞ. We substitute these expressions into Eq. (12)

and set the other source quantities, C
ðcÞ
r;A and Cr;B, to zero.

Further, we assume that Neumann or Dirichlet boundary condi-

tions apply at @D, or that the medium at and outside @D is

homogeneous and reciprocal. In each of these cases the bound-

ary integral vanishes. We thus obtain51,65

GðcÞðxR; xS;xÞ ¼ GðxS; xR;xÞ: (13)

The left-hand side is the response to a source at xS in the

complementary medium (with parameter �cr), observed by

a receiver at xR. The right-hand side is the response to a

source at xR in the actual medium (with parameter cr),

observed by a receiver at xS. Note the analogy with the flow-

reversal theorem for waves in flowing media.66–68

Next, we consider the quantity

@rðP�AQr;B þ Q�r;APBÞ: (14)

Asterisks denote complex conjugation. Following the same

steps as before, we obtainþ
@D

ðP�AQr;B þ Q�r;APBÞnrdx

¼ ix
ð

D

ððaB � aAÞP�APB þ ðbrs;B � brs;AÞQ�r;AQs;BÞdx

þix
ð

D

ðcr;B � cr;AÞðP�AQr;B þ Q�r;APBÞdx

þ
ð

D

ðC�r;AQr;B þ Q�r;ACr;B þ P�ABB þ B�APBÞdx:

(15)

This is the general reciprocity theorem of the correlation

type. When the medium parameters a, brs, and cr are identi-

cal in both states, then the first and second integral on the

right-hand side vanish. Henceþ
@D

ðP�AQr;B þ Q�r;APBÞnrdx

¼
ð

D

ðC�r;AQr;B þ Q�r;ACr;B þ P�ABB þ B�APBÞdx:

(16)

Also this reciprocity theorem will play a role in the deriva-

tion of Green’s function representations for the Marchenko

method for non-reciprocal media.

IV. GREEN’S FUNCTION REPRESENTATIONS FOR
THE MARCHENKO METHOD

We use the reciprocity theorems of the convolution

and correlation type [Eqs. (12) and (16)] to derive Green’s

function representations for the Marchenko method for

non-reciprocal media. The derivation is similar to that for

reciprocal media;31 here, we emphasise the differences. We

consider a spatial domain D, enclosed by two infinite horizon-

tal boundaries @D0 and @DA (with @DA below @D0), and

two finite vertical side boundaries (at x1 ! 61), see Fig. 1.

The positive x3-axis points downward. The normal vectors at

@D0 and @DA are n ¼ ð0;�1Þ and n ¼ ð0; 1Þ, respectively.

The boundary integrals in Eqs. (12) and (16) along the vertical

side boundaries vanish.69 Assuming there are no sources in D

in both states, the reciprocity theorems thus simplify toð
@D0

ðPðcÞA Q3;B�Q
ðcÞ
3;APBÞdx¼

ð
@DA

ðPðcÞA Q3;B�Q
ðcÞ
3;APBÞdx

(17)

and
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ð
@D0

ðP�AQ3;B þQ�3;APBÞdx ¼
ð
@DA

ðP�AQ3;B þQ�3;APBÞdx:

(18)

For the derivation of the representations for the Marchenko

method it is convenient to decompose the wave field quanti-

ties in these theorems into downgoing and upgoing fields in

both states. Consider the following relations:

q ¼ Lp; p ¼ L�1q; (19)

with wave vectors q ¼ qðx;xÞ and p ¼ pðx;xÞ defined as

q ¼
P

Q3

 !
; p ¼

Uþ

U�

 !
: (20)

Here, Uþ ¼ Uþðx;xÞ and U� ¼ U�ðx;xÞ are downgoing

and upgoing flux-normalized wave fields, respectively.

Operator L ¼ Lðx;xÞ in Eq. (19) is a pseudo-differential

operator that composes the total wave field from its down-

going and upgoing constituents.69–77 Its inverse decomposes

the total wave field into downgoing and upgoing fields. For

inhomogeneous isotropic reciprocal media, the theory for

this operator is well developed. For anisotropic non-

reciprocal media, we restrict the application of this operator

to the laterally invariant situation. In Appendix B we use

Eqs. (19) and (20) at boundaries @D0 and @DA to recast rec-

iprocity theorems (17) and (18) as follows:ð
@D0

ðUþðcÞA U�B � U
�ðcÞ
A UþB Þdx

¼
ð
@DA

ðUþðcÞA U�B � U
�ðcÞ
A UþB Þdx (21)

and ð
@D0

ðUþ�A UþB � U��A U�B Þdx

¼
ð
@DA

ðUþ�A UþB � U��A U�B Þdx: (22)

Equation (21) is exact, whereas in Eq. (22) evanescent waves

are neglected at boundaries @D0 and @DA. Note that the

assumption of lateral invariance only applies to boundaries

@D0 and @DA; the remainder of the medium (inside and out-

side D) may be arbitrary inhomogeneous.

In the following we define @D0 (at x3 ¼ x3;0) as the upper

boundary of an inhomogeneous, anisotropic, non-reciprocal,

lossless medium. Furthermore, we define @DA (at x3 ¼ x3;A,

with x3;A > x3;0) as an arbitrary boundary inside the medium.

We assume that the medium above @D0 is homogeneous. For

state B we consider a unit source for downgoing waves at

xS ¼ ðx1;S; x3;SÞ, just above @D0 (hence, x3;S ¼ x3;0 � �, with

�! 0). The response to this unit source at any observation

point x is given by U6
B ðx;xÞ ¼ G6ðx; xS;xÞ, where Gþ and

G� denote the downgoing and upgoing components of the

Green’s function. For x at @D0, i.e., just below the source, we

have UþB ðx;xÞ ¼ Gþðx; xS;xÞ ¼ dðx1 � x1;SÞ and U�B ðx;xÞ
¼ G�ðx; xS;xÞ ¼ Rðx; xS;xÞ, with Rðx; xS;xÞ denoting the

reflection response at @D0 of the medium below @D0. At

@DA, we have U6
B ðx;xÞ ¼ G6ðx; xS;xÞ. For state A we con-

sider a focal point at xA ¼ ðx1;A; x3;AÞ at @DA. The medium in

state A is a truncated medium, which is identical to the actual

medium between @D0 and @DA, and homogeneous below

@DA. At @D0 a downgoing focusing function UþA ðx;xÞ
¼ fþ1 ðx; xA;xÞ, with x ¼ ðx1; x3;0Þ, is incident to the truncated

medium. This function focuses at xA, hence, at @DA we have

UþA ðx;xÞ ¼ fþ1 ðx; xA;xÞ ¼ dðx1 � x1;AÞ. The response to this

focusing function at @D0 is U�A ðx;xÞ ¼ f�1 ðx; xA;xÞ.
Because the truncated medium is homogeneous below @DA,

we have U�A ðx;xÞ ¼ 0 at @DA. The quantities for both states

are summarised in Table II.

Note that the downgoing focusing function fþ1 ðx; xA;xÞ,
for x at @D0, is the inverse of the transmission response

TðxA; x;xÞ of the truncated medium,31 hence

fþ1 ðx; xA;xÞ ¼ TinvðxA; x;xÞ; (23)

for x at @D0. To avoid instabilities in the evanescent field,

the focusing function is in practice spatially band-limited.

