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Wavefield focusing is often achieved by time-reversal mirrors, where wavefields emitted by a

source located at the focal point are evaluated at a closed boundary and sent back, after time-

reversal, into the medium from that boundary. Mathematically, time-reversal mirrors are derived

from closed-boundary integral representations of reciprocity theorems. In heterogeneous media,

time-reversal focusing theoretically involves in- and output signals that are infinite in time and the

resulting waves propagate through the entire medium. Recently, integral representations have been

derived for single-sided wavefield focusing. Although the required input signals for this approach

are finite in time, the output signals are not and, similar to time-reversal mirroring, the resulting

waves propagate through the entire medium. Here, an alternative solution for double-sided wave-

field focusing is derived. This solution is based on an integral representation where in- and output

signals are finite in time, and where the energy of the waves propagating in the layer embedding the

focal point is smaller than with time-reversal focusing. The potential of the proposed method is

explored with numerical experiments involving a head model consisting of a skull enclosing a

brain. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5110716

[YJ] Pages: 3521–3530

I. INTRODUCTION

With time-reversal mirrors, wavefields can be focused at

a specified focal point in an arbitrary heterogeneous medium.1

To realize such a mirror, wavefields from a source at the focal

point are evaluated at a closed boundary and sent back, after

time-reversal, into the medium from that boundary. As can be

demonstrated from Green’s theorem, this procedure leads to a

solution of the homogeneous wave equation, consisting of an

acausal wavefield that focuses at the focal point and a causal

wavefield, propagating from the focal point through the entire

medium to the boundary.2,3 Applications can be found in vari-

ous areas. In medical acoustics, time-reversal mirroring has

been applied for kidney stone and tumor ablation.4,5 The

time-reversal concept is also a key ingredient for various

source localization6,7 and reflection imaging8,9 algorithms.

Assuming that the medium is lossless and sufficiently hetero-

geneous, both the acausal wavefield that propagates towards

the focal point and the causal wavefield that propagates

through the medium to the boundary are unbounded in time.

Recently, it was shown that wavefields in one-dimensional

media can also be focused from a single open-boundary by

solving the Marchenko equation,10 being a familiar result

from inverse scattering theory.11 In this case a different focus-

ing condition is achieved,12 and when the solution of the

Marchenko equation is emitted into the medium from a single

open-boundary, a focus emerges at the focal point, followed

by a causal Green’s function that propagates from the focal

point through the entire medium to the boundary.13 This result

can be extended to three-dimensional wave propagation14 and

various focusing conditions15 and has seen various applica-

tions in exploration geophysics, such as reflection imaging16

and acoustic holography.17 Although the focusing function is

finite in time, the Green’s function that emerges after wave-

field focusing has infinite duration. In this paper, it will be dis-

cussed how to craft a focusing wavefield that, once injected in

the medium from two open-boundaries, propagates to a speci-

fied focal point in finite time, without being followed by any

Green’s function. It will also be discussed how this focusing

method theoretically reduces wavefield propagation in the

layer, which embeds the focal point. Numerical tests involv-

ing a complex model will show that wavefield propagation is

largely reduced in the layer embedding the focal point despite

the fact that exact focusing functions cannot be retrieved.

II. THEORY

Coordinates in three-dimensional space are defined as

x¼ (x1, x2, x3), and t denotes time. Although the derived the-

ory can be modified for various types of wave phenomena,

acoustic wave propagation is considered. The medium is loss-

less and characterized by propagation velocity c(x) and mass

density q(x). It is assumed that these properties are indepen-

dent of time. The acoustic pressure wavefield is expressed as

p(x, t). For simplicity all derivations are carried out in the fre-

quency domain, and the temporal Fourier transform of p(x, t)
is defined by pðx;xÞ ¼

Ð1
�1 pðx; tÞ exp ð�jxtÞdt, where x is

the angular frequency. All wavefields obey the wave equation,

which is defined in the frequency domain as

@i
1

q xð Þ @ip x;xð Þ
� �

þ x2

q xð Þc2 xð Þ p x;xð Þ ¼ �jxq x;xð Þ;
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with @i standing for the spatial derivative @=@xi, where i
takes the values 1, 2, and 3. Einstein’s summation conven-

tion is applied, meaning that summation is carried out over

repeated indices. Note that the source function q(x, x),

standing for volume-injection rate density, is scaled by �jx.

Since the wave equation is often defined without this scaling

factor elsewhere in the literature, the wavefields that appear

in this paper should be divided with (�jx) to be consistent

with that literature. The Green’s function G(x, xS, x) is

defined as the solution of the wave equation for qðx;xÞ
¼ dðx� xSÞ, where xS is the source location.

It has been shown how the real part of the Green’s func-

tion with a source at xA and a receiver at xB can be expressed

by integrating a specific combination of observations from

sources at xA and xB over any boundary @D that encloses

volume D, where xA 2D and xB 2D [Fig. 1(a)]:

2< G xB; xA; xð Þ
� �
¼
þ
@D

d2x
1

jxq xð Þ ðG x; xB;xð Þni@iG
� x; xA;xð Þ

�G� x; xA;xð Þni@iGðx; xB;xÞÞ; (2)

where ni is the outward pointing normal of @D and super-

script * denotes complex conjugation. We call Eq. (2) a rep-

resentation of the Green’s function G(xB, xA; x). In time-

reversed acoustics, observations from a source at xA are

reversed in time and injected into the medium at @D. The

complex-conjugate Green’s function G*(x, xA, x) stands for

the Fourier transform of the time-reversed observations.

