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ABSTRACT:
With the Marchenko method, it is possible to retrieve the wave field inside a medium from its reflection response at

the surface. To date, this method has predominantly been applied to naturally occurring materials. This study

extends the Marchenko method for applications in layered metamaterials with, in the low-frequency limit, effective

negative constitutive parameters. It illustrates the method with a numerical example, which confirms that the method

properly accounts for multiple scattering. The proposed method has potential applications, for example, in non-

destructive testing of layered materials. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001761
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I. INTRODUCTION

Building on classical inverse scattering theory,1–4 recent

research has opened new ways of retrieving the wave field

inside a medium from its reflection response at the sur-

face5–13 and using this for imaging.14–22 These methods,

named after Marchenko,1 have in common that they account

for multiple scattering inside the medium and yet require

only a single-sided reflection response as input, together

with a background model of the medium.

The Marchenko method has almost exclusively been

applied to naturally occurring materials (with the exception

of an application to non-reciprocal materials23), but it has

not yet been applied to metamaterials with, in the low-

frequency limit, effective negative constitutive parameters.

A classical reference on wave propagation in materials with

negative permittivity and permeability is the paper by

Veselago,24 in which it is shown that such materials exhibit

negative refraction. Since the discovery by Pendry25 that

negative refraction makes a perfect lens, there has been a

significant interest in electromagnetic wave propagation in

metamaterials.26–34 Almost simultaneously, after the first

fabrication of an elastic metamaterial with effective nega-

tive elastic parameters,35 much research has been directed

toward wave propagation in elastic metamaterials.36–45

Here, we modify the Marchenko method for metamate-

rials. We start by formulating a wave equation that holds for

elastodynamic and electromagnetic waves in natural materi-

als and metamaterials. We show that metamaterials, with

negative phase slowness and positive group slowness, are by

definition dispersive. This implies that a modification of the

standard Marchenko method is needed. Next, we derive

wave field representations for a layered medium, consisting

of a mix of natural materials and metamaterials. Using these

representations, we derive the Marchenko method for such a

medium. This method uses new window functions that bet-

ter acknowledge the dispersive behaviour of waves propa-

gating through metamaterial. We conclude by illustrating

the modified Marchenko method with a numerical example.

II. WAVE EQUATION FOR NATURAL MATERIALS AND
METAMATERIALS

A. Basic equations

Throughout this paper, we consider scalar wave propa-

gation in the two-dimensional (2D) plane. This allows for

capturing of different wave phenomena by a unified wave

equation. We define the Cartesian coordinate vector in the

2D plane as x ¼ ðx1; x3Þ, where positive x3 denotes depth

in a horizontally layered medium. Quantities that are a

function of space and time are denoted as uðx; tÞ, where t
stands for time. We define the temporal Fourier transform

of uðx; tÞ as

uðx;xÞ ¼
ð1
�1

uðx; tÞ exp ðixtÞdt; (1)

where x is the angular frequency and i the imaginary unit.

For convenience, quantities in the time and frequency

domain are denoted by the same symbol (here u). The

inverse Fourier transform is defined as

uðx; tÞ ¼ 1

2p

ð1
�1

uðx;xÞ exp ð�ixtÞdx: (2)

Throughout this paper, quantities in the time domain are

real-valued, hence Eq. (1) implies uðx;�xÞ ¼ u�ðx;xÞ,
where the asterisk denotes complex conjugation. Using this

property, the inverse Fourier transform can be rewritten as
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uðx; tÞ ¼ 1

p
<
ð1

0

uðx;xÞ exp ð�ixtÞdx; (3)

where < denotes that the real part is taken. Since the integral

is taken over positive frequencies only, it is sufficient to

restrict our derivations in the frequency domain to positive

frequencies. This avoids complications related to the sign of

the frequency.

In the space-frequency domain, we consider the follow-

ing system of equations in the low-frequency limit for 2D

wave propagation in an inhomogeneous, transverse isotropic

natural material, or metamaterial:

�ixaPþ @1Q1 þ @3Q3 ¼ B; (4)

�ixb1Q1 þ @1P ¼ C1; (5)

�ixb3Q3 þ @3P ¼ C3: (6)

These equations hold for acoustic (AC), horizontally polar-

ised shear (SH), transverse-electric (TE), and transverse-

magnetic (TM) wave fields. Operator @i stands for the partial

differential operator @=@xi. The wave fields [Pðx;xÞ and

Qiðx;xÞ] and sources [Bðx;xÞ and Ciðx;xÞ] are space- and

frequency-dependent macroscopic quantities. These are

often denoted as hPi, etc.,33 but for notational convenience

we will not use the brackets. The medium parameters

[aðx3;xÞ and biðx3;xÞ] are effective parameters (which, in

a layered medium, are varying in the x3-direction only). At

layer interfaces, where the medium parameters are discon-

tinuous, the boundary conditions state that the wave field

quantities P and Q3 are continuous. The wave fields, sour-

ces, and medium parameters are specified for the different

wave phenomena in Table I. For AC and SH waves, p is the

acoustic pressure, sij the stress, vi the particle velocity, j the

compressibility, qij the mass density, sijkl the compliance, q
the volume injection-rate density, Fi the external force den-

sity, and hij the external deformation-rate density. For TE

and TM waves, Ei is the electric field strength, Hi the mag-

netic field strength, eij the permittivity, lij the permeability,

Je
i the external electric current density, and Jm

i the external

magnetic current density.

For natural materials, the real parts of the medium

parameters a and bi are positive (and the imaginary parts are

positive or zero). Such a medium will be called a double-

positive (DPS) medium.30 For metamaterials, the real part

of one or more of the medium parameters is negative. When

both a and bi have negative real parts, we speak of a double-

negative (DNG) medium.30 The phase slowness of a DNG

medium is negative,24 see also Sec. II D. To obey causality,

the group slowness should be positive. These opposite slow-

nesses imply that the parameters of a DNG medium are

frequency-dependent and complex-valued (with positive

imaginary parts).28 The inherent dispersive character of

DNG media implies that the Marchenko method needs to be

modified for such media (see Sec. IV).

In the following, we separate the space- and frequency-

dependency of the medium parameters for DPS as well as

DNG media according to

aðx3;xÞ ¼ a0ðx3ÞhaðxÞ; (7)

biðx3;xÞ ¼ bi;0ðx3ÞhbðxÞ; (8)

with positive real-valued a0ðx3Þ and bi;0ðx3Þ. For DNG

media, an often used model for the frequency-dependent

functions is the Drude model,26 where

haðxÞ ¼ 1� x2
a

xðxþ iCaÞ
; (9)

hbðxÞ ¼ 1�
x2

b

xðxþ iCbÞ
; (10)

with small positive real-valued Ca and Cb. Note that

<ðhaÞ < 0 for x2 < x2
a � C2

a and =ðhaÞ > 0 (where =
denotes the imaginary part) for all positive x. Similar prop-

erties hold for hb. Hence, in the low-frequency limit, these

parameters obey the mentioned conditions for a DNG

medium. In Sec. II E, we confirm that the group slowness

for this type of DNG medium is positive.