Substituting the quantities of Table II into Eqs. (21) and

(22) gives

G�ðxA; xS;xÞ þ f
�ðcÞ
1 ðxS; xA;xÞ

¼
ð
@D0

Rðx; xS;xÞfþðcÞ1 ðx; xA;xÞdx (24)

and

GþðxA; xS;xÞ � ffþ1 ðxS; xA;xÞg�

¼ �
ð
@D0

Rðx; xS;xÞff�1 ðx; xA;xÞg�dx; (25)

respectively. These are two representations for the upgoing

and downgoing parts of the Green’s function between xS at

the acquisition surface and xA inside the non-reciprocal

TABLE II. Quantities to derive Eqs. (24) and (25).

UþA ðx;xÞ U�A ðx;xÞ UþB ðx;xÞ U�B ðx;xÞ

x ¼ ðx1; x3;0Þ at @D0 fþ1 ðx; xA;xÞ f�1 ðx; xA;xÞ dðx1 � x1;SÞ Rðx; xS;xÞ
x ¼ ðx1; x3;AÞ at @DA dðx1 � x1;AÞ 0 Gþðx; xS;xÞ G�ðx; xS;xÞ

FIG. 1. Modified configuration for the reciprocity theorems.
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medium. They are expressed in terms of the reflection

response Rðx; xS;xÞ and a number of focusing functions.

Unlike similar representations for reciprocal media,31,78 the

focusing functions in Eq. (24) are defined in the complemen-

tary version of the truncated medium. Therefore, we cannot

use the standard approach to retrieve the focusing functions

and Green’s functions from the reflection response Rðx; xS;xÞ.
We obtain a second set of representations by replacing all

quantities in Eqs. (24) and (25) by the corresponding quantities

in the complementary medium. For the focusing functions in

Eq. (24) this implies they are replaced by their counterparts in

the truncated actual medium. We thus obtain

G�ðcÞðxA; xS;xÞ þ f�1 ðxS; xA;xÞ

¼
ð
@D0

RðcÞðx; xS;xÞfþ1 ðx; xA;xÞdx (26)

and

GþðcÞðxA; xS;xÞ � ffþðcÞ1 ðxS; xA;xÞg�

¼ �
ð
@D0

RðcÞðx; xS;xÞff�ðcÞ1 ðx; xA;xÞg�dx; (27)

respectively. Because in practical situations we do not have

access to the reflection response RðcÞðx; xS;xÞ in the comple-

mentary medium, we derive a relation analogous to Eq. (13)

for this reflection response. To this end, consider the quantities

in Table III, with xS and xR just above @D0, and with @DM

denoting a boundary below all inhomogeneities, so that there

are no upgoing waves at @DM. Substituting the quantities of

Table III into Eq. (21) (with @DA replaced by @DM) gives

RðcÞðxR; xS;xÞ ¼ RðxS; xR;xÞ: (28)

Equations (24)–(27), with RðcÞðx; xS;xÞ replaced by

RðxS; x;xÞ, form the basis for the Marchenko method, dis-

cussed in Sec. V.

V. THE MARCHENKO METHOD FOR
NON-RECIPROCAL MEDIA

The standard multidimensional Marchenko method for

reciprocal media31,78 uses the representations of Eqs. (24) and

(25), but without the superscript ðcÞ, to retrieve the focusing

functions from the reflection response. Here we discuss how to

modify this method for non-reciprocal media. We separate the

representations of Eqs. (24)–(27) into two sets, each set con-

taining focusing functions in one and the same truncated

medium. These sets are Eqs. (25) and (26), with the focusing

functions in the truncated actual medium, and Eqs. (24) and

(27), with the focusing functions in the truncated complemen-

tary medium. We start with the set of Eqs. (25) and (26), which

read in the time domain [using Eq. (28)]

GþðxA; xS; tÞ � fþ1 ðxS; xA;�tÞ

¼ �
ð
@D0

dx

ðt

�1
Rðx; xS; t� t0Þf�1 ðx; xA;�t0Þdt0 (29)

and

G�ðcÞðxA; xS; tÞ þ f�1 ðxS; xA; tÞ

¼
ð
@D0

dx

ðt

�1
RðxS; x; t� t0Þfþ1 ðx; xA; t

0Þdt0; (30)

respectively. We introduce time windows to remove the

Green’s functions from these representations. Similar as in

the reciprocal situation, we assume that the Green’s function

and the time-reversed focusing function on the left-hand side

of Eq. (29) are separated in time, except for the direct arriv-

als.31 This is a reasonable assumption for media with smooth

lateral variations, and for limited horizontal source-receiver

distances. Let tdðxA; xSÞ denote the travel time of the

direct arrival of GþðxA; xS; tÞ. We define a time window

wðxA; xS; tÞ ¼ uðtdðxA; xSÞ � t� � tÞ, where u(t) is the

Heaviside function and t� a small positive time constant.

Under the above-mentioned assumption, we have

wðxA; xS; tÞGþðxA; xS; tÞ ¼ 0. For the focusing function on

the left-hand side of Eq. (29) we write31

fþ1 ðxS; xA; tÞ ¼ TinvðxA; xS; tÞ
¼ Tinv

d ðxA; xS; tÞ þMþðxS; xA; tÞ; (31)

where Tinv
d ðxA; xS; tÞ is the inverse of the direct arrival of the

transmission response of the truncated medium and MþðxS; xA; tÞ
the scattering coda. The travel time of Tinv

d ðxA; xS; tÞ is

�tdðxA; xSÞ and the scattering coda obeys MþðxS; xA; tÞ ¼ 0

for t � �tdðxA; xSÞ. Hence, wðxA; xS; tÞfþ1 ðxS; xA;�tÞ
¼ MþðxS; xA;�tÞ. Applying the time window wðxA; xS; tÞ to

both sides of Eq. (29) thus yields

MþðxS;xA;�tÞ

¼ wðxA;xS; tÞ
ð
@D0

dx

ðt

�1
Rðx;xS; t� t0Þf�1 ðx;xA;�t0Þdt0:

(32)

Under the same conditions as those mentioned for Eq. (29),

we assume that the Green’s function and the focusing function

in the left-hand side of Eq. (30) are separated in time (without

overlap). Unlike for reciprocal media, we need a different time

window to suppress the Green’s function, because the latter is

defined in the complementary medium. To this end we define a

time window wðcÞðxA; xS; tÞ ¼ uðtðcÞd ðxA; xSÞ � t� � tÞ, where

t
ðcÞ
d ðxA; xSÞ denotes the travel time of the direct arrival in the

complementary medium. Applying this window to both sides of

Eq. (30) yields

TABLE III. Quantities to derive Eq. (28).