Equation (2) can thus be interpreted as if the injected field

were propagated forward in time to any location xB by the

Green’s function G(xB, x, x), which is equal to G(x, xB, x)

through source-receiver reciprocity.18 As can be learned

from Eq. (2), this procedure yields for any location xB the

real part of the Green’s function G(xB, xA; x), which can be

interpreted as the Fourier transform of the superposition of

an acausal Green’s function, focusing at x¼ xA, and a causal

Green’s function that propagates from xA through the entire

medium to @D. Since the source functions of this acausal

and causal Green’s function cancel each other, their superpo-

sition satisfies the homogeneous wave equation [i.e., Eq. (1)

for q(x, x)¼ 0]. Note that this homogeneous wave equation

is valid also for heterogeneous media. Note also that time-

reversed acoustics results in a wavefield that at time t¼ 0 is

non-zero just at the focal point,19 but it poses no constraints

on the wavefield at other times.

We also consider a peculiar closed boundary @D

¼ @D1 [ @D2 [ @Dcyl, where @D1 and @D2 are horizontal

boundaries connected by a cylindrical surface @Dcyl with

infinite radius [Fig. 1(b)]. For this configuration, the contri-

bution of the integral in Eq. (2) over @Dcyl vanishes and the

following representation holds:17

2< G xB; xA; xð Þ
� �
¼
ð
@D1[@D2

d2x
1

jxq xð Þ ðG x; xB;xð Þn3@3G� x; xA;xð Þ

� G� x; xA;xð Þn3@3Gðx; xB;xÞÞ: (3)

In addition to standard time-reversed acoustics, interest-

ing focusing wavefields can be derived also by using focus-

ing functions, which have recently been introduced to denote

the solutions of the multidimensional Marchenko equation.14

In this derivation, the same horizontal boundaries @D1 and

@D2 as in Eq. (3) are used, but an additional auxiliary

boundary @DA is introduced. Here, @DA is a horizontal

plane inside D that intersects with the focal point xA¼ (x1,A,

x2,A, x3,A), so that volume D is divided into a subvolume

D1, located above @DA, and a subvolume D2, located

below @DA [Fig. 1(c)]. Note that the normals along @DA

associated with subvolumes D1 and D2 are antiparallel

[Fig. 1(c)].

We deduce new sets of representation theorems for vol-

umes D1 and D2. First of all, a reciprocity theorem of the

convolution type18 associated with volume D1 is introduced,

ð
D1

d3x pAqB � pBqAð Þ

¼
ð
@D1

d2x
1

jxq
pBn3@3pA � pAn3@3pBð Þ

�
ð
@DA

d2x
2

jxq
pþA @3p�B þ p�A @3pþB
� �

: (4)

Subscripts A and B indicate two states. The integral over

@DA has been modified by using fundamental properties20

of the (Helmholtz) operator in Eq. (2), where the wavefields

have been decomposed into downgoing (indicated by super-

script þ) and upgoing (indicated by superscript �) constitu-

ents. In addition, the field has been normalized such that

p¼ pþ þ p�. Similarly, a reciprocity theorem of the correla-

tion type21 can be modified as

FIG. 1. (Color online) (a) Cross-section of the configuration in the (x1, x3)-plane for Eq. (2). Volume D is enclosed by @D (solid line) with outward-pointing

normal vectors n. (b) Cross-section of the configuration for Eq. (3). Volume D is enclosed by @D1 [ @D2 [ @Dcyl (solid black lines). (c) Cross-section of the

configuration for Eq. (13) Volume D is split into D1 and D2, surrounded by @D1 [ @DA (blue line) and @D2 [ @DA (red line), respectively. Note that the

normals n relative to @D1 [ @DA and @D2 [ @DA across @DA are antiparallel. The focal point is at xA 2 @DA.
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ð
D1

d3x p�AqB þ pBq�A
� �

¼
ð
@D1

d2x
1

jxq
pBn3@3p�A � p�An3@3pB

� �

�
ð
@DA

d2x
2

jxq
pþ�A @3pþB þ p��A @3p�B
� �

: (5)

Two representations will be derived for subvolume

D1. In both representations, state A is source-free (qA¼ 0).

The medium properties in this state are identical to the

physical properties c(x) and q(x) within D1, and can be

arbitrarily set below @DA.14 Here, the properties of the

medium are chosen such that the halfspace below @DA is

non-scattering. A particular solution of the source-free wave

equation will be substituted in this state, which is referred to as

focusing function pA¼ f1(x, xA, x), where xA is the focal point

and x is a variable coordinate inside the domain D.14 This

focusing function is subject to a different focusing condition

than what is achieved by time-reversed acoustics. In this paper,

the condition is defined as fþ1 ðx; xA; xÞjx2@DA
¼ dðxH � xH;AÞ,

where xH¼ (x1, x2) is a point in the focal plane, while

f�1 ðx; xA; xÞjx2@DA
vanishes.