In the following, we assume that the medium parame-

ters (for DPS and DNG media) are defined by the more gen-

eral relations [Eqs. (7) and (8)]. Whenever we use the Drude

model for DNG media [Eqs. (9) and (10)], we mention this

explicitly.

B. Matrix-vector wave equation

We reorganise the basic Eqs. (4)–(6) into a matrix-

vector wave equation. This wave equation is a suited start-

ing point for the derivation of representations for the

Marchenko method in Sec. III.

We define the spatial Fourier transform of a function

uðx1; x3;xÞ as

~uðs1; x3;xÞ ¼
ð1
�1

uðx1; x3;xÞ exp ð�ixs1x1Þdx1;

(11)

with s1 being the horizontal slowness. This transformation

accomplishes a decomposition of the wave field uðx1; x3;xÞ
into plane-wave components ~uðs1; x3;xÞ. We use Eq. (11)

to transform Eqs. (4)–(6) from the space-frequency domain

ðx1; x3;xÞ to the slowness-depth-frequency domain

ðs1; x3;xÞ. Differentiations with respect to x1 thus become

multiplications by ixs1. Eliminating ~Q1 from the

TABLE I. Quantities in Eqs. (4)–(6).

P Q1 Q3 a b1 b3 B C1 C3

AC p v1 v3 j q11 q33 q F1 F3

SH v2 �s21 �s23 q22 4s1221 4s3223 F2 2h21 2h23

TE E2 H3 �H1 e22 l33 l11 �Je
2 �Jm

3 Jm
1

TM H2 �E3 E1 l22 e33 e11 �Jm
2 Je

3 �Je
1
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transformed equations, we obtain the following matrix-

vector wave equation46–52

@3~q ¼ ~A~q þ ~d; (12)

with wave vector ~qðs1; x3;xÞ and source vector ~dðs1; x3;xÞ
defined as

~q ¼
~P
~Q3

� �
and ~d ¼

~C3

~B þ s1
~C1=b1

� �
(13)

and matrix ~Aðs1; x3;xÞ defined as

~A ¼ 0 ixb3

ixs2
3=b3 0

� �
; (14)

with

s2
3 ¼ ab3 � gs2

1; with g ¼ b3=b1: (15)

Note that vector ~q defined in Eq. (13) contains the wave field

quantities that are continuous at interfaces between layers

with different medium parameters. Moreover, these quanti-

ties constitute the power flux density j in the x3-direction via

j ¼ ð1=2Þ<f ~P
� ~Q3g. In the matrix-vector notation, this can

be written as

j ¼ 1

4
~q†K~q; (16)

where † denotes transposition and complex conjugation and

where matrix K is defined as

K ¼ 0 1

1 0

� �
: (17)

The quantity s2
3 defined in Eq. (15) is the square of the verti-

cal phase slowness. Using Eqs. (7) and (8), it can be written

as

s2
3 ¼

1

c2
0

hahb � g0s2
1; (18)

with

c0 ¼ ða0b3;0Þ�1=2
and g0 ¼ b3;0=b1;0: (19)

Since ha and hb are complex-valued functions, s2
3 is complex-

valued as well. Defining ha ¼ hr
a þ ihi

a and hb ¼ hr
b þ ihi

b, we

may write

<ðs2
3Þ ¼

1

c2
0

ðhr
ahr

b � hi
ahi

bÞ � g0s2
1; (20)

=ðs2
3Þ ¼

1

c2
0

ðhr
ahi

b þ hi
ahr

bÞ: (21)

For DPS media, with hr
a; hr

b; hi
a; hi

b all positive (or zero), we

have =ðs2
3Þ � 0. For this situation, Fig. 1(a) illustrates s2

3 in

the complex plane for a fixed frequency x and variable s1.

For DNG media, with hr
a; hr

b both negative and hi
a; hi

b both

positive, we have =ðs2
3Þ < 0. For this situation, s2

3 is illus-

trated in the complex plane in Fig. 1(b).

C. Decomposition of matrix-vector wave equation

We reorganise the matrix-vector wave equation into an

equation for downgoing and upgoing waves. The eigenvalue

decomposition of matrix ~Aðs1; x3;xÞ reads

~A ¼ ~L ~K ~L
�1
; (22)

with ~Kðs1; x3;xÞ; ~Lðs1; x3;xÞ, and f~Lðs1; x3;xÞg�1
defined

as

~K ¼ ixs3 0

0 �ixs3

� �
; (23)

~L ¼ 1 1

s3=b3 �s3=b3

� �
; (24)

~L
�1 ¼ 1

2

1 b3=s3

1 �b3=s3

� �
: (25)

The vertical phase slowness s3 is defined as the square-root

of s2
3, i.e.,

s3 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2
0

hahb � g0s2
1

s
: (26)

It is illustrated in Figs. 1(c) and 1(d) for DPS and DNG media,

respectively. In both cases, there are two square-roots indicated

FIG. 1. Squared slowness s2
3 in the complex plane for (a) DPS and (b) DNG

medium. Slowness s3 in the complex plane for (c) DPS and (d) DNG

medium. The solid curves in (c) and (d) represent the proper square-roots of

those in (a) and (b).
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by the two curves in these figures. In Sec. II D, we discuss how

to choose the proper square-roots.

We introduce a decomposed field vector ~p and a

decomposed source vector ~s via

~q ¼ ~L~p; (27)

~d ¼ ~L~s; (28)

with

~p ¼ ~P
þ

~P
�

 !
; ~s ¼ ~S

þ

~S
�

 !
: (29)

Substitution of Eqs. (22), (27), and (28) into the matrix-

vector wave Eq. (12) yields

@3~p ¼ ð~K � ~L
�1
@3

~LÞ~p þ ~s: (30)

This is a coupled system of equations for the wave field

components ~P
þ

and ~P
�

, respectively. According to Eqs.

(13), (24), (27), and (29), we have

~P ¼ ~P
þ þ ~P

�
; (31)

hence, the wave field components ~P
þ

and ~P
�

have the same

physical dimension as the field quantity ~P. Therefore, we

speak of field-normalised decomposition (opposed to flux-

normalized decomposition).

From the theory for lossless DPS media, it is known

that the components ~P
þ

and ~P
�

represent downgoing and

upgoing wave fields, respectively.48–51,53 This still holds

true for DPS and DNG media with or without losses, pro-

vided the proper choices are made for the sign of the vertical

phase slowness s3. This is discussed in Sec. II D.

D. Phase slowness

We can express the power flux density j in the x3-direc-

tion in terms of downgoing and upgoing wave fields by

substituting ~q ¼ ~L~p into Eq. (16). Using Eqs. (17) and (24),

we thus obtain

j¼ 1

4
~q†K~q ¼ 1

4
~p† ~L

†
K~L~p

¼ 1

2
<ðs3=b3Þðj ~P

þj2� j ~P�j2Þ þ=ðs3=b3Þ=ðð ~P
þÞ� ~P

�Þ:

(32)

For the discussion on the sign of the vertical phase slowness

s3, consider an independent downgoing wave field ~P
þ

in a

homogeneous medium. For this situation, the power flux

density can be written as

j ¼ 1

2
<ðs3=b3Þj ~P

þj2 ¼
hr

b<ðs3Þ þ hi
b=ðs3Þ

2b3;0jhbj2
j ~Pþj2; (33)

where we used Eq. (8) to express b3 in terms of the positive

quantity b3;0 and hb ¼ hr
b þ ihi

b. We now determine the

signs of <ðs3Þ and =ðs3Þ such that ~P
þ

has a positive power

flux density in the positive x3-direction.24 For DPS media,

with hr
b and hi

b both positive, we find that this condition is

fulfilled when <ðs3Þ > 0 and =ðs3Þ > 0. Hence, the solid

curve in Fig. 1(c) represents the proper square-root of s2
3.