U
þðcÞ
A ðx;xÞ U

�ðcÞ
A ðx;xÞ UþB ðx;xÞ U�B ðx;xÞ

x ¼ ðx1; x3;0Þ at @D0 dðx1 � x1;SÞ RðcÞðx; xS;xÞ dðx1 � x1;RÞ Rðx; xR;xÞ
x ¼ ðx1; x3;MÞ at @DM GþðcÞðx; xS;xÞ 0 Gþðx; xR;xÞ 0

814 J. Acoust. Soc. Am. 146 (1), July 2019 Kees Wapenaar and Christian Reinicke



f�1 ðxS; xA; tÞ

¼ wðcÞðxA; xS; tÞ
ð
@D0

dx

ðt

�1
RðxS; x; t� t0Þfþ1 ðx; xA; t

0Þdt0:

(33)

Equations (32) and (33), with fþ1 given by Eq. (31), form a

set of two equations for the two unknown functions

Mþðx; xA; tÞ and f�1 ðx; xA; tÞ (with x at @D0). These func-

tions can be resolved from Eqs. (32) and (33), assuming

Rðx; xS; tÞ; RðxS; x; tÞ; tdðxA; xSÞ; t
ðcÞ
d ðxA; xSÞ, and Tinv

d ðxA;
xS; tÞ are known for all x and xS at @D0. The reflection

responses Rðx; xS; tÞ and RðxS; x; tÞ are obtained from mea-

surements at the upper boundary @D0 of the medium. This

involves deconvolution for the source function, decomposi-

tion, and, when the upper boundary is a reflecting boundary,

elimination of the surface-related multiple reflections.16

Because the deconvolution is limited by the bandwidth of

the source function, the time constant t� in the window func-

tion is taken equal to half the duration of the source function.

This implies that the method will not account for short

period multiples in layers with a thickness smaller than the

wavelength.78 The travel times tdðxA; xSÞ and t
ðcÞ
d ðxA; xSÞ,

and the inverse of the direct arrival of the transmission

response, Tinv
d ðxA; xS; tÞ, can be derived from a background

model of the medium and its complementary version (once

the background model is known, its complementary version

follows immediately). A smooth background model is suffi-

cient to derive these quantities, hence, no information about

the scattering interfaces inside the medium is required. The

iterative Marchenko scheme to solve for Mþðx; xA; tÞ and

f�1 ðx; xA; tÞ reads

f�1;kðxS;xA; tÞ

¼ wðcÞðxA;xS; tÞ
ð
@D0

dx

ðt

�1
RðxS;x; t� t0Þfþ1;kðx;xA; t

0Þdt0;

(34)

Mþkþ1ðxS;xA;�tÞ

¼ wðxA;xS; tÞ
ð
@D0

dx

ðt

�1
Rðx;xS; t� t0Þf�1;kðx;xA;�t0Þdt0;

(35)

with

fþ1;kðx; xA; tÞ ¼ Tinv
d ðxA; x; tÞ þMþk ðx; xA; tÞ; (36)

starting with Mþ0 ðx; xA; tÞ ¼ 0. Once Mþðx; xA; tÞ and

f�1 ðx; xA; tÞ are found, fþ1 ðx; xA; tÞ is obtained from Eq. (31)

and, subsequently, the Green’s functions GþðxA; xS; tÞ and

G�ðcÞðxA; xS; tÞ are obtained from Eqs. (29) and (30). Note

that only GþðxA; xS; tÞ is defined in the actual medium. To

obtain G�ðxA; xS; tÞ in the actual medium we consider the set

of Eqs. (24) and (27), which read in the time domain [using

Eq. (28)],

G�ðxA; xS; tÞ þ f
�ðcÞ
1 ðxS; xA; tÞ

¼
ð
@D0

dx

ðt

�1
Rðx; xS; t� t0ÞfþðcÞ1 ðx; xA; t

0Þdt0 (37)

and

GþðcÞðxA;xS; tÞ� f
þðcÞ
1 ðxS;xA;�tÞ

¼�
ð
@D0

dx

ðt

�1
RðxS;x; t� t0Þf�ðcÞ1 ðx;xA;�t0Þdt0; (38)

respectively. The same reasoning as above leads to the fol-

lowing iterative Marchenko scheme for the focusing func-

tions in the truncated complementary medium

f
�ðcÞ
1;k ðxS;xA; tÞ

¼ wðxA;xS; tÞ
ð
@D0

dx

ðt

�1
Rðx;xS; t� t0ÞfþðcÞ1;k ðx;xA; t

0Þdt0;

(39)

M
þðcÞ
kþ1 ðxS;xA;�tÞ

¼wðcÞðxA;xS; tÞ
ð
@D0

dx

ðt

�1
RðxS;x; t� t0Þf�ðcÞ1;k ðx;xA;�t0Þdt0;

(40)

with

f
þðcÞ
1;k ðx; xA; tÞ ¼ T

invðcÞ
d ðxA; x; tÞ þM

þðcÞ
k ðx; xA; tÞ; (41)

starting with M
þðcÞ
0 ðx; xA; tÞ ¼ 0. Here T

invðcÞ
d ðxA; x; tÞ can be

derived from the complementary background model. Once the

focusing functions f
þðcÞ
1 ðx; xA; tÞ and f

�ðcÞ
1 ðx; xA; tÞ are found,

the Green’s functions G�ðxA; xS; tÞ and GþðcÞðxA; xS; tÞ are

obtained from Eqs. (37) and (38).

We conclude this section by showing how GþðxA; xS; tÞ
and G�ðxA; xS; tÞ can be used to image the interior of the

non-reciprocal medium. First, we derive a mutual relation

between these Green’s functions. To this end, consider the

quantities in Table IV. Here RðcÞðx; xA;xÞ in state A is the

reflection response at @DA of the complementary medium

below @DA, with xA defined just above @DA and the

medium in state A being homogeneous above @DA.

Substituting the quantities of Table IV into Eq. (21) (with

@D0 and @DA replaced by @DA and @DM, respectively)

and using Eq. (28), gives

TABLE IV. Quantities to derive Eq. (42).

U
þðcÞ
A ðx;xÞ U

�ðcÞ
A ðx;xÞ UþB ðx;xÞ U�B ðx;xÞ

x ¼ ðx1; x3;AÞ at @DA dðx1 � x1;AÞ RðcÞðx; xA;xÞ Gþðx; xS;xÞ G�ðx; xS;xÞ
x ¼ ðx1; x3;MÞ at @DM GþðcÞðx; xA;xÞ 0 Gþðx; xS;xÞ 0
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G�ðxA; xS;xÞ ¼
ð
@DA

RðxA; x;xÞGþðx; xS;xÞdx (42)

or, applying an inverse Fourier transformation to the time

domain,

G�ðxA; xS; tÞ

¼
ð
@DA

dx

ðt

�1
RðxA; x; t� t0ÞGþðx; xS; t

0Þdt0: (43)

Given the Green’s functions Gþðx; xS; tÞ and G�ðxA; xS; tÞ for

all xA and x at @DA for a range of source positions xS at @D0,

the reflection response RðxA; x; tÞ for all xA and x at @DA can

be resolved by multidimensional deconvolution.79–84 An image

can be obtained by selecting RðxA; xA; t ¼ 0Þ and repeating the

process for any xA in the region of interest.