The first condition states that the downgoing part of the

focusing function focuses at xA not followed by any other

event. This is achieved by cancelling any further down-

going wave via destructive interference with propagation of

the coda of the focusing function (see Ref. 14 for more

details). After having focused, this downgoing function con-

tinues its propagation into the lower half-space. Since the

lower half-space was chosen to be scattering-free, the

upgoing part of the focusing function at @DA is zero. Note

that this condition does not pose any constraint on the wave-

field at time t¼ 0 away from the focal plane @DA. In state B,

the medium properties are equivalent to the physical

medium, where an impulsive source is located at xB 2D,

yielding qB¼ d(x – xB) and pB¼G(x, xB; x). Substituting

these quantities into Eqs. (4) and (5) brings

h x3;A � x3;Bð Þf1 xB; xA; xð Þ þ
2

jxq xAð Þ
@3G� xA; xB;xð Þ

¼
ð
@D1

d2x
1

jxq xð Þ ðG x; xB;xð Þn3@3f1 x; xA;xð Þ

� f1 x; xA;xð Þn3@3Gðx; xB;xÞÞ (6)

and

h x3;A � x3;Bð Þf �1 xB; xA; xð Þ þ
2

jxq xAð Þ
@3Gþ xA; xB;xð Þ

¼
ð
@D1

d2x
1

jxq xð Þ ðG x; xB;xð Þn3@3f �1 x; xA;xð Þ

� f �1 x; xA;xð Þn3@3Gðx; xB;xÞÞ; (7)

where h(x3) is a Heaviside function, with h(x3)¼ 0 for x3 < 0;
h x3ð Þ ¼ 1=2 for x3¼ 0 and h(x3)¼ 1 for x3> 0.

Convolution and correlation reciprocity theorems asso-

ciated with volume D2 are also introduced,

ð
D2

d3x pAqB � pBqAð Þ

¼
ð
@D2

d2x
1

jxq
pBn3@3pA � pAn3@3pBð Þ

þ
ð
@DA

d2x
2

jxq
pþA @3p�B þ p�A @3pþB
� �

; (8)

ð
D2

d3x p�AqB þ pBq�A
� �

¼
ð
@D2

d2x
1

jxq
pBn3@3p�A � p�An3@3pB

� �

þ
ð
@DA

d2x
2

jxq
pþ�A @3pþB þ p��A @3p�B
� �

: (9)

Two representations can be similarly derived for subvo-

lume D2. For both representations, state A is source-free

(qA¼ 0), with medium properties as in the physical state in D2

and a non-scattering halfspace above @DA. Focusing function

pA¼ f2(x, xA, x) will be substituted, being a solution of

the source-free wave equation, with the focusing condition

f�2 ðx; xA; xÞjx2@DA
¼ dðxH � xH;AÞ, while fþ2 ðx; xA; xÞjx2@DA

vanishes. In state B, conditions are the same as in the derivation

of the previous representations. Substituting these quantities

into Eq. (8) and Eq. (9) yields

h x3;B � x3;Að Þf2 xB; xA; xð Þ �
2

jxq xAð Þ
@3Gþ xA; xB;xð Þ

¼
ð
@D2

d2x
1

jxq xð Þ ðG x; xB;xð Þn3@3f2 x; xA;xð Þ

� f2 x; xA;xð Þn3@3Gðx; xB;xÞÞ (10)

and

h x3;B � x3;Að Þf �2 xB; xA; xð Þ �
2

jxq xAð Þ
@3G� xA; xB;xð Þ

¼
ð
@D2

d2x
1

jxq xð Þ G x; xB;xð Þn3@3f �2 x; xA;xð Þ
�

�f �2 x; xA;xð Þn3@3G x; xB;xð Þ
�
: (11)

In the following we discuss two focusing strategies based on

the focusing functions introduced in Eqs. (6), (7) and (10),

(11).

Standard (double-sided) Marchenko Focusing can be

achieved by injecting f1 and f2 from @D1 and @D2, respec-

tively. The corresponding wavefields propagate from @D1

and @D2 to the focal point, subsequently generating scat-

tering events in D2 and D1. Note that focusing functions

f1 and f2 are defined in reference states involving non-

scattering media below or above @DA,14 but in this physi-

cal experiment they are injected in the actual medium, thus

generating scattering events below or above @DA. These

scattered wavefields eventually interfere with the focal

plane. Standard (double-sided) Marchenko Focusing can

be mathematically expressed by the summation of Eqs. (6)

and (10),
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h x3;A�x3;Bð Þf1 xA;xB;xð Þþh x3;B�x3;Að Þf2 xB;xA;xð Þ

þ 2

jxq xAð Þ
@3Gþ xA;xB;xð Þ�

2

jxq xAð Þ
@3Gþ xA;xB;xð Þ

¼
ð
@D1

d2x
1

jxq xð Þ G x;xB;xð Þn3@3f1 x;xA;xð Þ
�

� f1 x;xA;xð Þn3@3Gðx;xB;xÞ
�

þ
ð
@D2

d2x
1

jxq xð Þ G x;xB;xð Þn3@3f2 x;xA;xð Þ
�

� f2 x;xA;xð Þn3@3Gðx;xB;xÞ
�
: (12)

An additional focusing strategy can be derived by fur-

ther inspection and manipulation of Eqs. (6), (7) and (10),

(11). The different orientation of the normals along @DA

when associated with subvolumes D1 or D2 results in

opposite signs of the Green’s functions terms in the left-

hand sides of Eqs. (6), (7) and (10), (11), respectively.