We write this square-root as

s3 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2
0

hahb � g0s2
1

s
; (34)

with the þ sign in front of the square-root denoting that

<ðs3Þ > 0. For DNG media, with hr
b negative and hi

b posi-

tive, we find that j is positive when <ðs3Þ < 0 and

=ðs3Þ > 0. Hence, for this situation, the solid curve in

Fig. 1(d) represents the proper square-root of s2
3. We write

this square-root as

s3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2
0

hahb � g0s2
1

s
; (35)

with the – sign in front of the square-root denoting that

<ðs3Þ < 0. Equations (34) and (35) express the fact that the

(real part of the) vertical phase slowness is positive for

DPS media and negative for DNG media. Given these

square-roots, we find in the same way that j is negative for

an independent upgoing wave field ~P
�

in a homogeneous

medium.

Figure 2 shows s2
3 and s3 in the complex plane for the

limiting situation of vanishing losses, i.e., vanishing imagi-

nary parts of the medium parameters. Note that the real and

imaginary branches of s3 correspond to propagating and eva-

nescent waves, respectively.

FIG. 2. As Fig. 1, for the limiting case of vanishing loss parameters. The

curves in (c) and (d) are the proper square-roots of those in (a) and (b).
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E. Group slowness

Despite the fact that the vertical phase slowness in a DNG

medium is negative, the vertical group slowness should be pos-

itive. This restricts the choice of models for the functions

haðxÞ and hbðxÞ. We define the vertical group slowness as

sgr
3 ¼ <

�
@ðxs3Þ
@x

�
: (36)

Substituting Eq. (35), taking for convenience haðxÞ
¼ hbðxÞ ¼ hðxÞ, we obtain

sgr
3 ¼ <

h hþ x
@h

@x

� �
� g0c2

0s2
1

c2
0s3

0
BB@

1
CCA: (37)

We analyse this expression for the Drude model of Eqs. (9)

and (10), with xa ¼ xb ¼ x0 and Ca ¼ Cb ¼ C, hence

hðxÞ ¼ 1� x2
0

xðxþ iCÞ (38)

and

hþ x@h=@x ¼ 1þ x2
0

ðxþ iCÞ2
: (39)

The condition for a DNG medium, <ðhÞ < 0, requires

x2 < x2
0 � C2.

We evaluate the sign of sgr
3 for two special situations.

First, we consider vertically propagating waves, i.e., s1 ¼ 0.

From Eq. (35), we find s3 ¼ h=c0 for x2 < x2
0 � C2. Using

this in Eq. (37), we obtain26

sgr
3 ¼
<ðhþ x@h=@xÞ

c0

¼ 1

c0

< 1þ x2
0

ðxþ iCÞ2

 !
: (40)

Assuming small C (a sufficient condition is C < x), we find

indeed that the vertical group slowness sgr
3 is positive.

Next, we consider non-zero s1 and analyse Eq. (37)

for the limit C! 0. From Eqs. (38) and (39), we find

h ¼ 1� x2
0=x

2 and hðhþ x@h=@xÞ ¼ 1� x4
0=x

4. Using

this in Eq. (37), we obtain

sgr
3 ¼

g0c2
0s2

1 þ x4
0=x

4 � 1

c2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0=x
2 � 1Þ2=c2

0 � g0s2
1

q : (41)

For x < x0, the nominator is positive for all s1. For propa-

gating waves, the denominator is real-valued and positive as

well, hence sgr
3 is positive for this situation.

III. REPRESENTATIONS FOR THE MARCHENKO
METHOD

A. Propagation invariants for DPS and DNG media

We consider a medium configuration consisting of a

homogeneous DPS upper half-space x3 � x3;0 and a

horizontally layered lower half-space x3 > x3;0, which may

consist of an arbitrary mix of DPS and DNG layers. The

effective medium parameters in this configuration are

aðx3;xÞ and biðx3;xÞ. These parameters may vary continu-

ously as a function of x3 within each layer and jump by a

finite amount at layer interfaces. We assume that the losses

are small, and for the derivation of the Marchenko method,

we ignore the imaginary parts of aðx3;xÞ and biðx3;xÞ
(however, in the numerical example in Sec. V, we model the

input data with complex-valued medium parameters).

Assuming that the sources are restricted to the upper half-

space x3 � x3;0, the wave field inside the layers is governed

by wave Eq. (12) with ~d ¼ 0. Moreover, ~q is continuous at

layer interfaces. We derive propagation invariants,54–57

which we will use for the derivation of the representations

for the Marchenko method in Sec. III B. We consider two

independent wave vectors ~qA and ~qB and will show that
~qt

AN~qB and ~q†
AK~qB are propagation invariants (i.e., that they

are independent of the coordinate x3 for x3 > x3;0). Here

superscript t denotes transposition and matrix N is defined

as

N ¼ 0 1

�1 0

� �
: (42)

Obviously, the quantities ~qt
AN~qB and ~q†

AK~qB are continuous

at layer interfaces. Hence, to show that these quantities are

propagation invariants for the layered medium, it suffices to

show that they are propagation invariants inside a layer.

Evaluating @3f~qt
AN~qBg and @3f~q†

AK~qBg, using Eq. (12)

with ~d ¼ 0, we obtain

@3f~qt
AN~qBg ¼ ~qt

A
~A

t
N~qB þ ~qt

AN ~A~qB; (43)

@3f~q†
AK~qBg ¼ ~q†

AA†K~qB þ ~q†
AK ~A~qB: (44)

Matrix ~A, defined in Eq. (14), obeys for real-valued medium

parameters the following symmetry relations:

~A
t
N ¼ �N ~A; (45)

~A
†
K ¼ �K ~A: (46)

Hence, the right-hand sides of Eqs. (43) and (44) are equal

to zero, which confirms that ~qt
AN~qB and ~q†

AK~qB are propa-

gation invariants.