We discuss an alternative imaging approach for the special

case of a laterally invariant medium. To this end we first

rewrite Eq. (42) as a spatial convolution, taking x1;S ¼ 0, hence

G�ðx1;A; x3;A; x3;S;xÞ

¼
ð1
�1

Rðx1;A � x1; x3;A;xÞGþðx1; x3;A; x3;S;xÞdx1:

(44)

We define the spatial Fourier transform of a function

Pðx1; x3;xÞ as

~Pðs1;x3;xÞ¼
ð1
�1

Pðx1;x3;xÞexpð�ixs1x1Þdx1; (45)

with s1 being the horizontal slowness. In the ðs1; x3;xÞ-
domain, Eq. (44) becomes

~G
�ðs1; x3;A; x3;S;xÞ ¼ ~Rðs1; x3;A;xÞ ~G

þðs1; x3;A; x3;S;xÞ
(46)

or, applying an inverse Fourier transformation to the time

domain,

G�ðs1; x3;A; x3;S; sÞ

¼
ðs

�1
Rðs1; x3;A; s� s0ÞGþðs1; x3;A; x3;S; s

0Þds0:

(47)

Given the Green’s functions Gþðs1; x3;A; x3;S; sÞ and

G�ðs1; x3;A; x3;S; sÞ, the reflection response Rðs1; x3;A; sÞ for

each horizontal slowness s1 can be resolved by 1 D

deconvolution. An image can be obtained by selecting

Rðs1; x3;A; s ¼ 0Þ and repeating the process for all s1 and for

any x3;A in the region of interest.

VI. NUMERICAL EXAMPLE

We illustrate the proposed methodology with a numerical

example, mimicking an ultrasound experiment. For simplicity

we consider a horizontally layered medium, consisting of three

homogeneous layers and a homogeneous half-space below the

deepest layer. The medium parameters of the layered medium,

aðx3Þ; brsðx3Þ, and crðx3Þ are shown in Fig. 2. In many

practical situations the parameters b31ðx3Þ and c3ðx3Þ will be

zero, but we choose them to be non-zero to demonstrate the

generality of the method. We define a source at xS ¼ ð0; 0Þ at

the top of the first layer, which emits a time-symmetric wavelet

S(t) with a central frequency of 600 kHz into the layered

medium. We use a wavenumber-frequency domain modelling

method,85 adjusted for non-reciprocal media, to model the

response to this source. The modelled reflection response,

Rðx; xS; tÞ � SðtÞ at @D0 (the asterisk denoting convolution), is

shown in Fig. 3. To emphasise the multiple scattering, a time-

dependent amplitude gain has been applied, using the function

exp f3t=375lsg. Note that the apices of the reflection hyperbo-

lae drift to the left with increasing time, which is a manifesta-

tion of the non-reciprocal medium parameters. Because the

medium is laterally invariant, the response to any other source

at the surface is just a laterally shifted version of the response

in Fig. 3. We apply the Marchenko method, discussed in detail

in Sec. V, to derive the focusing functions f 6
1 ðxS; xA; tÞ and

f
6ðcÞ
1 ðxS; xA; tÞ for fixed xS ¼ ð0; 0Þ and variable xA. As input

we use the reflection response Rðx; xS; tÞ � SðtÞ of the actual

medium and the direct arrivals TdðxA; x; tÞ and T
ðcÞ
d ðxA; x; tÞ,

modelled in a smoothed version of the truncated medium and

its complementary version (the smoothed medium is indicated

by the dotted lines in Fig. 2). For simplicity we approximate

the inverse direct arrivals Tinv
d ðxA; x; tÞ and T

invðcÞ
d ðxA; x; tÞ in

Eqs. (36) and (41) by the time-reversals TdðxA; x;�tÞ and

T
ðcÞ
d ðxA; x; �tÞ. For t� in the time windows wðxA; xS; tÞ and

wðcÞðxA; xS; tÞ we choose half the duration of the symmetric

wavelet S(t), i.e., t� ¼ 0:65ls, and the Heaviside functions are

tapered. Because we consider a laterally invariant medium, the

integrals in the right-hand sides of Eqs. (34), (35), (39), and

(40) are efficiently replaced by multiplications in the

wavenumber-frequency domain. In total we apply 20 iterations

FIG. 2. Solid lines: parameters aðx3Þ, b11ðx3Þ; b33ðx3Þ; b31ðx3Þ, c1ðx3Þ, and

c3ðx3Þ of the layered medium. Dotted lines: smoothed medium parameters,

used to model the initial estimate of the focusing functions.
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of the Marchenko scheme to derive the focusing functions

f 6
1 ðxS; xA; tÞ � SðtÞ and the same number of iterations to derive

f
6ðcÞ
1 ðxS; xA; tÞ � SðtÞ. These focusing functions are substituted

into Eqs. (29) and (37) (of which the integrals are also evaluated

via the wavenumber-frequency domain) to obtain the wave

fields GþðxA; xS; tÞ � SðtÞ and G�ðxA;xS; tÞ � SðtÞ. The super-

position of these wave fields is shown in grey-level display in

Fig. 4 in the form of snapshots (i.e., wave fields at frozen

time), for fixed xS ¼ ð0;0Þ and variable xA. The amplitudes are

clipped at 8% of the maximum amplitude. This figure clearly

shows the propagation of the wave field from the source through

the layered non-reciprocal medium. The wavefronts are asym-

metric as a result of the non-reciprocal medium parameters (for

a reciprocal medium these snapshots would be symmetric with

respect to the vertical dashed lines). Multiple scattering between

the layer interfaces is also clearly visible. The interfaces, indi-

cated by the solid horizontal lines in each of the panels in Fig. 4,

are only shown here to aid the interpretation of the retrieved

Green’s functions. However, no explicit information of these

interfaces has been used to retrieve these Green’s functions; all

information about the scattering at the layer interfaces comes

directly from the reflection response Rðx; xS; tÞ � SðtÞ. The snap-

shots also exhibit some weak spurious linear events (indicated

by the arrows in Fig. 4), which are mainly caused by the negli-

gence of evanescent waves and the absence of very large propa-

gation angles in the reflection response.

Next, we image the interfaces of the layered medium,

following the approach for a laterally invariant medium

described at the end of Sec. V. Figures 5(a) and 5(b) show

the downgoing and upgoing wave fields Gþðx1; x3;A; x3;S; tÞ
� SðtÞ and G�ðx1; x3;A; x3;S; tÞ � SðtÞ, respectively, for x3;A

¼ 13 cm (the depth of the horizontal dotted lines in Fig. 4).

The horizontal dotted lines in Figs. 5(a) and 5(b) indicate the

times of the snapshots in Fig. 4. Figures 5(c) and 5(d) show the

downgoing and upgoing wave fields Gþðs1; x3;A; x3;S; sÞ � SðsÞ
and G�ðs1; x3;A; x3;S; sÞ � SðsÞ, respectively, for a range of hori-

zontal slownesses s1. From these wave fields we derive the

reflection response Rðs1; x3;A; sÞ by inverting Eq. (47) for each

FIG. 4. Snapshots of fGþðxA; xS; tÞ
þG�ðxA; xS; tÞg�SðtÞ, retrieved via Eqs.

(29) and (37), for xS ¼ ð0; 0Þ and vari-

able xA.

FIG. 3. The modeled reflection response Rðx; xS; tÞ � SðtÞ at @D0. Note the

asymmetry with respect to the dashed line due to the non-reciprocal medium

parameters.
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horizontal slowness s1. The image at x3;A is obtained as

Rðs1; x3;A; s ¼ 0Þ. We repeat this for all x3;A between 0 and

25cm, in steps of 0.25mm. The result is shown in Fig. 6(a).