Therefore, when Eq. (6), (7), (10), and (11) are added

together, these Green’s functions terms cancel out and it

follows that

2< f xB;xA;xð Þ
� �
¼
ð
@D1[D2

d2x
1

jxq xð Þ G x;xB;xð Þn3@32<ff x;xA;xð Þg
�

�2<ff x;xA;xð Þgn3@3G x;xB;xð Þ
�
; (13)

where

f ðx; xA; xÞ ¼ hðx3;A � x3Þf1ðx; xA; xÞ
þ hðx3 � x3;AÞf2ðx; xA; xÞ: (14)

Akin to Eqs. (2) and (12), this result can be used for

wavefield focusing. By injecting the real part of the wave-

field f(x, xA; x), as defined by Eq. (14), into the medium at

boundaries @D1 and @D2, one can reconstruct this wavefield

throughout the volume, as shown by Eq. (13). Due to the

intrinsic properties of focusing functions, i.e., the destructive

interference of the codas with up- and down-going reflec-

tions, any scattering event is confined within a spatial-

temporal window defined by the propagation of the initial

component of the focusing function (for more details, see

Ref. 14). As a consequence, the wavefield in Eq. (13) propa-

gates towards the focal point in finite time and back to the

surface in finite time again.

Moreover, due to the focusing properties of f1 and f2, the

wavefield f theoretically interacts with the focal plane @DA

only at x¼ xH,A at t¼ 0. We refer to the focusing achieved

by Eq. (13) as “finite time focusing with reduced spatial

exposure,” which we will often abbreviate as “finite time

focusing.”

III. NUMERICAL EXAMPLES

For illustration purposes, the right-hand sides of Eqs.

(2), (3), (12), and (13) are computed in a two-dimensional

layered medium [Fig. 2(a)]. The focusing function f1 is

retrieved using a standard configuation.22,23 More precisely,

iterative substitution of the coupled Marchenko equations

allows to retrieve up- and down-going components of focus-

ing functions associated with arbitrary locations in a

medium. The methodology requires as input the single-sided

reflection response at the acquisition surface and an estimate

of the initial focusing function, i.e., the time-reversed direct

wavefield from the specified location in the subsurface to the

FIG. 2. (Color online) (a) True velocity model used in the first numerical experiment, corresponding to a 1.5D model associated with a cross-line of a human

head model (see Fig. 4 and Table I). The red star and the dashed line represent the focal point and plane, respectively. For the time-reversal focusing experi-

ment associated with Eq. (2) (see the first column in Fig. 3), wavefields emanating from the focal point and recorded at evenly sampled receivers distributed

along a closed boundary @D1 [ @D2 [ @Dcyl (thick red and green lines) are used. For the time-reversal focusing experiment associated with Eq. (3) (see the

second column in Fig. 3), only wavefields recorded along horizontal boundaries @D1 [ @D2 (thick red lines) are used. For the focusing experiment associated

with Eqs. (12) and (13) (see the third and fourth columns in Fig. 3), a total of evenly sampled 481� 2 co-located sources and receivers (indicated by the thick

red lines) are used to compute reflection data along the upper (@D1) and the lower (@D2) horizontal boundaries. Standard Marchenko methods are employed

to retrieve focusing functions f1 and f2 using reflection data associated with @D1 and @D2, respectively (Ref. 14). (b) Smooth velocity model used to compute

the initial focusing function emanating from the focusing point (red star) and recorded along the upper (@D1) and the lower (@D2) horizontal boundaries

(thick red lines).
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acquisition surface. Here, to retrieve the focusing function

f1, reflection data are then collected along the upper bound-

ary of the model [@D1 in Fig. 2(a)], while the estimate of

the initial focusing function with a 0.8 MHz Ricker wavelet

emanating from the focal point [red star in Fig. 2(b)] is com-

puted in a smooth velocity model [see Fig. 2(b)]. Similarly,

the focusing function f2 is retrieved using reflection data col-

lected along the lower boundary of the model [@D2 in Fig.

2(a)]. The estimate of the initial focusing function emanating

from the focal point [red star in Fig. 2(b)] to the lower

boundary receivers is also computed in the smooth velocity

model in Fig. 2(b).

Note that all data used in this paper are computed using

a finite difference time domain vector-acoustic forward

solver.22

The solutions (i.e., the left-hand sides) from Eqs. (2),

(3), and (12) have infinite support in time, which could be

disadvantageous for various applications. Things are differ-

ent when Eq. (13) is considered: since the focusing func-

tions f1 and f2 are confined in time and space by the direct

propagation path from the boundary to the focal point,11 so

is their superposition f. Hence, the solution associated with

Eq. (13) seems preferable for wavefield focusing in finite

time rather than those related to Eqs. (2), (3), and (12).