Next, we derive propagation invariants for decom-

posed wave fields. Consider two independent decomposed

wave vectors ~pA and ~pB, which are related to ~qA and ~qB,

respectively, via Eq. (27). We obtain propagation invari-

ants for these decomposed wave vectors by substituting
~qA ¼ ~L~pA and ~qB ¼ ~L~pB into the propagation invariants
~qt

AN~qB and ~q†
AK~qB. Using Eqs. (17), (24), and (42), we

obtain

~qt
AN~qB ¼ ~pt

A
~L

t
N~L~pB ¼ �2ðs3=b3Þ~pt

AN~pB (47)

and
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~q†
AK~qB ¼ ~p†

A
~L

†
K~L~pB

¼ 2~p†
A½<ðs3=b3ÞJ� i=ðs3=b3ÞN�~pB; (48)

with

J ¼ 1 0

0 �1

� �
: (49)

From Eqs. (29), (42), and (47), we obtain the propagation

invariant

ðs3=b3Þð ~P
þ
A

~P
�
B � ~P

�
A

~P
þ
B Þ: (50)

From Eqs. (29), (48), and (49) we obtain for propagating

waves (i.e., for real-valued s3) the propagation invariant

ðs3=b3Þ½ð ~P
þ
A Þ
� ~P
þ
B � ð ~P

�
A Þ
� ~P
�
B �: (51)

B. Representations

We use the propagation invariants of Eqs. (50) and (51)

to derive representations for the Marchenko method. We

introduce decomposed focusing functions [Fig. 3(a)] and

Green’s functions [Fig. 3(b)] and derive relations between

them using Eqs. (50) and (51), with ~P
6

A and ~P
6

B replaced by

the focusing functions and Green’s functions,

respectively.14,15

First we discuss the Green’s functions. For the source

quantities in Eq. (13), we take ~Bðs1; x3;xÞ ¼ dðx3 � x�3;0Þ
and ~Ciðs1; x3;xÞ ¼ 0, where x�3;0 ¼ x3;0 � �, with � a vanish-

ing positive constant, so that the source of the Green’s func-

tion is located in the homogeneous upper half-space, just

above x3;0 [Fig. 3(b)]. For the wave field ~P in Eq. (13), we

take ~P ¼ ~Gðs1; x3; x
�
3;0;xÞ, with x�3;0 and x3 denoting the

source and receiver coordinates of the Green’s function.

We decompose the Green’s function at the receiver position

x3 into downgoing and upgoing components ~P
þ

¼ ~G
þðs1; x3; x

�
3;0;xÞ and ~P

� ¼ ~G
�ðs1; x3; x

�
3;0;xÞ, respec-

tively. Analogous to Eq. (31), these components are related

to the total Green’s function via

~G ¼ ~G
þ þ ~G

�
: (52)

Furthermore, according to equations (13), (25), (28) and

(29), the decomposed Green’s sources are related to the total

Green’s source ~Bðs1; x3;xÞ ¼ dðx3 � x�3;0Þ via

~S
6ðs1; x3;xÞ ¼ 6ðb3=2s3Þdðx3 � x�3;0Þ: (53)

The source ~S
�

radiates upgoing waves into the homoge-

neous half-space above x�3;0, which will not return into the

layered medium and will not, therefore, be considered fur-

ther. The source ~S
þ

radiates downgoing waves into the

medium below x�3;0. Due to propagation and scattering in the

layered medium, the field at any depth x3 > x�3;0 consists of

the downgoing and upgoing components ~G
þðs1; x3; x

�
3;0;xÞ

and ~G
�ðs1; x3; x

�
3;0;xÞ. At x3 ¼ x3;0, i.e., at a vanishing dis-

tance � below the source, the downgoing component reads

~G
þðs1; x3;0; x

�
3;0;xÞ ¼ ðb3=2s3Þ lim

�!0
exp ixs3�f g

¼ b3ðx3;0;xÞ
2s3ðs1; x3;0;xÞ

: (54)

This follows from Eqs. (23), (29), (30), and (53), taking into

account that the medium between x�3;0 and x3;0 is homoge-

neous. At the same depth level (x3 ¼ x3;0), we relate the

upgoing component to the reflection response ~Rðs1; x3;0;xÞ
of the layered medium, via

~G
�ðs1; x3;0; x

�
3;0;xÞ ¼

b3ðx3;0;xÞ ~Rðs1; x3;0;xÞ
2s3ðs1; x3;0;xÞ

; (55)

where the factor b3=2s3 is introduced to compensate for the

source properties expressed by Eq. (53). The decomposed

Green’s functions ~G
þ

and ~G
�

will be substituted for ~P
þ
B and

~P
�
B in the propagation invariants of Eqs. (50) and (51).

Table II shows these functions at depth level x3 ¼ x3;0 (just

below the source) and at an arbitrary depth level x3 ¼ x3;F

(with x3;F > x3;0) inside the layered medium. Note that for

convenience, we dropped the superscript � from x�3;0.

FIG. 3. (a) The focusing function ~f 1 ¼ ~f
þ
1 þ ~f

�
1 , defined in a truncated ver-

sion of the actual medium. (b) The Green’s function ~G ¼ ~G
þ þ ~G

�
,

defined in the actual medium.
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Next we discuss the focusing functions.58 We define

these functions in a truncated version of the actual medium

[Fig. 3(a)]. This truncated medium is taken identical to the

actual medium above x3 ¼ x3;F and homogeneous below

this depth level. We call x3;F the focal depth. Analogous to

Eq. (52), we define the focusing function ~f 1ðs1; x3; x3;F;xÞ
as a superposition of downgoing and upgoing components
~f
þ
1 ðs1; x3; x3;F;xÞ and ~f

�
1 ðs1; x3; x3;F;xÞ, respectively,

according to

~f 1 ¼ ~f
þ
1 þ ~f

�
1 : (56)

The downgoing focusing function ~f
þ
1 ðs1; x3;0; x3;F;xÞ is

incident to the truncated layered medium from the upper

boundary x3;0 and is designed such that ~f
þ
1 ðs1; x3; x3;F;xÞ

focuses at the focal depth x3 ¼ x3;F. Inside the medium, propa-

gation and scattering takes place and the upgoing focusing

function ~f
�
1 ðs1; x3; x3;F;xÞ eventually reaches the upper

boundary x3 ¼ x3;0. Below the focal depth x3;F, the focusing

function continues propagating downward into

the homogeneous lower half-space of the truncated medium.

We define ~Tðs1; x3;F; x3;0;xÞ as the transmission response of

the truncated medium between x3;0 and x3;F. Hence, the propa-

gation of the focusing function from x3;0 to x3;F is described by

~f
þ
1 ðs1;x3;F;x3;F;xÞ¼ ~Tðs1;x3;F;x3;0;xÞ~f

þ
1 ðs1;x3;0;x3;F;xÞ:

(57)

The left-hand side describes the focused field at x3;F. We

could define this as ~f
þ
1 ðs1; x3;F; x3;F;xÞ ¼ 1 (with the inverse

Fourier transform of 1 being a temporal delta function).