This figure clearly shows images of the three interfaces in Fig. 2.

For comparison, Fig. 6(b) shows, as a reference, the true reflec-

tivity. The relative amplitude errors of the imaged interfaces are

between 0.5% and 2%, except for slownesses js1j > 0:2 ms/m,

close to the evanescent field. Figure 6(c) shows the result of stan-

dard primary imaging, ignoring non-reciprocity. The trace at

s1 ¼ 0 contains images of the three interfaces at the correct

depths, but it also contains false images caused by the internal

multiples. Moreover, the traces for s1 6¼ 0 contain images at

wrong depths only. Finally, Fig. 6(d) is the result of primary

imaging, taking non-reciprocity into account (by applying one

iteration with our method). The three interfaces are imaged at

the correct depths for all horizontal slownesses, but the false

images are not suppressed.

VII. CONCLUSIONS

Marchenko imaging has recently been introduced as a novel

approach to account for multiple scattering in multidimensional

acoustic and electromagnetic imaging. Given the recent interest

in non-reciprocal materials, here, we have extended the

Marchenko approach for non-reciprocal media. We have derived

two iterative Marchenko schemes, one to retrieve focusing func-

tions in a truncated version of the actual medium and one to

retrieve these functions in a truncated version of the complemen-

tary medium. Both schemes use the reflection response of the

actual medium as input, plus estimates of the direct arrivals of

the transmission response of the truncated actual medium (for

the first scheme) and of the truncated complementary medium

(for the second scheme). We have derived Green’s function rep-

resentations, which express the downgoing and upgoing part of

the Green’s function inside the non-reciprocal medium, in terms

of the reflection response at the surface of the actual medium

and the focusing functions in the truncated actual and comple-

mentary medium. From these downgoing and upgoing Green’s

functions, a reflectivity image of the medium can be obtained.

We have illustrated the proposed approach at the hand of a

numerical example for a horizontally layered non-reciprocal

medium. This example shows an accurate wave field, propagat-

ing through the medium and scattering at its interfaces, retrieved

from the reflection response at the surface. Moreover, it shows

an accurately obtained artefact-free reflectivity image of the non-

reciprocal medium, which confirms that the proposed method

properly handles internal multiple scattering in a non-reciprocal

medium.
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APPENDIX A: WAVE EQUATIONS FOR
NON-RECIPROCAL MEDIA

We discuss wave equations for non-reciprocal media for

(1) electromagnetic waves, (2) elastodynamic waves, and (3)

acoustic waves. Next, (4) we derive a unified scalar wave

equation for non-reciprocal media.

1. Electromagnetic waves

We start with the Maxwell equations for electromag-

netic waves,

@tDi � �ijk@jHk ¼ �Je
i ; (A1)

@tBj þ �jkl@kEl ¼ �Jm
j : (A2)

Lower-case subscripts take the values 1, 2, and 3 and

Einstein’s summation convention applies to repeated sub-

scripts. Exceptions are made for subscripts r, s, and u, which

only take the values 1 and 3, and for subscript t, which

denotes time. In Eqs. (A1) and (A2), El ¼ Elðx; tÞ is the elec-

tric field strength, Hk ¼ Hkðx; tÞ the magnetic field strength,

Di ¼ Diðx; tÞ the electric flux density, Bj ¼ Bjðx; tÞ the mag-

netic flux density, Je
i ¼ Je

i ðx; tÞ and Jm
j ¼ Jm

j ðx; tÞ are source

functions in terms of external electric and magnetic current

densities and, finally, �ijk is the alternating tensor (or Levi-

Civita tensor), with �123 ¼ �312 ¼ �231 ¼ 1, �213 ¼ �321

¼ �132 ¼ �1, and all other components being zero. For

metamaterials, the field and source quantities in Eqs. (A1)

and (A2) are macroscopic quantities. These are sometimes

denoted as hHki, etc.,48 but for notational convenience we

drop the brackets. In the low-frequency limit, the effec-

tive constitutive relations for lossless metamaterials

read48,61,86

Di ¼ eijEj þ gijBj; (A3)

Hk ¼ hklEl þ �klBl; (A4)

where eij ¼ eijðxÞ is the permittivity, �kl ¼ �klðxÞ the inverse

permeability, and gij ¼ gijðxÞ and hkl ¼ hklðxÞ are coupling

parameters. The inverse permeability is related to the perme-

ability ljk ¼ ljkðxÞ via

ljk�kl ¼ djl; (A5)

with djl the Kronecker delta function. The medium parameters

in Eqs. (A3) and (A4) are effective parameters. In general,

they are anisotropic, even when they are isotropic at micro

scale. For a non-reciprocal lossless metamaterial they are

real-valued and obey the following symmetry relations:61,62,65

eij ¼ eji; �kl ¼ �lk; ljk ¼ lkj; gij ¼ �hji: (A6)

We reorganise the constitutive relations into a set of explicit

expressions for Di and Bj. To this end we multiply both sides

of Eq. (A4) by ljk. Using Eq. (A5) this gives

Bj ¼ �ljkhklEl þ ljkHk: (A7)

Substitution into Eq. (A3) gives

Di ¼ ðeil � gijljkhklÞEl þ gijljkHk: (A8)

Equations (A8) and (A7) form a new set of effective consti-

tutive relations,63,87

Di ¼ eo
ilEl þ nikHk; (A9)

Bj ¼ fjlEl þ ljkHk; (A10)

with

eo
il ¼ eil � gijljkhkl; (A11)

nik ¼ gijljk; (A12)

fjl ¼ �ljkhkl: (A13)

On account of Eq. (A6), these parameters obey the following

symmetry relations:61,88

eo
il ¼ eo

li; nlj ¼ fjl: (A14)

Substitution of constitutive relations (A9) and (A10) into

Maxwell Eqs. (A1) and (A2), using nlj ¼ fjl, gives

eo
il@tEl þ nik@tHk � �ijk@jHk ¼ �Je

i ; (A15)

nlj@tEl þ ljk@tHk þ �jkl@kEl ¼ �Jm
j : (A16)

Next, we assume that the wave fields, sources and medium

parameters are independent of the x2-coordinate.

Furthermore, we assume eo
21 ¼ eo

23 ¼ 0, l21 ¼ l23 ¼ 0, n11

¼ n22 ¼ n33 ¼ n13 ¼ n31 ¼ 0. Then Eq. (A15) for i¼ 1, 2, 3

(using eo
13 ¼ eo

31) and Eq. (A16) for j¼ 1, 2, 3 (using

l13 ¼ l31) yield six equations, describing wave propagation

in the (x1, x3)-plane. These can be separated into two inde-

pendent sets of equations, for transverse-electric (TE) waves

(with wave field quantities E2, H1, and H3) and for

transverse-magnetic (TM) waves (with wave field quantities

H2, E1, and E3). For TE wave propagation in the (x1, x3)-

plane we thus obtain

eo
22@tE2 þ n21@tH1 þ n23@tH3 þ @1H3 � @3H1 ¼ �Je

2;

(A17)

l11@tH1 þ l31@tH3 þ n21@tE2 � @3E2 ¼ �Jm
1 ; (A18)

l31@tH1 þ l33@tH3 þ n23@tE2 þ @1E2 ¼ �Jm
3 (A19)

and for TM wave propagation in the (x1, x3)-plane

l22@tH2 þ n12@tE1 þ n32@tE3 � @1E3 þ @3E1 ¼ �Jm
2 ;