More precisely, the real part of the focusing function f con-

tains a series of wavefronts that are emitted into the

medium from the upper and lower boundaries, and only

the first of these wavefronts reaches the focal point. The

remaining events are encoded such that any ingoing reflec-

tion of the first wavefront is canceled. The focusing condi-

tions satisfied by time-reversed acoustics and finite time

focusing differ drastically with respect to wavefield propa-

gation in the focal plane. While in time-reversed acoustics

no constraint is posed on the propagation along the focal

plane before or after time t¼ 0, finite time focusing limits

the interaction of the wavefield with the focal plane at the

focal point and at time t¼ 0 only.

We illustrate this in Fig. 3 by showing propagation

snapshots associated with the right-hand sides of Eqs. (2),

(3), (12), and (13). Note that for the sake of brevity in the

FIG. 3. (Color online) First column: Snapshots of the time-reversed solution when a closed boundary is considered [Eq. (2)]. The focusing condition is satis-

fied, and the wavefield at time t¼ 0 is perfectly isotropic (green arrow). At time t> 0 direct (green arrows) as well as scattered (blue arrows) components of

the wavefield are properly reconstructed. Red arrows indicate propagation of scattered waves through the focal plane. Light-red horizontal strips indicate

strong reflectors, shown here for interpretation only, while the red star and the black dashed line stand for the focal point and plane, respectively. Second

Column: Snapshots of the time-reversed solution when partial boundaries are considered [Eq. (3)]. Due to the finite extent of the injection boundaries @D1

and @D2, the wavefield at time t¼ 0 is not perfectly isotropic (green arrow), and artefacts, with maximum amplitude � 5% of the focus magnitude, contami-

nate the wavefield throughout the entire simulation (black arrows). At times t> 0 scattered components of the wavefield are relatively well reconstructed (blue

arrows), but the direct component of the wavefield exhibits distorted amplitudes along the horizontal direction (green arrows). Red arrows indicate propagation

of scattered waves through the focal plane. Third Column: Snapshots corresponding to standard (double-sided) Marchenko focusing [Eq. (12)]. The focusing

condition is only satisfied at time t¼ 0 At times t> 0 scattered (red arrows) components of the wavefield are not suppressed by destructive interference with

propagation of the coda of f. Fourth column: Snapshots corresponding to finite time focusing [Eq. (13)]. The focusing condition is satisfied except for low

amplitude artefacts, with amplitude � 2% of the focus magnitude, propagating along the focal plane at times t> 0 (green arrows). Note that the wavefield at

time t¼ 0 is not supposed to be vanishing throughout the domain (black arrows indicate propagation of the coda of f). At times t> 0 scattered (blue arrows)

components of the wavefield are suppressed by destructive interference with propagation of the coda of f.

J. Acoust. Soc. Am. 145 (6), June 2019 Meles et al. 3525



following we only focus on positive times, but identical con-

siderations apply for the acausal components of the wave-

fields associated with Eqs. (2), (3), and (13), while no

acausal Green’s functions terms propagate in Eq. (12). Note

also that for readability purposes red, green, black, and blue

arrows used in Figs. 3–7 are indicated with R, G, K and B,

respectively. In time-reversed acoustics, the superposition of

an acausal and a causal Green’s function focusing and propa-

gating away from x¼ xA, is expected [Eqs. (2) and (3)].

Propagation around the foci is perfectly isotropic when Eq.

(2) is used [green arrows in Figs. 3(a), 3(e), 3(i)], while the

solution of Eq. (3) results in spurious events [black arrows in

Fig. 3(b), 3(f), 3(j)] and artefacts, especially in the estimates

of the direct wavefield along the focal plane [compare the

amplitude of the wavefronts indicated by the green arrows in

Figs. 3(e), 3(i) and 3(f), 3(j)]. These low amplitude artefacts

are due to the finite extent of the horizontal boundaries

employed in our numerical experiment when Eq. (3) is con-

sidered.19 Note that in any case reflected waves propagating

through the focal plane are well recovered both by Eqs. (2)

and (3) [red arrows in Figs. 3(i) and 3(j)]. In standard

(double-sided) Marchenko focusing [Eq. (12)], focusing is

achieved at time t¼ 0, but at later times Green’s functions

terms propagate within the layer embedding the focal plane

[red arrows in Fig. 3(k)]. In finite time focusing, destructive

interference of up- and down-going wavefields prevents pri-

mary as well as multiple reflections to propagate through the

focal plane at any time [blue arrows in Figs. 3(h), 3(l)]. The

interaction of the wavefield with the layer embedding the

focal point is therefore limited to the propagation of the

direct components of f. Note that no direct or scattered

waves propagating from and to the acquisition surfaces inter-

act with the focal plane except that at the focal point.
The theory and methodology presented here hold also

for laterally variant models, and we show this by applying

our focusing strategy to a second numerical experiment. In

this case we consider a model consisting of a slice of a

human head (see Fig. 4 and Table I) and explore the applica-

bility of the method to medical imaging/treatment.24 This

second example is chosen since it is particularly challenging

for Marchenko focusing due to the presence of thin layers,

diffractors, and dipping layers.14 As for the previous exam-

ple, the focusing functions f1 and f2 are retrieved using stan-

dard Marchenko configurations, with reflection data

collected along the upper and the lower boundaries of the

model. Note that for actual therapy curved arrays are usually

preferred over the linear acquisition configurations used

here. The derivation of a new formulation of finite time

focusing to conform to more realistic therapeutical configu-

rations will be the topic of future research. Initial focusing

functions with a 0.8 MHz Ricker wavelet emanating from

the focal point (red star in Fig. 4) to receivers at the upper

and the lower boundaries are used. Note that for this exam-

ple the initial focusing functions are computed in the true

model (Fig. 4).