However, in analogy with the Green’s function at the source

depth in Eq. (54), we define the focused field at the focal

depth as

~f
þ
1 ðs1; x3;F; x3;F;xÞ ¼

b3ðx3;F;xÞ
2s3ðs1; x3;F;xÞ

: (58)

From Eqs. (57) and (58), it follows that the downgoing

focusing function ~f
þ
1 ðs1; x3; x3;F;xÞ for x3 ¼ x3;0 is related

to the transmission response of the truncated medium via

~f
þ
1 ðs1; x3;0; x3;F;xÞ ¼

b3ðx3;F;xÞ
2s3ðs1; x3;F;xÞ ~Tðs1; x3;F; x3;0;xÞ

:

(59)

Since the truncated medium is homogeneous below the focal

depth, there is no upgoing field at the focal depth, hence

~f
�
1 ðs1; x3;F; x3;F;xÞ ¼ 0: (60)

The decomposed focusing functions ~f
þ
1 and ~f

�
1 will be

substituted for ~P
þ
A and ~P

�
A in the propagation invariants

of Eqs. (50) and (51). Table II shows these functions at

depth levels x3 ¼ x3;0 and x3 ¼ x3;F. An underlying

assumption for the propagation invariants is that the

fields ~P
6

A and ~P
6

B are defined in the same source-free

medium. This condition is fulfilled in the region between

x3;0 and x3;F. Substituting the quantities of Table II into

the propagation invariant of Eq. (50) and equating the

results for x3;0 and x3;F yields

~G
�ðs1; x3;F; x3;0;xÞ þ ~f

�
1 ðs1; x3;0; x3;F;xÞ

¼ ~Rðs1; x3;0;xÞ~f
þ
1 ðs1; x3;0; x3;F;xÞ: (61)

In a similar way, we obtain from the propagation invariant

of Eq. (51) for propagating waves

~G
þðs1; x3;F; x3;0;xÞ � f~f

þ
1 ðs1; x3;0; x3;F;xÞg�

¼ � ~Rðs1; x3;0;xÞf~f
�
1 ðs1; x3;0; x3;F;xÞg�: (62)

These representations express the downgoing and upgoing

components of the Green’s function at an arbitrarily chosen

depth level x3 ¼ x3;F in terms of the reflection response at

the surface x3 ¼ x3;0 and decomposed focusing functions.

These representations hold for a layered medium consisting

of an arbitrary mix of DPS and DNG layers. The reflection

response ~Rðs1; x3;0;xÞ can be obtained from measurements

at the surface x3;0. According to Eq. (59), the focusing func-

tion ~f
þ
1 ðs1; x3;0; x3;F;xÞ could in principle be obtained from

the transmission response of the truncated medium.

However, this would require detailed knowledge of the

medium between x3;0 and x3;F. In Sec. IV, we discuss the

Marchenko method, which enables retrieving the focusing

functions from the reflection response at the surface and a

background model of the medium.

IV. THE MARCHENKO METHOD

We start by transforming the representations of Eqs.

(61) and (62) to the time domain. Analogous to Eq. (3), we

define the following inverse Fourier transform:

uðs1; x3; sÞ ¼
1

p
<
ð1

0

~uðs1; x3;xÞ exp ð�ixsÞdx; (63)

where s is the so-called intercept time.59 Applying this

inverse transform to Eqs. (61) and (62), we obtain

TABLE II. Quantities used in the propagation invariants of Eqs. (50) and (51).

~P
þ
A ðs1; x3;xÞ ~P

�
A ðs1; x3;xÞ ~P

þ
B ðs1; x3;xÞ ~P

�
B ðs1; x3;xÞ

x3 ¼ x3;0
~f
þ
1 ðs1; x3;0; x3;F;xÞ ~f

�
1 ðs1; x3;0; x3;F;xÞ b3ðx3;0;xÞ=2s3ðs1; x3;0;xÞ b3ðx3;0;xÞ ~Rðs1; x3;0;xÞ=2s3ðs1; x3;0;xÞ

x3 ¼ x3;F b3ðx3;F;xÞ=2s3ðs1; x3;F;xÞ 0 ~G
þðs1; x3;F; x3;0;xÞ ~G

�ðs1; x3;F; x3;0;xÞ
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G�ðs1; x3;F; x3;0; sÞ þ f�1 ðs1; x3;0; x3;F; sÞ

¼
ðs

�1
Rðs1; x3;0; s� s0Þfþ1 ðs1; x3;0; x3;F; s

0Þds0

(64)

and

Gþðs1; x3;F; x3;0; sÞ � fþ1 ðs1; x3;0; x3;F;�sÞ

¼ �
ðs

�1
Rðs1; x3;0; s� s0Þf�1 ðs1; x3;0; x3;F;�s0Þds0 :

(65)

For the derivation of the Marchenko method, we need

time windows that suppress the Green’s functions on the

left-hand sides of the representations in Eqs. (64) and (65)

so that we are left with two equations for the two focusing

functions. First, we briefly review these windows for the sit-

uation of a layered medium consisting of DPS layers only.

Figure 4 shows an example of the functions on the left-hand

sides of Eqs. (64) and (65) for such a medium. Note that

these functions (represented by the solid lines) have been

convolved with a symmetric band-limited wavelet. For con-

venience, they have also been multiplied by a factor 2s3=b3

to compensate for the source properties defined in Eq. (53).

Figures 4(a) and 4(b) show the functions on the left-hand

side of Eq. (65). The direct arrival of the downgoing

Green’s function Gþðs1; x3;F; x3;0; sÞ in Fig. 4(a) coincides

with the time-reversed direct arrival of the focusing function

fþ1 ðs1; x3;0; x3;F; sÞ in Fig. 4(b). For this focusing function,

we write

fþ1 ðs1; x3;0; x3;F; sÞ ¼ fþ1;dðs1; x3;0; x3;F; sÞ

þMþðs1; x3;0; x3;F; sÞ; (66)

where fþ1;d is the direct arrival and Mþ a coda, following the

direct arrival [in Fig. 4(b), this coda is time-reversed and

consists of a single event only, but more generally it consists

of multiple events]. We define a time window

wðs1; sÞ ¼ hðsdðs1Þ � s� � sÞ, where hðsÞ is the Heaviside

step function, sdðs1Þ the traveltime of the direct arrival of

the downgoing Green’s function, and s� is half the duration

of the symmetric wavelet. This window is indicated by the

dashed lines in Fig. 4. It suppresses the downgoing Green’s

function in Fig. 4(a) and the time-reversed direct arrival of

the focusing function in Fig. 4(b). It passes the time-

reversed coda Mþðs1; x3;0; x3;F;�sÞ in Fig. 4(b). Figures 4(c)

and 4(d) show the functions on the left-hand side of Eq.

(64). Since the first arrival of the upgoing Green’s function

G�ðs1; x3;F; x3;0; sÞ arrives later than that of the downgoing

Green’s function, the time window wðs1; sÞ suppresses the

upgoing Green’s function in Fig. 4(c). It passes the focusing

function f�1 ðs1; x3;0; x3;F; sÞ in Fig. 4(d). Applying the win-

dow to both sides of Eqs. (64) and (65), the windowed equa-

tions can be solved for f�1 ðs1; x3;0; x3;F; sÞ and

Mþðs1; x3;0; x3;F; sÞ, after which the Green’s functions follow

from the unwindowed equations.14,15

Next, we discuss the time windows for the situation of a

layered medium consisting of a mix of DPS and DNG

layers. Figures 5(a) and 5(b) show an example of the func-

tions on the left-hand side of Eq. (65) (again convolved with

a symmetric band-limited wavelet and multiplied by a factor

2s3=b3). Due to the highly dispersive character of the DNG

layers, these functions are very different from their counter-

parts in Figs. 4(a) and 4(b). Nevertheless, for the focusing

function fþ1 ðs1; x3;0; x3;F; sÞ, we can again distinguish

between a direct arrival fþ1;d and a coda Mþ; see Fig. 5(b)

and Eq. (66). We define a time window

wþðs1; sÞ ¼ hðsþonðs1Þ � sÞ; (67)

where sþonðs1Þ is the traveltime of the onset of the downgoing

Green’s function. This window is indicated by the dashed lines

in Figs. 5(a) and 5(b). This window suppresses the downgoing

Green’s function in Fig. 5(a) and the time-reversed direct

FIG. 4. The Green’s functions and focusing functions on the left-hand sides

of Eqs. (64) and (65), for the situation of a layered medium consisting of

DPS layers only. The time window wðs1; sÞ, indicated by the dashed lines,

is the same for all functions.
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arrival of the focusing function in Fig. 5(b); it passes the time-

reversed coda Mþðs1; x3;0; x3;F;�sÞ in Fig. 5(b). Figures 5(c)

and 5(d) show the functions on the left-hand side of Eq. (64).