(A20)
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eo
11@tE1 þ eo

31@tE3 þ n12@tH2 þ @3H2 ¼ �Je
1; (A21)

eo
31@tE1 þ eo

33@tE3 þ n32@tH2 � @1H2 ¼ �Je
3: (A22)

2. Elastodynamic waves

We start with the equilibrium of momentum56 and the

deformation equation59

@tmi � @jsij ¼ Fi; (A23)

@tekl �
1

2
ð@kvl þ @lvkÞ ¼ �hkl: (A24)

Here, mi ¼ miðx; tÞ is the momentum density, sij ¼ sijðx; tÞ
the stress tensor, ekl ¼ eklðx; tÞ the strain tensor, vk ¼ vkðx; tÞ
the particle velocity, and Fi ¼ Fiðx; tÞ and hkl ¼ hklðx; tÞ are

source functions in terms of external force and deformation-

rate density. For metamaterials, the field and source quanti-

ties in Eqs. (A23) and (A24) are macroscopic quantities.

These are sometimes denoted as hsiji, etc.,51 but for nota-

tional convenience we drop the brackets. They obey the fol-

lowing symmetry relations:

sij ¼ sji; ekl ¼ elk; hkl ¼ hlk: (A25)

In the low-frequency limit, the effective constitutive rela-

tions for metamaterials read51,52,56

mi ¼ qikvk þ S
ð2Þ
ikl ekl; (A26)

smn ¼ Sð1Þmnpvp þ cmnpqepq; (A27)

where qik ¼ qikðxÞ is the mass density tensor, cmnpq

¼ cmnpqðxÞ the stiffness tensor, and S
ð1Þ
mnp ¼ S

ð1Þ
mnpðxÞ and

S
ð2Þ
ikl ¼ S

ð2Þ
ikl ðxÞ are coupling parameters. The stiffness tensor

is related to the compliance tensor sklmn ¼ sklmnðxÞ via

sklmncmnpq ¼
1

2
ðdkpdlq þ dkqdlpÞ: (A28)

The medium parameters in Eqs. (A26) and (A27) are effec-

tive parameters. In general, they are anisotropic, even when

they are isotropic at micro scale. An example of a non-

reciprocal metamaterial is a phononic crystal of which the

stiffness and mass density are modulated in a wave-like fash-

ion.56 For this situation, Eqs. (A26) and (A27) are defined in

a coordinate system that moves along with the modulating

wave, so that the effective medium parameters in this coordi-

nate system are time-independent. For a non-reciprocal loss-

less metamaterial the medium parameters are real-valued

and obey the following symmetry relations:56

qik ¼ qki; (A29)

cmnpq ¼ cnmpq ¼ cmnqp ¼ cpqmn; (A30)

sklmn ¼ slkmn ¼ sklnm ¼ smnkl; (A31)

Sð1Þmnp ¼ Sð1Þnmp; (A32)

S
ð2Þ
ikl ¼ S

ð2Þ
ilk ; (A33)

S
ð2Þ
ikl ¼ �S

ð1Þ
kli : (A34)

We reorganise the constitutive relations into a set of explicit

expressions for mi and ekl. To this end we multiply both sides

of Eq. (A27) by sklmn. Using Eq. (A28) and ekl ¼ elk this

gives

ekl ¼ �sklmnSð1Þmnpvp þ sklmnsmn: (A35)

Substitution into Eq. (A26) gives

mi ¼ ðqip � S
ð2Þ
ikl sklmnSð1ÞmnpÞvp þ S

ð2Þ
ikl sklmnsmn: (A36)

Equations (A36) and (A35) form a new set of effective con-

stitutive relations,

mi ¼ qo
ipvp � nimnsmn; (A37)

ekl ¼ �fklpvp þ sklmnsmn; (A38)

with

qo
ip ¼ qip � S

ð2Þ
ikl sklmnSð1Þmnp; (A39)

nimn ¼ �S
ð2Þ
ikl sklmn; (A40)

fklp ¼ sklmnSð1Þmnp: (A41)

For convenience we use the same symbols (n and f) for the

coupling parameters as in the electromagnetic constitutive

relations, but of course these are different quantities. On

account of Eqs. (A29), (A31), and (A34) these parameters

obey the following symmetry relations:

qo
ip ¼ qo

pi; fklp ¼ flkp; nimn ¼ ninm; npkl ¼ fklp:

(A42)

Substitution of constitutive relations (A37) and (A38) into

Eqs. (A23) and (A24), using npkl ¼ fklp, gives

qo
ip@tvp � nimn@tsmn � @jsij ¼ Fi; (A43)

�npkl@tvp þ sklmn@tsmn �
1

2
ð@kvl þ @lvkÞ ¼ �hkl: (A44)

Next, we assume that the wave fields, sources and

medium parameters are independent of the x2-coordinate.

Furthermore, we assume qo
21 ¼ qo

23 ¼ 0, s1211 ¼ s1222

¼ s1233 ¼ s1213 ¼ s3211 ¼ s3222 ¼ s3233 ¼ s3213 ¼ 0, and n112

¼ n132 ¼ n211 ¼ n222 ¼ n233 ¼ n213 ¼ n312 ¼ n332 ¼ 0. Then

Eq. (A43) for i¼ 2 (using n2mn ¼ n2nm and smn ¼ snm) and

Eq. (A44) for k¼ 1, 3 [setting l¼2 in both cases and using

Eq. (A31)] yield three equations, describing the propagation

of horizontally polarised shear (SH) waves (with wave field

quantities v2, s21, and s23) in the (x1, x3)-plane,

qo
22@tv2 � 2n221@ts21 � 2n223@ts23 � @1s21 � @3s23 ¼ F2;

(A45)
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�4s1221@ts21 � 4s1223@ts23 þ 2n221@tv2 þ @1v2 ¼ 2h21;

(A46)

�4s1223@ts21 � 4s3223@ts23 þ 2n223@tv2 þ @3v2 ¼ 2h23:

(A47)

3. Acoustic waves

We derive the equations for acoustic waves from those

for elastodynamic waves. To this end we make the following

substitutions:

sij ¼ �dijp; (A48)

ekl ¼
1

3
dklH; (A49)

hkl ¼
1

3
dklq; (A50)

cmnpq ¼ dmndpqK: (A51)

Here, p ¼ pðx; tÞ is the acoustic pressure, H ¼ Hðx; tÞ the

cubic dilatation, q ¼ qðx; tÞ a source function in terms of

volume injection-rate density, and K ¼ KðxÞ the effective

bulk modulus of the medium. With these substitutions, Eqs.