We first compare the focusing properties of solutions of

Eqs. (3), (12), and (13) by showing in Figs. 5 and 6 snap-

shots of the corresponding wavefields associated with time

intervals [0–0.4] s. and [1.2–1.6] s, respectively. Note that

for the sake of brevity in the following we only focus on pos-

itive times, but identical considerations apply for the acausal

components of the wavefields associated with Eqs. (3) and

(13), while no acausal Green’s functions terms propagate in

Eq. (12). In time-reversed acoustics (first column in Fig. 5),

the superposition of an acausal and a causal Green’s function

focusing and propagating away from x¼ xA, is expected.

However, due to the employed truncated boundaries, low

FIG. 4. (Color online) (a) True velocity model used in the second numerical experiment. The red star and the gray dashed line represent the focal point and

plane, respectively. The green line indicates the 1D profile used for the first numerical experiment. For the Time-reversal focusing experiment associated with

Eq. (3) (see first columns of Figs. 5 and 6), wavefields emanating from the focal point and recorded at evenly spaced receivers located along horizontal bound-

aries @D1 [ @D2 (thick red lines) are used. For the focusing experiments associated with Eqs. (12) and (13) (see second and third columns of Figs. 5 and 6), a

total of 481� 2 evenly sampled co-located sources and receivers (thick red lines) are used to compute reflection data along the upper (@D1) and the lower

(@D2) horizontal boundaries. Standard Marchenko methods are employed to retrieve focusing functions f1 and f2 using reflection data associated with @D1

and @D2, respectively. This velocity model is also used to compute the initial focusing function emanating from the focal point (red star) and recorded along

the upper (@D1) and the lower (@D2) horizontal boundaries (thick red lines). (b) True density model used in the second numerical experiments. (c) Anatomy

of the brain used in the second numerical experiment. Keys as for (a).

TABLE I. Velocity and density values for the head model used in the sec-

ond experiment (see Fig. 4).

Tissue Velocity (m/s) Density (kg/m3)

Muscle 1588 1090

Skull 2813 1908

Water 1578 994

Blood 1578 1050

Brain 1546 1046
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amplitude artefacts occurring at time t¼ 0 contaminate the

wavefield throughout the domain, especially in the proximity

of the focal point [red arrows in Fig. 5(a)]. Similar artefacts

at time t¼ 0 also contaminate the wavefield associated with

Eqs. (12) (second column in Fig. 5) and (13) (third column

in Fig. 5). In Figs. 5(d) and 5(g) the wavefield associated

with Eq. (3) is shown to propagate almost isotropically

around the focal point. More precisely, direct components of

the wavefield G(xB, xA), associated via Eq. (3) with laterally

scattered waves G(x, xA) and G(x, xB),25 interact with the

focal plane [green arrow in Fig. 5(d)] at positive times. By

contrast, the wavefields associated with Eqs. (12) and (13)

do not exhibit similar components [green arrows in Figs.

5(e), 5(f), 5(h), 5(i)]. The red arrow in Fig. 5(g) indicates a

primary reflection associated with the wall of the skull above

the focal plane. A similar event, corresponding to a Green’s

function term, is present Fig. 5(h). On the other hand, the

coda of the focusing function [black arrows in Figs. 5(f)]

interferes destructively with this reflection [blue arrow in

Fig. 5(i)]. Due to the complexity of the model, i.e., the pres-

ence of thin layers, diffractors and dipping layers,14 the can-

cellation of the ingoing reflection is not perfect [red arrows

in Fig. 6(c)], but the amplitude of the reflected wave is gen-

erally reduced [blue arrow in Fig. 6(c)]. Similar consider-

ations apply also for the reflection associated with the wall

of the skull below the focal plane, where again the coda of

the focusing function [black arrows in Fig. 6(c)] is shown to

interfere destructively [blue arrows in Figs. 6(f) and 6(i)]

with the ingoing-reflection [red arrows in Figs. 6(g) and

6(h)].