The onset time s�onðs1Þ of the upgoing Green’s function in

Fig. 5(c) is larger than that of the downgoing Green’s function.

Note, however, that the dispersive tail of f�1 ðs1; x3;0; x3;F; sÞ in

Fig. 5(d) exceeds not only the onset time of the downgoing

Green’s function but also that of the upgoing Green’s function.

Hence, the upgoing Green’s function in Fig. 5(c) and the focus-

ing function in Fig. 5(d) cannot be uniquely separated by a

time window. We define a time window

w�ðs1; sÞ ¼ htapðs�onðs1Þ � sÞ; (68)

where htapðsÞ is a tapered step function. It is indicated by the

dashed lines in Figs. 5(c) and 5(d). The taper should be cho-

sen such that this window suppresses the upgoing Green’s

function in Fig. 5(c) as well as possible and leaves the focus-

ing function f�1 ðs1; x3;0; x3;F; sÞ in Fig. 5(d) intact as much as

possible. It is unavoidable that this approach leads to

approximations, particularly in the situation of thin layers.

Assuming a proper window function w�ðs1; sÞ can be

found, the application of this window to both sides of Eq.

(64), and window wþðs1; sÞ to both sides of Eq. (65), yields

the following system of coupled Marchenko equations for

f�1 ðs1; x3;0; x3;F; sÞ and Mþðs1; x3;0; x3;F; sÞ:

f�1 ðs1; x3;0; x3;F; sÞ ¼ w�ðs1; sÞ
ðs

�1
Rðs1; x3;0; s� s0Þ

� fþ1 ðs1; x3;0; x3;F; s
0Þds0 (69)

and

Mþðs1; x3;0; x3;F;�sÞ ¼ wþðs1; sÞ
ðs

�1
Rðs1; x3;0; s� s0Þ

� f�1 ðs1; x3;0; x3;F;�s0Þds0;

(70)

with fþ1 ðs1; x3;0; x3;F; sÞ defined in Eq. (66). This system of

equations can be solved by the following iterative scheme:

f�1;kðs1; x3;0; x3;F; sÞ ¼ w�ðs1; sÞ
ðs

�1
Rðs1; x3;0; s� s0Þ

� fþ1;kðs1; x3;0; x3;F; s
0Þds0 (71)

and

Mþkþ1ðs1; x3;0; x3;F;�sÞ ¼ wþðs1; sÞ
ðs

�1
Rðs1; x3;0; s� s0Þ

� f�1;kðs1; x3;0; x3;F;�s0Þds0;

(72)

with

fþ1;kðs1; x3;0; x3;F; sÞ ¼ fþ1;dðs1; x3;0; x3;F; sÞ

þMþk ðs1; x3;0; x3;F; sÞ; (73)

starting with Mþ1 ðs1; x3;0; x3;F; sÞ ¼ 0. Note that this scheme

requires the measured reflection response Rðs1; x3;0; sÞ of the

layered medium, estimates of the onset times sþonðs1Þ and

s�onðs1Þ, and an estimate of the direct arrival of the focusing

function, fþ1;dðs1; x3;0; x3;F; sÞ. Assuming a background model

of the medium is available, the primary downgoing and

upgoing waves can be modelled, from which the onset times

can be retrieved. Moreover, the direct arrival of the focusing

function can be obtained, analogous to Eq. (59), from the direct

arrival of the transmission response ~Tdðs1; x3;F; x3;0;xÞ (i.e.,

the modelled primary downgoing wave), according to

~f
þ
1;dðs1;x3;0;x3;F;xÞ ¼

b3ðx3;F;xÞ
2s3ðs1;x3;F;xÞ ~Tdðs1;x3;F;x3;0;xÞ

;

(74)

followed by an inverse Fourier transform.

FIG. 5. As Fig. 4, but for the situation of a layered medium consisting of

DPS and DNG layers. Note the different time windows wþðs1; sÞ and

w�ðs1; sÞ, indicated by the dashed lines.
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Once the iterative scheme has converged, the retrieved

focusing functions can be used in the representations

from Eqs. (64) and (65) to obtain the decomposed Green’s

functions G�ðs1; x3;F; x3;0; sÞ and Gþðs1; x3;F; x3;0; sÞ and,

finally, the total Green’s function Gðs1; x3;F; x3;0; sÞ
¼ Gþðs1; x3;F; x3;0; sÞ þ G�ðs1; x3;F; x3;0; sÞ. Note that the

latter can be interpreted as the response to a source at the

surface x3;0, observed by a virtual receiver at x3;F inside

the medium. Using reciprocity, Gðs1; x3;0; x3;F; sÞ can be

interpreted as the response to a virtual source at x3;F inside

the medium, observed by a receiver at x3;0. The retrieved

Green’s function contains the direct arrival and the primary

and multiple reflections of the layered medium. The direct

arrival comes from the background model whereas the pri-

mary and multiple reflections come from the measured

reflection response at the surface.

Next, we show how to obtain the response between a

virtual source and a virtual receiver, both inside the

medium. To this end, note that the decomposed Green’s

functions are mutually related via60,61

G�ðs1; x3;F; x3;0; sÞ ¼
ðs

�1
Rðs1; x3;F; s� s0Þ

� Gþðs1; x3;F; x3;0; s
0Þds0; (75)

where Rðs1; x3;F; sÞ is the reflection response at depth level

x3;F of the medium below this depth level, assuming a

homogeneous medium above this depth level. By inverting

Eq. (75), which is done by deconvolution, Rðs1; x3;F; sÞ is

obtained from G�ðs1; x3;F; x3;0; sÞ and Gþðs1; x3;F; x3;0; sÞ.
This deconvolution process removes all the multiple

reflections occurring in the medium above x3;F. The

retrieved reflection response Rðs1; x3;F; sÞ can be inter-

preted as the response to a virtual source for downgoing

waves at x3;F, observed by a virtual receiver for upgoing

waves at x3;F.

V. NUMERICAL EXAMPLE

We illustrate the Marchenko method with a numerical

example for a horizontally layered acoustic medium consist-

ing of a mix of DPS and DNG layers (see Fig. 6). All layers

are homogeneous and isotropic, with b1 ¼ b3 ¼ b, where b
stands for the mass density (see Table I).

The DPS layers consist of natural non-dispersive

materials with haðxÞ ¼ hbðxÞ ¼ 1. Hence, according to

Eqs. (7) and (8), the layer parameters simplify to

aðxÞ ¼ a0 and bðxÞ ¼ b0. In Fig. 6, the parameters of the

DPS layers are the mass density b0 and the phase velocity

c0 ¼ ða0b0Þ�1=2
.