(A23) and (A24) become

@tmi þ @ip ¼ Fi; (A52)

1

3
dkl@tH�

1

2
ð@kvl þ @lvkÞ ¼ �

1

3
dklq: (A53)

Multiplying both sides of the latter equation by dkl we obtain

@tH� @kvk ¼ �q: (A54)

Similarly, the constitutive relations (A26) and (A27) become

mi ¼ qikvk þ
1

3
S
ð2Þ
ill H; (A55)

�dmnp ¼ Sð1Þmnpvp þ
1

3
dmndpqKdpqH: (A56)

Multiplying both sides of the latter equation by 1
3
dmn we

obtain

�p ¼ 1

3
Sð1Þmmpvp þ KH: (A57)

On account of Eqs. (A29) and (A34), the effective medium

parameters in constitutive relations (A55) and (A57) obey

the following symmetry relations:

qik ¼ qki; S
ð2Þ
ill ¼ �S

ð1Þ
mmi: (A58)

We reorganise the constitutive relations into a set of explicit

expressions for mi and H. To this end we divide both sides

of Eq. (A57) by K, which gives

H ¼ �fpvp � jp; (A59)

with

fp ¼
1

3
jSð1Þmmp; (A60)

j ¼ 1=K: (A61)

Substitution into Eq. (A55) gives

mi ¼ qo
ipvp þ nip; (A62)

with

qo
ip ¼ qip �

1

9
jS
ð2Þ
ill Sð1Þmmp; (A63)

ni ¼ �
1

3
jS
ð2Þ
ill : (A64)

Equations (A62) and (A59) form a new set of constitutive

relations. On account of equation (A58), the medium param-

eters in these relations obey the following symmetry

relations

qo
ip ¼ qo

pi; np ¼ fp: (A65)

Substitution of constitutive relations (A62) and (A59) into

Eqs. (A52) and (A54), using np ¼ fp, gives

qo
ip@tvp þ ni@tpþ @ip ¼ Fi; (A66)

np@tvp þ j@tpþ @kvk ¼ q: (A67)

Next, we assume that the wave fields, sources and medium

parameters are independent of the x2-coordinate. Furthermore,

we assume qo
12 ¼ qo

32 ¼ 0 and n2 ¼ 0. Then Eq. (A66) for

i¼ 1, 3 (using qo
13 ¼ qo

31) and Eq. (A67) yield three equations,

describing the propagation of acoustic (AC) waves (with wave

field quantities p, v1, and v3) in the (x1, x3)-plane,

j@tpþ n1@tv1 þ n3@tv3 þ @1v1 þ @3v3 ¼ q; (A68)

qo
11@tv1 þ qo

31@tv3 þ n1@tpþ @1p ¼ F1; (A69)

qo
31@tv1 þ qo

33@tv3 þ n3@tpþ @3p ¼ F3: (A70)

4. Unified scalar wave equation

The systems of equations for transverse-electric (TE)

waves [Eqs. (A17)–(A19)], transverse-magnetic (TM) waves

[Eqs. (A20)–(A22)], horizontally polarised shear (SH) waves

[Eqs. (A45)–(A47)], and acoustic (AC) waves [Eqs.

(A68)–(A70)], can all be cast in the following form:

a@tPþ ð@r þ cr@tÞQr ¼ B; (A71)

ð@s þ cs@tÞPþ bsu@tQu ¼ Cs; (A72)

with bsu ¼ bus. Recall that subscripts r, s, and u only take

the values 1 and 3. The field quantities, medium parameters,

and source functions in these equations are given in Table I

for TE, TM, SH, and AC waves. We derive a scalar wave

equation for P by eliminating Qr from Eqs. (A71) and (A72).

We define the inverse of bsu via
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#rsbsu ¼ dru: (A73)

Because bsu is a symmetric 2� 2 tensor, the following sim-

ple expressions hold for #rs:

#11 ¼ b33=D; (A74)

#13 ¼ #31 ¼ �b31=D; (A75)

#33 ¼ b11=D; (A76)

with

D ¼ b11b33 � b2
31: (A77)

Apply @t to both sides of Eq. (A71) and ð@r þ cr@tÞ#rs to

both sides of Eq. (A72) and subtract the results. Using

the fact that the effective medium parameters are time-

independent, this gives

ð@r þ cr@tÞ#rsð@s þ cs@tÞP� a@2
t P

¼ ð@r þ cr@tÞ#rsCs � @tB: (A78)

APPENDIX B: DECOMPOSITION OF THE
RECIPROCITY THEOREMS FOR
NON-RECIPROCAL MEDIA

We derive (1) a unified matrix-vector wave equation for

non-reciprocal media, (2) apply decomposition to the opera-

tor matrix, and (3) use the symmetry properties of the

decomposed operators to derive reciprocity theorems for

decomposed wave fields.

1. Unified matrix-vector wave equation

Using the Fourier transform, defined in Eq. (7), we

transform Eqs. (A71) and (A72) to the space-frequency

domain, yielding

�ixaPþ ð@r � ixcrÞQr ¼ B; (B1)

ð@s � ixcsÞP� ixbsuQu ¼ Cs: (B2)

We derive a matrix-vector wave equation of the form

@3q ¼ Aqþ d; (B3)

with wave vector q ¼ qðx;xÞ and source vector d ¼ dðx;xÞ
defined as

q ¼ P
Q3

� �
; d ¼ Co

Bo

� �
(B4)

and operator matrixA ¼ Aðx;xÞ defined as

A ¼ A11 A12

A21 A22

� �
: (B5)

To this end, we separate the derivatives in the x3-direction

from the derivatives in the x1-direction in Eqs. (B1) and

(B2), the latter multiplied by #�1
33 #3s on both sides. Hence,

@3Q3 ¼ ixaPþ ixcrQr � @1Q1 þ B; (B6)

@3P ¼ �#�1
33 ð�ixQ3 � ix#3scsPþ #31@1P� #3sCsÞ:

(B7)

Q1 needs to be eliminated from Eq. (B6). From Eq. (B2),

multiplied on both sides by #1s, we obtain

Q1 ¼
1

ix
ð�ix#1scsPþ #1s@sP� #1sCsÞ: (B8)

Substitution of Eq. (B8) into Eq. (B6) gives

@3Q3 ¼ ixaPþ ixc3Q3 �
1

ix
ð@1 � ixc1Þ

� ð�ix#1scsPþ #1s@sP� #1sCsÞ þ B (B9)

or, upon substitution of Eq. (B7) and some reorganization,

@3Q3¼ ixa� 1

ix
ð@1� ixc1Þb1ð@1� ixc1Þ

� �
P

þðixc3�ð@1� ixc1Þ#13#
�1
33 ÞQ3þB

þ 1

ix
ð@1� ixc1ÞbsCs; (B10)

with

bs ¼ #1s � #13#
�1
33 #3s (B11)

or, using Eqs. (A74)–(A77),

b1 ¼ 1=b11; (B12)

b3 ¼ 0: (B13)

Equations (B7) and (B10) can be cast in the form of

the matrix-vector wave equation defined in Eqs. (B3)–(B5),

with

A11 ¼ ixc3 � dð@1 � ixc1Þ; (B14)

A12 ¼ ix#�1
33 ; (B15)

A21 ¼ ixa� 1

ix
ð@1 � ixc1Þb1ð@1 � ixc1Þ; (B16)

A22 ¼ ixc3 � ð@1 � ixc1Þd; (B17)

Co ¼ dC1 þ C3; (B18)

Bo ¼ Bþ 1

ix
ð@1 � ixc1Þb1C1; (B19)

with

d ¼ #�1
33 #13 ¼ �b31=b11: (B20)