The differences between the three discussed focusing

strategies are visualized in another way in Fig. 7, where the

L2 norm of the pressure wavefields associated with Eqs. (3),

(12), and (13) is plotted as a function of space. Note that all

FIG. 5. (Color online) Focusing properties of solutions of Eqs. (3), (12), and (13) in the time interval [0–0.4 s]. First column: Snapshots of the time-reversed

solution when partial boundaries are considered [Eq. (3)]. Due to the finite extent of the injection boundaries @D1 and D2, small amplitude artefacts contami-

nate the wavefield at time t¼ 0 [red arrows in (a)]. Due to the strong lateral reflections, at times t> 0 direct components of the wavefield are relatively well

reconstructed [green arrows in (d) and (g)]. The red arrow in (g) indicates a scattered wave reflected at the interface above the focal plane. Second column:

Snapshots corresponding to Standard (double-sided) Marchenko Focusing [Eq. (12)]. The focusing condition is satisfied except that for low amplitude arte-

facts, contaminating the domain at time t¼ 0 [red arrow in (b)]. Note that the wavefield at time t¼ 0 is not supposed to be vanishing throughout the domain

(black arrows indicate propagation of the coda of f). At times t> 0 scattered components of the wavefield are not attenuated by destructive interference with

propagation of the coda of f [red arrow in (h)]. Third column: Snapshots of the finite time focusing with minimal spatial exposure solution [Eq. (13)]. The

focusing condition is satisfied except for low amplitude artefacts, contaminating the domain at time t¼ 0 [red arrow in (c)]. Note that the wavefield at time

t¼ 0 is not supposed to be vanishing throughout the domain (black arrows indicate propagation of the coda of f). At times t> 0 scattered components of the

wavefield are attenuated by destructive interference with propagation of the coda of f [blue arrow in (i)]. Keys as in Fig. 3.
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maps are normalized to allow proper comparison of the three

focusing methods. In standard time-reversal focusing, the

norm of the pressure wavefield exhibits a peak at the focal

point [blue arrow in Fig. 7(a)], and significant values are

almost homogeneously distributed throughout the brain [red

arrows in Fig. 7(a)]. This indicates that wave propagation

occurs in the entire brain, which could be undesirable for

medical treatments designed to target the focal point while

not affecting other portions of the brain. Significant wave-

field propagation throughout the brain occurs also when stan-

dard (double-sided) Marchenko focusing is employed [red

arrows in Fig. 7(b)]. The situation is rather different when

focusing is achieved via solution of Eq. (13). Due to the

peculiar focusing condition associated with Marchenko

schemes,12 the corresponding wavefield still exhibits a peak

at the focal point [blue arrow in Fig. 7(c)] while being

mostly confined into a double cone centered at the focal

point [blue cones in Fig. 7(c)]. Black and green arrows point

at regions of the brain with minimal wavefield propagation

inside the brain and large amplitude spots outside the brain

associated with the propagation of the coda of the focusing

functions, respectively. The different performances of time-

reversal, standard (double-sided) Marchenko, and finite time

focusing can be better appreciated in Figs. 7(d), 7(e), where

horizontal (d) and vertical (e) sections of the maps in Fig.

7(a)–7(c) are plotted in Decibel scale (20 log10ðkpkÞ). As

expected, along the horizontal section (d) finite time focus-

ing exhibits reduced wavefield propagation, whereas along

the vertical direction (e) the three diagrams are rather simi-

lar. Note that in time-reversal mirroring wavefield propaga-

tion across the focal plane occurs before and after time t¼ 0,

in standard (double-sided) Marchenko focusing at time t� 0

and in finite time focusing the interaction of the wavefield

with the focal point theoretically takes place only at time

t¼ 0. Therefore, in time-reversal mirroring and standard

(double-sided) Marchenko focusing the norm of the wave-

field at the focal point is intrinsically associated with both

direct and scattered waves, while in finite time focusing it is

theoretically only associated with direct components of the

focusing function f. The overall focusing performances of

the discussed methods are summarized in Table II. The brain

is divided in four domains, enclosed by the blue and the red

curves in Figs. 7(a)–7(c), which represent cones converging

to the focal plane from the horizontal (i.e., the acquisition

FIG. 6. (Color online) Focusing properties of solutions of Eqs. (3), (12), and (13) in the time interval [1.2–1.6] s. First column: Snapshots of the time-reversed

solution when partial boundaries are considered [Eq. (3)]. Red arrows point at reflections with the skull walls. Second column: Snapshots corresponding to

standard (double-sided) Marchenko focusing [Eq. (12)]. The red arrows in (b), (e), (h) indicate scattered waves reflected at the interface above and below the

focal plane. Third column: Snapshots of the finite time focusing with minimal spatial exposure solution [Eq. (13)]. Black and blue arrows point at the coda of

the focusing functions and attenuated reflections, respectively. Keys as in Fig. 3.
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surface) and the vertical sides of the model, respectively.

The norm of the wavefields associated with the three focus-

ing strategies discussed in this paper is computed in the

whole brain and in the areas enclosed by the curves. Values

are normalized with respect to the norms associated with

time-reversal mirroring in each individual domain. While in

the whole brain and in the blue areas the three focusing strat-

egies exhibit similar norm values, in the red areas finite time

focusing involves significantly smaller values than time-

reversal mirroring and standard (double-sided) Marchenko

focusing.