The DNG layers consist of dispersive metamaterials.

For these layers, we use the Drude model of Eqs. (9) and

(10), with xa ¼ xb ¼ x0 and Ca ¼ Cb ¼ C. Hence,

haðxÞ ¼ hbðxÞ ¼ hðxÞ ¼ 1� x2
0=½xðxþ iCÞ�. For low fre-

quencies (x� x0), this is approximated by hðxÞ
¼ �x2

0=½xðxþ iCÞ�. Using Eqs. (7) and (8), we write

aðxÞ ¼ a0hðxÞ ¼ �a0
�hðxÞ; (76)

bðxÞ ¼ b0hðxÞ ¼ �b0
�hðxÞ; (77)

with

�a0 ¼ �a0

x2
0

x2
c

< 0; (78)

�b0 ¼ �b0

x2
0

x2
c

< 0; (79)

�hðxÞ ¼ �hðxÞx
2
c

x2
0

¼ x2
c

xðxþ iCÞ ; (80)

where xc is the central angular frequency of the wave fields

that will be considered. For consistency with the low fre-

quency assumption, we assume xc � x0. In Fig. 6, the

parameters of the DNG layers are the mass density �b0 and

the phase velocity c0 ¼ �ð�a0
�b0Þ�1=2

. The parameter C in

the DNG layers is set to C ¼ xc=1000.

We consider a band-limited ultrasonic downgoing plane

wave, incident to the layered medium at x3;0 ¼ 0 cm.

The source function of the incident wave is defined as

SðsÞ ¼ ð1� x2
cs

2=2Þ exp ð�x2
cs

2=4Þ (a so-called Ricker

wavelet), with a central frequency xc=2p ¼ 500 kHz.

Note that this wavelet is symmetric in time. We use a

wavenumber-frequency domain modelling method,62

adjusted for metamaterials, to model the response to this

plane wave. For the moment we consider vertically propa-

gating plane waves, hence, we take s1 ¼ 0. The modelled

reflection response Rðs1 ¼ 0; x3;0; sÞ, convolved with the

wavelet SðsÞ, is shown in Fig. 7(a). This figure clearly shows

the non-dispersed reflection at 40 ls from the first layer

interface at x3;1 ¼ 2 cm. It also shows the dispersed reflec-

tions from deeper interfaces, including multiple reflections

between the interfaces. Figure 7(b) is the modelled Green’s

function Gðs1 ¼ 0; x3; x3;0; sÞ inside the medium, as a func-

tion of depth x3 and time s. This serves as a reference for the

results we will obtain with the Marchenko method. To make

the later arrivals visible, a time-dependent amplitude gain of

exp ð2:5s=smaxÞ, with smax ¼ 140 ls, has been applied in

FIG. 6. Layered acoustic medium, consisting of DPS and DNG layers.
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this display. This figure shows how the wave field propa-

gates through the layers and scatters at the interfaces. The

downward and upward pointing arrows in the deepest layer

indicate the opposite group and phase propagation direc-

tions. The upward propagating part of the upper trace in this

figure is proportional to the reflection response Rðs1

¼ 0; x3;0; sÞ [see Eq. (55)], which is shown separately in

Fig. 7(a). Similarly, the lower trace is proportional to the

transmission response Tðs1 ¼ 0; x3;4; x3;0; sÞ, with x3;4 ¼ 8

cm, which is shown separately in Fig. 7(c). The trace at

x3 ¼ 5 cm is equal to the superposition of Figs. 5(a) and

5(c). Figure 7(d) shows the power flux density jðx3Þ, defined

in Eq. (32), divided by jðx3;0Þ. In the DNG layers, it

decreases because C 6¼ 0 in these layers. In a lossless

medium, jðx3Þ would be constant, i.e., propagation invariant.

Its deviation from being constant implies that the

Marchenko method, which is based on propagation invari-

ants, cannot lead to exact results. Since in this example the

losses are small, the effects on the results of the Marchenko

method are limited.

We use the Marchenko method discussed in Sec. IV to

retrieve the Green’s function Gðs1 ¼ 0; x3;F; x3;0; sÞ inside

the medium from the reflection response Rðs1 ¼ 0; x3;0; sÞ,
shown in Fig. 7(a). Apart from the reflection response,

we also need an estimate of the direct arrival of the

focusing function, fþ1;dðs1 ¼ 0; x3;0; x3;F; sÞ, which, according

to Eq. (74), follows from the inverse of the direct arrival

of the transmission response. For this direct arrival, we

need a background model of the medium. For the

moment, we use the exact model, but in a later example, we

replace it by an approximate model. Figure 8(a) shows

fþ1;dðs1 ¼ 0; x3;0; x3;F;�sÞ [convolved with the symmetric

wavelet SðsÞ] for variable x3;F. The trace at x3;F ¼ 5 cm is

equal to the direct arrival of the time-reversed focusing func-

tion in Fig. 5(b). Given the reflection response at the surface

[Fig. 7(a)], the time-reversed direct arrival of the focusing

function [Fig. 8(a)], and the depth-dependent onset times sþon

and s�on, we apply the iterative Marchenko scheme of Eqs.

(71)–(73) for 64 focal depths, ranging from x3;F ¼ 1.25 mm to

x3;F ¼ 8 cm, with steps Dx3;F ¼ 1.25 mm. For the window

w� in Eq. (71), we use a cosine-square taper with a length of

8p=xc s (except in the upper DPS layer, where we replace

this window by wþ). The length of the taper appears to have

no strong effect on the results of the method. For each focal

depth x3;F, we apply five iterations. Actually, for this relatively

simple situation, the method converges already after two itera-

tions and it remains stable even after 100 iterations. The

obtained focusing functions f�1 ðs1 ¼ 0; x3;0; x3;F; sÞ and

fþ1 ðs1 ¼ 0; x3;0; x3;F; sÞ are subsequently used in Eqs. (64) and

(65) to obtain the Green’s functions G�ðs1 ¼ 0; x3;F; x3;0; sÞ
and Gþðs1 ¼ 0; x3;F; x3;0; sÞ. These are shown in Figs. 8(b)

and 8(c) for variable x3;F. Superposing these results yields the

total Green’s function Gðs1 ¼ 0; x3;F; x3;0; sÞ [see Fig. 9(a)].

Figure 9(b) shows the difference of this retrieved Green’s

function with the directly modelled Green’s function in

Fig. 7(b) (the same time-dependent amplitude gain has

been applied in this display as in the other figures). Note

that the difference is overall small. This is also seen in

Fig. 9(c), which shows a comparison of the directly mod-

elled and retrieved Green’s functions at x3;F ¼ 5 cm. The

phases match very well and the amplitudes deviate typi-

cally a few percent, with some outliers in the order of

10%. From the decomposed Green’s functions, we can

retrieve the reflection response Rðs1 ¼ 0; x3;F; sÞ for

any x3;F by inverting Eq. (75). The retrieved response for

x3;F ¼ 5 cm is shown in Fig. 9(d). This is the reflection

response of the third interface at x3;3 ¼ 6 cm in Fig. 6,

measured with a virtual source and a virtual receiver 1 cm

above this interface. We observe a single primary reflec-

tion event at 8.0 ls; the dispersion effects of the overlying

DNG layer and the multiple reflections occurring in the

medium above x3;F have been properly removed (apart

from a very small remnant of a multiple reflection at

approximately 24.0 ls). The amplitude of the reflection

FIG. 7. Modelled wave field in the layered medium of Fig. 6. (a) Reflection

response Rðs1 ¼ 0; x3;0; sÞ. (b) Green’s function Gðs1 ¼ 0; x3; x3;0; sÞ. (c)

Transmission response Tðs1 ¼ 0; x3;4; x3;0; sÞ. (d) Power flux density as a

function of x3.
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event at 8.0 ls is 0.159, which is a slight underestimation

of the true reflection coefficient r3 ¼ 0:180 for x ¼ xc.