The notation in the right-hand side of Eqs. (B14)–(B17)

should be understood in the sense that differential operators

act on all factors to the right of it. For example, the operator

@1b1@1 in Eq. (B16), applied via Eq. (B3) to the wave field

P, implies @1ðb1@1PÞ.
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2. Decomposition of the operator matrix

We use Eq. (45) to transform the operator matrix A
defined in Eq. (B5) to the slowness domain, assuming the

medium is laterally invariant at depth level x3. The spatial

differential operators @1 are thus replaced by ixs1, hence

~Aðs1; x3;xÞ

¼ ixfc3 � dðs1 � c1Þg ix#�1
33

ix#33s2
3 ixfc3 � dðs1 � c1Þg

 !
;

(B21)

with

s2
3 ¼ #�1

33 a� b1ðs1 � c1Þ2
� �

: (B22)

The eigenvalue decomposition of ~A reads

~A ¼ ~L ~H ~L�1
: (B23)

Using the standard approach to find eigenvalues and eigen-

vectors we obtain

~Hðs1; x3;xÞ ¼ ixkþ 0

0 �ixk�

� �
; (B24)

~Lðs1; x3;xÞ ¼
1ffiffiffi
2
p 1=

ffiffiffiffiffiffiffiffiffiffiffi
#33s3

p
1=

ffiffiffiffiffiffiffiffiffiffiffi
#33s3

p
ffiffiffiffiffiffiffiffiffiffiffi
#33s3

p
�

ffiffiffiffiffiffiffiffiffiffiffi
#33s3

p
 !

; (B25)

f~Lðs1; x3;xÞg�1 ¼ 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffi
#33s3

p
1=

ffiffiffiffiffiffiffiffiffiffiffi
#33s3

p
ffiffiffiffiffiffiffiffiffiffiffi
#33s3

p
�1=

ffiffiffiffiffiffiffiffiffiffiffi
#33s3

p
 !

;

(B26)

where

k6 ¼ s36fc3 � dðs1 � c1Þg; (B27)

s3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#�1

33 ða� b1ðs1 � c1Þ2Þ
q

; for ðs1 � c1Þ2 �
a
b1

;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#�1

33 ðb1ðs1 � c1Þ2 � aÞ
q

; for ðs1 � c1Þ2 >
a
b1

:

8>><
>>:

(B28)

Note that the intervals ðs1 � c1Þ2 � a=b1 and ðs1 � c1Þ2
> a=b1 in Eq. (B28) correspond to propagating and evanes-

cent waves, respectively.

3. Reciprocity theorems for decomposed wave fields

We derive reciprocity theorems for downgoing and

upgoing flux-normalized wave fields, exploiting the symme-

try properties of operator ~L. Reciprocity theorems (17) and

(18) can be compactly written asð
@D0

fqðcÞA g
t
NqBdx ¼

ð
@DA

fqðcÞA g
t
NqBdx (B29)

and

ð
@D0

q
†
AKqBdx ¼

ð
@DA

q
†
AKqBdx; (B30)

with q defined in Eq. (20), superscript t denoting transposi-

tion, † transposition and complex conjugation, and matrices

N and K defined as

N ¼ 0 1

�1 0

� �
; K ¼ 0 1

1 0

� �
: (B31)

According to Eq. (19), vector q is (for both states) related to

vector p via q ¼ Lp, with p defined in Eq. (20). Here we

use this relation and the symmetry properties of composition

operator ~L to recast Eqs. (B29) and (B30) into reciprocity

theorems for downgoing and upgoing wave fields.

Using the spatial Fourier transform, defined in Eq. (45),

and Parseval’s theorem, we first rewrite the integrals in Eqs.

(B29) and (B30) asð1
�1
fqðcÞA ðx1;x3;xÞgt NqBðx1;x3;xÞdx1

¼ x
2p

ð1
�1
f~qðcÞA ð�s1;x3;xÞgtN~qBðs1;x3;xÞds1

(B32)

and ð1
�1
fqAðx1;x3;xÞg†

KqBðx1;x3;xÞdx1

¼ x
2p

ð1
�1
f~qAðs1;x3;xÞg†

K~qBðs1; x3;xÞds1; (B33)

respectively, where x3 can represent the depth level of @D0

or @DA. Assuming the medium parameters are laterally

invariant at x3, the composition operation q ¼ Lp can be

rewritten in the slowness domain as

~qðs1; x3;xÞ ¼ ~Lðs1; x3;xÞ~pðs1; x3;xÞ; (B34)

with ~Lðs1; x3;xÞ defined in Eq. (B25). Substituting this in

the right-hand sides of equations (B32) and (B33) yields

x
2p

ð1
�1
f~qðcÞA ð�s1; x3;xÞgt

N~qBðs1; x3;xÞds1

¼ x
2p

ð1
�1
f~pðcÞA ð�s1; x3;xÞgtf~LðcÞð�s1; x3;xÞgt

� N ~Lðs1; x3;xÞ~pBðs1; x3;xÞds1 (B35)

and

x
2p

ð1
�1
f~qAðs1; x3;xÞg†

K~qBðs1; x3;xÞds1

¼ x
2p

ð1
�1
f~pAðs1; x3;xÞg†f ~Lðs1; x3;xÞg†

�K ~Lðs1; x3;xÞ~pBðs1; x3;xÞds1; (B36)

respectively. From the definition of ~Lðs1; x3;xÞ in Eq.

(B25), with s3 defined in Eq. (B28), recalling that superscript

ðcÞ implies that cr is replaced by �cr, we find
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f~LðcÞð�s1; x3;xÞgt
N ~Lðs1; x3;xÞ ¼ �N;

for �1 < s1 <1; (B37)

f~Lðs1; x3;xÞg†
K ~Lðs1; x3;xÞ ¼ J;

for ðs1 � c1Þ2 �
a
b1

; (B38)

with J defined as

J ¼ 1 0

0 �1

� �
: (B39)

Note that Eq. (B37) holds for propagating and evanescent

waves, whereas Eq. (B38) holds for propagating waves only.

Substituting Eqs. (B37) and (B38) into Eqs. (B35) and (B36)

and using Parseval’s theorem again yieldsð1
�1
fqðcÞA ðx1; x3;xÞgt NqBðx1; x3;xÞdx1

¼ �
ð1
�1
fpðcÞA ðx1; x3;xÞgtNpBðx1; x3;xÞdx1

(B40)

and ð1
�1
fqAðx1; x3;xÞg†

KqBðx1; x3;xÞdx1

¼
ð1
�1
fpAðx1; x3;xÞg†

JpBðx1; x3;xÞdx1; (B41)

respectively. Equation (B40) is exact, whereas in Eq. (B41)

evanescent waves are neglected. Using these equations at

boundaries @D0 and @DA in reciprocity theorems (B29) and

(B30) yieldsð
@D0

fpðcÞA g
t
NpBdx ¼

ð
@DA

fpðcÞA g
t
NpBdx (B42)

and ð
@D0

p†
AJpBdx ¼

ð
@DA

p†
AJpBdx; (B43)

respectively. Substituting the expressions for p [Eq. (20)], N

[Eq. (B31)], and J [Eq. (B39)] we obtain the reciprocity the-

orems of Eqs. (21) and (22) for the downgoing and upgoing

fields Uþ and U�.
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