IV. DISCUSSION

The wavefields resulting from the time-reversal and

standard (double-sided) Marchenko methods, as formulated

by Eqs. (2), (3), and (12) have infinite support in time, which

could be disadvantageous for various applications. Things

are different in finite time focusing [Eq. (13)], which

involves wavefields that are confined in time and space by

the direct propagation path from the boundary to the focal

point. As can be observed in Figs. 3, 5, and 6, the real part of

the focusing function f contains a series of wavefronts that

once emitted into the medium from the surrounding bound-

ary interfere destructively with any ingoing reflection of the

first pulse. Even when perfect focusing is not achieved, the

amplitude of ingoing reflections is at least suppressed.

Hence, the focusing function might be an attractive solution

of the wave equation for focusing below strong acoustic con-

trasts. By canceling or reducing the amplitude of ingoing

reflections, we achieve the desirable situation of a single

wavefront or reduced energy to reach the focal point and

propagate along the focal plane. Moreover, the peculiar

nature of the focusing achieved by Eq. (13) minimizes the

spatial exposure to the incident wavefield of the layer

embedding the focal point, and this could possibly be benefi-

cial for sensitivity analysis and/or safety concern in medical

treatment.26 Focusing functions associated with Eq. (13)

may also therefore be useful input for inversion. Akin to

Green’s functions, they obey the wave equation, which can

be inverted for the medium properties c(x) and q(x). In par-

ticular cases, they may be preferred over Green’s functions

for this purpose, since the entire signals can be captured by a

concise recording in the time domain and exhibit peculiar

sensitivity distributions. In the numerical tests considered

FIG. 7. (Color online) Normalized L2 norm of the pressure wavefields associated with the left-hand sides of Eqs. (3) (a), (12) (b), and (13) (c), respectively,

plotted as functions of space. In standard time-reversal focusing (a), the norm of the pressure wavefield exhibits a peak at the focal point [blue arrow in (a)],

and significant values are almost homogeneously distributed throughout the model [red arrows in (a)]. A similar distribution, with large values along the focal

plane, is obtained when standard (double-sided) Marchenko focusing is used (b). In finite time focusing, the wavefield is still exhibiting a peak at the focal

point [blue arrow in (c)] while being somehow confined into a double cone centered at the focal point [blue cones in (c)]. Black and green arrows point at

regions of the brain with minimal wavefield propagation and large amplitude spots associated with the propagation of the coda of the focusing functions,

respectively. Red and blue dashed lines indicate horizontal and vertical sections used in (d)–(e), respectively. Horizontal (d) and vertical (e) slices of the maps

in (a)–(c), plotted in decibel scale (20 log10ðkpkÞ). Black arrows in (d) indicate large portions of the focal plane [red dashed lines in (a)–(c)] where wavefield

propagation in finite time focusing is significantly reduced as opposed to time-reversal and standard (double-sided) Marchenko focusing. The red and black

arrows in (e) indicate zones along the green dashed lines in (a)–(c) where finite time focusing and time-reversal focusing involves slightly larger and slightly

smaller wavefield intensity, respectively. Green arrows point at zones outside of the skull where standard (double-sided) Marchenko and finite time focusing

involve propagation of coda exhibiting large amplitudes [see green arrows in (c)]. Keys as in Fig. 4.

TABLE II. Norm differences of the wavefields associated with the two new

focusing strategies discussed in this paper [standard (double-sided)

Marchenko focusing (SMF) and finite time focusing (FTF)] in the whole

brain, first column, in the blue cones, second column, and in the red cones,

third column. Values are compared to the norm associated with time-

reversal mirroring in each domain.

Brain Blue cones Red cones

SMF þ1% þ16% �26%

FTF �14% þ5% �45%
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here, we used either kinematically equivalent (first numerical

experiment) or exact velocity models (second numerical

experiment) to compute the initial focusing functions. When

a poor background model is used, solutions from above and

below could focus at different points, and the terms associ-

ated with the Green’s functions in Eqs. (6), (7) and (10), (11)

would not cancel out, thus violating the focusing condition

exhibited by f. Note that this restriction holds also for the

time-reversal method when applied from two sides. The

human skull involves some of the most critical challenges

for Marchenko applications, i.e., the presence of thin layers,

diffractors, dipping layers, and strong absorption. In our

numerical test an acoustic and lossless model was employed.

Note that using a lossless head model allowed us to test the

method on a simplified and yet very challenging problem.

However, neglecting dissipation, which plays a key role in

medical treatment, limits the immediate applicability of the

current algorithm of finite time focusing, and a new theoreti-

cal framework to include absorption needs to be devised.

Recent research has shown that when media are accessible

from two sides (which is a strict requirement in the focusing

strategy discussed in this paper), Marchenko redatuming can

be adapted to account for dissipation,27 and these insights

could foster future research devoted to extension of the pro-

posed method to account for dissipative media.

V. CONCLUSIONS

A new integral representation has been derived for

wavefield focusing in an acoustic medium. Unlike in the

classical representation for this problem based on time-

reversed acoustics, the input and output signals for this type

of focusing are finite in time and only involve propagation of

direct waves in the layer that embeds the focal point. This

leads to a reduction of spatial and temporal exposure when

wavefield focusing is applied in practice. The method has

been validated numerically for a head model consisting of

hard (skull) and soft (brain) tissue. There results confirm that

the proposed method can outperform classical time-reversed

acoustics.
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