This discrepancy is due to the loss occurring in the DNG

layer between x3;1 ¼ 2 cm and x3;2 ¼ 4 cm.

To emphasize what we have achieved with the

Marchenko method, we repeat this numerical experiment

with a method that handles primaries only (to this end, we

use the same method as before, but apply zero iterations for

each focal depth). Figure 10(a) shows the retrieved Green’s

function Gðs1 ¼ 0; x3;F; x3;0; sÞ and Fig. 10(b) shows the dif-

ference with the directly modelled Green’s function in Fig.

7(b). Note that this difference is significantly stronger than

that in Fig. 9(b). Figure 10(c) shows again a comparison of

the directly modelled and retrieved Green’s functions at

x3;F ¼ 5 cm. Figure 10(d) shows the retrieved reflection

response Rðs1 ¼ 0; x3;F; sÞ for x3;F ¼ 5 cm, obtained by

inverting Eq. (75). The amplitude of the retrieved reflection

event at 8.0 ls is now 0.096, almost a factor 2 too low.

Moreover, the events directly following this reflection event

are caused by multiple reflections in the medium above

x3;F ¼ 5 cm, which obviously have not been removed by this

method.

FIG. 8. Wavefield retrieval with the Marchenko method. (a) Time-reversed

direct arrival of the focusing function, fþ1;dðs1 ¼ 0; x3;0; x3;F;�sÞ. (b) Retrieved

upgoing Green’s function G�ðs1 ¼ 0; x3;F; x3;0; sÞ. (c) Retrieved downgoing

Green’s function Gþðs1 ¼ 0; x3;F; x3;0; sÞ.

FIG. 9. Wavefield retrieval with the Marchenko method (continued). (a)

Total retrieved Green’s function Gðs1 ¼ 0; x3;F; x3;0; sÞ ¼ Gþðs1 ¼ 0; x3;F;
x3;0; sÞ þ G�ðs1 ¼ 0; x3;F; x3;0; sÞ. (b) Difference of the retrieved Green’s

function with the directly modelled Green’s function of Fig. 7(b). (c)

Overlay of directly modelled (solid) and retrieved (dashed) Green’s func-

tions at x3;F ¼ 5 cm. (d) Retrieved reflection response Rðs1 ¼ 0; x3;F; sÞ at

x3;F ¼ 5 cm of the interface at x3;3 ¼ 6 cm.
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In practice, we do not know the exact model, so we can

obtain only an estimate of the direct arrival of the focusing

function and of the onset times sþon and s�on. We apply the

same Marchenko method as above (again with five iterations

for each focal depth), but this time we use erroneous phase

velocities c0 of 975, –2050, 2550, and –2950 m/s in the four

layers (and the same numerical values for the mass density).

Because of the erroneous velocities, the travel times of the

retrieved Green’s functions are erroneous as well, but the

multiple reflections are correctly handled.63 Figure 11(a)

shows the retrieved reflection response Rðs1 ¼ 0; x3;F; sÞ for

x3;F ¼ 5 cm. We observe a single reflection event at 7.6 ls

and hardly any remnants of multiples, which confirms that

the multiple reflections occurring in the medium above x3;F

have again been properly removed. The phase of the reflec-

tion event is distorted, but the envelope (indicated by the

dashed line) has a peak value of 0.149, which still approxi-

mates the true reflection coefficient r3 ¼ 0:180 reasonably

well.

Finally, we repeat the numerical experiment, using the

same erroneous phase velocities, for a dipping plane wave

with a small non-zero horizontal slowness s1 ¼ 40 ls/m.

The propagation angle a for x ¼ xc is related to the slow-

ness s1 and the phase velocities c0 of the different layers via

a ¼ arcsinðs1c0Þ. For s1 ¼ 40 ls/m, the angles in the four

layers of Fig. 6 are 2:29	;�4:59	; 5:74	 and �6:89	, respec-

tively. The retrieved reflection response Rðs1; x3;F; sÞ for

s1 ¼ 40 ls/m and x3;F ¼ 5 cm is shown in Fig. 11(b). The

amplitude of the retrieved reflection response of the third

interface is 0.157, which is a reasonable approximation of

the true reflection coefficient r3 ¼ 0:181 for x ¼ xc and

s1 ¼ 40 ls/m.

VI. CONCLUDING REMARKS

We have shown that the Marchenko method, which

retrieves the wavefield inside a medium from its reflection

response at the surface, can be extended for metamaterials.

The main modification is the use of a new window function,

which better accounts for the strong dispersive behaviour of

waves in metamaterials. The method holds in the low fre-

quency limit for elastodynamic and electromagnetic waves

in layered media, consisting of a mix of natural materials

and metamaterials. Multiple scattering between the layer

interfaces is properly taken into account. We have shown

with a numerical example that the method accurately

retrieves the response to a source at the surface, observed by

virtual receivers inside the medium. By deconvolving the

retrieved upgoing field by the retrieved downgoing field, we

FIG. 10. As Fig. 9, but using a method that handles primaries only.

FIG. 11. (a) As Fig. 9(d), but using erroneous phase velocities. (b) As

Fig. 9(d), but for s1 ¼ 40ls/m and using erroneous phase velocities.
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accurately obtain the reflection response between a virtual

source and a virtual receiver, both inside the medium.

The method works well for vertically propagating plane

waves and for dipping plane waves with small horizontal

slownesses, corresponding to propagation angles up to

approximately 7	. For larger horizontal slownesses, the

method becomes unstable. Due to the strong dispersive

behaviour of the DNG layers, the propagation angle for a

fixed horizontal slowness is frequency-dependent and can

become post-critical for high frequencies, which explains

the unstable behaviour. A possible remedy is to remove the

high frequencies from the source spectrum, but this will go

at the cost of resolution. Further research is needed to opti-

mize the proposed method for a wider range of propagation

angles.

Whereas we only considered horizontally layered

media, in principle, the method can be extended for laterally

varying metamaterials in a similar way as for natural materi-

als.63 The strong dispersive character of metamaterials will

limit the maximum aperture angle of the space-time focus-

ing operators and hence the obtainable lateral resolution. An

interesting option to be investigated further is the virtual

plane-wave Marchenko approach for laterally varying

media,64 modified for metamaterials.

The proposed method can potentially be used in any

application of metamaterials where knowledge of the wave-

field inside the medium is required, for example, in non-

destructive testing of layered materials, where anomalies of

the retrieved reflectivity may be used to determine the loca-

tion of a delamination.
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